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Abstract: In this study, we will discuss the engineering construction of a special sixth generation (6G)
antenna, based on the fractal called Minkowski’s loop. The antenna has the shape of this known
fractal, set at four iterations, to obtain maximum performance. The frequency bands for which this
6G fractal antenna was designed in the current paper are 170 GHz to 260 GHz (WR-4) and 110 GHz to
170 GHz (WR-6), respectively. The three resonant frequencies, optimally used, are equal to 140 GHz
(WR-6) for the first, 182 GHz (WR-4) for the second and 191 GHz (WR-4) for the third. For these
frequencies the electromagnetic behaviors of fractal antennas and their graphical representations
are highlighted.
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1. Introduction

The commencement history of the 6G activity is quite recent in time. In the USA,
the Federal Communications Commission (FCC) has thus begun to provide tentative 6G
frequency band licenses, starting with the year 2019. By its statute, the FCC organization
will offer innovative engineers a minimum ten-year authorization to test the established
frequency spectrum of new sixth generation industrial objects and utilities. As for the
appointment with the appellative 6G, this is the abbreviation of the new generation, in fact
the sixth era of wireless networks, declared as the descendant of 5G technics. Ultimately,
as a successor to previous generations, the new 6G generation is expected to amplify the
existing qualities of the 5G generation.

This study of the subject in question is ready to host excellent information, such as 6G
radio-frequency domain, and frequency bands and ultimately expose 6G technics [1–3]. In
short, the frequency spectral range, falling in the 95 GHz (gigahertz) to 3 THz (terahertz)
domain, will be experimentally initiated for utilization to allow technicians reverie of the
next radio-wireless descendent and outset new activity. However, it is self-evident that
the frequency band being considered superfluous to the original purpose could deliver an
extra rapid Internet exploitation for ascensive data practice, such as extra determination
computer imaging and sensing signal appliances.

First, we talk about what 6G is, how it is possible to achieve 6G communications
(about frequencies, especially) and how current this requirement is. One of the potential
purposes of it is to substitute or operate together with those known as 5G networks and
be superior to them [4]! Moreover, as the first major advantage, it can be stated that it
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can afford meaningfully more dynamic propagation, at a signal velocity of approximately
95 Gbit/s, taken as the reference speed in our case. Thus, in the distributed communications
area, the so-called 6G is evidently the sixth engendering standard for wireless transmission
technics in radio natural networks (see frequency bands used).

The present paper is organized by comprising the six following chapters/sections. In
Section 1, the first work section, a brief general introduction is presented. After the introduc-
tory remarks, in Section 2, the essential notions about fractal geometry are mentioned, with
the specification of some Minkowski fractal characteristics. In Section 3, a review of the
Minkowski fractal antenna designs inspired by mutual fractal patterns is made. In Section 4,
the impact of performances in the utilization of fractal antenna are reported. At this point,
important results such as the charge and current distribution of fractal island antenna,
electric and magnetic fields 3D distribution, Minkowski fractal antenna pattern radiation
and overlay, signal magnitude versus frequency for Minkowski fractal antenna, impedance
versus frequency as well as signal magnitude versus frequency for VSWR are obtained and
discussed. In Section 5, a comparison of Horn antenna versus Minkowski fractal antenna,
mostly among operating parameters, is highlighted. At the end, in Section 6, the last work
section, the conclusions of this study are drawn.

2. Fractal Antennas, Fractals Geometry, Minkowski Fractal Characteristics
2.1. About the Fractal Antennas

From the beginning, we can say that the fractals idea has motivated the electrical
engineering collectivity to do a thorough investigation about the fact that the fractal
geometries could serve in employment at the special antennas design, subsequently named
fractal antennas. Thus, in this sense, our work is intending now to highlight the involvement
of fractals in fractal antenna technology. The novel research pursuit has as a result obtained
extremely spectacular miniature devices, of great perspective, considered basic bricks in
the development of professional antennas.

