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Abstract: A bibliometric analysis of publications on fractal theory and thin films is presented in
this article. Bibliographic information is extracted from the Web of Science digital database and
the bibliographic mapping undertaken using VOSviewer software. Based on the analysis, there
is a growing trend in research on the applications of fractal theory in thin film technology. The
factors driving this trend are discussed in the article. The co-citation, co-authorship and bibliographic
coupling among authors, institutions and regions are presented. The applications of fractal theory
in thin film technology are clarified based on the bibliometric study and the directions for future
research provided.
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1. Introduction

Thin film technology finds application in various areas in modern society, including
electronics (micro-and nano-electronics), optics, biomedicine and medicine, sensors, surface
protection, energy and fuels, spintronics, magnetism and others [1]. Some of the examples
of thin film materials include copper, aluminium, gold, aluminium zinc oxide, hydrox-
yapatite, titanium, titanium carbide, complex polymers, etc. [2–4]. There are several thin
film deposition methods that have been classified broadly as chemical vapour deposition,
physical vapour deposition and chemical methods [1]. Due to evolution of the thin film
deposition technology, it is nearly possible to deposit thin films of all materials, includ-
ing metals, non-metals, alloys/compounds, ceramics, polymers and composites. These
materials can be converted into thin films from different forms based on the method of
deposition, including solid (for physical vapour depositions), gases (for chemical vapour
depositions) and liquids (for chemical methods). Readers are referred to a review by Abe-
gunde et al. [5] to understand the classifications and scientific operation of various thin
film deposition methods.

In thin film technology, the scientific focus is to manufacture quality structures with the
appropriate behaviour and performance. As such, characterization techniques and tools are
very important. One such important tool, over the years, has been the fractal theory [6]. The
fractal theory is based on mathematical formulations that assume self-affine and self-similar
properties of a behaviour and has been described in detail by various academics [7–10].
There are various techniques used in fractal analysis of surfaces (including thin films), some
of which include power spectral density function (PSD), Higuchi Technique, multifractal
approach, area-based methods and so forth [11–14]. These techniques have been shown
to compliment the statistical methods of surface roughness (and structure growth studies)
of thin films during deposition. As such, a lot of studies have been published on fractal
characterisation of thin films. The purpose of this study is to undertake a bibliometric
analysis of the published literature on this topic based on the Web of Science database to
show the holistic achievement and progress of the research. In addition, the study, based on
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the existing literature, aims to provide clarity on the applications of fractal theory/methods
in thin film technology. The article will be very useful for researchers in the field to
understand the impact of this topic to the industry, development and prospects for further
research and innovation.

2. Materials and Methods

In this study, Visualisation of Similarities (VOS) Viewer Software, version 1.6.18,
Centre for Science and Technology Studies, Leiden University, The Netherland, is used
to map bibliographic information of publications. The software, commercially known as
VOSviewer is an open-source computer program that was developed by Eck and Waltman
(2010) [15]. The VOSviewer software is very powerful for graphical representation of
bibliometric maps and it is able to synthesise large amounts of bibliometric data into
easy-to-interpret maps. With this software, the influence of co-authorship, co-occurrence,
bibliographic coupling and co-citation on authors, organizations and regions can be studied
for various publications [16]. According to Henry Small (1973), co-citation is the frequency
with which two documents are cited together by a third document and it is an indication
that the articles are related [17]. Bibliographic coupling occurs when two publications
cite the same third research publication and it can apply to authors, documents and
institutions [18].

