Positive Solutions for a System of Riemann–Liouville Type Fractional-Order Integral Boundary Value Problems

Keyu Zhang 1, Fehaid Salem Alshammari 2, Jiafa Xu 3,* and Donal O’Regan 4

1 School of Mathematics, Qilu Normal University, Jinan 250013, China
2 Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
3 School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
4 School of Mathematical and Statistical Sciences, National University of Ireland, H91 TK33 Galway, Ireland
* Correspondence: 20150028@cqnu.edu.cn

Abstract: In this paper, we use the fixed-point index to establish positive solutions for a system of Riemann–Liouville type fractional-order integral boundary value problems. Some appropriate concave and convex functions are used to characterize coupling behaviors of our nonlinearities.

Keywords: Riemann–Liouville type fractional-order differential equations; integral boundary value problems; positive solutions; fixed-point index

1. Introduction

In this paper, we use the fixed-point index to investigate the existence of positive solutions for the system of Riemann–Liouville type fractional-order integral boundary value problems:

\[
\begin{aligned}
- D_{0+}^\alpha \varphi(t) &= f(t, \varphi(t), \phi(t)), \quad 0 < t < 1, \\
- D_{0+}^\beta \phi(t) &= g(t, \varphi(t), \phi(t)), \quad 0 < t < 1, \\
\varphi(0) &= \varphi'(0) = \phi'(0) = 0, \quad \varphi(1) = \int_0^1 \varphi(t) d\beta(t), \phi(1) = \int_0^1 \phi(t) d\beta(t),
\end{aligned}
\]

where \(\alpha \in (2, 3) \) is a real number, and \(f, g \) and \(\beta \) satisfy the conditions:

(H1) \(f, g \in C([0, 1] \times \mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+) \), and there exist \(M > 0 \), \(Q_f \) and \(Q_g \in C([0, 1], \mathbb{R}^+) \) such that

\[f(t, x, y) \geq -Mx - Q_f(t), \quad g(t, x, y) \geq -My - Q_g(t), \quad \forall t \in [0, 1], x, y \in \mathbb{R}^+. \]

Define a function

\[h(t) = \sum_{k=0}^{+\infty} \frac{(ka + a - 2)(ka + a - 3)t^k}{\Gamma(ka + a)}. \]

As in [1], there exists a unique number \(M^* > 0 \) such that \(h(M^*) = 0 \). Then, \(M \in (0, M^*) \).

Define a function

\[H(t) = t^{\alpha-1}E_{\alpha,\alpha}(Mt^{\alpha}), \]

where \(E_{\alpha,\alpha}(t) = \sum_{k=0}^{+\infty} \frac{t^k}{\Gamma((k+1)\alpha)} \) is the Mittag–Leffler function (see [2,3]). Then, \(\beta \) in (1) satisfies the condition:

(H3) \(\beta \) is a nonnegative function of bounded variation, and \(\int_0^1 H(t)d\beta(t) \in [0, H(1)) \).
Fractional-order equations are widely used in mathematics, physics, engineering and other fields; for example they arise in problems of robotics, signal processing and conversion. There are many papers in the literature establishing the existence of solutions using the Leray–Schauder fixed-point theorem, the coincidence degree theory and the Guo–Krasnoselskii fixed-point theorem in cones; we refer the reader to [1, 4–21] and the references cited therein.

In [4], the authors studied positive solutions of an abstract fractional semipositone differential system involving integral boundary conditions arising from the study of HIV infection models

\[
\begin{align*}
D_{0+}^\alpha u(t) + \lambda f \left(t, u(t), D_{0+}^\beta u(t), v(t) \right) &= 0, \\
D_{0+}^\beta v(t) + \lambda g (t, u(t)) &= 0, \quad 0 < t < 1, \\
v(0) &= D_{0+}^\beta v(0) = 0,
\end{align*}
\]

where \(2 < \alpha, \gamma \leq 3, 0 < \beta < 1\), \(u\) denotes the number of uninfected CD4\(^+\)T cells and \(v\) denotes the number of infected cells, and the nonlinearities \(f, g\) satisfy:

\[
f : [0,1] \times [0, +\infty)^3 \to (-\infty, +\infty), \quad g : [0,1] \times [0, +\infty) \to (-\infty, +\infty)\text{ are continuous functions and}
\]

\[
f(t, z_1, z_2, z_3) \geq -e(t), \quad (t, z_1, z_2, z_3) \in [0,1] \times [0, +\infty)^3,
\]

\[
g(t, z) \geq -e(t), \quad (t, z) \in [0,1] \times [0, +\infty), \quad e, \varepsilon : [0,1] \to [0, +\infty).
\]

In [5], the authors investigated positive solutions for the nonlinear semipositone fractional \(q\)-difference system with coupled integral boundary conditions

\[
\begin{align*}
D_{0+}^\alpha u(t) + \lambda f (t, u(t), v(t)) &= 0, \quad D_{0+}^\beta v(t) + \lambda g (t, u(t), v(t)) &= 0, \quad t \in (0,1), \quad \lambda > 0, \\
D_{q+}^\alpha u(0) &= D_{q+}^\beta v(0) = 0, \quad 0 \leq j \leq n - 2, \quad u(1) = \mu \int_0^1 v(s) d_q s, \quad v(1) = v \int_0^1 u(s) d_q s,
\end{align*}
\]

where \(a, \beta \in (n - 1, n]\) are two real numbers and \(n \geq 3\), \(D_{q+}^\alpha, D_{q+}^\beta\) are the fractional \(q\)-derivative of the Riemann–Liouville type, and the nonlinearities \(f, g\) satisfy some similar conditions in (2). In [6], the authors studied the existence and multiplicity of positive solutions for the system of Riemann–Liouville fractional differential equations

\[
\begin{align*}
D_{0+}^{\alpha_1} \left(D_{0+}^{\beta_1} u(t) \right) + \lambda f (t, u(t), v(t)) &= 0, \quad t \in (0,1), \\
D_{0+}^{\alpha_2} \left(D_{0+}^{\beta_2} v(t) \right) + \mu g (t, u(t), v(t)) &= 0, \quad t \in (0,1),
\end{align*}
\]

with the boundary conditions

\[
\begin{align*}
u^{(j)}(0) &= 0, j = 0, \ldots, n - 2; \quad D_{0+}^{\beta_1} u(0) = 0, \quad D_{0+}^{\beta_1} v(0) = 0, \\
v^{(j)}(0) &= 0, j = 0, \ldots, m - 2; \quad D_{0+}^{\beta_2} v(0) = 0, \quad D_{0+}^{\beta_2} u(0) = 0,
\end{align*}
\]

where the nonlinearities \(f, g\) satisfy some growth conditions.

Motivated by the above, in this paper we use the fixed-point index to establish positive solutions for the system (1). Some appropriate concave and convex functions are used to characterize the coupling behaviors of our nonlinearities. Moreover, our condition (H1) is more general than (2).
2. Preliminaries

Definition 1 (see [2,3]). The Riemann–Liouville fractional derivative of order $\alpha > 0$ of a function $\varphi : (0, +\infty) \to \mathbb{R}$ is given by

$$D_{0+}^{\alpha} \varphi(t) = \frac{1}{\Gamma(n - \alpha)} \left(\frac{d}{dt} \right)^n \int_0^t (t - s)^{n - \alpha - 1} \varphi(s)ds$$

where $n = [\alpha] + 1$ and $[\alpha]$ denotes the integer part of number α, provided that the right-hand side is pointwise defined on $(0, +\infty)$.