The fractal type antenna has applications in the military area, in particular, as well as
the economical-commercial zone, wherein by projecting the device, it controls its advisable
ownerships, such as:

• Compact/short dimension;
• Reduced perimeter;
• Multi-band frequency;
• Conformal typology.

Some fractal type antenna shortcomings are the following:

• Antenna gain losing;
• Complicated composition;
• Smaller benefits in dimension according to early recurrence.

Fractal antennas are welcome to be studied as being able to support frequencies in the
6G spectrum, obviously after determining the corresponding fractal geometric shape and
the iteration required for the established frequency.

The 6G Radio Frequency

The frequency bands for which this 6G antenna was designed are presented in Table 1 [5].

Table 1. 6G radio frequency.

Band Frequency WR-Size

D 110 GHz to 170 GHz WR-6
G 140 GHz to 220 GHz WR-5
G 170 GHz to 260 GHz WR-4
G 220 GHz to 325 GHz WR-3
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Among the bidder fractal objects, the most popular are fractal curves such as the
fractal curve type, for example, the Koch Curve (1.2618), Sierpinski Triangle (1.5848),
Sierpinski Carpet (1.8928), Koch Snowflake (1.2618) and Minkowski Curve (1.465), with
fractal dimensions written in parentheses. For this study, we found that the Minkowski
Curve meets our requirements [6], more precisely Minkowski’s loop, which is justified to
do this research.

2.2. About the Fractal Character: Minkowski’s Loop

This section introduces a few considerations about the fractal character of the Minkowski’s
loop and Minkowski fractal antenna. Let us briefly discuss the effects of using the
Minkowski fractal figure on each side of the square area antenna in certain recurrences,
through which to find its ideal shape, to be used in the design of the corresponding fractal
antenna. First of all, we are interested in how the fractal shape is realized from a geo-
metric point of view and the iterative process that is necessary to obtain the fractal figure
considered ideal for the proposed purpose [7].

Currently, by employing the Minkowski procedure, this can be resumed, and the
n-th reiteration is accomplished by sharing a linear section an−1 into five subsections
rn − cn − bn − cn − rn and repeating it over and over again. Between the values of the
five segments is the following constitutive relation an−1 = 2rn + bn, in which cn is the
fractal deep of the generator in the n-th Minkowski recurrent relation (we start from a
straight line, and we obtain the step generator, height/indentation equal to rn), Figure 1,
baseline. Another indicator used, named δn, is the iteration factor in the respective iteration
and is noted as δn = Cn/Bn. Both values of equality, respectively Cn and δn at the n-th
iteration, are adaptable and will be optimized based on the design performances of the
developed antenna.
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The measure D of fractal characteristics can be decided by a logarithmic rapport. The
general equation is s = pD, a power type law, as in the calculus formula for D

s = pD, logs = logpD = Dlogp, D =
logs
logp

=
lns
lnp

(1)

where s is the number of self-similar segments obtained from one portion after every
repetition and p is the number of parts obtained from one segment of every repetition [7,8].
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Conformable to Formula (1), the computed fractal measure, named fractal dimension,
is equal to 1.465 [7]. The fractal dimension D of a fractal curve is an indication of superior
achievement of space-addition (or filling) for the fractal in cause [9]. Yet, some fractal
curves cannot be utilized in the fractal antenna design practice. However, several fractal
geometries have been successfully employed in the projection of different antennas.

In Figure 1a–c, the steps of growth of the modified Minkowski fractal structure are
shown, respectively, as (a) the square ring, (b) the 1st iteration and (c) the 2nd iteration. In
Figure 1d, the first three iterations of Minkowski’s loop are introduced, together with the
linear generator consisting of five segments. More precisely, in the outline above, we start
from the initial appearance (one single figure), named the Minkowski initiator and arrive
through three iterations to the fourth complex figure (last figure). This is the fractal figure
used in making the fractal antenna in our study.

