
Citation: Al-Jawfi, R.A. The Effect of

Learning Rate on Fractal Image

Coding Using Artificial Neural

Networks. Fractal Fract. 2022, 6, 280.

https://doi.org/10.3390/

fractalfract6050280

Academic Editors: Song Zheng,

Emad E. Mahmoud and

Yangquan Chen

Received: 28 March 2022

Accepted: 21 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

The Effect of Learning Rate on Fractal Image Coding Using
Artificial Neural Networks
Rashad A. Al-Jawfi

Department of Mathematics, Faculty of Sciences and Arts, Najran University, Najran 55461, Saudi Arabia;
raaljawfi@nu.edu.sa

Abstract: The amount by which the artificial neural network weights are updated during the training
process is called the learning rate. More precisely, the learning rate is an adjustable parameter used in
training neural networks in which small values, often in the interval [0, 1], are handled. The learning
rate determines how quickly the model updates its weights to adapt to the problem. Smaller learning
rates require more training periods due to small changes to the weights per refresh cycle, while larger
learning rates lead to faster changes and require fewer training periods. In this paper, the effect of
changing the learning rate value in the artificial neural network designed to solve the inverse problem
of fractals was studied. Some results were obtained showing the impact of this change, whether when
using large values of the learning rate or small values based on the type of fractal shape required to
identify the recursive functions that generate it.

Keywords: learning rate; fractal coding; iterated function system

1. Introduction

Recently, artificial neural networks have shown excellent performance for image
classification [1] as well as speech recognition [2]. Adam [3] has demonstrated that using
random regression and an appropriate refresh method for each network task can be chosen
to improve performance.

These update methods need to specify these values, including the initial learning rate
value. Determining this value is essential because an inappropriate learning rate leads
to unstable instantaneous solutions. A disadvantage of the network is that it contains
sensitive values that are not easy to adjust appropriately.

Daniel and Taylor [4] used automatic step size control of the learning rate by reinforce-
ment learning independent of the initial setup, and Kanada used the Log-Bp algorithm and
their algorithm [5], which significantly reduces the learning rate by combining backpropa-
gation and a genetic algorithm.

A significant learning rate can cause the model to converge too quickly with a non-
optimal solution, while a learning rate that is too small can cause the process to stop at a
certain level beyond which learning cannot occur.

A straightforward way to adjust the learning rate is to make it a multiple of a given
constant, so the iterations of this value improve the accuracy of the test.

Poole [6] was guided by his intuition in adopting another line since the highly complex
manifolds stacked in the input space can be practically transformed into flat manifolds in
the hidden layer, which will assist in the output tasks, just as occurs in classification.

2. Backpropagation and IFS

We summarize existing knowledge in this section to understand the activation function
and fractal coding.

The backpropagation algorithm trains a multilayer (feed-forward) perceptron (MLP),
a loop-free network with units arranged in layers. The outputs of each unit in a network

Fractal Fract. 2022, 6, 280. https://doi.org/10.3390/fractalfract6050280 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6050280
https://doi.org/10.3390/fractalfract6050280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract6050280
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6050280?type=check_update&version=2


Fractal Fract. 2022, 6, 280 2 of 9

layer are treated as inputs to units in the next layer of the sequence after they are processed
in the same layer. The first layer includes the bias units as fixed input units. Several layers
of trainable “hidden units” with internal representations may be formed, and another layer
may be a trainable output unit as well [4,5]. Each unit should be non-binary because both
the input and output take continuous values in some ranges, such as in [0, 1]. The output is
a sigmoidal function of a weighted sum. Thus, if a unit has input xk with corresponding
weights wik, output xi is given by xi = fi(∑ wikxk), where fi is a sigmoidal function:

fi(t) =
1

1 + e−(αt)
,

where α is a constant called the logistic growth rate or steepness of the curve. The output
units are evaluated by the components of the neural network environment. A training
set of input patterns p is given, as well as the corresponding desired target patterns tp for
the output units. The aim of Op, the target output pattern elicited by input p, is to adjust
weights in the network to minimize error [6].

E = ∑p ∑k

(
tp
k − op

k

)2
.

Rumelhart et al. [7] devised a formula for multiplication that returns the gradation
of this evaluation from a unit bias to input. The backpropagation method can be used to
continue this process across the entire network.

The scheme avoids many false lower bounds. In each input cycle, we fix the input

pattern p and take into account the corresponding fi(x) =
(

tp
k − op

k

)2
.