Lemma 1 (see [1]). Suppose that (H2) holds and $y \in L[0, 1]$. Then, the boundary value problem

$$
\begin{align*}
- D_{0+}^2 \varphi(t) + M \varphi(t) &= y(t), \quad 0 < t < 1, \\
\varphi(0) &= \varphi'(0) = \varphi(1) = 0,
\end{align*}
$$

has a unique solution

$$\varphi(t) = \int_0^1 \tilde{K}(t, s)y(s)ds,$$

where

$$\tilde{K}(t, s) = \frac{1}{H(1)} \left\{ \begin{array}{ll}
H(t)H(1-s), & 0 \leq t \leq s \leq 1, \\
H(t)H(1-s) - H(t-s)H(1), & 0 \leq s \leq t \leq 1.
\end{array} \right.$$

Lemma 2. Suppose that (H2)–(H3) hold and $y \in L[0, 1]$. Then, the boundary value problem

$$
\begin{align*}
- D_{0+}^3 \varphi(t) + M \varphi(t) &= y(t), \quad 0 < t < 1, \\
\varphi(0) &= \varphi'(0) = 0, \varphi(1) = \int_0^1 \varphi(t)d\beta(t),
\end{align*}
$$

has a unique solution

$$\varphi(t) = \int_0^1 K(t, s)y(s)ds,$$

where

$$K(t, s) = \tilde{K}(t, s) + \frac{H(t)}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 \tilde{K}(t, s)d\beta(t).$$

Proof. From Lemma 2.1 in [1], we have

$$\varphi(t) = - \int_0^t H(t-s)y(s)ds + c_1 H(t) + c_2 H'(t) + c_3 H''(t),$$

where $c_i \in \mathbb{R}, i = 1, 2, 3$. Since $\varphi(0) = \varphi'(0) = 0$, $c_2 = c_3 = 0$. Therefore,

$$\varphi(t) = - \int_0^t H(t-s)y(s)ds + c_1 H(t).$$

Using $\varphi(1) = \int_0^1 \varphi(t)d\beta(t)$, we have

$$- \int_0^1 H(1-s)y(s)ds + c_1 H(1) = - \int_0^1 \int_0^t H(t-s)y(s)dsd\beta(t) + c_1 \int_0^1 H(t)d\beta(t),$$

and

$$c_1 = \frac{1}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 H(1-s)y(s)ds - \frac{1}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 \int_0^t H(t-s)y(s)dsd\beta(t).$$

Consequently, we obtain
\[
\varphi(t) = -\int_0^t H(t-s)y(s)ds + \frac{H(t)}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 H(1-s)y(s)ds
\]

\[
- \frac{H(t)}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 \int_0^t H(t-s)y(s)dsd\beta(t)
\]

\[
= -\int_0^t H(t-s)y(s)ds + \frac{1}{H(1)} \int_0^1 H(t)(H(1)-s)y(s)ds
\]

\[
+ \frac{H(t)}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 H(1-s)y(s)ds - \frac{H(t)}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 \int_0^t H(t-s)y(s)dsd\beta(t)
\]

\[
= \int_0^1 \tilde{K}(t,s)y(s)ds + \frac{1}{H(1)[H(1) - \int_0^1 H(t)d\beta(t)]} \left[\int_0^1 H(t)(H(1)-s)d\beta(t) - \int_0^1 \int_0^1 H(t)(H(1)-s)d\beta(t) y(s)ds \right]
\]

\[
= \int_0^1 \tilde{K}(t,s)y(s)ds + \frac{H(t)}{H(1) - \int_0^1 H(t)d\beta(t)} \int_0^1 \int_0^1 \tilde{K}(t,s)d\beta(t)y(s)ds
\]

\[
= \int_0^1 K(t,s)y(s)ds.
\]

This completes the proof. \(\square\)

Lemma 3 (see [1]). The function \(\tilde{K}\) has the properties

(i) \(\tilde{K}(t,s) > 0\), \(\forall t, s \in (0,1)\);

(ii) \(\tilde{K}(t,s) = \tilde{K}(1-s,1-t)\), \(\forall t, s \in [0,1]\);

(iii) \(\tilde{K}(t,s) \leq M_2s(1-s)^{\alpha-1}, \forall t, s \in [0,1]\);

(iv) \(\tilde{K}(t,s) \geq M_1 s(1-s)^{\alpha-1}(1-t)^{\alpha-1}, \forall t, s \in [0,1]\), where

\[
M_1 = \frac{1}{H(1)[H(1)\Gamma(\alpha)]^2}, \quad M_2 = \frac{|H(1)|^2}{H(1)\Gamma(\alpha)}, \quad s^* \in (0,1) \quad \text{is a unique solution for the equation} \ s = (1-s)^{\alpha-2}.
\]

Lemma 4. The function \(K\) has the properties

(i) \(K(t,s) > 0\), \(\forall t, s \in (0,1)\);

(ii) \(K(t,s) \leq M_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] s(1-s)^{\alpha-1}, \forall t, s \in [0,1]\);

(iii) \(K(t,s) \geq M_3 \left[1 + \frac{\beta(1)(1-t)^{\alpha-1}}{H(1) - \int_0^1 H(t)d\beta(t)\Gamma(\alpha)} \right] s(1-s)^{\alpha-1}(1-t)^{\alpha-1}, \forall t, s \in [0,1]\);

(iv) \(K(t,s) \geq M_4 \frac{\beta(1)(1-t)^{\alpha-1}}{H(1) - \int_0^1 H(t)d\beta(t)\Gamma(\alpha)} s(1-s)^{\alpha-1}, \forall t, s \in [0,1]\).

Proof. From Theorem 3.1 in [21], we have

\[
\frac{t^{\alpha-1}}{\Gamma(\alpha)} \leq H(t) \leq t^{\alpha-1}H(1) \leq H(1), \ t \in [0,1].
\]
Then, by Lemma 3 (iii) we obtain
\[
K(t, s) \leq M_2 s(1-s)^{α-1} + \frac{H(1)}{H(1) - \int_0^1 H(t) dβ(t)} \int_0^1 M_2 s(1-s)^{α-1} dβ(t)
\]
\[
= M_2 s(1-s)^{α-1}\left[1 + \frac{H(1)β(1)}{H(1) - \int_0^1 H(t) dβ(t)}\right].
\]

On the other hand, from Lemma 3 (iv), we obtain
\[
K(t, s) \geq M_1 s(1-s)^{α-1}(1-t)^{α-1} + \frac{t^{α-1}}{[H(1) - \int_0^1 H(t) dβ(t)]Γ(α)} \int_0^1 M_1 s(1-s)^{α-1}(1-t)^{α-1} dβ(t)
\]
\[
\geq M_1 s(1-s)^{α-1}(1-t)^{α-1}\left[1 + \frac{\int_0^1 (1-t)^{α-1} dβ(t)}{[H(1) - \int_0^1 H(t) dβ(t)]Γ(α)}\right].
\]

Furthermore, we have
\[
K(t, s) \geq \frac{H(t)}{H(1) - \int_0^1 H(t) dβ(t)} \int_0^1 \tilde{K}(t, s) dβ(t)
\]
\[
\geq \frac{t^{α-1}}{[H(1) - \int_0^1 H(t) dβ(t)]Γ(α)} \int_0^1 M_1 s(1-s)^{α-1}(1-t)^{α-1} dβ(t)
\]
\[
= \frac{M_1 \int_0^1 (1-t)^{α-1} dβ(t)}{[H(1) - \int_0^1 H(t) dβ(t)]Γ(α)} t^{α-1} s(1-s)^{α-1}.
\]

This completes the proof. □

Lemma 5. Let \(ζ(t) = t(1-t)^{α-1}, t, s \in [0, 1]\). Then, there exist positive constants \(κ_i (i = 1, 2)\) such that
\[
κ_1 ζ(s) ≤ \int_0^1 K(t, s) ζ(t) dt ≤ κ_2 ζ(s), s \in [0, 1],
\]
where
\[
κ_1 = \frac{M_1 Γ(α + 1)}{Γ(2α + 2)} \left[1 + \frac{\int_0^1 (1-t)^{α-1} dβ(t)}{[H(1) - \int_0^1 H(t) dβ(t)]Γ(α)}\right], \quad κ_2 = \frac{M_2 Γ(α)}{Γ(α + 2)} \left[1 + \frac{H(1)β(1)}{H(1) - \int_0^1 H(t) dβ(t)}\right].
\]