To obtain the bibliographic details, data were extracted from the Web of Science (WoS)
Core Collection database. The WoS is the most trusted digital database for scientific research
and findings since it is known to maintain high standards and ethics in research practices.
It is one of the oldest databases for scientific information, data and publications. The WoS
database was accessed on 13 April 2022 through the University of Johannesburg (UJ), South
Africa digital library services. The search criteria were based on the following topics: fractal
in thin films, fractal theory in thin film analysis, fractal characterisation of thin films, fractal
analysis of thin films and fractal theory in thin film deposition. The search query was
formulated as follows in the WoS database, ts = ((fractal in thin films) OR (fractal theory
in thin film analysis) OR (fractal characterisation of thin films) OR (fractal analysis of thin
films) OR (fractal theory in thin film deposition)). The objective was to obtain publications
related to applications of fractal theory in thin film deposition and materials and as such the
search was limited to the above specific queries. Using broader sets of queries yielded more
results but with so many irrelevant articles, which needed further (and tedious) filtering.
On searching (based on these topics), 1334 documents were obtained out of which 1280
were journal articles, 135 conferences and others (notes, letters, book chapters, etc.). The
search period was filtered between 1982 and 2022. Then, the search was further filtered to
only original research articles (excluding review papers) and only 1270 documents satisfied
the criterion. Finally, the full records of the journal documents including name of authors,
titles, abstract, date of publication, affiliations, journal names and citation reports were
downloaded. The bibliographic information was stored as .txt and uploaded to VOSviewer
software for bibliometric analysis. For detailed procedure on VOSviewer software analysis
in scientific research, readers are referred to works by Nyika and co-authors [19–22].

3. Results and Discussion
3.1. Characteristics of Retrieved Publications

When the search query was input into the Web of Science (WoS) database, a total of
1270 original journal articles (excluding review and conference publications) was obtained,
which accounts for about 88.1% of all the documents. As shown in Figure 1, most of the
articles were written in the English language (which accounted for 97.4% of the total arti-
cles). Chinese language articles accounted for 2.0% of the retrieved publications, whereas
French-written articles accounted for just 0.2%. Articles published in other languages
(German, Portuguese, Russian and Spanish) accounted for 0.3% of the total publications.
Of the retrieved articles, 18% (n = 230) were open access while 0.005% (n = 6) were early
access publications.
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Figure 1. Distribution of retrieved articles on fractal theory in thin film materials by language. It can
be seen that most of the articles in the topic are written in English.

3.2. Publication Growth Trend

The trends in publications in terms of annual outputs since 1982 to 2022 were analysed
from the WoS and are represented in Figure 2. It can be seen generally that research
publications in fractal theory in thin films has been in an upward trend. The research on
this topic up to 1990 was very limited, with very high research outputs recorded between
2006 and 2021. It can also be seen that the average highest number of publications recorded
is in recent years, 2018–2021, indicating the emerging research and industrial importance
of fractal theory in thin film technologies and materials. In the early 1990s, most of the
articles on thin film materials were focusing on functionality in terms of surface and
other properties for various applications, in which fractal theory applications were limited.
However, as demonstrated by the articles obtained from 2000 onwards, there has been a
need for atomic and structural tuning of properties in thin film materials for advanced-level
applications, such as solar cells, microelectronics, etc. As such, fractal tools have been
extensively employed to characterize these materials for optimal tuning and performance.

The trend can also be attributed to the promising performance attributes provided
by fractal-like devices. For instance, solar cells exhibiting fractal-like features have been
said to perform better. Such solar cells exhibit higher absorption to solar than the normal
solar cells and the fractal thin film structure enhances its performance in a wide range of
wavelengths [23]. For example, Sierpinski (fractal) back-structure thin solar cells have been
demonstrated to absorb more light than other types of solar cells [24]. Fractal-structured
thin films used in gas sensing offer superior properties and performance; some examples of
fractal thin film structures used in gas sensing are Tin oxide (SnO2) thin films, SnO2/CuO
thin films, TiO2, α-Fe2O3 fractals, ZnO fractals, tungsten oxide, bismuth vanadate, etc. [25].
Properties of thin films, such as sheet resistance, have been related to fractal dimension
and, therefore, the concept is being used in the design of ohmic, barrier contacts, thin film
transistors, thin film capacitors, etc. [26,27]. The trend can also be attributed to the enhanced
technology of topography information acquisition, i.e., there is powerful equipment for
surface characterization, such as atomic force microscope (AFM), field emission scanning
electron microscope (FESEM), scanning tunnelling microscope (STM) and transmission
electron microscope (TEM).
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Figure 2. The publication trend on fractal theory in thin film materials for the period 1982–2022
according to Web of Science database.