In this equation, the set of k ranges over the mapped (output units). The network
contains several interconnected units, and this interconnection depends on the weights wij.
The learning rule aims to change the weights wij to reduce the error E by stepwise descent:

∆wij = −
∂E

∂wij
= 2 ∑k(tk − ok)

∂ok
∂wij

Network learning is extremely slow in standard backpropagation because the growth
rate is exceedingly low [8,9]. An extremely high growth rate causes the weights and
objective function to diverge. Thus, learning does not occur. Acceptable growth rates can
be calculated using the Hess matrix [10] if the activation function is quadratic, similar to
linear models. Moreover, given that the Hessian matrix changes rapidly, the ideal growth
rate mostly changes rapidly during the training process if the activation function contains
many local and global options, similar to a typical neural network with hidden units.
Training a neural network with a constant growth rate is usually a tedious process that
requires trial and error.

Other types of backpropagation have been invented but suffer from the same theoreti-
cal defect as standard backpropagation. The magnitude of the change in weights should
not be a function of the gradient slope.

The gradient in some areas of the weight workspace is small and needs a large step
size, which is what happens when the random network initialization weights are small.
Moreover, the gradient and step size are small in other workspace areas, which happens
when the network is close to the local minimum. Similarly, a large gradient value may
require a small or large step size. One of the most essential features of artificial neural
networks is the tendency of algorithms to adapt to the growth rate. However, an algorithm
will double the growth rate of the gradient when sudden changes occur to calculate the
resulting change in the value of network weights. This process sometimes leads to unstable
behavior. Traditional optimization algorithms use second-order derivatives in addition to
gradients to obtain good step sizes.



Fractal Fract. 2022, 6, 280 3 of 9

Constructing an algorithm that automatically adjusts the growth rate during training
is difficult to achieve with further training. Several recommendations have been proposed
in the literature, but many do not work.

Some encouraging outcomes are given by Orr and Leen [11] and Darken and Moody [12],
but they did not offer a solution and merely illustrated problems using some of these pro-
posals. LeCun, Simard, and Pearlmutter [13] adjusted the weights instead of changing
the growth rate. A type of stochastic approximation called “iterate averaging” or “polyac
averaging” [14,15] was also proposed, which achieves theoretically ideal convergence rates
by maintaining the average of running weight values.

Formally,
S = UN

i fi(s),

where S ⊆ Rn and fi : Rn → Rn are the functions that need to be iterated, where

fi(x) =
(

bi11 bi12
bi21 bi22

)(
x
y

)
+

(
bi13
bi23

)
S is defined as the Hutchinson operator fixed point, which is the union of functions fi.

3. Properties of IFSs

The collection of functions fi form a monoid with composition operation. This monoid
is dyadic if the number of such functions is two. We considered the composition an infinite
binary tree, which may be composed of the left or right branch at each tree node. In general,
if the number of functions is p, then the composition may be visualized as a p-adic tree.

The elements of the monoid are isomorphic with the p-adic numbers, which means
that each digit of the p-adic number indicates which function will be composed with [16].

The automorphism group of the dyadic monoid comprises the modular group. This
group may explain the fractal self-similarity of the many fractals, including the de Rham
curves and Cantor set. In special cases, the functions are required to be an affine transforma-
tion, which can be represented by a matrix. However, the systems of iterated functions can
be built from nonlinear functions, including Möbius transformations and projective trans-
formations. Fractal flame is an example of a system of iterated functions with nonlinear
functions. The chaos game is the most popular algorithm for computing IFS fractals. The
chaos game involves random selection of a point in a plane, followed by random selection
of the system of iterated functions, which will be applied to the point and drawn.

The elective calculation is the process of obtaining every conceivable succession of
capacities up to the most extreme length to plot the aftereffects of applying every grouping
of capacities to an initial point or shape.

The most important goal of the alternative algorithm is to identify every possible
sequence of functions up to a certain maximum length and to plot the result of applying
that sequence of functions to a point or an initial shape.

IFS Coding

An effective IFS is built for a given set in Rn, wherein the attractor is set as [2,13]. If it
is not impossible, this inverse problem is difficult [17]. However, the construction required
for these functions will be simple if the given set has self-similar properties. The system of
the iterated functions can be obtained easily by mathematical transformations related to
the self-similarity property.

The fractal shape is then introduced as the fixed point of a contraction mapping on the
space P(C) of probability measures [18].

4. Using Neural Networks to Code IFS

The Hopfield network uses these fixed points of network architecture to represent
elements. The positional activation in networks studied by Melnik [8] and Giles [5] is used
as a case for using network dynamics, which is treated as an IFS that encodes its fractional



Fractal Fract. 2022, 6, 280 4 of 9

attraction. Barnsley [2] and Melnik [8] applied one of the system’s transformations to a
point chosen at a random number of times until it converges to the attractor.