Proof. We use Lemma 4 (ii)–(iii). Indeed, we have
\[
\int_0^1 K(t, s) ζ(t) dt ≤ \int_0^1 M_2 \left[1 + \frac{H(1)β(1)}{H(1) - \int_0^1 H(t) dβ(t)}\right] ζ(s) ζ(t) dt
\]
\[
= \frac{M_2 Γ(α)}{Γ(α + 2)} \left[1 + \frac{H(1)β(1)}{H(1) - \int_0^1 H(t) dβ(t)}\right] ζ(s), s \in [0, 1],
\]
and
\[
\int_0^1 K(t, s) ζ(t) dt ≥ \int_0^1 M_1 \left[1 + \frac{\int_0^1 (1-t)^{α-1} dβ(t)}{[H(1) - \int_0^1 H(t) dβ(t)]Γ(α)}\right] ζ(s)(1-t)^{α-1} ζ(t) dt
\]
\[
= \frac{M_1 Γ(α + 1)}{Γ(2α + 2)} \left[1 + \frac{\int_0^1 (1-t)^{α-1} dβ(t)}{[H(1) - \int_0^1 H(t) dβ(t)]Γ(α)}\right] ζ(s), s \in [0, 1].
\]

This completes the proof. □
Let $E = C[0,1]$ be endowed with the maximum norm $\|\phi\| = \max_{0 \leq t \leq 1} |\phi(t)|$. Define a cone P by

$$P = \{ \phi \in E : \phi(t) \geq 0, t \in [0,1] \}.$$

Lemma 6. Let $P_0 = \left\{ \phi \in P : \phi(t) \geq \frac{\kappa_1 \Gamma(\alpha+2) - M_1 \Gamma(\alpha)}{\kappa_2 \Gamma(\alpha+2)} t^{\alpha-1} \|\phi\| \right\}$. Then, $L(P) \subset P_0$, where

$$(L\phi)(t) = \int_0^1 K(t,s)\phi(s)ds.$$

Proof. Let $\phi \in P$. Then, from Lemma 4 (ii) and (iv) we have

$$(L\phi)(t) \leq \int_0^1 M_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] s(1-s)^{\alpha-1} \phi(s)ds,$$

and

$$(L\phi)(t) \geq \int_0^1 \frac{M_1 \int_0^1 (1-t)^{\alpha-1}d\beta(t)}{[H(1) - \int_0^1 H(t)d\beta(t)]\Gamma(\alpha)} t^{\alpha-1}s(1-s)^{\alpha-1} \phi(s)ds$$

$$= \frac{M_1 \int_0^1 (1-t)^{\alpha-1}d\beta(t)}{[H(1) - \int_0^1 H(t)d\beta(t)]\Gamma(\alpha)} t^{\alpha-1} \|L\phi\|$$

$$= \frac{\kappa_1 \Gamma(\alpha+2) - M_1 \Gamma(\alpha)}{\kappa_2 \Gamma(\alpha+2)} t^{\alpha-1} \|L\phi\|.$$

This completes the proof.

To obtain our main results, we consider the following auxiliary problem

$$\begin{cases} -D_{0+}^\alpha \phi(t) + M\phi(t) = f(t,\phi(t)), & 0 < t < 1, \\ \phi(0) = \phi'(0) = 0, \phi(1) = \int_0^1 \phi(t)d\beta(t) \end{cases} \quad (3)$$

where f satisfies the condition:

$$(H f) \in C([0,1] \times \mathbb{R}^+, \mathbb{R})$$

and there exists $Q \in C([0,1], \mathbb{R}^+)$ such that

$$f(t,y) \geq -Q(t), \quad \forall t \in [0,1], y \in \mathbb{R}^+.$$

From Lemma 2, (3) is equivalent to the following Hammerstein type integral equation

$$\phi(t) = \int_0^1 K(t,s)f(s,\phi(s))ds. \quad (4)$$

Let $w(t) = \int_0^1 K(t,s)Q(s)ds$ and

$$\tilde{f}(t,y) = \begin{cases} f(t,y) + Q(t), & y \geq 0, \\ f(t,0) + Q(t), & y < 0. \end{cases}$$
From this, we obtain an integral equation

\[\varphi(t) = \int_0^1 K(t, s) \tilde{f}(s, \varphi(s) - w(s))ds. \]
(5)

Lemma 7. (i) If \(\varphi^* \) is a positive solution for (4), then \(\varphi^* + w \) is a positive solution for (5);

(ii) If \(\varphi^{**} \) is a positive solution for (5) and \(\varphi^{**}(t) \geq w(t), t \in [0, 1] \), then \(\varphi^{**} - w \) is a positive solution for (4).

Proof. Note that

\[\varphi^*(t) = \int_0^1 K(t, s)f(s, \varphi^*(s))ds. \]

Therefore, we have

\[
\varphi^*(t) + w(t) = \int_0^1 K(t, s)f(s, \varphi^*(s))ds + w(t) \\
= \int_0^1 K(t, s)[f(s, \varphi^*(s)) + Q(s)]ds \\
= \int_0^1 K(t, s)\tilde{f}(s, \varphi^*(s) + w(s) - w(s))ds.
\]

Thus, \(\varphi^* + w \) is a positive solution for (5).

On the other hand, we have

\[
\varphi^{**}(t) = \int_0^1 K(t, s)\tilde{f}(s, \varphi^{**}(s) - w(s))ds \\
= \int_0^1 K(t, s)[f(s, \varphi^{**}(s) - w(s)) + Q(s)]ds \\
= \int_0^1 K(t, s)f(s, \varphi^{**}(s) - w(s))ds + w(t),
\]

and thus

\[\varphi^{**}(t) - w(t) = \int_0^1 K(t, s)f(s, \varphi^{**}(s) - w(s))ds. \]

This implies that \(\varphi^{**} - w \) is a positive solution for (4). This completes the proof. \(\square \)

From Lemma 7, we only study solutions of (5), which are greater than \(w \). For this we define an operator \(\tilde{A} : P \rightarrow P \) as follows:

\((\tilde{A}\varphi)(t) = \int_0^1 K(t, s)\tilde{f}(s, \varphi(s) - w(s))ds, \)

and we turn to study the fixed points of \(\tilde{A} \), which also are required to be greater than \(w \). If there exists \(\varphi^* \in P \) such that \(\tilde{A}\varphi^* = \varphi^* \) and \(\varphi^*(t) \geq w(t), t \in [0, 1] \), then this, together with Lemmas 2 and 6, implies that \(\varphi^* \in P_0 \), and

\[
\varphi^*(t) - w(t) \geq \frac{[\kappa_1\Gamma(2a+2) - M_1]\Gamma(a)}{\kappa_2\Gamma(a+2)}t^{a-1}\|\varphi^*\| - \int_0^1 K(t, s)Q(s)ds \\
\geq \frac{[\kappa_1\Gamma(2a+2) - M_1]\Gamma(a)}{\kappa_2\Gamma(a+2)}t^{a-1}\|\varphi^*\| - \int_0^1 t^{a-1}\left[H(1) + \frac{H^2(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)}\right]Q(s)ds \\
= t^{a-1}\left[\frac{[\kappa_1\Gamma(2a+2) - M_1]\Gamma(a)}{\kappa_2\Gamma(a+2)}\|\varphi^*\| - \left[H(1) + \frac{H^2(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)}\right]\int_0^1 Q(s)ds\right] \\
\geq 0,
\]
and

$$\| \varphi^* \| \geq \frac{\kappa_2 \Gamma(\alpha + 2)}{\kappa_1 \Gamma(\alpha + 2) - M_1 \Gamma(\alpha)} \left(H(1) + \frac{H^2(1) \beta(1)}{H(1) - \int_0^1 H(t) d\beta(t)} \right) \int_0^1 Q(s) \zeta(s) ds := \Theta_Q.$$

As a result, there exists \(\varphi^* \in P \) such that \(\tilde{A} \varphi^* = \varphi^* \) with \(\| \varphi^* \| \geq \Theta_Q \), and then \(\varphi^* - w \) is a positive solution for (4).