Table 1 provides bibliographic details of the top 10 highly cited articles on fractal
theory and thin film technology and materials over the years (1992–2022). As shown, the
most cited (with 782 citations) article, by Majumdar and Bhushan (1991), in the Journal of
Tribology-Transactions of the ASME, demonstrated the use of scale-independent fractal
technique for analysis of optical interferometry and scanning tunnelling microscopy data
of thin film surfaces [28]. The study demonstrated that area-based fractal techniques
are powerful tools for surface roughness characterization since they are not affected by
measurement parameters of the data-logging equipment [29]. The second most highly
cited article, published in 2014 by Fan et al. [30], is a typical demonstration of the use of
fractal theory as a method for fabricating patterned electronic circuits. It has been reported
in various studies that patterned (or literally fractal) thin film structures offer attractive
performance of electronic and solar devices [31,32]. Therefore, fractal techniques can be
used to design patterned (fractals) thin film devices for enhanced performance. A similar
concept is demonstrated by the third most highly cited article, published by Arabatzis
et al. [33]; fractal dimension was used to characterize the evolution of silver–titanium
dioxide thin films during deposition. These top 10 articles demonstrate four important
aspects of fractal theory in thin film technology, namely, (1) specific applications of fractals
in thin films, (2) capabilities of fractal techniques, (3) examples of thin film materials
characterized via fractal theory and (4) some of the surface topography techniques.
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Table 1. The bibliographic details of the ten leading articles (highest citations) on fractal theory in
thin film technology.

Rank Title of Article Author/Year Journal Research Area Country/Institution Citations

1
Fractal Model of Elastic-Plastic

Contact Between
Rough Surfaces

Majumdar, A &
Bhushan, B/1991

Journal of Tribology-
Transactions of

the ASME
Engineering USA/Arizona

State University 782

2 Fractal design concepts for
stretchable electronics Fan, JA et al./2014 Nature

Communications
Science &

Technology
USA/Howard Hughes

Medical Institute 592

3

Silver-modified titanium
dioxide thin films for efficient

photodegradation of
methyl orange

Arabatzis, IM et al./2003 Applied Catalysis
B-Environmental

Chemistry,
Engineering

Greece/NCSR
Demokritos, Inst

Phys Chem
433

4
Impedance of constant phase

element (CPE)-blocked
diffusion in film electrodes

Bisquert, J et al./1998
Journal of

Electroanalytical
Chemistry

Chemistry,
Electrochemistry USA/UnivJaume 327

5

Dynamic Scaling of The
Island-Size Distribution and

Percolation in A Model of
Sub-monolayer

Molecular-Beam Epitaxy

Amar, JG et al./1994 Physical Review B Materials Science,
Physics USA/Emory University 310

6

Robust fluorine-free
superhydrophobic

PDMS-ormosil@fabrics for
highly effective self-cleaning

and efficient
oil-water separation

Cao, CY et al./2016 Journal of Materials
Chemistry A

Chemistry, Energy
& Fuels, Materials

Science

Peoples R
China/Soochow

University
320

7

Near-field optical
spectroscopy of individual
surface-plasmon modes in

colloid clusters

Markel, VA/1999 Physical Review B Materials Science,
Physics University of Georgia 291