A set of weights for the neural network is selected for a given fractal attractor, which
will approximate the attractor. The neural network used in the present paper consists of two
input units, namely Xin, Yin, two output units, Xout, Yout and six weights per transformation
(IFS) represent a function with a homogeneous recursive function system state (Figure 1).
This number of inputs, output units and weights may change for other cases of IFS. The
transformation is selected randomly. All input neurons receive an Xin and Yin coordinate
of each point of the fractal image, the first one for x coordinate and the other neuron for y
coordinate for each transform. The neurons return as Xout and Yout output, consisting of
different activation functions with bias.

Figure 1. Neural Network for one function of IFS.

5. Activation Function

The activation function is defined by φ(v) to smooth out the data to fit the purpose for
which the network is designed and determines the neuron’s output based on input and
weight values.

Many types of these activation functions can be classified with respect to their domain,
such as:

1. Logistic function φ(v) = 1
1+e−av where domain is [0, 1].

2. Hyperbolic tangent φ(v) = 1−e−av

1+e−av and algebraic sigmoid function v√
1+v2 where

domain is [−1, 1].

In this equation, a is the logistic growth rate. The present paper will constrict on
sigmoid activation functions, which are helpful to fractals coding.

The fractal image can be divided into three parts with respect to the coefficients of IFS.

5.1. Learning Rate with Positive Coefficients of IFS

The neural network’s output for this kind of IFS consists of two units as a calculation of
two input units and six weights for all transform (IFS) that represent a scalar function. The
iterated function is randomly selected. All input neuron units receive a single coordinate
of each point of the fractal image, one neuron for the x coordinate and the other for the y
coordinate for each transform. Each output neuron returns as x and y output, consisting of
Sigmoid function [7,9] with bias (Figure 2).



Fractal Fract. 2022, 6, 280 5 of 9

Figure 2. Sigmoid function.

The two equations of X and Y output are given as

Xout =
1

1 + e−aWXin

and
Yout =

1
1 + e−aWYin

,

where a is the growth rate,

WXin = XinWxx + YinWyx + Wx,

and
WYin = XinWxy + YinWyy + Wy

is the weight function from i input to j output neuron, and Wi is the bias of i input neuron.
An image is obtained at the end of this iterated operation for many points with random
iterations. This image differs from the image we aimed to find in the system (IFS). Thus,
the neural network weights must be updated to obtain an improved approximation of the
target image.

This change of weights depends on the amount of difference between the two images.
This difference is measured to get the error function, which should decrease with each
update of weight values.

The error function used to compare the two fractal attractors is the Hausdorff dis-
tance [1,11].

5.2. Learning Rate with Positive and Negative Coefficients of IFS

The same neural network and procedure will be used for this kind of IFS. The X and Y
output neuron consist of a TanSigmoid function with bias [7,9] (Figure 3).

The two equations of x and y outputs are given by:

Xout =
1− e−aWXin

1 + e−aWXin
and Yout =

1− e−aWYin

1 + e−aWYin

With the same symbols used in the first kind of IFS and bijk are the coefficients of IFS,
i = 1, 2, . . . , n, where n is the number of IFS, j = 1, 2, and k = 1, 2, 3.



Fractal Fract. 2022, 6, 280 6 of 9

Figure 3. TanSigmoid Function.

Figures 4–6 show some last fractal images of neural networks with sigmoid, and tan
sigmoid function for different growth rates. The same error function of the first kind of
fractal will be used in this kind of fractal.

Figure 4. Some last images of fractal with first kind for the neural network with different growth rates.



Fractal Fract. 2022, 6, 280 7 of 9

Figure 5. Some last images of fractals of the second kind for the neural network with different
growth rates.

Figure 6. Some last images of fractals of the third kind of the neural network with different
growth rates.

5.3. Learning Rate with Coefficients of IFS bij > 1

The activation function for this kind of fractal will be the same activation function for
the first kind if bij is positive and the same activation function for the second kind if bij is
positive and negative with a small change for the two cases (Figures 3 and 7).



Fractal Fract. 2022, 6, 280 8 of 9

Figure 7. TanSigmoid function with small change.

The two equations of x and y outputs are given as

Xout =
max

{
bijk

}
1 + e−aWXin

and Yout =
max

{
bijk

}
1 + e−aWYin

or

Xout = max
{

bijk

}1− e−aWXin

1 + e−aWXin
and Yout = max

{
bijk

}1− e−aWYin

1 + e−aWYin
.