Now, we begin to study (1). Let \(\mathcal{T}(t, \varphi(t), \varphi(t)) = f(t, \varphi(t), \varphi(t)) + M \varphi(t), \mathcal{G}(t, \varphi(t), \varphi(t)) = g(t, \varphi(t), \varphi(t)) + M \varphi(t), t \in [0, 1] \). Then, (1) can be transformed into the following system of fractional-order integral boundary value problems

\[
\begin{cases}
- D_0^\alpha \varphi(t) + M \varphi(t) = \mathcal{T}(t, \varphi(t), \varphi(t)), & 0 < t < 1, \\
- D_0^\alpha \varphi(t) + M \varphi(t) = \mathcal{G}(t, \varphi(t), \varphi(t)), & 0 < t < 1, \\
\varphi(0) = \varphi(0) = \varphi'(0) = 0, \quad \varphi(1) = \int_0^1 \varphi(t) d\beta(t), \quad (1) = \int_0^1 \varphi(t) d\beta(t),
\end{cases}
\]

(6)

where \(\mathcal{T}, \mathcal{G} \) satisfy the condition:

(H1) \(\mathcal{T}, \mathcal{G} \in C([0, 1] \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R}) \), and

\(\mathcal{T}(t, x, y) \geq -Q_f(t), \mathcal{G}(t, x, y) \geq -Q_g(t), \forall t \in [0, 1], x, y \in \mathbb{R}^+ \).

From Lemma 2, (6) is equivalent to the following system of Hammerstein type integral equations

\[
\begin{cases}
\varphi(t) = \int_0^1 K(t, s) \mathcal{T}(s, \varphi(s), \varphi(s)) ds, \\
\varphi(t) = \int_0^1 K(t, s) \mathcal{G}(s, \varphi(s), \varphi(s)) ds.
\end{cases}
\]

(7)

In what follows, we establish an appropriate operator equation for problem (6). Note that \(E^2 = E \times E \) is also a Banach space with norm \(\|(\varphi, \varphi)\| = \|\varphi\| + \|\varphi\| \), and \(P^2 = P \times P \) a cone on \(E^2 \). Let

\[
w_1(t) = \int_0^1 K(t, s) Q_f(s) ds, \quad w_2(t) = \int_0^1 K(t, s) Q_g(s) ds, \quad t \in [0, 1],
\]

and

\[
\begin{cases}
A_1(\varphi, \varphi)(t) = \int_0^1 K(t, s) \mathcal{T}(s, \varphi(s) - w_1(s), \varphi(s) - w_2(s)) ds, \\
A_2(\varphi, \varphi)(t) = \int_0^1 K(t, s) \mathcal{G}(s, \varphi(s) - w_1(s), \varphi(s) - w_2(s)) ds, \\
A(\varphi, \varphi)(t) = (A_1, A_2)(\varphi, \varphi)(t), \quad t \in [0, 1],
\end{cases}
\]

where

\[
\mathcal{T}(t, \varphi, \varphi) = \begin{cases}
\mathcal{T}(t, \varphi, \varphi) + Q_f(t), \varphi, \varphi \geq 0, \\
\mathcal{T}(t, \varphi, 0) + Q_f(t), \varphi < 0, \varphi \geq 0, \\
\mathcal{T}(t, 0, \varphi) + Q_f(t), \varphi \geq 0, \varphi < 0, \\
\mathcal{T}(t, 0, 0) + Q_f(t), \varphi, \varphi < 0,
\end{cases}
\]

and

\[
\mathcal{G}(t, \varphi, \varphi) = \begin{cases}
\mathcal{G}(t, \varphi, \varphi) + Q_g(t), \varphi, \varphi \geq 0, \\
\mathcal{G}(t, \varphi, 0) + Q_g(t), \varphi < 0, \varphi \geq 0, \\
\mathcal{G}(t, 0, \varphi) + Q_g(t), \varphi \geq 0, \varphi < 0, \\
\mathcal{G}(t, 0, 0) + Q_g(t), \varphi, \varphi < 0.
\end{cases}
\]
It is clear that if there exists \((\varphi^*, \phi^*) \in P^2\) such that \(A(\varphi^*, \phi^*) = (\varphi^*, \phi^*)\) with
\[
\varphi^*(t) \geq w_1(t), \phi^*(t) \geq w_2(t), t \in [0, 1],
\]
then \((\varphi^* - w_1, \phi^* - w_2)\) is a positive solution for \((6)\).

Let
\[
\Theta_{Q_f} = \frac{\kappa_2 \Gamma(\alpha + 2)}{\Gamma^2(\alpha + 1)} \left(\frac{H(1) + \frac{H^2(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)}}{M_1} \right) \int_0^1 Q_f(s)\xi(s)ds,
\]
and
\[
\Theta_{Q_\phi} = \frac{\kappa_2 \Gamma(\alpha + 2)}{\Gamma^2(\alpha + 1)} \left(\frac{H(1) + \frac{H^2(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)}}{M_1} \right) \int_0^1 Q_\phi(s)\xi(s)ds.
\]

Then, if \(\|\varphi^*\| \geq \Theta_{Q_f}\) and \(\|\phi^*\| \geq \Theta_{Q_\phi}\), we obtain that \((8)\) holds true.

Lemma 8 (see [22]). Let \(E\) be a real Banach space and \(P\) a cone on \(E\). Suppose that \(\Omega \subset E\) is a bounded open set and that \(A : \overline{\Omega} \cap P \rightarrow P\) is a continuous compact operator. If there exists \(\omega_0 \in P \setminus \{0\}\) such that
\[
\omega - A\omega \neq \lambda \omega_0, \forall \lambda \geq 0, \omega \in \partial \Omega \cap P,
\]
then \(i(A, \Omega \cap P, P) = 0\), where \(i\) denotes the fixed point index on \(P\).

Lemma 9 (see [22]). Let \(E\) be a real Banach space and \(P\) a cone on \(E\). Suppose that \(\Omega \subset E\) is a bounded open set with \(0 \in \Omega\) and that \(A : \overline{\Omega} \cap P \rightarrow P\) is a continuous compact operator. If
\[
\omega - \lambda A\omega \neq 0, \forall \lambda \in [0, 1], \omega \in \partial \Omega \cap P,
\]
then \(i(A, \Omega \cap P, P) = 1\).

3. Main Results

Let \(L_k = H(1) + \frac{H^2(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)}\). Now, we list the selection of assumptions for our nonlinearity.

(H4) There exist \(\xi_1, \eta_1 \in C(\mathbb{R}^+, \mathbb{R}^+)\) such that
(i) \(\xi_1\) is a strictly increasing concave function on \(\mathbb{R}^+\);
(ii) \(\lim_{\varphi \to +\infty} \frac{\xi_1(\varphi, \phi)}{\eta_1(\phi)} \geq 1\), \(\lim_{\varphi \to +\infty} \frac{\xi_1(\varphi, \phi)}{\eta_1(\phi)} \geq 1\) uniformly for \(t \in [0, 1]\);
(iii) There exists \(c_1 > 0\) such that \(\lim_{\varphi \to +\infty} \frac{\xi_1(\varphi, \phi)}{\eta_1(\phi)} \geq c_1 L_k\).

(H5) There exist nonnegative functions \(O_i(i = 1, 2)\) on \([0, 1]\) with \(0 < \int_0^1 O_1(s)\xi(s)ds < 1\), \(0 < \int_0^1 O_2(s)\xi(s)ds < 1\) such that
\[
\tilde{f}(t, \varphi - w_1, \phi - w_2) \leq O_1(t), \tilde{g}(t, \varphi - w_1, \phi - w_2) \leq O_2(t), \forall t \in [0, 1], \varphi \in [0, \Theta_{Q_f}], \phi \in [0, \Theta_{Q_\phi}]
\]
\[
\tilde{f}(t, \varphi - w_1, \phi - w_2) \leq O_1(t), \tilde{g}(t, \varphi - w_1, \phi - w_2) \leq O_2(t), \forall t \in [0, 1], \varphi \in [0, \Theta_{Q_f}], \phi \in [0, \Theta_{Q_\phi}]
\]
\[
\tilde{f}(t, \varphi - w_1, \phi - w_2) \geq O_1(t), \tilde{g}(t, \varphi - w_1, \phi - w_2) \geq O_2(t), \forall t \in [0, 1], \varphi \in [0, \Theta_{Q_f}], \phi \in [0, \Theta_{Q_\phi}].
\]

(H7) There exist \(\xi_2, \eta_2 \in C(\mathbb{R}^+, \mathbb{R}^+)\) such that
(i) \(\xi_2\) is a strictly increasing convex function on \(\mathbb{R}^+\);
(ii) \(\limsup_{t \to +\infty} \frac{\xi_2(\varphi, \phi)}{\eta_2(\phi)} \leq 1\), \(\limsup_{t \to +\infty} \frac{\xi_2(\varphi, \phi)}{\eta_2(\phi)} \leq 1\) uniformly for \(t \in [0, 1]\);
(iii) There exists \(c_2 \in (0, \kappa_2^{-2})\) such that \(\limsup_{t \to +\infty} \frac{\xi_2(\varphi, \phi)}{\eta_2(\phi)} \leq c_2 L_k\).
Theorem 1. Suppose that (H1)–(H5) hold. Then, (1) has at least one positive solution.

