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Abstract: Let H be a compact metric space. The metric of H is denoted by d. And let (H, f1,∞) be a
non-autonomous discrete system where f1,∞ = { fn}∞

n=1 is a mapping sequence. This paper discusses
infinite sensitivity, m-sensitivity, and m-cofinitely sensitivity of f1,∞. It is proved that, if fn(n ∈ N)
are feebly open and uniformly converge to f : H → H, fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and
∑∞

i=1 D( fi, f ) < ∞, then (H, f ) has the above sensitive property if and only if (H, f1,∞) has the same
property where D(·, ·) is the supremum metric.

Keywords: sensitivity; uniformly converge; non-autonomous discrete systems

MSC: 54H20; 37B45

1. Introduction

Chaos, as a universal motion form of topological dynamical systems, is one of the
core contents of the research for dynamical systems. At present, fruitful results of chaos
theory have been obtained in autonomous discrete dynamical systems. However, many
complex systems in real life, such as medicine, biology, and physics, are difficult to describe
by autonomous systems. Therefore, it is necessary to use other models (for example, non-
autonomous discrete systems). Since 1996, chaos of non-autonomous discrete dynamical
systems (for convenience, we abbreviate it to NDDS) has began to be studied [1]. In recent
years, the discussion about the chaotic properties in NDDS has been active. Si [2] gives some
sufficient conditions for NDDS to have asymptotically stable sets. Lan and Peris [3] showed
the relation between the weak stability of an NDDS and its induced set-valued system.
Li, Zhao, and Wang [4] studied stronger forms of sensitivity and transitivity for NDDS
by using the Furstenberg family. Meanwhile, under the condition lim

n→∞
d∞(gm

m, gm) = 0, a

necessary and sufficient condition for g to be F -mixing is established in [5]. Vasisht and
Das [6] discussed the difference between F -sensitivity and some other stronger forms of
sensitivity by some examples. Salman and Das [7] proved that on a compact metric space,
every finitely generated NDDS which is topologically transitive and has a dense set of
periodic points is thickly syndetically sensitive. Vasisht and Das [8] proved that if the rate
of convergence at which ( fn) converges to f is “sufficiently fast”, then various forms of
sensitivity for the autonomous system (X, f ) and the NDDS (X, f1,∞) coincide. For the
chaoticity of other maps in NDDS, see [9–12] and other literature.

This paper further studies the chaotic properties in the sense of sensitivity. The basic
definitions of chaos are given in Section 2. In Section 3, under the conditions of that,
fn : H → H(n ∈ N) are feebly open and uniformly converge to f : H → H, fi ◦ f = f ◦ fi
for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞. This paper proves that (H, f ) is Q-sensitive
if and only if (H, f1,∞) is Q-sensitive where, D(·, ·) is the supremum metric (see Section 3),
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Q-sensitive denotes one of the four properties: accessible, infinitely sensitive, m-sensitive,
and m-cofinitely sensitive.

2. Preliminaries

For any initial value x0 ∈ H, the orbit of x under f1,∞ is denoted by { fn ◦ fn−1 ◦ · · · ◦
f1(x0) : n ∈ N}.

A subset K of N is cofinite [4,5] if there exists a N ∈ N such that [N,+∞] ⊂ K.
A system (H, f1,∞) (or maps sequence { fn}n∈N) is called “feebly open” [4,5] if for any

nonempty open subset V of H, int( fn(V)) 6= φ for any n ∈ N. Where intA denotes the
interior of set A.

A pair (x, y) is proximal [13] for (H, f1,∞) if for any x ∈ H, lim inf
n 7→∞

d( f n
1 (x), f n

1 (y)) = 0.

Definition 1 ([14]). A system (H, f1,∞) is "spatio-temporal chaotic" if for any x ∈ H and each
neighborhood V of x, there is a y ∈ V such that lim sup

n 7→∞
d( f n

1 (a), f n
1 (b)) > 0 but lim inf

n 7→∞
d( f n

1 (a),

f n
1 (b)) = 0.

