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Abstract: We used the concept of quantum calculus (Jackson’s calculus) in a recent note to develop
an extended class of multivalent functions on the open unit disk. Convexity and star-likeness
properties are obtained by establishing conditions for this class. The most common inequalities of
the proposed functions are geometrically investigated. Our approach was influenced by the theory
of differential subordination. As a result, we called attention to a few well-known corollaries of our
main conclusions.

Keywords: quantum calculus; analytic function; subordination and superordination; differential
subordination; univalent function; open unit disk; fractional calculus; multivalent functions; mero-
morphic functions

1. Introduction

The (Jackson’s calculus) (Quantum calculus (QC)) is a brand-new branch of mathemat-
ics that has applications in both physics and mathematics [1,2]. However, Ismail et al. [3]
presented QC in the geometric function theory. Based on this investigation, many Ma and
Minda classes of analytic functions are being proposed and developed on the open unit
disk (the classes of analytic functions that are defined by the subordination notion). For
example, quantum star-like function sub-classes were formulated in the effort of Seoudy
and Aouf [4] employing the notion of g-derivatives. Zainab et al. [5] developed accept-
able g-star-likeness criteria applying a unique curve. Furthermore, g-star-like functions
dominating the 2D-Julia set were examined by Samir et al. [6]. This calculus proved its
efficiency and accuracy to generalize the families of differential and integral operators in a
complex domain. In addition, special functions (see [7,8]) have associated with this calculus,
especially the queen of special functions: Mittag—Leffler function (see [9-12]). The quantum
calculus (g-calculus) has tremendous applications in different fields, for example, integral
inequalities [13], summability [14], approximation and polynomials [15], and sequence
spaces [16].

In a complex domain (), p-valent is an ordinary simplification of the concept of a
univalent function (normalized or meromorphic) in the complex plane. The number of
zeros of the equation ¢(&) = ¢ in Q) does not go above p for any ¢. This result highlights
there are at most p points of the Riemann surface and the ¢-plane into which ¢ = ¢(¢)
maps Q). Note that in ), ¢(¢) is univalent for p = 1. Based on the QC, this class of analytic
functions has been widely generalized by many researchers. Srivastava [17] utilized the
QC to study the existence of numerous arrangements of function theory. Arif et al. [18]
and Khan et al. [19] added investigations on the integral operator theory for holomorphic
and p-valent functions. Wang et al. [20] presented a generalization of Janowski p-valent
functions in view of QC.
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We propose a set of functional formulas connected with the class of multivalent
functions on the open unit disk in this work using QC. The proposed quantum formulas
will be geometrically investigated. For previous works, a collection of ramifications is
presented. Our technique is indicated by the theory of differential subordination and
superordination.

2. Preliminaries

In this section, we provide necessary definitions, lemmas and corollaries for explaining
the proofs of our Theorems.

2.1. Geometric Approaches

Let us begin with the fundamentals of geometric function theory which are covered in
this book [21].

Definition 1. The set U := {¢ € C : |&| < 1} is specified in the open unit disk. The analytic
functions vq, vy in U are subordinated vy < vy or v1(&) < v2(&), & € U if, for an analytic function
v, |v| < |&| < 1 satisfies

01() = v2(0(8)), EeU.

In the open unit disk, Ma and Minda [22] introduced two significant classes of star-like
and convex functions demarcated by the definition of the subordination, respectively:

2/(@) L
20 e o=,
1+ 28 @, -1

Numerous investigations have prolonged and generalized these classes. Furthermore,
the investigators utilized differential and integral processes to generate advanced classes of
analytic functions.

Definition 2. Let A be the class of p-valent analytic functions defined as follows:

v(@)=¢r+ ) ", C€eT,

n=p+1

where p € N. Additionally, two functions are defined for v € A, as follows:

To(E) = ‘i’ég) Fel;

and

P (3)
Vu(8) =1+ o(E) ¢el.

Based on the preceding functions, there are two classes of p-valent functions, the star-like T,
class and convex V,,, which meet the following conditions, respectively:

R(Ty(E)) >0, R(Vu(@)>0 ¢el.

