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Abstract: The idea of best proximity points of the fuzzy mappings in fuzzy metric space was
intorduced by Vetro and Salimi. We introduce a new type of proximal contractive condition that
ensures the existence of best proximity points of fuzzy mappings in the fuzzy complete metric spaces.
We establish certain best proximity point theorems for such proximal contractions. We improve and
generalize the fuzzy proximal contractions by introducing (Ψ, Φ)-fuzzy proximal contractions and
(Ψ, Φ)-fuzzy proximal interpolative contractions. The obtained results improve and generalize many
best proximity point theorems published earlier. Moreover, we provide many nontrivial examples to
validate our best proximity point theorem.

Keywords: best proximty point; interpolative fuzzy contractions; fuzzy metric space

1. Introduction

The (fixed point) equation `(x) = x is identical to T(x) = 0, where T(x) = `(x)− x.
As a result, the concrete solution of such equations takes into account “fixed point theory”.
Any approximative solution is also worth examining and can be determined using the
best proximity point theory in circumstances where such a problem cannot be solved. The
best proximity roughly translates to the smallest value of d(x, `(x)) if `(x) is not equal to x.
Best proximity theorems, interestingly, are a natural development of fixed point theorems.
When the mapping in question is a self-mapping, a best proximity point becomes a fixed
point. The existence of a best proximity point can be determined by analyzing different
types of proximal contractions [1–5].

The concept of fuzzy sets was given by Zadeh [6]. This idea was successful in altering
several mathematical structures within itself. Schweizer and Sklar [7] defined the notion
of continuous t-norms. Karamosil and Michlek [8] introduced the notion of fuzzy metric
space by using the concept of fuzzy sets, continuous t-norm, and metric space. Gregory
and Sapena [9] proved various fixed point results in the context of fuzzy metric spaces.

The triangular inequality that a fuzzy metric space satisfies provides a certain control
on how the distances between two points of a triplet are related. However, sometimes, it
is not strong enough to complete the proofs of certain results in the field of fixed-point
theory. In such a case, an additional assumption is often useful: the non-Archimedean
property. This condition establishes that the same real parameter can relate the fuzzy
distances between any three points of the underlying space. Such a hypothesis is very
useful in practice because the main examples of fuzzy metric spaces that are handled in
applications usually satisfy such a constraint. Fuzzy metrics have been demonstrated to be
a very consistent notion, leading to significant improvements in many fields.
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Pakanazar [10] proved the best proximity point theorems in a fuzzy metric space
and Vetro and Salimi [11] considered the problem of finding a best proximity point that
achieves the minimum distance between two nonempty sets in a non-Archimedean fuzzy
metric space. Recently, Hierro et al. [12] presented the Proinov type fixed point results in a
fuzzy metric space. The most important advantage of the cited family of contractions is
that it involves very general auxiliary functions that were inspired on Proinov’s attractive
paper. The obtained results demonstrated that there is a wide field of research that must be
explored to better understand the topological, analytical, and algebraic structure of fuzzy
metric spaces.

We introduce(Ψ, Φ)-non-Archimedean fuzzy proximal contraction, (Ψ, Φ)-fuzzy in-
terpolative Reich-Rus-Ciric type and (Ψ, Φ)-fuzzy interpolative Hardy Rogers type of the
first kind in a non-Archimedean fuzzy metric space. The aim of this paper, is to generalize
the non-Archimedean fuzzy proximal contraction in a non-Archimedean fuzzy complete
metric space. These results help researchers to better understand the best proximity theory
in the setting of (Ψ, Φ)-non-Archimedean fuzzy proximal contraction. In the following, we
present the contribution of various mathematicians towards fuzzy proximal contraction in
chronological order (see Table 1).

Table 1. Contributions of several authors towards generalized interpolative proximal contraction.

Authors Year Contributions

Calogero Vetro and Peyman Salimi [11] 2013 Best proximity points in fuzzy metric space
Erdal Karapinar [13] 2018 Interpolative contraction

Ishak Alton and Aysenur Tasdemir [14] 2020 Interpolative proximal contraction
Petko D. Proinov [15] 2020 Generalized contraction mappings

Khalil et al. This paper Generalized fuzzy interpolative proximal contraction

Recently, many nonlinear fuzzy models have appeared in the literature [16] and to
show the existence of solutions to such mathematical models, we need generalized fuzzy
contractive conditions. In this regard, Hierro et al. [12], Vetro and Salimi [11] have presented
some generalized Lipschitz conditions to obtain best proximity point theorems. In this
paper, we generalize the results in [11,12,17] and suggest various generalized Lipschitz
conditions in the fuzzy metric space that can be used to demonstrate the existence of fuzzy
models of nonlinear systems.

2. Preliminaries

This section states some prerequisites.

Definition 1 ([7]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] satisfying the following conditions:

(1) ∗ is commutative and associative;
(2) ∗ is continuous;
(3) a ∗ 1 = a for all a ∈ [0, 1];
(4) a ∗ b ≤ c ∗ d, whenever, a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1],

is called continuous t-norm.

Definition 2 ([11]). Let X be a non-empty set and ∗ be a continuous t-norm. A mapping F :
X× X× [0,+∞) satisfying the following conditions:

(i) F(x, y, t) > 0;
(ii) F(x, y, t) = 1 ⇐⇒ x = y;
(iii) F(x, y, t) = F(y, x, t);
(iv) F(x, z, t + s) ≥ F(x, y, t) ∗ F(y, t, s);
(v) F(x, y, .) : (0, ∞)→ [0, 1] is continuous,

for all x, y, z ∈ X and t, s > 0 is called fuzzy metric and the triplet (X, F, ∗) represents fuzzy
metric space.
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If we replace axiom (iv) by (iv)’. F(x, z, max{t, s}) ≥ F(x, y, t) ∗ F(y, t, s), then (X, F, ∗)
is known as non-Archimedean fuzzy metric space. Since (iv) implies (iv)’, each non-
Archimedean fuzzy metric space is a fuzzy metric space.

Let A and B be two non-empty subsets of a non-Archimedean fuzzy metric space
(X, F, ∗). We define the sets A0(t) and B0(t) as follows:

A0(t) = {u ∈ A : F(u, v, t) = F(A, B, t) for some v ∈ B and t > 0},
B0(t) = {v ∈ B : F(u, v, t) = F(A, B, t) for some u ∈ A and t > 0},

where F(A, B, t) = sup{F(x, y, t) : u ∈ A ∧ v ∈ B and t > 0},
For any (X, F, ∗) non-Archimedean fuzzy metric space and A, B non-empty subsets

of X, we say that B is approximately compact with respect to A, if every sequence {vn} in
B satisfying the following condition

F(u, vn, t)→ F(x, B, t),

for some u ∈ A and t > 0 has a convergent subsequence.
It is evident that every set is approximately compact with respect to itself. If A

intersects, then A ∩ B is contained in both A0 and B0. Further, it can be observed that if
A is compact and B is approximately compact with respect to A, then the sets A0 and B0
are non-empty.