Suitable to Falconer [10], the amended variant of the Minkowski fractal geometry is
called multi-fractal or fractal geometry with above one ratio in the generator, such as a1
and a2. In this situation, the fractal dimension, D, can be achieved, as in the solution of the
next equation:

2
(

1 − a1

2

)D
+ 2a2

D + a1
D = 1 (2)

where a1 = L1/Lo, respectively, a2 = L2/Lo, Figure 1b.
In Figure 2, the variation of the fractal dimensions D of the modified Minkowski

fractal, with the a1 = x (on ox axis) and a2 = y (on oy axis) functioning as independent
variables is presented. The value of D is greater than 1 and less than 2 (in our chart less
than 1.99, to be exact).
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3. Minkowski Fractal Antenna

The fractal island object named the Minkowski’s loop geometric figure was used
to develop a fractal type antenna, more precisely to make a professional antenna. As is
known, the fractal antenna is the profitable beneficiary of a self-similarity project able
to increase to the maximum lengthiness, to grow the contour of a physical entity, which
emits electromagnetic waves in space, or to be in receipt of electromagnetic waves within a
circumscribed area, or rather into a surface, respectively volume restricted [11]. The chosen
fractal antenna has the shape of a “Minkowski’s loop”, with four iterations placed above a
ground plane antenna (electrical conductance area) [12].

For printed circuit boards, a ground plane is a large area of copper foil on the board,
which is connected to the ground terminal of the power supply and serves as a return
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path for the current from various components on the board; therefore, it seems the most
appropriate definition [13].

In Figure 3, the antenna corresponding to the drawn fractal is graphically described.
The power supply/current alimentation to the antennas is normal [9]. For the template in
the figure above, there have been set in the simulation environment titled Antenna Designer
offered by MATLAB R2021a, the following values:

• Length = 0.03 m; Width = 0.028 m; StripLineWidth = 0.0008 m; SlotLength = 0.004 m;
• SlotWidth = 0.00585 m; Height = 0.001 m; GroundPlaneLength = 0.05 m;
• GroundPlaneWidth = 0.03 m; FractalCenterOffset (m) = [0 0]; Tilt (deg) = 0;

TiltAxis = [1 0 0].
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The dielectric used is air, with a value of relative dielectric permittivity εr (air) =1 and
which is present in a layer of 0.00004 m. The absolute dielectric permittivity of the classical
vacuum is ε0 = 8.8541 × 10−12 F·m−1.

The favorable frequency bands for which this 6G Minkowski fractal antenna (four
iterations) was here designed, are 110 GHz to 170 GHz (WR-6), respectively, 170 GHz to
260 GHz (WR-4) [5]. The strips were chosen according to the indications on the website
https://www.miwv.com/what-is-6g (accessed on 11 June 2022).

The Revised Minkowski Geometry Figure of Fractal

The particular standard used in the fractal figure choice, as far as that goes in the
radiation circuit of minimum measure, is without question its size. With the increase in
the fractal size, the fractal figure replenishes the suitable domain much better than usual.
To achieve the antenna able to work in the planned frequency range, we benefit from the
Minkowski type fractal decomposition scheme to the quadratic area, first of all for the
enlargement of lengthiness of the actual effluent route and thereby diminution of the device
physical dimension. The fundamental Minkowski type fractal item, presented in detail in
Figure 3, is utilized for the enhancement of the actual running lengthiness, named to be the
depth of the fractal. The Minkowski type fractal item can be included into the composition
as a structure one after the other, added to every part developed of the Minkowski fractal
process, at a precedent recurrence step. In this way, it is the obtained/realized enlargement
of actual route lengthiness, and it minimized the antenna dimension for a certain frequency
of resonance.

4. Results and Discussion

Antenna sketch and project are generally easy to accomplish, but all component parts,
which are incorporated in the final project, are frequently the more exciting ones.