Definition 2 ([4,5]). A system (H, f1,∞) is called "sensitive dependent on initial condition" if
there exists an η > 0 such that for any x ∈ H and ε > 0, there exists a y ∈ B(x, ε) and an n ∈ N
such that d( f n

1 (x), f n
1 (y)) > η.

Definition 3 ([7,8]). A system (H, f1,∞) is called "infinitely sensitive" if there exists an η > 0
such that, for any x ∈ H and ε > 0, one can find a y ∈ B(x, ε) and an n ∈ N such that
lim sup

n→∞
d( f n

1 (x), f n
1 (y)) ≥ η.

Definition 4 ([15]). A system (H, f1,∞) is called "accessible" if for any ε > 0 and any two
nonempty open subsets U1, U2 ⊂ H, there are two points x ∈ U1 and y ∈ U2 such that
d( f n

1 (x), f n
1 (y))) < ε for some integer n > 0.

For convenience, write

A(U, m, n) = min{d( f n
1 (xi), f n

1 (yj)) : xi, yj ∈ U, i, j ∈ {1, 2, . . . , m}, i 6= j}

and
S f1,∞ ,m(U, λ) = {n ∈ N: there is xi, yj ∈ U (i, j ∈ {1, 2, . . . , m}, i 6= j) such that

A(U, m, n) ≥ λ},
where m, n ∈ N, U is an arbitrary nonempty open subset in X.

Definition 5 ([16]). Given an integer m with m ≥ 2. The system (H, f1,∞) is called "m-sensitive",
if there is a real number λ > 0 such that for any nonempty open subset U of H, there are 2m points
x1, x2, . . . , xm; y1, y2, . . . , ym ∈ U such that S f1,∞ ,m(U, λ) is nonempty.

Definition 6 ([16]). Given an integer m with m ≥ 2. The system (H, f1,∞) is called "m-cofinitely
sensitive", if there is a real number λ > 0 such that for any nonempty open subset U of H, there are
2m points x1, x2, . . . , xm; y1, y2, . . . , ym ∈ U such that S f1,∞ ,m(U, λ) is a cofinite set.

3. The Relation of Chaoticity between f1,∞ and Its Limit Map f

Let C(H) be the set of all continuous self-maps on (H, d). For any f , g ∈ C(H), the
supremum metric (see [4]) is defined by D( f , g) = sup

x∈H
d( f (x), g(x)). This section will give

equivalence of chaotic properties between (H, f1,∞) and (H, f ).
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Lemma 1 ([5]). Let (H, f1,∞) be an NDDS on a nontrivial compact metric space (H, d) and
f ∈ C(H). If fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, then for any x ∈ H, any integer q ≥ 1 and
any integer p ≥ 1 one has

d( f q+p
1 (x), f q( f p

1 (x))) ≤
q+p

∑
j=p+1

D( f j, f ).

Theorem 1. If fn(n ∈ N) are a feebly open mapping sequence which uniformly converges to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is accessible if and only
if (H, f1,∞) is accessible.

Proof. Suppose that (H, f ) is accessible. Given ε > 0, let U, V are two nonempty open
subsets in H. Because fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, by Lemma 1, for the above ε > 0,

d( f p0+q
1 (x), f q( f p0

1 (x))) < ∑
q+p0
j=p0+1 D( f j, f ) for any x ∈ H and any integer p0, q ≥ 1. More-

over, because ∑∞
i=1 D( fi, f ) < ∞, then there is an integer S0 ≥ 1 such that ∑∞

j=s D( f j, f ) < 1
3 ε

for any s ≥ s0. Combine with the arbitrariness of p0, q, one can get that d( f p0+q
1 (x), f q( f p0

1 (x)))

< ε
3 . Because fi(i ∈ {1, 2, . . . }) are feebly open, the interiors of f p0

1 (U) and f p0

1 (V) are

nonempty sets. Let U′, V′ be the interiors of f p0

1 (U) and f p0

1 (V), respectively.
Because (H, f ) is accessible, for the above ε > 0, there are x ∈ U′ and y ∈ V′ such that

d( f q(x), f q(y)) < ε
3 for some q > 0. Then, there exist x′ ∈ U, y′ ∈ V satisfying x = f p0