Definition 3 ([9]). Let (X, F, ∗) be a non-Archimedean fuzzy metric space and A, B be non-empty
subsets of X. An element u in A is called a best proximity point of the mapping T : A → B, if it
satisfies the equation:

F(u, Tu, t) = F(A, B, t).

A best proximity point of the mapping T is not only an approximate solution of the
equation T(u) = u but also an optimal solution of the minimization problem:

min{F(u, T(u), t) : u ∈ A}.

3. Main Results

In this section, we define (Ψ, Φ)-proximal contraction and show that it generalizes proxi-
mal contraction. We prove the existence of best proximity point of (Ψ, Φ)-proximal contraction
in a complete non-Archimedean fuzzy metric space followed by supporting examples.

(Ψ, Φ)-Proximal Contraction of First Kind

Let (X, F, ∗) be a non-Archimedean fuzzy metric space and A, B be subsets of X. A
mapping T : A→ B satisfying

F(u1, Tv1, t) = F(A, B, t),
F(u2, Tv2, t) = F(A, B, t)

⇒ Ψ(F(u1, u2, t)) ≥ Φ(F(v1, v2, t)), (1)

for all distinct u1, u2, v1, v2 ∈ A, t > 0, with u1 6= u2 is called a (Ψ, Φ)-proximal contraction
of the first kind, where Ψ, Φ : (0, 1] → R are two functions such that Φ(q) > Ψ(q) for all
q ∈ (0, 1).

The following example shows that (Ψ, Φ)-proximal contraction generalizes proxi-
mal contraction.

Example 1. Let X = R2 and F : X× X× (0, ∞)→ [0, 1] be the non-Archimedean fuzzy metric

given by F(u, v, t) = e−
d((u1,v1),(u2,v2))

t and

d((u1, v1), (u2, v2)) =

√
(u1 − u2)

2 + (v1 − v2)
2 ,
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for all u1, v1, u2, v2 ∈ X and t > 0. Let A, B be the subsets of X defined by

A = {(0, u); u ∈ R}, B = {(1, u); u ∈ R}, then F(A, B, t) = e−
1
t .

Define the functions Ψ, Φ : (0, 1]→ R by

Ψ(q) =
√

q and Φ(q) = q2 for q ∈ (0, 1).

Define the mapping T : A → B by T((0, u)) = (1, 2u) for all (0, γ) ∈ A. We show that T
is a (Ψ, Φ)-proximal contraction of the first kind. For u1 = (0, 2), v1 = (0, 1) and u2 = (0, 4),
v2 = (0, 2), t = 1, we have

F(u1, Tv1, t) = F((0, 2), T(0, 1), 1) = F(A, B, t), (2)

F(u2, Tv2, t) = F((0, 4), T(0, 2), 1) = F(A, B, t). (3)

This implies that
Ψ(F(u1, u2, t)) ≥ Φ(F(v1, v2, t))

F(u1, u2, t) = F((0, 2), (0, 4), t) = 0.1353

F(v1, v2, t) = F((0, 1), (0, 2), t) = 0.3679.

Ψ(0.1353) ≥ Φ(0.3679)

0.3673 > 0.1354

This shows that T is a (Ψ, Φ)-proximal contraction. However, the following calculation shows
that it is not a proximal contraction. Indeed

F(u1, Tv1, t) = F((0, 2), T(0, 1), 1) = F(A, B, t),

F(u2, Tv2, t) = F((0, 4), T(0, 2), 1) = F(A, B, t),

does not imply to
F(u1, u2, t) ≥ F(v1, v2, t).

This shows that T is not a proximal contraction.

The following lemmas will be applied to obtain the proof of main results.

Lemma 1 ([12]). Let (X, F, ∗) be a non-Archimedean fuzzy metric space and {un} ⊂ X be a
sequence verifying limn→∞ F(un, un+1, t) > 1 − ε for all t > 0. if the sequence {un} is not
Cauchy, then there are subsequences {unk}, {umk} and ε ∈ (0, 1) such that

lim
k→∞

F
(
unk+1 , umk+1 , t

)
= ε− . (4)

lim
k→∞

F
(
unk , umk t

)
= lim

k→∞
F
(
unk+1 , umk , t

)
= lim

k→∞
F
(
unk , umk+1 , t

)
= ε. (5)

Lemma 2 ([15] ). Let Ψ : (0, 1]→ R. Then, the following conditions are equivalent:

(i) infq>ε Ψ(q) > −∞ for every ε ∈ (0, 1).
(ii) limq→ε− inf Ψ(q) > −∞ for any ε ∈ (0, 1).
(iii) limn→∞ Ψ(qn) = −∞ implies that limn→∞ qn = 1.

Lemma 3 ([12]). Let {un} be a sequence in (X, F, ∗) such that limn→∞ F(un, un+1, t) > 1− ε
for all t > 0 and ε ∈ (0, 1) and T : A → B be a mapping satisfying (1). If the functions
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Ψ, Φ : (0, 1] → R are such that (1) lim infq→ε− Φ(q) > Ψ(ε−) for any ε ∈ (0, 1). Then, {un}
is Cauchy.

Proof. We suppose that the sequence {un} is not Cauchy, by Lemma 1, there exist two
subsequences {unk}, {umk} and ε ∈ (0, 1) such that the Equations (4) and (5) hold. By (4),
we obtain that F

(
unk+1 , umk+1 , t

)
< 1− ε. For unk , umk , umk+1 , unk+1 ∈ A, we have

F
(
unk+1 , Tunk , t

)
= F(A, B, t),

F
(
umk+1 , Tunk , t

)
= F(A, B, t) for all k ≥ 1.

Thus, by (1) we have

Ψ
(

F
(
unk+1 , umk+1 , t

))
≥ Φ

(
F
(
unk , umk , t

))
for any k ≥ 1.

Substituting gk = F
(
unk+1 , umk+1 , t

)
and hk = F

(
unk , umk , t

)
in the above inequality,

we have
Ψ(gk) ≥ Φ(hk) for any k ≥ 1. (6)

By (4) and (5), we have limk→∞ gk = ε− and limk→∞ hk = ε.
By (6), we infer

Ψ(ε−) = lim
k→∞

Ψ(gk) ≥ lim inf
k→∞

Φ(hk) ≥ lim inf
l→ε

Φ(l). (7)

This contradicts the assumption (i). Consequently, {un} is a Cauchy sequence in A.