By definition, the so-called antennas as parts of a circuit deal with the reception or
transmission of electromagnetic waves in the environment. In this context, project managers
are concerned with priority in obtaining appropriate performances, especially for the gain,
and in the directivity of the designed antennas.

https://www.miwv.com/what-is-6g
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Thus, we will continue to speak about the radiation patterns, power gain and power
dissipation of a fractal Minkowski antenna, completed on this occasion. The charge
distribution simulation (Figure 4), and respectively the current distribution simulation
(Figure 5) of fractal island antenna, are made only for the resonance frequency equal to
140 GHz, (WR-6). In Figures 6 and 7, the antennas corresponding to the drawn fractal are
graphically described. The power supply/current alimentation to the antennas is normal
(Figures 3 and 4), and in Figures 6 and 7, is lateral.
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In Figure 10, the Azimuth pattern of the Minkowski fractal antenna, respectively
signal directivity, at 140 GHz resonance frequency, is presented. In Figure 11 are graphically
represented the Electric (blue) and Magnetic (red) Fields 3D Distribution, for normally
powered antenna [14]. It is a sphere uniformly distributed with the vectors of the two fields,
E and H, but with a higher density in the area of the two geographical poles. In the left
corner of the sketch is the Minkowski flat fractal antenna, designed for the fourth iteration.
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Figures 12 and 13 are figures with 3D (spatial) representation. These are made to indi-
cate the behavior of the Minkowski fractal antenna pattern radiation, having a colored band
on the right, graded in dBi. Unlike the known units named dB (decibels), the dBi (isotropic
decibels) units, they are also decibels, but in relation to an isotropic radiator device.
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Figure 14 presents impedance versus frequency, in two distinct curves. The first curve
is resistance (blue) and the second is reactance (red). These are almost horizontal variations
curves, except for the end-of-scale effects [15].
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Figure 15 shows the signal magnitude (dB) versus frequency (GHz) (blue line) for the
Minkowski fractal antenna, where the last listed refers to the Voltage Standing Wave Ratio
(VSWR) [16].
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Figure 15. Signal magnitude versus frequency for VSWR.

Such that a radio device (which emits or receives electromagnetic waves) must be
able to provide energy to its antenna, the radio total impedance and emission circuits
line impedance must be well tuned according to the antenna’s effective resistance. The
impedance is thus the actual resistance of an integral electric circuit or the constituent
in an alternative current, which results from both ohmic resistance and reactance mixed
effects [16,17]. The parameter Voltage Standing Wave Ratio (VSWR) is the physical degree
that numerically depicts how well the antenna is coupled to the impedance provided of the
radio line or emission line to which it is related. The VSWR is a service of the numerical
reflection factor, which describes the energy reflected from the device used to transmit or
receive electromagnetic signals.

In Figures 16–18 of the Minkowski fractal antenna for two, three, and respectively,
four iterations, the self-reflection coefficient S11 and return loss graphics are presented.
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Figures 16–18 show the graphs for (a) the self-reflection coefficient (S11), and respectively,
the return loss for (b), of the Minkowski type fractal antennas for two, three and four iterations.

Now, it can be said that S-parameters sometimes get used interchangeably with the
return loss, insertion loss and reflection coefficient, and often without discernment. In
particular, there seems to be the casual strong confusion around the dissimilarity between
the return loss versus the reflection coefficient, as well as because these associate to (S11).
These mistaking overlaps do occur, however, from the fact that these quantities defined
above all describe the reflection of a wave propagating from a reference pack, either that it
is a terminal transmission line or that it is a grid of preset circuits, ultimately.
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Fractal Antenna Measurements

According to a number of relevant simulations and measurements on Minkowski’s
loop-based fractal configurations, the optimum one is presented in the following figure. In
such an iterative procedure, an initial structure is replicated countless times at different
scales, positions and directions, to obtain the final fractal structure. In Figure 19, the
photography of a fabricated antenna from a fractal curve scheme of the Minkowski’s loop
third iteration can be noted.