The same symbols are used in the first and second kinds of IFS.

6. Future Work

The present paper focused on the congenial activation function for different kinds of
fractals. Some results with different growth rates are introduced for all kinds. Some values
of growth rate increase the speed of convergence of the neural network to the target fractal
image of each kind of fractal. The relation between growth rate and activation functions
related to fractal image coding remains an open problem.

Funding: This research was funded by [Najran University] grant number [NU/-/SERC/10/503].

Acknowledgments: The author would like to express his gratitude to the ministry of education and
the deanship of scientific research–Najran University–Kingdom of Saudi Arabia for their financial
and Technical support under code number (NU/-/SERC/10/503).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–8 December 2012.
2. Duchi, J.; Hazen, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn.

Res. 2011, 12, 2121–2159.
3. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
4. Daniel, C.; Taylor, J.; Nowozin, S. Learning Step Size Controllers for Robust Neural Network Training. In Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, AZ, USA, 12–17 February 2016.
5. Kanada, Y. Optimizing neural-network learning rate by using a genetic algorithm with perepoch mutations. In Proceedings of the

International Joint Conference on Neural Networks (IJCNN 2016), Vancouver, BC, Canada, 24–29 July 2016.
6. Poole, B.; Lahiri, S.; Raghu, M.; Sohl-Dickstein, J.; Ganguli, S. Exponential expressivity in deep neural networks through transient

chaos. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016;
pp. 3360–3368.



Fractal Fract. 2022, 6, 280 9 of 9

7. Hinton, G.E.; Rumelhart, D.E.; Williams, R.J. Learning internal representations by error propagation. Parallel Distrib. Process.
Explor. Microstruct. Cogn. 1986, 1, 318–362.

8. Melnik, O. Representation of Information in Neural Networks. Ph.D. Thesis, Brandies University, Waltham, MA, USA, 2000.
9. Pollack, J.B. The induction of dynamical recognizers. Mach. Learn. 1991, 7, 227–252. [CrossRef]
10. Bertsekas, D.P.; Tsitsiklis, J.N. Neuro-Dynamic Programming. Algorithm and Computations; Athena Scientific: Belmont, CA, USA,

1996.
11. Wu, J.; Braverman, V.; Yang, L. Obtaining Adjustable Regularization for Free via Iterate Averaging. In Proceedings of the

International Conference on Machine Learning (PMLR), Virtual Event, 13–18 July 2020; pp. 10344–10354.
12. Kushner, H.J.; Yin, G. Stochastic Approximation Algorithms and Applications; Springer: New York, NY, USA, 1997.
13. Ali, A.H.; George, L.E.; Zaidan, A.A.; Mokhtar, M.R. High capacity, transparent and secure audio steganography model based on

fractal coding and chaotic map in temporal domain. Multimed. Tools Appl. 2018, 77, 31487–31516. [CrossRef]
14. Siregar, S.P.; Wanto, A. Analysis of artificial neural network accuracy using backpropagation algorithm in predicting process

(forecasting). Int. J. Inf. Syst. Technol. 2017, 1, 34–42. [CrossRef]
15. Leen, T.K.; Orr, G.B. Using curvature information for fast stochastic search. In Advances in Neural Information Processing Systems;

Mozer, M.C., Jordan, M.I., Petsche, T., Eds.; The MIT Press: Cambridge, UK, 1997; pp. 606–612.
16. Al-Jawfi, R.A. Solving the Inverse Problem of Fractals Using Neural Networks. Ph.D. Thesis, Baghdad University, Baghdad, Iraq, 2003.
17. Fausett, L. Fundamentals of Neural Networks; Prentice-Hall: Upper Saddle River, NJ, USA, 1994.
18. Giles, C.L.; Miller, C.B.; Chen, D.; Chen, H.H.; Sun, G.Z.; Lee, Y.C. Learning and extracting finite state automata with second-order

recurrent neural networks. Neural Comput. 1992, 4, 393–405. [CrossRef]

http://doi.org/10.1007/BF00114845
http://doi.org/10.1007/s11042-018-6213-0
http://doi.org/10.30645/ijistech.v1i1.4
http://doi.org/10.1162/neco.1992.4.3.393

	Introduction 
	Backpropagation and IFS 
	Properties of IFSs 
	Using Neural Networks to Code IFS 
	Activation Function 
	Learning Rate with Positive Coefficients of IFS 
	Learning Rate with Positive and Negative Coefficients of IFS 
	Learning Rate with Coefficients of IFS bij > 1 

	Future Work 
	References