Now, we present our main results on (Ψ, Φ)-proximal contraction.

Theorem 1. Let (X, F, ∗) be a complete non-Archimedean fuzzy metric space and A, B be non-
empty, closed subsets of X such that B is approximately compact with respect to A. Let T : A→ B
be an (Ψ, Φ)-proximal contraction of the first kind, satisfying

(i) Ψ is a non-decreasing function and lim infq→ε− Φ(q) > Ψ(ε−) for any ε ∈ (0, 1).
(ii) A0 is non-empty subset of A such that T(A0) ⊆ B0.

Then T admits a best proximity point.

Proof. Let u0 be an arbitrary point in A0. Since T(u0) ∈ T(A0) ⊆ B0, there exists u1 ∈ A0
satisfying

F(u1, T(u0), t) = F(A, B, t).

As, T(u1) ∈ T(A0) ⊆ B0, there exists u2 ∈ A0 such that

F(u2, T(u1), t) = F(A, B, t).

This process of existence of points in A0 ends up to a sequence {un} ⊆ A0 such that

F(un+1, T(un), t) = F(A, B, t), (8)

for all n ∈ N. Observe that, if un = un+1 for some n ∈ N, then the point un is a best
proximity point of the mapping T. On the other hand, if un 6= un+1 for all n ∈ N, then by
(8), we have

F(un, T(un−1), t) = F(A, B, t),

and
F(un+1, T(un), t) = F(A, B, t),

for all n ≥ 1. Thus, by (1)

Ψ(F(un, un+1, t)) ≥ Φ(F(un−1, un, t)),
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for all distinct un−1, un, un+1 ∈ A. Substituting F(un, un+1, t) = En, we have

Ψ(En) ≥ Φ(En−1) > Ψ(En−1). (9)

Since Ψ is non-decreasing, by (9), we have En > En−1 for all n ∈ N. This shows that
the sequence {En} is strictly non-decreasing. Thus, it converges to some element E ≥ 1. We
show that E = 1. Assume, on the contrary, that E < 1, so that by (9), we obtain

Ψ(ε−) = lim
n→∞

Ψ(En) ≥ lim
n→∞

Φ(En−1) ≥ lim
t→E−

inf Φ(t).

This is a contradiction to assumption (i), thus, E = 1 and limn→∞ FM(un, un+1, t) = 1.
Presently, keeping in mind the assumption (i) and Lemma 3, we conclude that the sequence
{un} is Cauchy. Since (X, F, ∗) is a complete non-Archimedean fuzzy metric space and A
is closed subset of X, there exists u ∈ A, such that limn→∞ F(un, u, t) = 1. Moreover,

F(A, B, t) = F(un+1, T(un), t) ≥ F(un+1, u, t) ∗ F(u, T(un), t)

≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(un+1, Tun, t)
= F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

This implies that

F(A, B, t) ≥ F(un+1, u, t) ∗ F(u, T(un), t) ≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

Letting n→ ∞ in the above inequality, we obtain

F(A, B, t) ≥ 1 ∗ lim
n→∞

F(u, T(un), t) ≥ 1 ∗ 1 ∗ F(A, B, t).

That is,
lim

n→∞
F(u, T(un), t) = F(A, B, t).

Thus, F(u, T(un), t) → F(u, B, t) as n → ∞. Since B is approximately compact with
respect to A, there exists a subsequence {T(unk )} of {T(un)} such that (Tunk )→ η ∈ S as
k→ ∞. By taking k→ ∞ in the following equation:

F(unk+1 , T(unk ), t) = F(A, B, t), (10)

we have,
F(u, η, t) = F(A, B, t).

Since u ∈ A0, T(u) ∈ T(A0) ⊆ B0, there exists ξ ∈ A0 such that

F(ξ, Tu, t) = F(A, B, t). (11)

Now, keeping in mind the Equations (10), (11), by (1) we have

Ψ(F(unk+1 , ξ, t)) ≥ Φ(F(unk , u, t)) > Ψ
(

F
(
unk , u, t

))
.

Since, Ψ a is non-decreasing function, we have

F(unk+1 , ξ, t) > F
(
unk , u, t

)
.

As k→ ∞, we have F(u, ξ, t) = 1 or u = ξ. Finally, by (11) we have

F(u, T(u), t) = F(A, B, t).

This shows that the point u is a best proximity point of the mapping T.
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Theorem 2. Let (X, F, ∗) be a complete non-Archimedean fuzzy metric space and A, B be non-
empty, closed subsets of X such that B is approximately compact with respect to A. Let T : A→ B
be an (Ψ, Φ)-proximal contraction of the first kind, satisfying

(i) Ψ is non-decreasing, if {Ψ(qn)} and {Φ(qn)} are convergent sequences such that
limn→∞ Ψ(qn) = limn→∞ Φ(qn), then limn→∞ qn = 1.

(ii) A0 is a non-empty subset of A such that T(A0) ⊆ B0.

Then, T admits a best proximity point.

Proof. Proceeding as in the proof of Theorem 1, we have

Ψ(En) ≥ Φ(En−1) > Ψ(En−1). (12)

By (12), we infer that the sequence {Ψ(En)} is strictly non-decreasing. We have two
cases here; either it is bounded above or not. If {Ψ(En)} is not bounded above, then

inf
En>ε

Ψ(En) > −∞ for every ε ∈ (0, 1), n ∈ N.

It follows from Lemma 2 that En → 1 as n → ∞. Secondly, if the sequence {Ψ(En)}
is bounded above, then, it is a convergent sequence. By (12), the sequence {Φ(En)} also
converges, moreover, both have the same limit. By assumption (i), we have limn→∞ En = 1
or limn→∞ F(un, un+1, t) = 1, for any sequence {un} in A. Presently, the arguments given
in the proof of Theorem 1 leads to have

F(u, T(u), t) = F(A, B, t).

This shows that the point u is a best proximity point of the mapping T.

4. Best Proximity Points of Interpolative Proximal Contractions in Non-Archimedean
Fuzzy Metric Spaces

The interpolative contraction principles consist of products of distances having ex-
ponents satisfying some conditions. The term “interpolative contraction” was introduced
by the renowned mathematician Erdal Karapinar in his paper [13] published in 2018. Re-
cently, many classical and advanced contractions have been revisited via interpolation
(see [18–22]); among them are the following interpolative contraction:

d(Tx, Ty) ≤ K(d(x, Tx))α(d(y, Ty))1−α,

d(Tx, Ty) ≤ K(d(x, Tx))α(d(x, Ty))1−α,

d(Tx, Ty) ≤ K(d(x, r))β(d(x, Tx))α(d(y, Ty))1−α−β, α + β < 1

d(Tx, Ty) ≤ K(d(x, r))α(d(x, Tx))β(d(y, Ty))γ(
1
2
(d(x, Ty) + d(y, Tx))

)1−β−α−γ

, α + β + γ < 1

for all x, y ∈ A, ν ∈ (0, 1] and K ∈ [0, 1), known as the interpolative Kannan type contrac-
tion, interpolative Chatterjea type contraction, interpolative Ćirić-Reich-Rus type contrac-
tion and interpolative Hardy Rogers type contraction, respectively.