Proof. Step 1. We shall prove that
\[(\varphi, \phi) \neq \lambda A(\varphi, \phi), \varphi \in \partial B_{\Theta_{Q_f}} \cap P, \phi \in \partial B_{\Theta_{Q_g}} \cap P, \lambda \in [0, 1], \] (9)
where \(B_\rho = \{ \varphi \in E : \|\varphi\| < \rho \}, \rho > 0 \). Suppose the contrary. Then, there exist \(\varphi_1 \in \partial B_{\Theta_{Q_f}} \cap P, \phi_1 \in \partial B_{\Theta_{Q_g}} \cap P \) and \(\lambda_1 \in [0, 1] \) such that
\[(\varphi_1, \phi_1) = \lambda_1 A(\varphi_1, \phi_1). \]
This implies that
\[\|A(\varphi_1, \phi_1)\| < \Theta_{Q_f}, \]
and
\[\|A(\varphi_1, \phi_1)\| < \Theta_{Q_g}. \]
Therefore, we have
\[\|A(\varphi_1, \phi_1)\| < \Theta_{Q_f} + \Theta_{Q_g} = \|\varphi_1\| + \|\phi_1\| = \|(\varphi_1, \phi_1)\|. \]
This contradicts (10), and thus (9) holds. Hence, Lemma 9 implies that
\[i(A_1(B_{\Theta_{Q_f}} \times B_{\Theta_{Q_g}}) \cap (P \times P), P \times P) = 1. \] (11)
Step 2. We claim that there exist sufficiently large \(R_1 > \Theta_{Q_f}, R_2 > \Theta_{Q_g} \) such that
\[(\varphi, \phi) \neq A(\varphi, \phi) + \lambda \epsilon_1 \epsilon_2, \varphi \in \partial B_{R_1} \cap P, \phi \in \partial B_{R_2} \cap P, \lambda \geq 0, \] (12)
where \(\epsilon_i (i = 1, 2) \) are fixed elements in \(P_0 \). Assume the contrary. Then, there exist \(\varphi_2 \in \partial B_{R_1} \cap P, \phi_2 \in \partial B_{R_2} \cap P, \lambda_2 \geq 0 \) such that
\[(\varphi_2, \phi_2) = A(\varphi_2, \phi_2) + \lambda_2 (\epsilon_1, \epsilon_2). \]
This implies that
\[\varphi_2(t) = A_1(\varphi_2, \phi_2)(t) + \lambda_2 \epsilon_1(t), \phi_2(t) = A_2(\varphi_2, \phi_2)(t) + \lambda_2 \epsilon_2(t), t \in [0, 1]. \]
Note that \(\epsilon_i \in P_0 (i = 1, 2) \), and from Lemma 6 we have
\[\varphi_2, \phi_2 \in P_0. \]
From (H4) (ii), we have
\[
\liminf_{\varphi \to +\frac{1}{\infty}} \frac{\tilde{f}(t, \varphi, \phi)}{\xi_1(\phi)} \geq 1, \liminf_{\varphi \to +\frac{1}{\infty}} \frac{\tilde{g}(t, \varphi, \phi)}{\eta_1(\varphi)} \geq 1.
\]
uniformly for $t \in [0, 1]$, and there exist $c_1 > 0$ and $c_2 > 0$ such that
\[
\tilde{f}(t, \varphi, \psi) \geq \xi_1(\varphi) - c_1, \quad \bar{g}(t, \varphi, \psi) \geq \eta_1(\varphi) - c_2, \quad \forall t \in [0, 1], \varphi, \psi \in \mathbb{R}^+.
\]
From these inequalities, we have
\[
\varphi_2(t) \geq A_1(\varphi_2, \varphi_2)(t)
\geq \int_0^1 K(t, s)\xi_1(\varphi_2(s) - w_2(s)) - c_1 ds
\geq \int_0^1 K(t, s)\xi_1(\varphi_2(s) - w_2(s))ds - c_1 L_k,
\]
(13)
and
\[
\varphi_2(t) \geq A_2(\varphi_2, \varphi_2)(t)
\geq \int_0^1 K(t, s)\eta_1(\varphi_2(s) - w_1(s)) - c_2 ds
\geq \int_0^1 K(t, s)\eta_1(\varphi_2(s) - w_1(s))ds - c_2 L_k.
\]
(14)
Consequently, we have
\[
\varphi_2(t) - w_2(t) \geq \int_0^1 K(t, s)\eta_1(\varphi_2(s) - w_1(s))ds - c_2 L_k - M_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] \int_0^1 \xi(s)Q_\xi(s)ds.
\]
Let $c_3 = c_2 L_k + M_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] \int_0^1 \xi(s)Q_\xi(s)ds$. Then, we have
\[
\xi_1(\varphi_2(t) - w_2(t)) \geq \xi_1(\varphi_2(t) - w_2(t) + c_3) - \xi_1(c_3)
\geq \xi_1 \left(\int_0^1 K(t, s)\eta_1(\varphi_2(s) - w_1(s))ds \right) - \xi_1(c_3)
= \xi_1 \left(\int_0^1 K(t, s)\frac{L_k\eta_1(\varphi_2(s) - w_1(s))}{L_k}ds \right) - \xi_1(c_3)
\geq \int_0^1 K(t, s)\frac{L_k\eta_1(\varphi_2(s) - w_1(s))}{L_k}ds - \xi_1(c_3).
\]
From (H4) (iii), there exists $c_4 > 0$ such that
\[
\xi_1(L_k\eta_1(\varphi)) \geq e_1 L_k\varphi - c_4 L_k, \quad \varphi \in \mathbb{R}^+.
\]
Hence, we obtain
\[
\xi_1(\varphi_2(t) - w_2(t)) \geq \int_0^1 K(t, s)\frac{L_k\eta_1(\varphi_2(s) - w_1(s))}{L_k}ds - \xi_1(c_3)
\geq e_1 \int_0^1 K(t, s)(\varphi_2(s) - w_1(s))ds - \xi_1(c_3) - c_4 L_k,
\]
and then
\[
\varphi_2(t) \geq \int_0^1 K(t, s) \left[e_1 \int_0^1 K(s, \tau)(\varphi_2(\tau) - w_1(\tau))d\tau - \xi_1(c_3) - c_4 L_k \right]ds - c_1 L_k
\geq e_1 \int_0^1 \int_0^1 K(t, s)K(s, \tau)(\varphi_2(\tau) - w_1(\tau))d\tau ds - \xi_1(c_3) L_k - c_4 L_k^2 - c_1 L_k.
\]
Let $c_5 = M_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] \int_0^1 \xi(s)Q_\xi(s)ds + \xi_1(c_3) L_k + c_4 L_k^2 + c_1 L_k$. Then, we have
\[\varphi_2(t) - w_1(t) \geq e_1 \int_0^1 \int_0^1 K(t,s)K(s,\tau)(\varphi_2(\tau) - w_1(\tau))d\tau ds - \int_0^1 K(t,s)Q_f(s)ds - \zeta_1(c_3)L_k - c_4L_k^2 - c_1 L_k \]

Multiply by \(\zeta(t) \) on both sides of the above, integrate over \([0,1]\) and use Lemma 5 to obtain

\[\int_0^1 (\varphi_2(t) - w_1(t))\zeta(t)dt \geq e_1 \int_0^1 \int_0^1 \zeta(t)K(t,s)K(s,\tau)(\varphi_2(\tau) - w_1(\tau))d\tau dsdt - c_5 \int_0^1 \zeta(t)dt \]