The modeling and design process of the antenna are completed in MATLAB with
the help of the AntennaDesigner toolbox: (https://www.mathworks.com/help/antenna/
ref/antennadesigner-app.html (accessed on 11 June 2022)). The toolbox first asks for
the frequency for which one wants to design the antenna. Once this value is entered, a
prototype is made which can then be adjusted until the simulations suit the designer. We
modify certain dimensions of the fractal until we obtain the desired values for impedance,
VSWR, etc. All graphs are obtained with this program. The iterative process is performed
up to the third iteration. The Rogers 4350 0.8 mm thick material is used for the dielectric
having the relative permittivity of εr = 4.4. The fractal antenna is fed from the normal
position by coaxial cable having the inner and outer diameters of the SMA connector. The
scale factor of antennas is 1/3 and the stage of iteration is n = 3. The size of the substrate
and the patch are the same. At the end of the modeling, the Gerber files are generated,

https://www.mathworks.com/help/antenna/ref/antennadesigner-app.html
https://www.mathworks.com/help/antenna/ref/antennadesigner-app.html
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useful for printing the antenna wiring on the dielectric material (the PCB design has to
be completed with a specialized device to strictly observe the fractal dimensions). In the
measurements effectuated with the fractal antenna obtained, the VDI - Erickson Power
Meters (PM5B) were used. This power meter, covering both analog and digital carriers,
is a calibrated calorimeter-style power meter for 75 GHz to >3 THz applications. It offers
power measurement ranges from 1 µW up to 200 mW. The PM5B is the de facto standard
for frequency > 100 GHz power measurement and can be used in measurements such as
VSWR for antenna and cable, antenna return loss and cable return loss to measure forward
power and measure reflected power.
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From the investigation of the graph representations, a good match of the experimental
results with the simulated ones is observed. An excellent overlap, between simulated and
measured impedance, is presented in Figure 20. The graph in Figure 21 shows that we have
low, reduced VSWR values. This is gratifying, because the lower the VSWR, the better the
antenna is impedance-matched to the transmission line and the higher the power delivered
to the antenna. Furthermore, a small VSWR reduces reflections from the antenna.
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5. Horn Antenna versus Minkowski Fractal Antenna

The Minkowski fractal antenna and the classic Horn antenna were discussed, for
example [14]. In both representations, the constituent elements of the antennas in the plates
present in the perpendicular plane y0z (black drawing on an olive background) are passed,
generically called the anisotropic fractal meta-surface and, respectively, the dual-band
printed Horn antenna.

Figure 22 shows two distinct antennas operating in the same frequency band specific
to the 6G communications frame, in order to make a direct comparison of the quality of
the emission factors. From our assumptions, this concept is among primal designs for a
meta-surface applied to a dual-band antenna with contrary beams. In a positive vision, the
proposed meta-surface-based fractal antenna concept may present novel opportunities in
the projection of multi-functional antennas [18].
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As can be seen from the graphical representations, the Minkowski’s loop fractal
antenna is better in terms of pattern radiation overlay, having the signal strength close to
10 dBi (after the dark red color that appears in the figure on the left), being present on a
larger surface such as emissivity [15].



Fractal Fract. 2022, 6, 402 14 of 16

Regarding the directivity and gain of the two compared types of antennas, we present
two graphs in Figures 23 and 24, both at the resonant frequency of 140 GHz. The gains are
different from each other, with values of 14.63 dB for the Horn antenna and 3.133 dB for the
Minkowski fractal antenna, the fourth iteration. Figures 23 and 24 highlight the directivity
qualities and the gain associated to the individual antenna, graphically represented in 2D,
each separately [16]. Thus, we have the main directivity θ = 295◦ at a gain G = 3.13 dB for
the fractal Minkowski antenna, and a main directivity θ = 270◦ at a gain G = 14.6 dB for the
Horn antenna.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 23. Azimuth pattern (directivity) of Minkowski fractal antenna. 

 
Figure 24. Azimuth pattern (directivity) of Horn antenna. 

6. Conclusions 
In this paper, the engineering construction of a special Sixth Generation (6G) antenna 

has been presented, based on the fractal geometry called Minkowski's loop. The antenna 
has the shape of this known fractal, set finally at four iterations, to obtain a maximum 
electromagnetic performance.  