Altun et al. [14] (2020), revisited all the interpolative contractions introduced in [19]
and defined interpolative proximal contractions. They presented best proximity theorems
on such contractions. In this section, we establish some best proximity point theorems for
(Ψ, Φ) fuzzy interpolative proximal contractions, thereby extending Proinov type fixed
point results in a fuzzy metric space [12] to the case of non-self mappings. The (Ψ, Φ)-
proximal interpolative contractions generalize interpolative proximal contractions intro-
duced in [14].
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4.1. (Ψ, Φ)-Interpolative Reich-Rus-Ciric Type Proximal Contraction of the First Kind

Let (X, F, ∗) be a non-Archimedean fuzzy metric space and A, B be subsets of X. A
mapping T : A→ B satisfying

F(u1, Tv1, t) = F(A, B, t),
F(u2, Tv2, t) = F(A, B, t)

⇒ Ψ(F(u2, u1, t)) ≥ Φ

(
(F(v1, v2, t))α(F(v1, u1, t))β

(F(v2, u2, t))1−α−β

)
, (13)

for all distinct u1, u2, v1, v2 ∈ A, t > 0, with u1 6= u2, and α, β ∈ (0, 1) with α + β < 1 is
called a (Ψ, Φ)-interpolative Reich-Rus-Ciric type proximal contraction of the first kind,
where Ψ, Φ : (0, 1]→ R are two functions such that Φ(q) > Ψ(q) for all q ∈ (0, 1).

Example 2. Let X = R and F : X × X × (0, ∞) → [0, 1] be a non-Archimedean fuzzy metric
given by

F(u, v, t) =
t

t + d(u, v)
,

where d(u, v) =| u− v | for all u, v ∈ X and t > 0. Let A, B are subsets of X and defined as

A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4, 5, 6, 7}, then F(A, B, t) = 1.

Define the functions Ψ, Φ : (0, 1]→ R by

Ψ(q) =
√

q and Φ(q) = q for all q ∈ (0, 1).

Define the mapping T : A → B by T(u) = u + 1. We show that T is a (Ψ, Φ)-non-
Archimedean fuzzy interpolative Reich-Rus-Ćirić type proximal contraction of the first kind.
For u1 = 4, u2 = 2, v1 = 3, v2 = 1, α = 1

2 , β = 1
3 and t = 1. We have,

F(u1, Tv1, t) = F(4, T3, 1) = F(A, B, t),

F(u1, Tv1, t) = F(2, T1, 1) = F(A, B, t).

This implies to

Ψ(F(u2, u1, t)) ≥ Φ
(
(F(v1, v2, t))α(F(v1, u1, t))β(F(v2, u2, t))1−α−β

)
,

Ψ(0.3333) ≥ Φ
(
(0.3333)

1
2 (0.5)

1
3 (0.3333)1− 1

2−
1
3
)

,

Ψ(0.3333) ≥ Φ(0.4079),

0.5773 ≥ 0.4079.

Hence, T is a (Ψ, Φ)-interpolative Rich-Rus Ciric type contraction of the first kind. However,
the following calculation shows that it is not a interpolative Rich-Rus Ciric type contraction of the
first kind. Indeed,

F(u1, Tv1, t) = F(4, T3, t) = F(A, B, t) and

F(u1, Tv1, t) = F(2, T1, t) = F(A, B, t),

does not imply to,

F(u2, u1, t) ≥
(
(F(v1, v2, t))α(F(v1, u1, t))β(F(v2, u2, t))1−α−β

)
.

Note that the results will not change if the number of elements in the sets A and B is increased
or decreased or if non-integer numbers are taken.

Theorem 3. Let (X, F, ∗) be a complete non-Archimedean nfuzzy metric space and A, B be non-
empty, closed subsets of X such that B is approximately compact with respect to A. Let T : A→ B
be an (Ψ, Φ)-interpolative Reich-Rus-Ciric type proximal contraction of the first kind satisfying
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(i) Ψ is non-decreasing function and lim infq→ε− Φ(q) > Ψ(ε−) for any ε ∈ (0, 1).
(ii) A0 is non-empty subset of A such that T(A0) ⊆ B0.

Then T has a best proximity point.

Proof. Let u0 be an arbitrary point in A0. Since T(u0) ∈ T(A0) ⊆ B0, there exists u1 ∈ A0
satisfying

F(u1, T(u0), t) = F(A, B, t).

Also T(u1) ∈ T(A0) ⊆ B0 implies that there exist u2 ∈ A0 such that

F(u2, T(u1), t) = F(A, B, t).

This process of existence of points in A0 ends up to a sequence {un} ⊆ A0 satisfying

F(un+1, T(un), t) = F(A, B, t), (14)

for all n ∈ N. If un = un+1 for some n ∈ N, then the point un is a best proximity point of
the mapping T. On the other hand, if un 6= un+1 for all n ∈ N. By (14), we have

F(un, T(un−1), t) = F(A, B, t),

and
F(un+1, T(un), t) = F(A, B, t),

for all n ≥ 1. Thus, by (13)

Ψ(F(un, un+1, t)) ≥ Φ
(
(F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))1−α−β

)
, (15)

for all distinct un−1, un, un+1 ∈ A. Since, Φ(q) > Ψ(q) for all q ∈ (0, 1), by (15), we have

Ψ(F(un, un+1, t)) > Ψ
(
(F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))1−α−β

)
.

Since Ψ is a non decreasing function, we have

F(un, un+1, t) > (F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))1−α−β.

This implies that

(F(un, un+1, t))α+β > (FM(un−1, un, t))α+β.

Letting F(un, un+1, t) = En, we have

Ψ((En)) ≥ Φ
(
(En−1)

α+β(En)
1−α−β

)
> Ψ

(
(En−1)

α+β(En)
1−α−β

)
.

Since Ψ is non-decreasing, by (15), we have En > En−1 for all n ∈ N. This shows
that the sequence {En} is positive and strictly non-decreasing. Thus, it converges to some
element E ≥ 1. We show that E = 1. Assume, on the contrary that E < 1, so that by (15),
we obtain the following:

Ψ(ε−) = lim
n→∞

Ψ(En) ≥ lim
n→∞

Φ
(
(En−1)

α+β(En)
1−α−β

)
≥ lim

t→E−
inf Φ(t).