1 (x′),

y = f p0

1 (y′). Thus, d( f q( f p0

1 (x′)), f q( f p0

1 (y′))) < ε
3 . Noting that d( f q+p0

1 (x), f q( f p0

1 (x))) <
ε
3 for x ∈ H, by triangle inequality, one has that

d( f p0+q
1 (x′), f p0+q

1 (y′)) ≤ d( f p0+q
1 (x′), f q( f p0

1 )(x′)) + d( f q( f p0

1 )(x′), f q( f p0

1 )(y′))

+d( f p0+q
1 (y′), f q( f p0

1 )(y′))

≤ ε

3
+

ε

3
+

ε

3
= ε.

Hence, (H, f1,∞) is accessible.
Now, suppose that (H, f1,∞) is accessible. For a given ε > 0, let U, V ⊂ H be nonempty

and open. Because ∑∞
i=1 D( fi, f ) < ∞, by Lemma 1, there is an integer p0 ≥ 1 such that

for the above ε > 0, x ∈ H, d( f p0+q
1 (x), f q( f p0

1 (x))) < ε
3 for any integer q ≥ 1. Because

fi(i ∈ {1, 2, . . . }) are feebly open, then the interiors of f p0

1 (U) and f p0

1 (V) are nonempty

sets. Let U′, V′ be the interiors of f p0

1 (U) and f p0

1 (V), respectively.
Because (H, f1,∞) is accessible for the above ε > 0, there are x ∈ U and y ∈ V such

that d( f q+p0

1 (x), f q+p0

1 (y)) < ε
3 for some q > 0. Then, there exist x′ ∈ U′, y′ ∈ V′ satisfying

x′ = f p0

1 (x), y′ = f p0

1 (y). Noted that d( f q+p0

1 (x), f q(x′) < ε
3 , by triangle inequality,

d( f q(x′), f q(y′))

≤ d( f q(x′), f q+p0
(x)) + d( f q+p0

(x), f q+p0
(y)) + d( f q(y′), f q+p0

(y)) < ε.

Hence, (H, f ) is accessible.

Theorem 2. If fn(n ∈ N) is a feebly open mapping sequence which uniformly converges to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is infinitely sensitive if
and only if (H, f1,∞) is infinitely sensitive.

Proof. Suppose that (H, f ) is infinitely sensitive with λ > 0 as an infinitely sensitive
constant. Let ε > 0, U ⊂ H is a nonempty open set. Because ∑∞

i=1 D( fi, f ) < ∞, by Lemma
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1, there is an integer p ≥ 1 such that d( f p+q
1 (x), f q( f p

1 (x))) < ε for any integer q ≥ 1, x ∈ H
and the above ε > 0. Taking an integer k ∈ {1, 2, . . . } satisfying k > 4

λ . Then, there is

an integer p0 ≥ 1 such that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
k for any integer q ≥ 1 and x ∈ H.

Because fi is feebly open (i ∈ {1, 2, . . . }), then the interior of f p0

1 (U) is nonempty. Let U′ be

the interior of f p0

1 (U). Because (H, f ) is infinitely sensitive with infinitely sensitive constant
λ > 0, then there is a y ∈ U′ such that lim sup

q→∞
d( f q(x), f q(y)) > λ. Because

x = f p0

1 (x′), y = f p0

1 (y′), lim sup
q→∞

d( f q( f p0

1 (x′)), f q( f p0

1 (y′))) > λ,

and because

d( f p0+q
1 (x′), f q( f p0

1 (x′))) < 1
k and d( f p0+q

1 (y′), f q( f p0

1 (y′))) < 1
k

for any integer q ≥ 1. By triangle inequality,

d( f p0+q
1 (x′), f p0+q

1 (y′)) > λ− 2
k
>

1
2

λ.

Taking the upper limit of both sides of the inequality, one has that

lim sup
q→∞

d( f q+p0
(x′), f q+p0

(y′)) > 1
2 λ.