Solving this inequality, we obtain

\[\int_0^1 (\varphi_2(t) - w_1(t))\zeta(t)dt \leq \frac{c_5 \Gamma(a)}{(e_1\kappa_1^2 - 1)\Gamma(\alpha + 2)}. \]

Note that \(\varphi_2 \in P_0 \), we have

\[\int_0^1 \parallel \varphi_2 \parallel \frac{\kappa_1 \Gamma(2\alpha + 2)}{\Gamma(\alpha + 1)} \kappa_2 \Gamma(\alpha + 2)^{\alpha - 1} \zeta(t)dt \leq \int_0^1 \varphi_2(t)\zeta(t)dt \leq \frac{c_5 \Gamma(a)}{(e_1\kappa_1^2 - 1)\Gamma(\alpha + 2)} + \kappa_2 \int_0^1 Q_f(t)\zeta(t)dt, \]

\[\parallel \varphi_2 \parallel \leq \frac{\kappa_2 \Gamma(a + 2)\Gamma(2\alpha + 1)}{\kappa_1 \Gamma(2\alpha + 2) - M_1\Gamma^2(\alpha)\Gamma(\alpha + 1)} \left[\frac{c_5 \Gamma(a)}{(e_1\kappa_1^2 - 1)\Gamma(\alpha + 2)} + \kappa_2 \int_0^1 Q_f(t)\zeta(t)dt \right] = N\varphi_2. \]

Multiply by \(\zeta(t) \) on both sides of (13), integrate over \([0,1]\) and use Lemma 5 to obtain

\[\kappa_1 \int_0^1 \zeta(t)\xi_1(\varphi_2(t) - w_2(t))dt \leq \int_0^1 \zeta(t)(\varphi_2(t) + c_1 L_k)dt \]

\[\leq \frac{c_5 \Gamma(a)}{(e_1\kappa_1^2 - 1)\Gamma(\alpha + 2)} + \kappa_2 \int_0^1 Q_f(t)\zeta(t)dt + \frac{c_4 L_k \Gamma(a)}{\Gamma(\alpha + 2)}. \]

Note that \(\varphi_2, w_2 \in P_0 \) and \(\parallel \varphi_2 \parallel = R_2 > \Theta Q_\delta \), then \(\varphi_2 - w_2 \in P_0 \). By the concavity of \(\xi_1 \), we have

\[\parallel \varphi_2 - w_2 \parallel \leq \frac{\kappa_2 \Gamma(2\alpha + 1)\Gamma(\alpha + 1)}{\kappa_1 \Gamma(2\alpha + 2) - M_1\Gamma^2(\alpha)\Gamma(\alpha + 1)} \int_0^1 \zeta(t)(\varphi_2(t) - w_2(t))dt \]

\[= \frac{\kappa_2 \Gamma(2\alpha + 1)\Gamma(\alpha + 1)}{\kappa_1 \Gamma(2\alpha + 2) - M_1\Gamma^2(\alpha)\Gamma(\alpha + 1)} \parallel \varphi_2 - w_2 \parallel \int_0^1 \varphi_2(t) - w_2(t) \zeta(t)\xi_1(\parallel \varphi_2 - w_2 \parallel)dt \]

\[\leq \frac{\kappa_2 \Gamma(2\alpha + 1)\Gamma(\alpha + 1)}{\kappa_1 \Gamma(2\alpha + 2) - M_1\Gamma^2(\alpha)\Gamma(\alpha + 1)} \parallel \varphi_2 - w_2 \parallel \int_0^1 \zeta(t)\xi_1 \left(\frac{\varphi_2(t) - w_2(t)}{\parallel \varphi_2 - w_2 \parallel} \right) \parallel \varphi_2 - w_2 \parallel dt \]

and thus,

\[\xi_1(\parallel \varphi_2 - w_2 \parallel) \leq \frac{\kappa_2 \Gamma(2\alpha + 1)\Gamma(\alpha + 1)}{\kappa_1 \Gamma(2\alpha + 2) - M_1\Gamma^2(\alpha)\Gamma(\alpha + 1)} \left[\frac{c_5 \Gamma(a)}{(e_1\kappa_1^2 - 1)\Gamma(\alpha + 2)} + \kappa_2 \int_0^1 Q_f(t)\zeta(t)dt + \frac{c_4 L_k \Gamma(a)}{\Gamma(\alpha + 2)} \right]. \]
Therefore, we have
\[
\xi_1(\|\phi_2\|) = \xi_1(\|\phi_2 - w_2 + \xi \|) \leq \xi_1(\|\phi_2 - w_2\| + \|w_2\|) \leq \xi_1(\|\phi_2 - w_2\|) + \xi_1(\|w_2\|) \\
\leq \frac{\kappa_2 \Gamma(a + 2) \Gamma(2a + 1)}{\kappa_1 \Gamma(a + 1)} - M_1 [\Gamma^2(a) \Gamma(a + 1)] \left[\frac{c_3 \Gamma(a)}{\Gamma(a + 2)} + \kappa_2 \int_0^1 Q_f(t) \xi(t) \, dt + \frac{c_1 L_1 \Gamma(a) \Gamma(a + 2)}{\Gamma(a + 2)} \right] + \xi_1(\|w_2\|) < +\infty.
\]

Note that \(\xi_1 \) is a strictly increasing function, and there exists \(N_{\phi_2} > 0 \) such that
\[\|\phi_2\| \leq N_{\phi_2}.\]

Now, if we choose \(R_1 > \max\{\Theta_{Q_x}, N_{\phi_2}\} \), \(R_2 > \max\{\Theta_{Q_x}, N_{\phi_2}\} \), then (12) is satisfied. Hence, Lemma 8 implies that
\[
i(A, (B_{R_1} \times B_{R_2}) \cap (P \times P), P \times P) = 0. \tag{15}
\]

From (11) and (15), we have
\[
i(A, (B_{R_1} \times B_{R_2}) \setminus (B_{\Theta_{Q_x} \times B_{\Theta_{Q_x}}} \cap (P \times P), P \times P) \\
= i(A, (B_{R_1} \times B_{R_2}) \cap (P \times P), P \times P) - i(A, (B_{\Theta_{Q_x} \times B_{\Theta_{Q_x}}} \cap (P \times P), P \times P) = -1.
\]

Therefore, there exists \((\phi^*, \phi^*)\) in \((B_{R_1} \times B_{R_2}) \setminus (B_{\Theta_{Q_x} \times B_{\Theta_{Q_x}}} \cap (P \times P)\) such that \(A(\phi^*, \phi^*) = (\phi^*, \phi^*)\). Note that \(\phi^*(t) \geq w_1(t), \phi^*(t) \geq w_2(t), t \in [0, 1]\), and thus \((\phi^* - w_1, \phi^* - w_2)\) is a positive solution for (1). Thus, (1) has at least one positive solution. This completes the proof. \(\square\)

Theorem 2. Suppose that (H1)–(H3) and (H6)–(H7) hold. Then, (1) has at least one positive solution.