This contradicts assumption (i), hence, E = 1 and limn→∞ F(un, un+1, t) = 1. Presently,
keeping in mind the assumption (i) and Lemma 3, we conclude that {un} is Cauchy. Since
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(X, F, ∗) is a complete non-Archimedean fuzzy metric space and A is closed subset of X.
Then there exists u ∈ A, such that limn→∞ F(un, u, t) = 1.. Moreover,

F(A, B, t) = F(un+1, T(un), t

≥ F(un+1, u, t) ∗ F(u, T(un), t)

≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(un+1, Tun, t)
= F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

This implies

F(A, B, t) ≥ F(un+1, u, t) ∗ F(u, T(un), t) ≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

Taking n→ ∞ in the above inequality, we obtain

F(A, B, t) ≥ 1 ∗ lim
n→∞

F(u, T(un), t) ≥ 1 ∗ 1 ∗ F(A, B, t).

That is,
lim

n→∞
F(u∗, T(un), t) = F(A, B, t).

Therefore, F(u, T(un), t) → F(u, B, t) as n → ∞. Since B is approximately compact
with respect to A, there exists a subsequence {T(unk )} of {T(un)} such that (Tunk )→ η ∈ B
as k→ ∞. Therefore, by taking k→ ∞ in the following equation,

F(unk+1 , T(unk ), t) = F(A, B, t), (16)

we have,
F(u, η, t) = F(A, B, t).

Since u ∈ A0, T(u) ∈ T(A0) ⊆ B0 so that there exists ξ ∈ A0 such that

F(ξ, Tu, t) = F(A, B, t). (17)

Now, keeping in mind the Equations (16), (17), by (13) we have

Ψ(F(unk+1 , ξ, t)) ≥ Φ
((

F(unk , u, t)
)α(F(unk , unk+1 , t

))β
(F(u, ξ, t))1−α−β

)
,

> Ψ
((

F(unk , u, t)
)α(F(unk , unk+1 , t

))β
(F(u, ξ, t))1−α−β

)
.

Since, Ψ is a non-decreasing function, we have

F(unk+1 , ξ, t) >
(

F(unk , u, t)
)α(F(unk , unk+1 , t

))β
(F(u, ξ, t))1−α−β.

Thus, as k→ ∞, we have F(u, ξ, t) = 1 or u = ξ. Finally, by (17) we have

F(u, T(u), t) = F(A, B, t).

This shows that the point u is a best proximity point of the mapping, T.

Theorem 4. Let (X, F, ∗) be a complete non-Archimedean fuzzy metric space and A, B be non-
empty, closed subsets of X such that A is approximately compact with respect to B. Let T : A→ B
be an (Ψ, Φ)-interpolative Rus-Reich-Ciric type proximal contraction of the first kind, satisfying

(i) Ψ is non-decreasing, {Ψ(qn)} and {Φ(qn)} are convergent sequences such that
limn→∞ Ψ(qn) = limn→∞ Φ(qn), then limn→∞ tn = 1.

(ii) A0 is non-empty subset of A such that T(A0) ⊆ B0.

Then, T has a best proximity point.
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Proof. Proceeding as in the proof of Theorem 3, we have

Ψ((En)) ≥ Φ
(
(En−1)

α+β(En)
1−α−β

)
> Ψ

(
(En−1)

α+β(En)
1−α−β

)
. (18)

By (18), we infer that {Ψ(En)} is strictly non-decreasing sequence. We have two cases
here; either the sequence {Ψ(En)} is bounded above or not. If {Ψ(En)} is not bounded
above, then

inf
En>ε

Ψ(En) > −∞ for every ε ∈ (0, 1), n ∈ N.

It follows from Lemma 2 that En → 1 as n→ ∞. Secondly, if the sequence {Ψ(En)} is
bounded above, then, it is the convergent sequence. By (18), the sequence {Φ(En)} also
converges; moreover, both have the same limit. By assumption (i), we have limn→∞ En = 1
or limn→∞ F(un, un+1, t) = 1, for any sequence {un} in A. By the steps conducted in the
proof of theorem 3, we have

F(u, T(u), t) = F(A, B, t).

This shows that the point u is a best proximity point of the mapping T.

4.2. (Ψ, Φ)-Interpolative Kannan Type Proximal Contraction of the First Kind

Let (X, F, ∗) be a non-Archimedean fuzzy metric space and A, B be non-empty subsets
of X. A mapping T : A→ B satisfies

F(u1, Tv1, t) = F(A, B, t)
F(u2, Tv2, t) = F(A, B, t)

⇒ Ψ(F(u1, u2, t)) ≥ Φ
(
(F(v1, u1, t))α(F(v2, u2, t))1−α

)
, (19)

for all distinct u1, u2, v1, v2 ∈ A, t > 0, with u1 6= u2, is called (Ψ, Φ)-interpolative Kannan
type proximal contraction of the first kind, where Ψ, Φ : (0, 1]→ R are two functions such
that Φ(q) > Ψ(q) for all q ∈ (0, 1) and α ∈ (0, 1).

Example 3. Let X = R and F : X× X× (0, ∞)→ [0, 1] be the non-Archimedean fuzzy metric
given by

F(u, v, t) = e−
d(u,v)

t ,

where d(u, v) =| u− v | for all u, v ∈ X and t > 0. Let A, B be the subsets of X defined by

A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4, 5, 6, 7}, then F(A, B, t) = 1.

Define the functions Ψ, Φ : (0, 1]→ R by

Ψ(q) =
√

q and Φ(q) = q for all q ∈ (0, 1).

Define the mapping T : A → B by T(u) = u + 1 for all u ∈ A. We show that T is a
(Ψ, Φ)-non-Archimedean fuzzy interpolative Kannan type fuzzy proximal contraction of the first
kind. For u1 = 3, u2 = 5, v1 = 2, v2 = 4, α = 1

2 and t = 1, we have

F(u1, Tv1, t) = F(3, T2, 1) = F(A, B, t),

F(u2, Tv2, t) = F(5, T4, 1) = F(A, B, t).
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This implies that

Ψ(F(u1, u2, t)) ≥ Φ
(
(F(v1, u1, t))α(F(v2, u2, t))1−α

)
,

Ψ(F(3, 5, 1)) ≥ Φ
(
(F(2, 3, 1))

1
2 (F(4, 5, 1))1− 1

2
)

,

Ψ(0.1353) ≥ Φ
(
(0.3678)

1
2 (0.3678)

1
2
)

,

Ψ(0.1353) ≥ Φ(0.3678),

0.3678 ≥ 0.3678.