Definition 3. Two functions

v(g) =¢P + Z a ¢"

n=p+1
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and

98 =¢"+ ) bal"

n=p+1
are convoluted if they satisfy the product
v(§)# () ="+ ), anbu", CeU.
n=p+1

The next result can be found in [21] (Corollary 3.4h.1 p.135)

Lemma 1. Let f be analytic and g be univalent in U with f(0) = g(0), and let 1 be analytic in a
domain containing g(U) and g(U). If £¢' (&) (g(&)) is star-like, then the inequality

S @p(f(2) <8 (D)y(g(2))
implies that f(¢) < g(¢) and g is the best dominant.
Lemma 2 ([22]). Let P(z) = 1+ Y00, pnz" be analytic in U satisfying R(P(z)) > 0. Then
|p —kp?| < 2max{1, 2k — 1|}, keC.

2.2. Quantum Calculus

Definition 4. The Jackson’s derivative, which contains the difference operator, can be shown
as follows:

f) —f(q6)
0 =g N € (0,1 1
where e
P — -4 p—1
(@) = (T5)ert, xer
In Maclaurin’s series representation, the total of the numbers is also included as follows:
O ) () = Y gnlnlge", )
n=0
where e
—1q
[n]g := 1—g
Note that

3K =0, lim (3, f) (&) = f'(2),
q—1
where K is a constant function.
Definition 5. For a function v € Ap, let Yy : U — C be formulated by

o

Yq(g) = (1 - 5)"’(&) + [p]q

(&9,v(¢)), €eU,se(01].
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Remark 1. Clearly, for v € Ay, we obtain

Y(¢) = (1=96)v(¢) + (C?i; v(&))

g%}
=
+
S
=
Ia%)
=
~—
_|_
3‘0.
/N
Ig%)
Qi
)
/N
g%}
=
_|_
[e
S
=
Ia%)
=
~—
~—

9467 + Z 1, 0¢" ))

(e £,
(

qérp 1_'_ Z an qgn 1))

n=p+1

@‘%

)

VR
R

‘m‘%

-

/N
R

)| &7 + Z anq;‘”) +

n=p+1

ofe-
<¢P+n§ﬂancn>+
-0
(

=¢F + i xn(q,0,p)an",  xn(q,6,p) = <(1_5)+5[;3q>.

n=p+1
Thus, Y4(G) € Ap.

3. Results
We have the following results.

3.1. Properties of Y,(¢)
This part deals with the geometric properties of the functional Y(¢).

Theorem 1. Consider the following assumptions:
(i)  pis univalent in U;

. ¢p'(¢)
(i) (7
p(&)(p(g) = 1)

(iii) the subordination

is star-like in U;

Y, (6) - 1 '@
N,@-p T re@e@ -1
holds.
Then T
Y;(C) <p@), EeU
and p is the best dominant.
Proof. Define function P as follows:
T
P(g) = qu(g)’ FeU

A computation implies
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Substitution implies that

W, (&) =P Te(&)+pP@) —p
v, -p  pPE)-p
1 ¢P'(g)

=@ (e 1)

Hence,

eP' () WO Loy

PE(PE) —1)  p@®)(p(@) 1)

According to Lemma 1, we obtain the result. [

Theorem 2. Consider the following assumptions:
(i) Let p be univalent in U;
. 6’ (%)
(i) Let
p(g) -1

(iii) Let the subordination

be star-like in U;

hold.
Then

and p is the best dominant.

Proof. We formulate the function P as follows:

T
P() = Yf) Cel.

Consequently, we have

Hence,

ZP'(¢) Zo'(2)
p@) -1 p@ -1 Y

According to Lemma 1, we obtain the result. [

Theorem 3. Consider the following assumptions:
(i) p is univalent in U;

(it) T, is star-like in U;

(iii) The subordination

Vs, () = Ty, (©) < To(@)
holds.
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Then

and p is the best dominant.

Proof. We present the function P as follows:

Thus, we have

Substitution yields that

Wy, () — Ty, (&) = Tp(S)-
Hence,

Tp(§) < Tp(¢), ¢eU.
According to Lemma 1, we have the result P(¢) < p(&). O

Theorem 4. Consider the following assumptions:

(i)  pis univalent in U;
(ii)  ¢p' () is star-like in U;
(iii) The subordination

holds.
Then

and p is the best dominant.