Therefore, (H, f1,∞) is infinitely sensitive.
Conversely, let (H, f1,∞) be infinitely sensitive with λ > 0 as an infinitely sensitive

constant. Let ε > 0, U ⊂ H be a nonempty open set. Because ∑∞
i=1 D( fi, f ) < ∞, by Lemma

1, there is an integer p ≥ 1 such that d( f p+q
1 (x), f q( f p

1 (x))) < ε for any integer q ≥ 1, x ∈ H,
and the above ε > 0. Taking an integer k ∈ {1, 2, . . . } satisfying k > 4

λ . Then, there is

an integer p0 ≥ 1 such that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
k for any integer q ≥ 1 and x ∈ H.

Because fi is feebly open (i ∈ {1, 2, . . . }), the interior of f p0

1 (U) is nonempty. Let U′ be

the interior of f p0

1 (U). Because (H, f1,∞) is infinitely sensitive with λ > 0 as a sensitive

constant, then there is a y ∈ U′ such that lim sup
q→∞

d( f q+p0

1 (x)), f q+p0

1 (y))) > λ. So, there

exist x′, y′ ∈ U such that x′ = f p0

1 (x), y′ = f p0

1 (y). Noted that

d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
k and d( f p0+q

1 (y), f q( f p0

1 (y))) < 1
k

for any integer q ≥ 1, then

d( f p0+q
1 (x), f q(x′)) < 1

k and d( f p0+q
1 (y), f q(y′)) < 1

k

for any integer q ≥ 1. By triangle inequality, one has that

d( f q(x′), f q(y′)) > λ− 2
k > 1

2 λ.

Taking the upper limit of both sides of the inequality, one has that lim sup
q→∞

d( f q(x′)),

f q(y′))) > 1
2 λ. Consequently, (H, f ) is infinitely sensitive.
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Theorem 3. If fn(n ∈ N) is a feebly open mapping sequence which uniformly converges to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is m-sensitive if and
only if (H, f1,∞) is m-sensitive.

Proof. Suppose that (H, f ) is m-sensitive with m-sensitive constant λ > 0. Let ε > 0
and a open set U ⊂ H : U 6= φ. Because ∑∞

i=1 D( fi, f ) < ∞, by Lemma 1, there is an
integer p ≥ 1 such that d( f p+q

1 (x), f q( f p
1 (x))) < ε for any integer q ≥ 1, x ∈ H, and the

above ε > 0. Taking m ∈ {1, 2, . . . } with m > 4
λ . Then, there is an integer p0 ≥ 1 such

that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
m for any integer q ≥ 1 and x ∈ H. Because fi is feebly

open for all i ∈ {1, 2, . . . }, the interior of f p0

1 (U) is nonempty. Let U′ be the interior of

f p0

1 (U). Because (H, f ) is m-sensitive with m-sensitive constant λ > 0, there are m points
x1, x2, . . . , xm ∈ U′ and a q ∈ N such that

min{d( f q(xi), f q(xj)) : i, j ∈ {1, 2, . . . , m}i 6= j} ≥ λ.

Because x1, x2, . . . , xm ∈ f p0

1 (U), there are x′1, x′2, . . . , x′m ∈ U satisfying x1 = f p0

1 (x′1),

x2 = f p0

1 (x′2), . . . , xm = f p0

1 (x′m) and

min{d( f q( f p0

1 (x′i)), f q( f p0

1 (x′j))) : i, j ∈ {1, 2, . . . , m}i 6= j} ≥ λ.

And because d( f p0+q
1 (x′i), f q( f p0

1 (x′i))) <
1
m for any i = 1, 2, . . . , m. By triangle inequality,

min{d( f p0+q
1 (x′i), f p0+q

1 (x′j)) : i, j ∈ {1, 2, . . . , m}i 6= j} ≥ λ− 2
m > 1

2 λ.

This implies (H, f1,∞) is m-sensitive.
Conversely, let ε > 0 and U ⊂ H : U 6= φ be an open set. Because ∑∞

i=1 D( fi, f ) < ∞,
by Lemma 1, there is an integer p ≥ 1 such that d( f p+q

1 (x), f q( f p
1 (x))) < ε for any integer

q ≥ 1 x ∈ H, and the above ε > 0. Taking m ∈ {1, 2, . . . } with m > 4
λ . Then, there is an

integer p0 ≥ 1 such that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
m for any integer q ≥ 1 and x ∈ H.