This shows that T is a (Ψ, Φ)-interpolative Kannan type fuzzy proximal contraction of the
first kind. However, the following calculations demonstrate that it is not a interpolative Kannan
type proximal contraction of the first kind. Indeed,

F(u1, Tv1, t) = F(3, T2, 1) = F(A, B, t)
F(u2, Tv2, t) = F(5, T4, 1) = F(A, B, t),

does not imply to
F(u1, u2, t) ≥

(
(F(v1, u1, t))α(F(v2, u2, t))1−α

)
.

Hence, T is not an interpolative Kannan type proximal contraction of the first kind.

Theorem 5. Let (X, F, ∗) be a complete non-Archimedean fuzzy metric space and A, B be non-
empty, closed subsets of X such that B is approximately compact with respect to A. Let T : A→ B
be an (Ψ, Φ)-interpolative Kannan type proximal contraction of the first kind, satisfying

(i) Ψ is non-decreasing function and lim infq→ε− Φ(q) > Ψ(ε−) for any ε ∈ (0, 1).
(ii) A0 is non-empty subset of A such that T(A0) ⊆ B0.

Then T admits a best proximity point.

Proof. Let u0 be an arbitrary point in A0. Since T(u0) ∈ T(A0) ⊆ B0, there exists u1 ∈ A0
such that,

F(u1, T(u0), t) = F(A, B, t).

Also for T(u1) ∈ T(A0) ⊆ B0, there exists u2 ∈ A0 such that

F(u2, T(u1), t) = F(A, B, t).

This process of existence of points in A0 ends up to a sequence {un} ⊆ A0 satisfying

F(un+1, T(un), t) = F(A, B, t), for all n ∈ N. (20)

Observe that, for some n ∈ N, if un = un+1 then un is a best proximity point of the
mapping T. On the other hand, if un 6= un+1 for all n ∈ N. By (20), we have

F(un, T(un−1), t) = F(A, B, t),

and
F(un+1, T(un), t) = F(A, B, t),

for all n ≥ 1. Thus, by (19)

Ψ(F(un, un+1, t)) ≥ Φ
(
(F(un−1, un, t))α(F(un, un+1, t))1−α

)
, (21)

for all distinct un−1, un, un+1 ∈ A. Since, Φ(q) > Ψ(q) for all q ∈ (0, 1), by (21), we have

Ψ(F(un, un+1, t)) > Ψ
(
(F(un−1, un, t))α(F(un, un+1, t))1−α

)
.
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Since, Ψ is a nondecreasing function, we have

F(un, un+1, t) >
(
(F(un−1, un, t))α(F(un, un+1, t))1−α

)
.

This implies that
(F(un, un+1, t))α > (F(un−1, un, t))α.

Letting F(un, un+1, t) = En, we have

Ψ((En)) ≥ Φ
(
(En−1)

α(En)
1−α
)
> Ψ

(
(En−1)

α(En)
1−α
)

.

Since Ψ is non-decreasing, by (21), we have En > En−1 for all n ∈ N. This shows that
the sequence {En} is strictly non-decreasing. Thus, it converges to some element E ≥ 1.
We show that E = 1. Assume on contrary that E < 1, by (21) we obtain the following
inequality:

Ψ(ε−) = lim
n→∞

Ψ(En) ≥ lim
n→∞

Φ
(
(En−1)

α(En)
1−α
)
≥ lim

t→E−
inf Φ(t).

This contradicts assumption (i), hence E = 1 and limn→∞ F(un, un+1, t) = 1. Now
keeping in mind the assumption (i) and Lemma 3, we conclude that the sequence {un}
is Cauchy. (X, F, ∗) is a complete non-Archimedean fuzzy metric space and A is closed
subset of X. Then, there exists u ∈ A, such that limn→∞ F(un, u, t) = 1. Moreover,

F(A, B, t) = F(un+1, T(un), t) ≥ F(un+1, u, t) ∗ F(u, T(un), t)

≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(un+1, Tun, t)
= F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

This implies

F(A, B, t) ≥ F(un+1, u, t) ∗ F(u, T(un), t) ≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

As n→ ∞ in the above inequality, we obtain

F(A, B, t) ≥ 1 ∗ lim
n→∞

F(u, T(un), t) ≥ 1 ∗ 1 ∗ F(A, B, t).

That is,
lim

n→∞
F(u, T(un), t) = F(A, B, t).

Therefore, F(u, T(un), t) → F(u, B, t) as n → ∞. Since B is approximately compact
with respect to A, there exists a subsequence {T(unk )} of {T(un)} such that (Tunk )→ η ∈ B
as k→ ∞. By taking k→ ∞ in the following equation:

F(unk+1 , T(unk ), t) = F(A, B, t). (22)

we have,
F(u, η, t) = F(A, B, t).

Since u∗ ∈ A0, T(u∗) ∈ T(A0) ⊆ B0, there exists ξ ∈ A0, such that

F(ξ, Tu, t) = F(A, B, t). (23)

Now, keeping in mind the Equations (22) and (22), and utilizing (19), we have

Ψ(F(unk+1 , ξ, t)) ≥ Φ
((

F(unk , unk+1 , t)
)α
(F(u, ξ, t))1−α

)
> Ψ

((
F(unk , unk+1 , t)

)α
(F(u, ξ, t))1−α

)
.
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Since, Ψ is a non-decreasing function, we have

F(unk+1 , ξ, t) >
(

F(unk , unk+1 , t)
)α
(F(u, ξ, t))1−α.

Thus, as k→ ∞, we have F(u, ξ, t) = 1 or u = ξ and by (23) we have

F(u, T(u), t) = F(A, B, t).

This shows that the point u is a best proximity point of the mapping T.

Theorem 6. Let (X, F, ∗) be a complete non-Archimedean fuzzy metric space and A, B be non-
empty, closed subsets of X such that B is approximately compact with respect to A. Let T : A→ B
be an (Ψ, Φ)-interpolative Kannan type proximal contraction of the first kind, satisfying

(i) Ψ is non-decreasing and {Ψ(qn)} and {Φ(qn)} are convergent sequences such that
limn→∞ Ψ(qn) = limn→∞ Φ(qn), then limn→∞ qn = 1.

(ii) A0 is non-empty subset of A such that T(A0) ⊆ B0.

Then, T has a best proximity point.

Proof. Proceeding as in the proof of Theorem 5, we have

Ψ((En)) ≥ Φ
(
(En−1)

α(En)
1−α
)
> Ψ

(
(En−1)

α(En)
1−α
)

. (24)

By (24), we infer that {Ψ(En)} is a strictly non-decreasing sequence. We have two cases
here; either the sequence {Ψ(En)} is bounded above or not. If {Ψ(En)} is not bounded
above, then

inf
En>ε

Ψ(En) > −∞ for every ε ∈ (0, 1); n ∈ N.