8
Fractal dimension and size
scaling of domains in thin

films of multiferroic BiFeO3

Catalan, G/2008 Physical Review
Letters Physics England/University

of Cambridge 227

9

Effect of roughness as
determined by atomic force
microscopy on the wetting

properties of PTFE thin films

Miller, JD/1996 Polymer Engineering
and Science

Engineering,
Polymer Science USA/University of Utah 222

10 The Formation of Dew Beysens, D/1995 Atmospheric Research
Meteorology &
Atmospheric

Sciences

France/CEA, CTR
ETUD SACLAY 220

3.3. Analysis of Journals and Categories
3.3.1. Journal Analysis

The journal analysis revealed a total of 441 journals published in the search query.
Table 2 shows the top 20 journals publishing in the fields of “fractals and thin films”. As
can be seen, a wide range of journals, based on the subject, are active in publishing original
research on the search query. These journals are drawn across various disciplines, including
surface, optic and microelectronic engineering, chemistry and physics. Of the 20 journals,
13 journals have at least 15 publications with Applied Surface Science and Physical Review B,
with 53 articles each (accounting for 4.2% of the total publications). The Journal of Applied
Physics and Thin Solid Films follow closely, with 42 articles each (3.3% of total publications).
The other highly publishing journals include Journal of Physical Chemistry C (25 articles,
2.0%), Applied Physics letters (22 articles, 1.7%), Acta Physica Sinica (19 articles, 1.5%), Physical
Review E (19 articles, 1.5%), Journal of Materials Science Materials in Electronics (17 articles,
1.3%), and Applied Physics A Materials Science Processing, Materials Research Express and
Surface Science (16 articles each, 1.3%). These top journals mostly cover topics related to
surfaces, interfaces, nanostructures and applications. Applied Surface Science Journal, for
instance, deals with atomic- and molecular-level properties of materials and it is easy to
infer that fractal theory is a powerful tool for characterising nanoscale and atomic-level
construction of thin film structures, as evidenced by the other top journals, such as thin
solid films, applied physics letters and so forth. These characterisations extend to magnetics,
superconductors, electronics, semiconductors and photonics. A critical examination of
Table 2 on the publication titles gives a snippet of the applications for fractal theory in thin
film materials.
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Table 2. Top 20 leading journals in research on fractal theory in thin film technologies and materials
according to Web of Science database.

Rank Publication Titles Record Count Percentage (%) of Published Records

1 Applied Surface Science 53 4.2
2 Physical Review B 53 4.2
3 Journal of Applied Physics 42 3.3
4 Thin Solid Films 42 3.3
5 Journal of Physical Chemistry C 25 2.0
6 Applied Physics Letters 22 1.7
7 Acta Physica Sinica 19 1.5
8 Physical Review E 19 1.5
9 Journal of Materials Science Materials in Electronics 17 1.3
10 Applied Physics A Materials Science Processing 16 1.3
11 Materials Research Express 16 1.3
12 Surface Science 16 1.3
13 Physical Review Letters 15 1.2
14 Macromolecules 14 1.1
15 Surface Coatings Technology 14 1.1
16 Journal of Physical Chemistry B 12 0.94
17 Langmuir 12 0.94
18 Physica A: Statistical Mechanics and its Applications 12 0.94
19 Journal of Physics Condensed 11 0.87
20 Journal of Magnetism and Magnetic Materials 10 0.79

The top 10 most active publishers in this topic are shown in Table 3. As shown,
Elsevier Ltd, (Amsterdam, Netherlands) is the leading publisher in fractal theory of thin
film materials and technology with 439 articles, which accounts for 33.2%, followed by
Springer Nature, Berlin, Germany (118, 8.9%), American Institute of Physics, Maryland,
USA (100, 7.6%), American Chemical Society, Washington, USA (97, 7.3%), Institute of
Physics Ltd., Bristol, United Kingdom and Wiley, Hoboken, New Jersey, USA (71, 5.4%) and
American Physical Society, Maryland, USA (64, 4.8%), in that order. Other publishers in the
top ten include Taylor & Francis, Milton Park, Oxfordshire, UK, Royal Society of Chemistry,
London, UK, and Multidisciplinary Digital Publishing (MDPI), Basel, Switzerland. The
high number of counts in Elsevier Ltd. is attributable to the high number of journals
dealing with physics, chemistry and surface engineering of thin film properties, such as
Applied Surface Science. Similar to insights provided in Table 2, these observations provide
information regarding the applications of fractal theory in thin film materials.

Table 3. Top 10 most active publishers on fractal theory in thin films.

Rank Publishers Record Count Percentage

1 Elsevier 439 33.2
2 Springer Nature 118 8.9
3 Amer Inst Physics 100 7.6
4 Amer Chemical Soc 97 7.3
5 IOP Publishing Ltd. 71 5.4
6 Wiley 71 5.4
7 Amer Physical Soc 64 4.8
8 Taylor & Francis 33 2.5
9 Royal Soc Chemistry 28 2.1
10 Multidisciplinary Digital Publishing 23 1.7