Proof. We define the function P as follows:

P(g) = TY;@), Eel.

Consequently, we have

Tp(S) + pP(¢) = Wy, (¢).

Substitution yields that

Ty, (&) (W, (@) - Ty, (©)) = peP'(2).

Hence,
peP'(Z) < pep'(§), CeU.
According to Lemma 1, we obtain the result P(&) < p(¢). O

Then, we consider the multivalued function p(¢) = 1 4 sinh}(¢) (as can be seen in
Figure 1).
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F{efsinh'- (Z)+ 1] (where z=x+iy)

Figure 1. Plotting of the function 1+ sinh ! (&), which is analytic in the open unit disk and maps it
onto the petal-shape domain. The graphs presents the complex map, Riemann surface, real part, and
imaginary part of the function.

Theorem 5. Consider the functional Y g such that

quT(é‘) <1+sinh™ (&), ¢el.

Then
2
‘Xp+2(q/ 6, p)ap+2 —k(xp+1(q,6,p)ap+1) ‘ < gmax{l, 2k -1}, keC.

Furthermore,

N

|Xp+2(q,6,p)apsa| <

Proof. By the assumption, we have

TYqT@ — 1+ sinh 1 (w(@)),

where w(¢) is analytic in U such that w(0) = 0 and |w]| < |§| < 1.Itis clear that

Ty, (%) 1
— =1+ —xp11(9,6,p)ap 1€
p p
2 1 2\ .
+ ;XHZ(’%&/P)”HZ - ;(X;ﬂrl (9,6, p)ap1)” )&
+ ..

and that
1+4sinh ™ (w(Z)) =1+ 18 + 67 + ..
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then, we obtain

Xp+1(4,6,p)api1 = pc1
P 1o
Xp+2(9,0,p)api2 = 562+ FeT

Combining the above equations, we obtain that

2
Xp2(0,6,P)ap2 =k (xps1(,0, P)apsr)?| = Elez — (26— e,

Hence, Lemma 2 implies the requested result. For the second result, let k = 0, then we
obtain the inequality. O

Corollary 1 ([23], Theorem 1). Consider the functional Y, such that 6 = 0 and

Tqu(g) <1+sinh (&), ¢eU,

then
‘ap+2 - k(apH)Z’ < gmax{l, 2k — 1]}, keC.
Furthermore,
|ap+2| < g

Corollary 2 ([23], Corollary 1). Consider the functional Y, such that 6 = 0 and

Tqu(g) <14sinh (&), FeT,

then

N

‘“P+2 - (“Hl)z‘ <

Furthermore,

|ap+2| < g

Corollary 3 ([23], Corollary 2). Consider the functional Y, such that 6 = 0 and

TY;@) <14sinh (&), FeU.

Then

’{13 - ]k(az)z‘ < gmax{l, 2k —1]}, keC,

1
< —
|L73|72

and

N =

’ﬂ3 —ﬂg‘ <

Theorem 6. If p is convex univalent in U such that

Ty, (%)
p

<p), ¢€l,
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where p(0) = 1. Then

Y,(©) < éexp(/f”p(‘;’(("))dx),

where w satisfies w(0) = 0and |w ()| < 1. Furthermore, the inequality || :== o < 1 implies

o 2 2) <4 oo 24)

Proof. By the assumption of the theorem, we obtain

Integration implies that

Y,() < Eexp ( I de),

which is equivalent to
Yq(6) </¢ po(w(x)) )
—— < ex Ee—"mdy ).
¢ Pl ™

Since

p(—elel) < Rp(w(Ge))) < plel¢])
then, consequently this yields

Pp(=eldD) ' R(p(w(Z0))) " p(aldl)
/0 E dQS/o 0 dgg/o o

Combining the above inequalities, we obtain
1 1
p(—elel) Yq(C) / pele])
——22do <log|—=| < =2 do.
p /0 0 e= og‘ ¢ ‘ =P, 0 Y

This leads to

(25 < 4o 0)
O

Corollary 4. Let 6 = 0. If p is convex univalent in U such that

To(S)
p

<p@), ¢€0,

where p(0) = 1 then
g
o) < coxp [ Py ),

where w satisfies w(0) = 0and |w ()| < 1. Furthermore, the inequality || := o < 1 implies

co(250) < o )