It follows from Lemma 2 that En → 1 as n → ∞. Secondly, if the sequence {Ψ(En)}
is bounded above, then, it is a convergent sequence. By (24), the sequence {Φ(En)} also
converges, moreover, both have the same limit. By assumption (i), we have limn→∞ En = 1
or limn→∞ F(un, un+1, t) = 1, for any sequence {un} in A. Presently, following the proof of
Theorem 5, we have

F(u, T(u), t) = F(A, B, t).

This shows that the point u is a best proximity point of the mapping T.

4.3. (Ψ, Φ)-Interpolative Hardy Rogers Type Proximal Contraction of the First Kind

Let (X, F, ∗) be a non-Archimedean fuzzy metric space and A, B be a non-empty
subsets of X. A mapping T : A→ B is said to be a (Ψ, Φ)-interpolative Hardy Rogers type
proximal contraction of the first kind, if there exists real numbers α, β, γ, δ ∈ (0, 1), such
that α + β + γ + δ < 1 and satisfying the inequality

F(u1, Tv1, t) = F(A, B, t),
F(u2, Tv2) = F(A, B, t),

⇒ Ψ(F(u1, u2, t)) ≥ Φ

(
(F(v1, v2, t))α(F(v1, u1, t))β(F(v2, u2, t))γ

(F(v1, u2, t))δ(F(v2, u1, t))1−α−β−γ−δ

)
,

(25)

for all u1, u2,v1, v2 ∈ A, t > 0, ui 6= vi; i ∈ {1, 2} with F(u1, u2, t) > 0, where Ψ, Φ : (0, 1]→
R are two functions such that Φ(q) > Ψ(q) for q ∈ (0, 1).

Example 4. Let X = R2 and F : X× X× (0, ∞)→ [0, 1] be the non-Archimedean fuzzy metric
given by

F(u, v, t) =
t

t + d(u, v)
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where d(u, v) =| u1 − v1 | + | u2 − v2 | for all u1, v1, u2, v2 ∈ X with t > 0. Let A, B be the
subset of X defined by

A = {(0, u), u ∈ R}, B = {(1, u), u ∈ R}, then F(A, B, t) =
t

t + 1
.

Define the functions Ψ, Φ : (0, 1]→ R by

Ψ(q) =
√

q and Φ(q) = q2 for all q ∈ (0, 1).

Define the mapping T : A→ B by

T(q) =
{

(1, q) if q ∈ [−1, 1](
1, q2) otherwise.

We show that T is an (Ψ, Φ)-interpolative Hardy Rogers type proximal contraction of the
first kind. Letting u = (0, 4), v = (0, 2), x = (0, 9), y = (0, 3), α = 0.01, β = 0.02, γ = 0.03,
δ = 0.04 and t = 1 we have

F(u, Tv, t) = F((0, 4), T(0, 2), 1) = F(A, B, t),

F(x, Ty, t) = F((0, 9), T(0, 3), 1) = F(A, B, t).

This implies that

Ψ(F(u, x, t)) ≥ Φ

(
(F(v, y, t))α(F(v, u, t))β(F(y, x, t))γ

(F(v, x, t))δ(F(y, u, t))1−α−β−γ−δ

)
,

Ψ(0.1667) ≥ Φ

(
(0.5)0.01(0.3333)0.02(0.1429)0.03

(0.125)0.04(0.5)0.9

)
,

Ψ(0.1667) ≥ Φ(0.4519),

0.4082 ≥ 0.2042.

This shows that T is an (Ψ, Φ)-interpolative Hardy Rogers type proximal contraction of the
first kind. However, the following calculations show that it is not a interpolative Hardy Rogers type
proximal contraction of the first kind. Indeed, for α = 0.01, β = 0.02, γ = 0.03, δ = 0.04 and
t = 1, we have

F(u, Tv, t) = F((0, 4), T(0, 2), 1) = F(A, B, t),

F(x, Ty, t) = F((0, 9), T(0, 3), 1) = F(A, B, t).

This implies that

F(u, x, t) ≥ (F(v, y, t))α(F(v, u, t))β(F(y, x, t))γ

(F(v, x, t))δ(F(y, u, t))1−α−β−γ−δ

0.1667 ≥ 0.4519.

This is a contradiction. Hence, T is not interpolative Hardy Rogers type proximal contraction
of the first kind.

Theorem 7. Let (X, F, ∗) be a complete non-Archimedean fuzzy metric space and A, B be non-
empty, closed subsets of X such that B is approximately compact with respect to A. Let T : A→ B
be an (Ψ, Φ)-interpolative Hardy Rogers type proximal contraction of the first kind satisfying:

(i) Ψ is non-decreasing and lim infq→ε− Φ(q) > Ψ(ε−) for any ε ∈ (0, 1).
(ii) A0 is non-empty subset of A such that T(A0) ⊆ B0.

Then T admits a best proximity point.
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Proof. Let u0 be an arbitrary point in A0. Since T(u0) ∈ T(A0) ⊆ B0, there exists u1 ∈ A0
such that

F(u1, T(u0), t) = F(A, B, t).

Again for T(u1) ∈ T(A0) ⊆ B0, there exists u2 ∈ A0 such that

F(u2, T(u1), t) = F(A, B, t).

This process of existence of points in A0 implies to have a sequence {un} ⊆ A0
such that

F(un+1, T(un), t) = F(A, B, t), (26)

for all n ∈ N. Observe that, for some n ∈ N such that un = un+1, from (26), we infer that
the point un is a best proximity point of the mapping T. On the other hand, if un 6= un+1
for all n ∈ N. Then, by (26), we have

F(un, T(un−1), t) = F(A, B, t),

and
F(un+1, T(un), t) = F(A, B, t),

for all n ≥ 1. By (25), we get

Ψ(F(un, un+1, t)) ≥ Φ

(
(F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))γ

(F(un−1, un+1, t))δ(F(un, un, t))1−α−β−γ−δ

)
,

Ψ(F(un, un+1, t)) ≥ Φ

(
(F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))γ

(F(un−1, un+1, t))δ(1)1−α−β−γ−δ

)
,

Ψ(F(un, un+1, t)) ≥ Φ

(
(F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))γ

(F(un−1, un+1, t))δ

)
,

Ψ(F(un, un+1, t)) ≥ Φ

(
(F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))γ

(F(un−1, un, t))δ(F(un, un+1, t))δ

)
,

(27)

for all distinct un−1, un, un+1 ∈ A. Since, Φ(q) > Ψ(q) for all q ∈ (0, 1), by (27), we have

Ψ(F(un, un+1, t)) > Ψ

(
(F(un−1, un, t))α(F(un−1, un, t))β(F(un, un+1, t))γ

(F(un−1, un, t))δ(F(un, un+1, t))δ

)
.