The bibliographic coupling among the most influential journals undertaken using
the VOSviewer software is shown in Figure 3. During mapping in VOSviewer software,
the minimum number of articles in a journal was 5 and, of the 441 sources, 55 met the
threshold. For each of the 55 sources, the total strength of the bibliographic coupling links
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with other sources was calculated and the sources with the greatest total link strength
were selected. As shown, the circle represents a journal and the curved line shows the
interconnection of the journal to the others. The curve thickness indicates the strength
of the interrelationship among journals. The bibliographic coupling yielded four clusters
of journals denoted by different colours, namely red (28 articles), green (16 articles), blue
(9 articles) and yellow (2 articles) clusters. These clusters are based on the search query
and indicate the groupings of journals, as per research areas. Evidently, the Applied Surface
Science, Physical Review B and Journal of Applied Physics have the largest circles, implying they
have the highest number of publications and strong interrelationships with other journals.
These three journals belong to the red and green clusters (Figure 3) and are associated with
atomic properties in thin films, surface engineering and evolution of surface structures. A
close look at these top journals indicates that fractal theory is widely used to study and
characterise the evolution of surface structures during thin film depositions [34–37]. These
journals are strongly connected with others, which indicates their impact on this topic.
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Figure 3. Bibliographic coupling of the identified journals publishing on fractal theory of thin films.

A co-citation analysis based on minimum number of citations of a source of 20 was
undertaken and, of the 5520 sources, only 297 satisfied the threshold. A network map
showing the co-citation patterns of the journals is shown in Figure 4. Five clusters are
visible in the map in the fields of Physics, appearing as a green cluster (e.g., Physical
Review B, Journal of Applied Physics, etc.), Engineering, appearing as a red cluster (e.g.,
Applied Surface Science, Wear, International Journal of hydrogen Energy, etc.), Chemistry,
appearing as a blue cluster (e.g., Macromolecules, Langmuir, Soft mater, etc.), Materials
Science, appearing as yellow cluster (e.g., Advanced Materials, Advanced Functional
materials, etc.) and Applied Physics and Chemistry, appearing as purple cluster (e.g.,
Journal of Power Sources, Journal of Electrochemical Society, etc.). There is a very strong
co-citation of journals in Physics and Engineering. However, there is a weaker co-citation
of journals in the other fields—Chemistry, Materials Science and Applied Physics. This
can be attributed to the application of fractal theory as a principle for explaining the
physics/mechanisms of surface roughness, spatial patterning and structure development
during thin film deposition [38]. In fact, there are lots of recent studies utilizing fractal
techniques to characterize the micromorphology of thin film structures [39,40].
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A citation map network across the journals is represented in Figure 5. Similar to the
co-citation network, the map shows five clusters for the leading journals, as differentiated
by the colours. The highly cited articles belong to journals in the fields of Engineering and
Physics (clustered in blue and red, respectively) and a strong association among these jour-
nals exists. These fields are key to the development of fractal theories for characterisation
and patterning of thin films in Materials Science, Chemistry and Applied Physics.
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3.3.2. Analysis of Categories

In this case, two categories were considered, namely, the WoS categories and research
areas. The WoS categories were based on the classification by the database, whereas re-
search areas were based on the general classification of the publication topics. The analysis
of categories is helpful in determining the focus areas of the search topic, i.e., fractal theory.
Considering both categories, Tables 4 and 5, Applied Physics and Physics have the highest
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count of published articles, followed by Materials Science, Chemistry and Engineering.
The very high number of publications related to the Physics category is an indication that
fractal techniques are utilized for the characterization of nanoscale surface dynamics of
spatial patterns in thin films. Understanding the surface dynamics (Physics) of thin films
is helpful in enhancing their properties and performance. The high number of articles
in the Chemistry category is evidence that fractal theory is used in studying the atomic
patterning of the deposited thin films. Through the use of fractal measurements, such as
fractal dimension, various authors have been able to characterize the crystallography and
morphology of chemical structures and defects in thin film materials. The Materials Science
category is evidence of the role played by fractal theory in designing and predicting the
properties of thin film materials. The occurrence of the Engineering category in this list is
further evidence for the application of fractal theory in evaluation for performance of thin
film materials. The Engineering category herein refers to the broader term, encompassing
several research areas, some of which include nanoscience, electronics, polymer science, op-
tics, electrochemistry, mechanical and mechanics, metallurgy, ceramics and biophysics. In
this regard, it can be inferred from the Engineering category that fractal theory is utilized in
studying coatings for surface protection and for nanoscale roughness characterization [41].
The engineering category indicates that the fractal techniques have been used for a wide
range of applications, including electronic, polymer, optics, electrochemical, energy, envi-
ronmental and other materials. Other research areas are related to instrumentation and
microscopy; these are closely related to the data acquisition techniques suitable for fractal
characterization of thin film surfaces. Specifically, surface scanning techniques, such as
atomic force microscopy, scanning tunnelling microscopy, scanning electron microscopy,
etc., are used to acquire visual data of surface morphology of features, which are used in the
computation of fractal parameters, such as fractal dimension, Hurst component and others.