The frequency bands for which this 6G fractal antenna was projected in the article 
are 170 GHz to 260 GHz (WR-4), and 110 GHz to 170 GHz (WR-6), respectively. The three 
resonant frequencies, optimally used, are equal to 140 GHz (WR-6) for the first, 182 GHz 
(WR-4) for the second and 191 GHz (WR-4) for the third. For these frequencies, the elec-
tromagnetic behaviors of fractal antennas are well shown. 

Our review highlighted qualities of fractal geometry in the antenna’s design, made a 
classical analysis of the Minkowski fractal antenna, and calculated and graphically repre-
sented the electric and magnetic parameters such as charge and current distribution, elec-
tric and magnetic fields 3D distribution, impedance, radiation efficiency, Azimuth pattern 
and directivity, radiation pattern and VSWR. 

Figure 23. Azimuth pattern (directivity) of Minkowski fractal antenna.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 23. Azimuth pattern (directivity) of Minkowski fractal antenna. 

 
Figure 24. Azimuth pattern (directivity) of Horn antenna. 

6. Conclusions 
In this paper, the engineering construction of a special Sixth Generation (6G) antenna 

has been presented, based on the fractal geometry called Minkowski's loop. The antenna 
has the shape of this known fractal, set finally at four iterations, to obtain a maximum 
electromagnetic performance.  

The frequency bands for which this 6G fractal antenna was projected in the article 
are 170 GHz to 260 GHz (WR-4), and 110 GHz to 170 GHz (WR-6), respectively. The three 
resonant frequencies, optimally used, are equal to 140 GHz (WR-6) for the first, 182 GHz 
(WR-4) for the second and 191 GHz (WR-4) for the third. For these frequencies, the elec-
tromagnetic behaviors of fractal antennas are well shown. 

Our review highlighted qualities of fractal geometry in the antenna’s design, made a 
classical analysis of the Minkowski fractal antenna, and calculated and graphically repre-
sented the electric and magnetic parameters such as charge and current distribution, elec-
tric and magnetic fields 3D distribution, impedance, radiation efficiency, Azimuth pattern 
and directivity, radiation pattern and VSWR. 

Figure 24. Azimuth pattern (directivity) of Horn antenna.

Finally, we mention that in the graphical representations proposed in this paper we
used the software programs initiated in Image Clustering Algorithms to Identify Complicated
Cerebral Diseases, in a medical article [19].

6. Conclusions

In this paper, the engineering construction of a special Sixth Generation (6G) antenna
has been presented, based on the fractal geometry called Minkowski’s loop. The antenna
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has the shape of this known fractal, set finally at four iterations, to obtain a maximum
electromagnetic performance.

The frequency bands for which this 6G fractal antenna was projected in the article
are 170 GHz to 260 GHz (WR-4), and 110 GHz to 170 GHz (WR-6), respectively. The
three resonant frequencies, optimally used, are equal to 140 GHz (WR-6) for the first,
182 GHz (WR-4) for the second and 191 GHz (WR-4) for the third. For these frequencies,
the electromagnetic behaviors of fractal antennas are well shown.

Our review highlighted qualities of fractal geometry in the antenna’s design, made
a classical analysis of the Minkowski fractal antenna, and calculated and graphically
represented the electric and magnetic parameters such as charge and current distribution,
electric and magnetic fields 3D distribution, impedance, radiation efficiency, Azimuth
pattern and directivity, radiation pattern and VSWR.

It is immediately noticeable that, as with most fractal antennae, the radiation pattern,
and consequently, the detection efficiency and quality of the emission factors, do not
fluctuate umpteen with respect to frequency, mathematically speaking.

The antenna gain is reasonable compared to other fractal antennas, namely, we have a
gain equal to G = 3.13 dB at an angle of main directivity equal to θ = 295◦, for the fractal
Minkowski’s loop antenna (the three iterations). A good match of the experimental results
with the simulated ones is observed.
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