Since, Ψ is non decreasing function, we have

F(un, un+1, t) >
F(un−1, un, t)α(F(un−1, un, t))β(F(un, un+1, t))γ

(F(un−1, un, t))δ(F(un, un+1, t))δ.

This implies that

F(un, un+1, t) > F(un−1, un, t)α+β+δF(un, un+1, t)γ+δ.

Let F(un, un+1, t) = En, so that

Ψ((En)) ≥ Φ
(
(En−1)

α+β+δ(En)
γ+δ
)
> Ψ

(
(En−1)

α+β+δ(En)
γ+δ
)

.

Suppose that En−1 > En for some n ≥ 1. Since Ψ is non-decreasing, we have
(En)α+β+δ < (En)

α+β+δ. Consequently, we have En > En−1 for all n ∈ N. This implies
En > En−1 for all n ∈ N. This shows that the sequence {En} is strictly non-decreasing.



Fractal Fract. 2022, 6, 455 17 of 19

Thus, it converges to some element E ≥ 1. Assuming on the contrary E < 1, we obtain the
following:

Ψ(ε−) = lim
n→∞

Ψ(En) ≥ lim
n→∞

Φ
(
(En−1)

α+β+δ(En)
γ+δ
)
≥ lim

t→E−
inf Φ(t).

This contradicts the assumption (i), hence, E = 1 and limn→∞ F(un, un+1, t) = 1. Now
keeping in mind the assumption (i) and Lemma 3, we conclude that {un} is a cauchy
sequence. Since (X, F, ∗) is a complete non-Archimedean fuzzy metric space and A is
closed subset of X. Then, there exists u ∈ A, such that limn→∞ F(un, u, t) = 1. Moreover,

F(A, B, t) = F(un+1, T(un), t)

≥ F(un+1, u, t) ∗ F(u, T(un), t)

≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(un+1, Tun, t)
= F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

This implies that

F(A, B, t) ≥ F(un+1, u, t) ∗ F(u, T(un), t) ≥ F(un+1, u, t) ∗ F(u, un+1, t) ∗ F(A, B, t).

As n→ ∞ in the above inequality, we obtain

F(A, B, t) ≥ 1 ∗ lim
n→∞

F(u, T(un), t) ≥ 1 ∗ 1 ∗ F(A, B, t).

That is,
lim

n→∞
F(u, T(un), t) = F(A, B, t).

Therefore, F(u, T(un), t) → F(u, B, t) as n → ∞. Since B is approximately compact
with respect to A, there exists a subsequence {T(unk )} of {T(un)} such that (Tunk )→ η ∈ B
as k→ ∞. Therefore, applying k→ ∞ in the following equation,

F(unk+1 , T(unk ), t) = F(A, B, t), (28)

we have,
F(u, η, t) = F(A, B, t).

Since, u ∈ A0, T(u) ∈ T(A0) ⊆ B0, there exists ξ ∈ A0 such that

F(ξ, Tu, t) = F(A, B, t). (29)

Now, keeping in mind the Equations (28) and (29), by (25), we have

Ψ(F(unk+1 , ξ, t)) ≥ Φ

( (
F(unk , u, t)

)α(F(unk , unk+1 , t
))β

(F(u, ξ, t))γ(
F
(
unk , ξ, t

))δ(F(u, unk+1 , t
))1−α−β−γ−δ

)
,

> Ψ

( (
F(unk , u, t)

)α(F(unk , unk+1 , t
))β

(F(u, ξ, t))γ(
F
(
unk , ξ, t

))δ(F(u, unk+1 , t
))1−α−β−γ−δ

)
.

Since, Ψ is non-decreasing function, we have

F(unk+1 , ξ, t) >
(

F(unk , u, t)
)α(F(unk , unk+1 , t

))β
(F(u, ξ, t))γ(

F
(
unk , ξ, t

))δ(F(u, unk+1 , t
))1−α−β−γ−δ.

Thus, as k→ ∞, we have F(u, ξ, t) = 1 or u = ξ. Finally, by (29) we have

F(u, T(u), t) = F(A, B, t).
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This shows that the point u is a best proximity point of the mapping, T.

Theorem 8. Let (X, F, ∗) be a complete non-Archimedean fuzzy metric space and A, B be non-
empty, closed subsets of X such that B is approximately compact with respect to A. Let T : A→ B
be an (Ψ, Φ)-interpolative Hardy Rorgers type proximal contraction of the first kind, satisfying:

(i) Ψ is non-decreasing, the sequences {Ψ(qn)} and {Φ(qn)} are convergent such that
limn→∞ Ψ(qn) = limn→∞ Φ(qn), then limn→∞(qn) = 1.

(ii) A0 is a non-empty subset of A such that T(A0) ⊆ B0.

Then T admits a best proximity point.

Proof. Proceeding as in the proof of Theorem 7, we have

Ψ((En)) ≥ Φ
(
(En−1)

α+β+δ(En)
γ+δ
)
> Ψ

(
(En−1)

α+β+δ(En)
γ+δ
)

. (30)

By (30), we infer that {Ψ(En)} is strictly non-decreasing sequence. We have two cases
here; either the sequence {Ψ(En)} is bounded above or not. If {Ψ(En)} is not bounded
above, then

inf
En>ε

Ψ(En) > −∞ for every ε ∈ (0, 1), n ∈ N.

It follows from Lemma 2 that En → 1 as n → ∞. Secondly, if the sequence {Ψ(En)}
is bounded above, then, it is a convergent sequence. By (30), the sequence {Φ(En)} also
converges, moreover, both have the same limit. By assumption (i), we have limn→∞ En = 1
or limn→∞ F(un, un+1, t) = 1 for any sequence {un} in A. Presently, using the arguments
given in the proof of theorem 7, we have

F(u, T(u), t) = F(A, B, t).

This shows that the point u is a best proximity point of the mapping T.

5. Conclusions

We have produced several new types of contractive condition that ensures the existence
of best proximity points in non-Archimedean complete fuzzy metric spaces. The examples
show that the new contractive conditions generalize the corresponding contractions given
in earlier works. According to the nature (linear and nonlinear) of contractions (13), (19)
and (25), these can be used to demonstrate the existence of solutions to fuzzy models of
linear and nonlinear dynamic systems. The study carried out in this paper generalizes the
valuable research work presented in [12,13,15,23,24]. This work can be extended by using
the ideas given in [23,24].
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