Table 4. Top twenty-five Web of Science categories on fractal theory of thin films.

Rank Web of Science Categories Record Count Percentage Count

1 Physics Applied 425 33.5
2 Materials Science Multidisciplinary 424 33.4
3 Physics Condensed Matter 315 24.8
4 Chemistry Physical 227 17.9
5 Materials Science Coatings Films 133 10.5
6 Physics Multidisciplinary 132 10.4
7 Nanoscience Nanotechnology 102 8.0
8 Chemistry Multidisciplinary 74 5.8
9 Engineering Electrical Electronic 68 5.4
10 Polymer Science 68 5.4
11 Optics 42 3.3
12 Physics Mathematical 37 2.9
13 Electrochemistry 32 2.5
14 Engineering Mechanical 32 2.5
15 Multidisciplinary Sciences 32 2.5
16 Engineering Chemical 31 2.4
17 Physics Atomic Molecular Chemical 31 2.4
18 Physics Fluids Plasmas 25 2.0
19 Metallurgy Metallurgical Engineering 24 1.9
20 Chemistry Analytical 21 1.7
21 Instruments Instrumentation 21 1.7
22 Mechanics 21 1.7
23 Microscopy 20 1.6
24 Materials Science Ceramics 17 1.34
25 Mathematics Interdisciplinary Applications 16 1.26
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Table 5. Top twenty-five Web of Science research areas on fractal theory of thin films.

Rank Research Areas Record Count Percentage Record Count

1 Physics 726 57.2
2 Materials Science 530 41.7
3 Chemistry 307 24.2
4 Engineering 145 11.4
5 Science Technology Other Topics 134 10.6
6 Polymer Science 68 5.4
7 Optics 42 3.3
8 Electrochemistry 32 2.5
9 Mathematics 24 1.9
10 Metallurgy Metallurgical Engineering 24 1.9
11 Instruments Instrumentation 21 1.7
12 Mechanics 21 1.7
13 Microscopy 20 1.6
14 Energy Fuels 14 1.1
15 Anatomy Morphology 10 0.79
16 Environmental Sciences Ecology 10 0.79
17 Thermodynamics 10 0.79
18 Computer Science 9 0.71
19 Crystallography 9 0.71
20 Life Sciences Biomedicine Other Topics 9 0.71
21 Nuclear Science Technology 9 0.71
22 Water Resources 6 0.47
23 Biochemistry Molecular Biology 5 0.39
24 Biophysics 4 0.32
25 Meteorology Atmospheric Sciences 4 0.32

3.4. Keyword Analysis

Keyword analysis in this case was used to identify the various themes on fractal theory
in thin films. It can be seen in Figure 6 that there are eight (8) themes or clusters in the
search query. These themes are clustered in different colours, as shown in Figure 6. These
themes can be further synthesized into three broad categories, namely, (i) data collection
techniques, (ii) fractal analyses techniques and (iii) applications of fractal theory in thin
film materials. The data collection techniques involve the microscopy methods used in
imaging to obtain surface topography information and atomic force microscopy is the most
utilized method [39,42], although scanning electron microscopy has also been utilized [43].
Over the period of bibliometric analysis in this study, it has been observed that various data
acquisition techniques for fractal analysis have been utilized (Table 6). These techniques
have been applied in pure metals, alloys, composites, polymers and ceramic thin film
materials (see Table 6).