Following that, we consider the functional Y, () as a g-differential operator, which is
a generalization of the Salagean g-differential operator.
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3.2. Quantum Differential Operator

In this part, we present a quantum differential operator generated by the functional
Y, (&) as follows:

o

QqYq(8)] = (1 - 8)v(?) + v (69 v(2))

Jg

=P+ Z Xn(q,9,p)anc"
n=p+1

QI (@)] = (1 - &)Y (@) + “f]q@q Y,(0))
1ot Y xn<q,5,p>ancn]+[j]q<mqa’+ y xnw,a,p)an[n]q@”)

n=p+1 n=p+1

—ot 3 ((1—5>+%)xn<q,s,p>an¢"

n=p+1

=¢r+ i [)(n(q,é,p)]zan g"
n=p+1
Qi [Y4(8)] = Qa[Qy Y4 (2)]]

="+ ) [xn(q,6,p)]"and".
n=p+1

(C €U xn(q,9,p) = <(1 —8) + 5[;?:))

It is clear that

QrYg@] =¢"+ Y, [xn(q,6,p)"anl" € Ap. €)
n=p+1

Note that when p = 1 and § = 1, we obtain the Salagean g-differential operator [24].
Furthermore, for 6 = 1, we obtain the g-multivalent case [25].

Theorem 7. Consider the following assumptions:

(i) O is univalent in U;

ge'(%)

(ii) Wz’s star-like in U,
(iii) The subordination
Var,(6) —p 1 Zo'(¢)
_atalv? T gy 2 5N
Top) @ 1 pO@)®() 1)
holds.
Then T ©
Q7' [Yq] o U
—5 = €), ¢€

and © is the best dominant.

Proof. Define the function X as follows:

T ug
£(&) = Q’*[;”]@, Fel.
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Accordingly, we have
T2 (&) = Variy, (§) — PE(S).
Substitution implies that

Voyiv,) (6) —
Ty (€) =

P_T(@)+pE@)—p
p PE() —p
1 &X(E)

BT GG

Hence,
(@, )
L(E)E(E) -1 0(@)(eE)-1)’

According to Lemma 1, we obtain the result. O

cel.

Theorem 8. Consider the following assumptions:
(i) © is univalent in U;

. GO(8)
(i) —
0(g) -1

(iii) The subordination

is star-like in U;

Voyiv,) (6) —
Toypry, (€) (W

RS ERS
\

—_
N——
A
R

Q
—
R
~

OCCUrs.

Then
Toyp1y,)(6)

O¢), U
; <0(), ¢«

and p is the best dominant.

Proof. Formulate the function P as follows:

Tom
2(8) = Q“;"]@, cel.

Accordingly, we have
Tx(8) + pZ(8) = Varyy,)(€)-
Substitution yields that

Vanpy, (&) —p
Ty, (8) <TQ; [Y:} GETE

Hence,
¢x'(¢) go'(g)
(-1 0E -1

According to Lemma 1, we obtain the result. O

=<

Theorem 9. Consider the following assumptions:

(i) O is univalent in U;
(i) Tg is star-like in U;
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(iii) The subordination
Var(y, (€)= Tarpy,)(8) < Te(S)
holds.

Then
Ty, (8)

OF), U
; <0(), ¢«

and © is the best dominant.

Proof. We present the function X as follows:

Tom
2(8) = Q“;q]@, cel.

Thus, we have
Tx(8) + pE(8) = Variy,)(9)-
Substitution yields that
Vo) (©) = Topry, (6) = Tx(8)-

Hence,
Tx(¢) < Te(g), ¢€U.

According to Lemma 1, we obtain the result £(&) < ©(¢). O

Theorem 10. Consider the q-differential operator Qi*[Y,](&), ¢ € U. Then

160, (QII©) 1o
q

P Q@ ity Sesasl
if and only if
m EP(1 4+ omexp(if))  EP[plq(1+ o1 exp(if))
(Qq[Yq](f:)*( (1—5)2(1—116) _ q 1_1{37 ))7&0.