Proof. Step 1. We shall verify
\[
(\varphi, \phi) \neq A(\varphi, \phi) + \lambda(\varphi_3, \varphi_4), \lambda \geq 0, \varphi \in \partial B_{\Theta_{Q_x}} \cap P, \phi \in \partial B_{\Theta_{Q_x}} \cap P, \tag{16}
\]
where \(Q_j(i = 3, 4)\) are given elements in \(P\). Assume the contrary. Suppose there exist \(\varphi_3 \in \partial B_{\Theta_{Q_x}} \cap P, \varphi_3 \in \partial B_{\Theta_{Q_x}} \cap P\) and \(\lambda_3 \geq 0\) such that
\[
(\varphi_3, \varphi_3) = A(\varphi_3, \varphi_3) + \lambda_3(\varphi_3, \varphi_4).
\]
This implies that
\[
\varphi_3(t) = A_1(\varphi_3, \varphi_3)(t) + \lambda_3 \varphi_3(t) \geq A_1(\varphi_3, \varphi_3)(t),
\]
and
\[
\varphi_3(t) = A_2(\varphi_3, \varphi_3)(t) + \lambda_3 \varphi_4(t) \geq A_2(\varphi_3, \varphi_3)(t).
\]
From these inequalities, we have
\[
\|\varphi_3\| \geq \|A_1(\varphi_3, \varphi_3)\|, \|\varphi_3\| \geq \|A_2(\varphi_3, \varphi_3)\|,
\]
and then
\[
\|\varphi_3\| = \|\varphi_3\| + \|\varphi_3\| \geq \|A_1(\varphi_3, \varphi_3)\| + \|A_2(\varphi_3, \varphi_3)\| = \|A(\varphi_3, \varphi_3)\|. \tag{17}
\]
On the other hand, from (H6), we have
\[
\|A_1(\varphi, \varphi_3)\| = \max_{t \in [0,1]} A_1(\varphi, \varphi_3)(t) \\
\geq \max_{t \in [0,1]} \int_0^1 \frac{M_1 \int_0^1 (1-t) t^a \beta(t) - t^a \zeta(s) \tilde{O}_1(s)}{H(1) - \int_0^1 H(t) d\beta(t)} ds \\
> \Theta_{Q_f},
\]
and
\[
\|A_2(\varphi, \varphi_3)\| = \max_{t \in [0,1]} A_2(\varphi, \varphi_3)(t) \\
\geq \max_{t \in [0,1]} \int_0^1 \frac{M_1 \int_0^1 (1-t) t^a \beta(t) - t^a \zeta(s) \tilde{O}_2(s)}{H(1) - \int_0^1 H(t) d\beta(t)} ds \\
> \Theta_{Q_e}.
\]
These two inequalities imply that
\[
\|A(\varphi, \varphi_3)\| = \|A_1(\varphi, \varphi_3)\| + \|A_2(\varphi, \varphi_3)\| > \Theta_{Q_f} + \Theta_{Q_e} = \|(\varphi, \varphi_3)\|.
\]
This contradicts (17). Hence, Lemma 8 implies that
\[
i(A_\varphi(B_{Q_f} \times B_{Q_e}) \cap (P \times P), P \times P) = 0. \tag{18}
\]

Step 2. We claim that there exist sufficiently large \(R_3 > \Theta_{Q_f}\) and \(R_4 > \Theta_{Q_e}\) such that
\[
(\varphi, \phi) \neq \lambda A(\varphi, \phi), \lambda \in [0,1], \varphi \in \partial B_{R_3} \cap P, \phi \in \partial B_{R_4} \cap P. \tag{19}
\]
Suppose the contrary. Then, there exist \(\varphi_4 \in \partial B_{R_3} \cap P, \phi_4 \in \partial B_{R_4} \cap P\) and \(\lambda_4 \in [0,1]\) such that
\[
(\varphi_4, \phi_4) = \lambda_4 A(\varphi_4, \phi_4). \tag{20}
\]
Combining with Lemma 6 gives that
\[
\varphi_4, \phi_4 \in P_0.
\]
From (H7), we have
\[
\limsup_{\varphi \to +\infty} \frac{\tilde{f}(t, \varphi, \phi)}{\xi_2(\phi)} \leq 1, \limsup_{\varphi \to +\infty} \frac{\tilde{g}(t, \varphi, \phi)}{\eta_2(\varphi)} \leq 1
\]
uniformly for \(t \in [0,1]\), and there exists \(\tilde{M}_4 > 0\) such that
\[
\tilde{f}(t, \varphi, \phi) \leq \xi_2(\phi), \tilde{g}(t, \varphi, \phi) \leq \eta_2(\varphi), \text{ for } \varphi, \phi \geq \tilde{M}_4.
\]
Let \(R_3, R_4 > \tilde{M}_4\). Then, from (20), we have
\[
\varphi_4(t) \leq A_1(\varphi_4, \phi_4)(t) \leq \int_0^1 K(t, s) \xi_2(\phi_4(s)) - w_2(s) ds,
\]
and
\[
\phi_4(t) \leq A_2(\varphi_4, \phi_4)(t) \leq \int_0^1 K(t, s) \eta_2(\phi_4(s)) - w_1(s) ds.
\]
Note that from (H7) (iii), there exists \(c_6 > 0\) such that
\[
\xi_2(L_4 \eta_2(\varphi)) \leq c_2 L_4 \varphi + c_6 L_4, \forall \varphi \in \mathbb{R}^+.
\]
Therefore, from (H7) (i) we have
\[
\zeta_2(\varphi_4(t) - w_2(t)) \leq \zeta_2 \left(\int_0^1 K(t,s)\eta_2(\varphi_4(s) - w_1(s))ds \right) \\
= \zeta_2 \left(\int_0^1 \frac{K(t,s)}{L_k} L_k \eta_2(\varphi_4(s) - w_1(s))ds \right) \\
\leq \int_0^1 \frac{K(t,s)}{L_k} \zeta_2(\varphi_4(s) - w_1(s))ds \\
\leq \int_0^1 \frac{K(t,s)}{L_k} \left[L_k \varphi_4(s) - w_1(s) \right] + c_6 L_k ds \\
\leq e_2 \int_0^1 K(t,s)\varphi_4(s)ds + c_6 L_k,
\]
and thus
\[
\varphi_4(t) \leq \int_0^1 K(t,s) \left[e_2 \int_0^1 K(s,\tau)\varphi_4(\tau)d\tau + c_6 L_k \right] ds.
\]
Multiply by \(\zeta(t) \) on both sides of the above, integrate over \([0,1]\) and use Lemma 5 to obtain
\[
\int_0^1 \varphi_4(t)\zeta(t)dt \leq \int_0^1 \zeta(t) \left[e_2 \int_0^1 K(s,\tau)\varphi_4(\tau)d\tau + c_6 L_k \right] ds dt \\
\leq e_2 \kappa_2^2 \int_0^1 \varphi_4(t)\zeta(t)dt + \frac{c_6 L_k \kappa_2 \Gamma(\alpha)}{(\alpha + 2)}.
\]
Solving this inequality, we obtain
\[
\int_0^1 \varphi_4(t)\zeta(t)dt \leq \frac{c_6 L_k \kappa_2 \Gamma(\alpha)}{(1 - e_2 \kappa_2^2)(\alpha + 2)}.
\]
Note that \(\varphi_4 \in P_0 \) and we have
\[
\|\varphi_4\| \leq \frac{c_6 L_k \kappa_2 \Gamma(2\alpha + 1)}{(1 - e_2 \kappa_2^2)(\alpha + 1)}.
\]
On the other hand, from Lemma 4 (ii), we have
\[
\zeta_2(\varphi_4(t) - w_2(t)) \leq e_2 \int_0^1 M_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] \zeta(s)\varphi_4(s)ds + c_6 L_k \\
\leq M_2 e_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] \frac{c_6 L_k \kappa_2 \Gamma(\alpha)}{(1 - e_2 \kappa_2^2)(\alpha + 2)} + c_6 L_k.
\]
This implies that there exists \(N_{\varphi_4} > 0 \) such that
\[
\|\varphi_4 - w_2\| \leq N_{\varphi_4},
\]
and thus
\[
\|\varphi_4\| = \|\varphi_4 - w_2 + w_2\| \leq \|\varphi_4 - w_2\| + \|w_2\| \leq N_{\varphi_4} + M_2 \left[1 + \frac{H(1)\beta(1)}{H(1) - \int_0^1 H(t)d\beta(t)} \right] \int_0^1 \zeta(s)Q_\epsilon(s)ds.
\]
Now, if we choose
\[
R_3 > \max \left\{ \Theta_{Q,\epsilon}, \widetilde{M}_4, \frac{c_6 L_k \kappa_2 \Gamma(2\alpha + 1)}{(1 - e_2 \kappa_2^2)(\alpha + 1)} \right\}
\]
Thus, (H4) (i) and (iii) hold.