The various methods of fractal analyses applied in various studies were also identified
in this keyword analysis. The fractal dimension was used as the most effective quantitative
descriptor of self-affine/similar surfaces of thin film surfaces [44]. Hurst exponent, which
relates to autocorrelations of the time series in surface roughness of thin film structures, has
also been used as a quantitative measure of fractal properties [45,46]. As seen in Figure 6,
fractal dimension and Hurst exponent are strongly related to surface roughness and mi-
crostructural features of thin films. The relationships indicate that fractal characterization is
applied in evaluating the growth of surface features during atom diffusion, crystallization
and growth of thin film surface features [36,47,48]. There are various calculation techniques
used in determining fractal dimensions and other parameters for fractal measurement;
some of these include power spectral density function, perimeter-area-based methods, auto-
correlation functions, Higuchi, Box-counting, triangulation and other methods [38,49–51].
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The third category derived from the keyword analysis is on the applications of the
fractal theory in thin film materials and depositions. As evidenced, fractal formulations
are used to characterize the surface roughness of thin film materials. These formulations
have been regarded as superior to statistical tools, since they are scale invariant and,
hence, more accurate for surface characterizations. In practice, surface roughness is a
measure of evolution of structural features during thin film depositions/growth. As such,
fractal techniques are applied to understand the evolution of structures at nanoscale level
during thin film formation. It, therefore, implies that fractal theory could be related to the
recrystallization and nucleation of grains in thin film deposition. By extension, most of the
properties of thin film surfaces can be explained via fractal characterizations. Some of these
properties include surface wettability [52], electrical [26], electrochemistry [53,54], nano-
indentation [55], fouling [56], optical [57] and other properties. Fractal studies have been
reported for various thin film materials based on the application of such films, according to
the keyword analysis in Figure 6.

3.5. Analysis of Regions and Institutions
3.5.1. Region

The subject of fractal theory and thin films has been studied across different regions.
Figure 7 shows the top 25 most-publishing countries on the search query and it can be
seen that the People’s Republic of China is the leading publisher (accounting for 18.73%)
in this subject. The second-most-publishing country is the USA, followed by Iran, India,
Germany and France, in that order. There is no doubt that the list is dominated by the most
developed countries, except Iran and South Africa. All these countries are characterized by
either advanced and developing manufacturing industries in semiconductors or related
fields. The leading companies in the fields of semiconductors, electronics and related fields
are mostly hosted in China, the USA, Japan, Germany and South Korea. There is intensive
research in developing economies, such as South Africa, due to the country’s policy on
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adoption of Industry 4.0 by the society. Industry 4.0 is supported by various technologies,
such as additive manufacturing, virtual and augmented reality, Internet of Things (IOTs),
etc. [1]. These technologies utilize a lot of sensors, which are usually fabricated from thin
film materials; fractal techniques are used to pattern the films for effective performance in
sensors and semiconductors [36].

Table 6. Various thin film materials and their deposition methods characterized by fractal techniques
(1982–2022).

Year Authors Thin Film Material Method of Deposition Imaging Technique

1982 RF Voss, et al. [58] Gold (Au) Electron-beam evapouration Transmission electron
microscopy (TEM)

1989 JR Ding, BX Liu [59] Silver-cobalt (Ag-Co) Evapouration Transmission electron
microscopy (TEM)

1991 BX Liu, J Wang, ZZ Fang [60] Cobalt (Co) Electron-gun evapouration Transmission electron
microscopy (TEM)

2000 G.A. Niklasson, et al. [61] Tin dioxide (SnO2) Spray pyrolysis Atomic force microscopy,
light scattering

2009 T Toyama, Y Sobajima, H
Okamoto [62] microcrystalline Si (µc-Si) plasma-enhanced chemical

vapour deposition (PECVD)
Atomic force microscopy

(AFM)

2009 C Trapalis [63] TiO2 Sol-gel Atomic force microscopy
(AFM)

2016 GH Solookinejad, ASH
Rozatian, MH Habibi [64] ZnO Sol-gel Atomic force microscopy

(AFM)

2016 J Arjomandi, D Raoufi,
F Ghamari [65]

Pyrrole (Py)
conductive polymer Cyclic voltammetry Atomic force microscopy

(AFM)

2019 Kavyashree et al. [66] Copper-doped strontium
hydroxide (Cu:Sr(OH)2)

Successive ion layer adsorption
and reaction (SILAR)

Scanning electron
microscopy (SEM)

2019 R Prajapat, YC Sharma [67] Cu2ZnSnSe4
Sputtering and electron

beam deposition
Atomic force microscopy

(AFM)