Because fi is feebly open for all i ∈ {1, 2, . . . }, the interior of f p0

1 (U) is nonempty. Let U′ be

the interior of f p0

1 (U). Because (H, f1,∞) is m-sensitive with λ > 0 as a sensitive constant,
there are m points x1, x2, . . . , xm ∈ U′ and p0 > 0 such that min{d( f q

1 (xi), f q
1 (xj)) : i 6=

j ∈ {1, 2, . . . , m}} > λ for any integer q > 0. Because x1, x2, . . . , xm ∈ U′, then there are

x′1, x′2, . . . , x′m ∈ U satisfying x1 = f p0

1 (x′1), x2 = f p0

1 (x′2), . . . , xm = f p0

1 (x′m). And because

d( f p0+q
1 (x′i), f q( f p0

1 (x′i))) <
1
m for any i ∈ {1, 2, . . . , m}, then d( f p0+q

1 (x′i), f q(xi)) <
1
m for

any i ∈ {1, 2, . . . , m}. By triangle inequality, one has that

min{d( f q(x′i), f q(x′j)) : i 6= j ∈ {1, 2, . . . , m}} > λ− 2
m > 1

2 λ.

Hence, (H, f ) is m-sensitive with 1
2 λ as an m-sensitive constant.

Theorem 4. If fn(n ∈ N) is a feebly open mapping sequence which uniformly converge to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is m-cofinitely
sensitive if and only if (H, f1,∞) is m-cofinitely sensitive.

Proof. This proof is similar to that of Theorem 1, and hence is omitted.

Example 1. Let H be the compact interval [0,1] and g, h be defined by g(x) = x for any
x ∈ [0, 1] and
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h(x) =


2x +

1
3

f or x ∈ [0,
1
3
]

−3x + 2 f or x ∈ [
1
3

,
2
3
]

x− 2
3

f or x ∈ [
2
3

, 1]

.

In fact, for any nonempty open subset V of H, int(h(V)) 6= φ. Then h(x) is feeble open.
It is easy to know that, for any x1, x2 ∈ [0, 1] : x1 6= x2 (without loss of generality, x1 < x2),
the following conclusions are held.

If x1, x2 ∈ [0, 1
3 ] or x1, x2 ∈ [ 1

3 , 2
3 ] or x1, x2 ∈ [ 2

3 , 1], one can get that

| h(x1)− h(x2) |≥| x1 − x2 | .

If x1 ∈ [0, 1
3 ], x2 ∈ [ 1

3 , 2
3 ], one has

| h(x1)− h(x2) |=| 2x1 +
1
3
− (−3x2 + 2) |=| 2x1 + 3x2 −

5
3
|>| x1 +

3
2

x2 −
5
6
| .

If x1 ∈ [ 1
3 , 2

3 ], x2 ∈ [ 2
3 , 1], one has

| h(x1)− h(x2) |=| −3x1 + 2− (x2 −
2
3
) |=| 3x1 + x2 −

8
3
|>| x1 +

1
3

x2 −
8
9
| .

If x1 ∈ [0, 1
3 ], x2 ∈ [ 2

3 , 1], one has

| h(x1)− h(x2) |=| 2x1 +
1
3
− (x2 −

2
3
) |=| 2x1 − x2 + 1 |>| x1 −

1
2

x2 +
1
2
| .

Write

∆1 = {| x1 − x2 |: x1, x2 ∈ [0,
1
3
]}; ∆2 = {| x1 − x2 |: x1, x2 ∈ [

1
3

,
2
3
]};

∆3 = {| x1 − x2 |: x1, x2 ∈ [
2
3

, 1]}; ∆4 = {| x1 +
3
2

x2 −
5
6
|: x1 ∈ [0,

1
3
], x2 ∈ [

1
3

,
2
3
]}

∆5 = {| x1 +
1
3

x2 −
8
9
|: x1 ∈ [

1
3

,
2
3
], x2 ∈ [

2
3

, 1]};

∆6 = {| x1 −
1
2

x2 +
1
2
|: x1 ∈ [0,

1
3
], x2 ∈ [

2
3

, 1]}.