Then, when \(t \in [0, 1] \), \(\varphi(t) \geq \omega_1(t), \varphi^*(t) \geq \omega_2(t), \varphi \in [0, \Theta_{Q_2}], \) and \(\varphi \in \mathbb{R}^+ \), then (19) holds. Hence, Lemma 9 implies that

\[
i(A, (B_{R_3} \times B_{R_4}) \cap (P \times P), P \times P) = 1.
\]

(21)

From (18) and (21) we have

\[
i(A, (B_{R_3} \times B_{R_4}) \setminus (B_{\Theta_{Q_1}} \times B_{\Theta_{Q_2}}) \cap (P \times P) = i(A, (B_{R_3} \times B_{R_4}) \cap (P \times P) = i(A, (B_{\Theta_{Q_1}} \times B_{\Theta_{Q_2}}) \cap (P \times P) = 1.
\]

Therefore, there exists \((\varphi^*, \varphi^*) \) in \((B_{R_3} \times B_{R_4}) \setminus (B_{\Theta_{Q_1}} \times B_{\Theta_{Q_2}}) \cap (P \times P) \) such that \(A(\varphi^*, \varphi^*) = (\varphi^*, \varphi^*) \). Note that \(\varphi^*(t) \geq \omega_1(t), \varphi^*(t) \geq \omega_2(t), t \in [0, 1] \), and thus \(\varphi^* - \omega_1, \varphi^* - \omega_2 \) is a positive solution for (1). Thus, (1) has at least one positive solution. This completes the proof. \(\square \)

Example 1. Let \(\xi_1(\varphi) = \varphi^\frac{4}{3}, \eta_1(\varphi) = \varphi^2 \) and \(\varphi, \varphi \in \mathbb{R}^+ \). Then, we have

\[
\lim_{\varphi \to +\infty} \xi_1(\varphi) = \lim_{\varphi \to +\infty} \frac{\xi_1(\varphi)}{\varphi} = +\infty.
\]

Thus, (H4) (i) and (iii) hold.

Take

\[
\bar{f}(t, \varphi, \varphi) = \frac{1}{t |\sin \varphi| + 2} \frac{\Theta_{Q_2}}{\Theta_{Q_2}} \Gamma(\alpha + 2) \left[1 + \frac{H(1)\beta(t)}{H(1) - \frac{1}{\beta(t)}} \right] \varphi^3, t \in [0, 1], \varphi, \varphi \in \mathbb{R}^+,
\]

and

\[
\bar{g}(t, \varphi, \varphi) = \frac{1}{t |\cos \varphi| + 3} \frac{\Theta_{Q_2}}{\Theta_{Q_2}} \Gamma(\alpha + 2) \left[1 + \frac{H(1)\beta(t)}{H(1) - \frac{1}{\beta(t)}} \right] \varphi^3, t \in [0, 1], \varphi, \varphi \in \mathbb{R}^+.
\]

Then, when \(t \in [0, 1], \varphi \in [0, \Theta_{Q_2}] \) and \(\varphi \in [0, \Theta_{Q_2}] \), we have

\[
\bar{f}(t, \varphi, \varphi) \leq \frac{1}{2} \frac{\Theta_{Q_2}}{\Theta_{Q_2}} \Gamma(\alpha + 2) \left[1 + \frac{H(1)\beta(t)}{H(1) - \frac{1}{\beta(t)}} \right] \equiv O_1(t), t \in [0, 1],
\]

and

\[
\bar{g}(t, \varphi, \varphi) \leq \frac{1}{3} \frac{\Theta_{Q_2}}{\Theta_{Q_2}} \Gamma(\alpha + 2) \left[1 + \frac{H(1)\beta(t)}{H(1) - \frac{1}{\beta(t)}} \right] \equiv O_2(t), t \in [0, 1].
\]

On the other hand,

\[
\lim_{\varphi \to +\infty} \bar{f}(t, \varphi, \varphi) = \lim_{\varphi \to +\infty} \frac{\xi_1(\varphi)}{\varphi^\frac{4}{3}} = +\infty,
\]

and

\[
\lim_{\varphi \to +\infty} \bar{g}(t, \varphi, \varphi) = \lim_{\varphi \to +\infty} \frac{\eta_1(\varphi)}{\varphi^\frac{2}{3}} = +\infty.
\]
and
\[
\liminf_{\varphi \to +\infty} \frac{g(t, \varphi, \phi)}{\eta_1(\varphi)} = \liminf_{\varphi \to +\infty} \frac{1}{\varphi^2} \frac{\Theta Q_4 \Gamma(\alpha + 2)}{M_2 \Gamma(\alpha)} \frac{1}{1 + \Phi(1) H(1)} \varphi^3
\]
uniformly for \(t \in [0, 1] \). Therefore, (H4) (ii) and (H5) hold.

Example 2. Let \(\xi_2(\phi) = \varphi^2, \eta_2(\varphi) = \varphi^3 \) and \(\varphi, \phi \in \mathbb{R}^+ \). Then, \(\limsup_{\varphi \to +\infty} \frac{\xi_2(\varphi)}{\varphi} = 0. \) Thus, (H7) (i) and (iii) hold. Take
\[
\tilde{O}_1(t) \equiv 2 \frac{\Theta Q_1 [H(1) - \int_0^t H(t) d\beta(t)] \Gamma(\alpha + 2)}{M_1 \int_0^1 (1 - t)^{\alpha - 1} d\beta(t)}, \quad t \in [0, 1],
\]
\[
\tilde{O}_2(t) \equiv 3 \frac{\Theta Q_2 [H(1) - \int_0^t H(t) d\beta(t)] \Gamma(\alpha + 2)}{M_1 \int_0^1 (1 - t)^{\alpha - 1} d\beta(t)}, \quad t \in [0, 1],
\]
\[
\tilde{f}(t, \varphi, \phi) = \tilde{O}_1(t) + (\varphi + t | \cos \varphi |)^{\gamma_1}, \quad t \in [0, 1], \varphi, \phi \in \mathbb{R}^+,
\]
and
\[
\tilde{g}(t, \varphi, \phi) = \tilde{O}_2(t) + (\varphi + t | \sin \varphi |)^{\gamma_2}, \quad t \in [0, 1], \varphi, \phi \in \mathbb{R}^+,
\]
where \(\gamma_1 \in (0, 2), \gamma_2 \in (0, \frac{2}{3}) \). Note that when \(t \in [0, 1], \varphi \in [0, \Theta Q_1] \) and \(\phi \in [0, \Theta Q_2] \), we have
\[
\tilde{f}(t, \varphi, \phi) \geq \tilde{O}_1(t), \tilde{g}(t, \varphi, \phi) \geq \tilde{O}_2(t), \quad t \in [0, 1].
\]
Moreover,
\[
\limsup_{\varphi \to +\infty} \frac{\tilde{f}(t, \varphi, \phi)}{\xi_2(\phi)} = \limsup_{\varphi \to +\infty} \frac{\tilde{O}_1(t) + (\varphi + t | \cos \varphi |)^{\gamma_1}}{\varphi^3} = 0,
\]
and
\[
\limsup_{\varphi \to +\infty} \frac{\tilde{g}(t, \varphi, \phi)}{\eta_2(\varphi)} = \limsup_{\varphi \to +\infty} \frac{\tilde{O}_2(t) + (\varphi + t | \sin \varphi |)^{\gamma_2}}{\varphi^5} = 0
\]
uniformly for \(t \in [0, 1] \). Therefore, (H7) (ii) and (H6) hold.

4. Conclusions

In this paper, we used the fixed-point index to study the existence of positive solutions for the system (1) of Riemann–Liouville type fractional-order integral boundary value problems. Note our nonlinearities could be sign-changing, and some concave and convex functions were used to characterize their coupling behaviors. The results obtained here improved some existing results in the literature.

Author Contributions: Conceptualization, K.Z., F.S.A., J.X. and D.O.; formal analysis, K.Z., F.S.A., J.X. and D.O.; writing original draft preparation, K.Z., F.S.A., J.X. and D.O.; writing review and editing, K.Z., F.S.A., J.X. and D.O.; funding acquisition, K.Z., F.S.A., J.X. and D.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Natural Science Foundation of Chongqing (grant No. cstc2020jcyj-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (grant no. KJQN202000528). The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program no RP-21-09-08.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