Proof. The first direction (necessary) yields

i‘faq (QT[Yq](@) 1+ 5e(E)
Plg QY Q) — 1+ma(d)
where [©(&)| < |¢| < 1and @(0) = 0. That is

1 60 (Q? [Yq] (‘:)) 1+ o7 exp(if)
[plg Q7 [Yql(S) 1+ oy exp(if)’

6 € [0,27],

which is equivalent to

(20, (QU'IYq)(2)) (1 + o2 exp(i0)) — [ply Q' [¥)(2) (1 + 01 exp(i6)) ) # 0.

)
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Convolution properties imply
m m ¢’
Qq [Yq}(g) = Qq [Yq](g) * 1-¢
m — m Y CP
0, (Qq [W](C)) =0Qy [Yql(¢) * m
Thus, in terms of convolution properties, Formula (4) becomes
(93 (QUIY)(2)) (1 + 02 exp(i0)) — [plgQy'[¥] () (1 + o exp(if)) )
_ (om g .
= (Qq [Yql(¢) = (1—5)(1—‘75)> (1+ o exp(if))
4
- (Qpeal@ 155 ) (1 + erexpio)
_ om gP(A+oaexp(if))  ¢Flplg(1+ o1 exp(if))
- oyl - (S5 g e
#0,
which proves the necessary direction. Conversely, since
1 ¢9q (Q’qﬂ [Yq] (‘3)) 14 o7 exp(i6)
— 6 27,
W Q© 7 Treep) 1€ ©
where
oy 1 (Qyiv,)@)
Colple QrY4I(E)
is analytic in U.
Let 140y
— 71
h(g) = 15 oot gel.

Relation (5) indicates that
fU)K(U) = 2.

As a result, a connected component of C(U)\{/(9U)} includes the simply connected
domain f(U). The fact that

f(0) =h(0) =1,

together with the function’s univalence leads to the conclusion that

1 @(QNIO) 14ae
Pl Y@ el

-1<m<o <1

This completes the proof. [
Corollary 5 ([26]). Consider the q-differential operator Q'[Y,]($), ¢ € U, with 6 = 0. Then

Lgaqvq(‘:) 1+01g
(g vq(Z) 1+ ¢

-1<m<orn <1

if and only if

(i) » (ZUE 2RO _ PPt op0)) 4

(1-8)(1—4f) 1-¢
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Corollary 6 (Theorem 5-[26]). Consider the q-differential operator Q'[Y4](¢),& € U, with
6 =0.Then
1 G0,v4(8)  1+0ig
[Pl vq(S) 1+0og

—-1<m<n <1

if and only if

oy (ST A+ exp(if))  ¢Plplg(1 + o1 exp(if))
(q@ ( 10140 ¢ ))7“)'

Corollary 7 (Corollary 6-[26]). Consider the g-differential operator Q'[Y,](¢), ¢ € U, with
8 = 0. Furthermore, let oy =1 —2a,a € [0,1),0» = —1. Then

1800y | 14 (1-20)¢

[Pl ve(¢) 1-¢
if and only if
o (o) 5 (A —exp(0)  EPlplg(1+ (1 —2a) exp(i6))
(w0 (Fogas 1-¢ ) #o

Moreover, when q — 17, we have received the result in [Theorem 2-[27]].

4. Conclusions

In view of Jackson’s calculus, a formula of multivalent functions on the open unit
disk was presented (Y;(¢)). We introduced the sufficient conditions on Y, (&) to satisfy the
star-like inequality

’IY(C)
9
— v é’

The upper and lower bounds are determined in Theorem 6. Subsequently, we prepared
Y, (&) as a g-differential operator (3), which is a generalization of the Salagean g-differential
operator. We studied the main g-star-like formula by giving the sufficient conditions. The
operator can be viewed as a conformable differential operator of constant coefficients of
convex frame. The consequences are provided for earlier efforts.

In future works, one can employ the g-differential operator (3) in different classes of
multivalent types such as the convex, uniform and symmetry styles. Furthermore, it can
be used to generalize classes of differential equations of a complex variable in the open
unit disk and investigate the geometric properties of the solutions. For example, one can
investigate the following Briot-Bouquet differential Equation [21]

v,
p

=p(&), ¢e€U, p(0)=1.
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