Taking δ = in f (
⋃6

i=1 ∆i). Then, for any n ∈ N, | hn(x1)− hn(x2) |≥ δ. This implies
that the map h : [0, 1] → [0, 1] is sensitive-dependent on initial condition. The computer
simulation with explanation of chaotic behavior is provided in Figure 1. The red dots
and the green dots represent the trajectories of initial value x1 = 0.3556 and x2 = 0.3557
iterate for 3000 times, respectively. It can be seen that, after iteration, the orbit of x1 (or x2)
is ergodic and disorder (see red dots or green dots). And with little difference between
initial values x1 and x2, there is a big gap between the iterative values after 1995 times
(see h1995(x1) = 0.0803, h1995(x2) = 0.9032). This means that h is sensitive-dependent on
initial condition.
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Figure 1. Chaotic behaviors of h in Example 1 with the initial data x1 = 0.3556, x2 = 0.3557 and
n = 3000.

Then, it can be proved that the system (H, h) is infinitely sensitive, m-sensitive, and
m-cofinitely sensitive.

Now, let fn(x) = g(x)(n = 2k + 1, k ∈ N) and fn(x) = h(x)(n = 2k, k ∈ N). Then
the family ( fn) consists of feebly open mappings converging uniformly to h. Obviously,
(H, f1,∞) is also infinitely sensitive, m-sensitive, and m-cofinitely sensitive. Thus, the system
(H, f1,∞) is conform to the assumption of Theorems 1–4.

Example 2. Defining

p(x) = 25saw(x) + cos(x2(1− x)), x ∈ H = R,

where, saw(x) is the sawtooth function defined by

saw(x) = (−1)m(x− 2m), 2m− 1 ≤ x ≤ 2m + 1, m ∈ Z.

One can prove that the map p(x) satisfies the definitions of chaos in Section 2. The
computer simulation with explanation of chaotic behavior is provided in Figure 2. The
red dots and the green dots represent the trajectories of initial value x1 = 0.3556 and
x2 = 0.3557 iterate for 6000 times, respectively. And with little difference between initial
values x1 and x2, there is a big gap between the iterative values after 4123 times (see
pn(x1) = 18.3449, pn(x2) = −24.1185).

Now, let fn(x) = p(x)(n ∈ N). Then fn(n ∈ N) are feebly open mappings which
uniformly converge to p. Similar to Example 1, (H, f1,∞) is infinitely sensitive, m-sensitive,
and m-cofinitely sensitive.

Remark 1. The above discussion tells us that under some conditions, studying the effect of a series
of disturbances on the system can be simplified to studying the effect of a single map (i.e., the limit
map) on the system.
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Figure 2. Chaotic behaviors of p in Example 2 with the initial data x1 = 0.3556, x2 = 0.3557 and
n = 6000.

4. Some Supplements

In NDDS, is there any connection between the chaos in the sense of proximity and
sensitivity? The following theorem answers this question in part.

Theorem 5. Let H be a compact metric space and (H, f1,∞) be a proximal non-autonomous system,
then (H, f1,∞) is spatio-temporal chaotic if and only if (H, f1,∞) is sensitive.

Proof. (Sufficiency) (H, f1,∞) be a proximal system, i.e., for any x, y ∈ H, lim inf
n→∞

d( f n
1 (x),

f n
1 (y)) = 0. Because (H, f1,∞) is sensitive with sensitive constant δ > 0, then for any

x ∈ H and any neighborhood U of x, there exist a y ∈ U and an n ∈ N such that
d( f n

1 (x), f n
1 (y)) > δ.

First, we prove that (H, f1,∞) is infinitely sensitive. This is similar to the proof of
Theorem 2.1 in Ref. [17].

Given any N ∈ N, set DN = {(x, y) : ρ( f n
1 (x), f n

1 (y)) ≤
η
4 } for an η > 0. It is clear

that DN is a closed set. And we can claim that intDN = φ for any N ∈ N. In fact, if there
are some N ∈ N such that intDN 6= φ, then there exist nonempty open sets U, V ∈ H such
that U × V ⊂ DN . Thus, for any pair (x, y) ∈ U × V, ρ( f n

1 (x), f n
1 (y)) ≤

η
4 holds for any

n > N. So for arbitrary two points x1, x2 ∈ U and any n > N,

ρ( f n
1 (x1), f n

1 (x2)) ≤ ρ( f n
1 (x1), f n

1 (y)) + ρ( f n
1 (y), f n

1 (x2)) ≤
η

2
.

It is easy to prove that, there exists a nonempty open set U∗ ⊂ U such that for any
points pair x1, x2 ∈ U∗ and any 0 ≤ m ≤ N, ρ( f m

1 (x1), f m
1 (x2)) ≤ η

2 . Hence, for any points
pair x1, x2 ∈ U∗ and any n ∈ N, ρ( f m

1 (x1), f m
1 (x2)) ≤ η

2 , which contradicts the sensitivity of
(H, f1,∞). So intDN = φ for any N ∈ N. It follows that set D = ∪N∈NDN is a first category
set in H × H. Then, the set

(H × H) \ D = {(x, y) : ∀N ∈ N, ∃n > N such that ρ( f n
1 (x), f n

1 (y)) >
η
4 }

is residual in X× X.
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Assume that (H, f1,∞) is not infinitely sensitive, then there exist an x0 ∈ H and a
ξ > 0 such that lim sup

n→∞
ρ( f n

1 (x0), f n
1 (y)) ≤

η
16 for any y ∈ B(x0, ξ). Noting the fact that

(H × H) \ D is residual in H × H, it follows that there exists a pair (y1, y2) ∈ [B(x0, ξ)×
B(x0, ξ)] ∩ [(H × H) \ D]. Then for any n ∈ N,

ρ( f n
1 (y1), f n

1 (y2)) ≤ ρ( f n
1 (y1), f n

1 (x0)) + ρ( f n
1 (x0), f n

1 (y2)) ≤ η
8 .

So,
lim sup

n→∞
ρ( f n

1 (y1), f n
1 (y2)) ≤ η

8 ,

which contradicts to (y1, y2) ∈ H × H \ D.
Hence, (H, f1,∞) is infinitely sensitive. That is to say, there exists an η∗ > 0 such that

lim sup
n→∞

ρ( f n
1 (x), f n

1 (y)) ≥ η∗. Then, it is easy to get that (H, f ) is spatio-temporal chaotic.

(Necessity) It is clearly held, and hence is omitted.
The proof is completed.

Corollary 1. Let H be a compact metric space and (H, f ) be a proximal system, then (H, f ) is
spatio-temporal chaotic if and only if (H, f ) is sensitive.

Remark 2. In fact, there are some other relationships among chaotic properties in non-autonomous
discrete systems. For example, topologically weak mixing implies sensitive, dense δ-chaos implies
sensitive, generic δ-chaos implies sensitive, and Li-Yorke sensitive is equivalent to sensitive under the
condition that

⋂∞
k=1

⋃∞
n=1 f−n

1 ({y ∈ H : d( f n
1 (x), y) < 1

k}) = H. These results are in [18–21].

5. Conclusions

For a mapping sequence f1,∞ = ( fn)∞
n=1, this paper gives four hypotheses. That is,

(1) fn(n ∈ N) are feebly open; (2) fn(n ∈ N) uniformly converge to f ; (3) fi ◦ f = f ◦ fi
for any i ∈ {1, 2, . . . }; and (4) ∑∞

i=1 D( fi, f ) < ∞. It is proved that, under the conditions
of (1)–(4), accessible or sensitivity between f1,∞ and its limit map f is coincide. Then, the
natural problems rise. Can the above (1)–(4) be reduced? Do other chaotic properties, such
as transitive, mixing, or distributional chaos, have similar conclusions? These are topics
worth studying in the future.
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