2019 L Eftekhari, D Raoufi [68] ZrO2 Electron beam evapouration Atomic force microscopy
(AFM)

2019 B Astinchap [69] Titanium Magnetron sputtering Atomic force microscopy
(AFM)

2019 FM Mwema, ET Akinlabi,
OP Oladijo [55] Aluminium RF magnetron sputtering

Field emission scanning
electron microscopy

(FESEM) and Atomic force
microscopy (AFM)

2020 Ş Ţălu et al. [70] Silver/diamond-like carbon
nanocomposite

co-deposition by sputtering and
RF-PECVD

Atomic force microscopy
(AFM)

2020 F Ghribi et al. [71] CuInS2 RF magnetron sputtering Atomic force microscopy
(AFM)

2020 AR Jahangiri et al. [72] AlZnO Magnetron sputtering Scanning electron
microscopy (SEM)

2021 S Soumya et al. [73] Molybdenum Oxide (MoO3) Pulsed laser deposition Atomic force microscopy
(AFM)

2021 Z Ebrahiminejad, S Asgary,
P Esmaili [74] Cu-doped Indium sulphide Chemical bath deposition Atomic force microscopy

(AFM)

2021 Y Romaguera-Barcelay
et al. [75] GdMnO3 Spin coating Atomic force microscopy

(AFM)

2021 Y.Romaguera-Barcelay
et al. [76] BiZn0.5Ti0.5O3 RF magnetron sputtering Atomic force microscopy

(AFM)

2022 E Teimouri et al. [77] TiB2 Laser ablation technique Atomic force microscopy
(AFM)

2022 A Das et al. [54] 2D Cd1−xPbxS Pulsed laser deposition (PLD) Atomic force microscopy
(AFM)

2022 F Ghribi et al. [78] Co10%–Alx Co-doped
Zinc Oxide Pulsed laser deposition (PLD) Atomic force microscopy

(AFM)
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Figure 7. Top 25 publishing countries on the subject of fractal theory in thin film techniques
and materials.

The research in various countries is also driven by the existing collaborations among
those countries. In bibliometric analysis, collaborations can be measured through bib-
liographic coupling among countries. Bibliographic coupling of countries occurs when
publications from two countries reference a publication from a third country. A biblio-
graphic analysis of the top countries in the field of fractal theory and thin films based on a
threshold of 5 and minimum number of citations per document of 500 was undertaken and
is presented in Figure 8. There are two clusters, represented in red and green colours. The
red cluster is composed of countries with the highest number of research outputs, whereas
the blue cluster consists of countries with the strongest bibliographic links. As shown, Iran
has the highest total link strength of 40,252, followed by Romania (37,624), Poland (23,586),
India (20,930), the USA (20,764) and China 17,542). This means that these countries have a
central influence on the research in fractal theory and thin film technology. Despite China
and the USA being the most highly publishing countries, they have lower coupling strength
compared to smaller countries, such as Iran, Romania, Poland and India. This means that
research outputs in these countries (green cluster) are easily accessible by researchers in
other countries. In addition, researchers from these (green cluster) countries are likely to
collaborate strongly with researchers in other countries; for instance, researchers from Iran
and Romania have extensively collaborated with researchers from Africa [34,79–81] and
Europe [82–84]. There is a need to enhance research collaboration between the USA, China,
Germany, Japan, etc. (red cluster) with the rest of the world, since these countries boost
the cutting-edge technologies in thin films. The collaboration is necessary for the holistic
generation of knowledge and the need to access and share research facilities in thin film
technologies and fractal computation amongst different countries. These collaborations are
important for marginalized countries, especially those of Africa, Latin America and Asia,
to enhance their research and development in the subject. The subjects of fractal theory
and thin film are very important to propel the growth of cutting-edge industries, such as
semiconductors and electronics. Additionally, the governments in such countries should
invest in thin film deposition facilities to enhance research and device development for
their economies. The emergence of South Africa among the top 25 countries (Figure 7) is
due to the government’s investment in research facilities, such as the state-of-the-art atomic
layer deposition, ALD (at the University of Johannesburg), sputtering facilities (at various
institutions), laser deposition techniques at Council for Scientific and Industrial Research
(CSIR), etc.
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3.5.2. Institutions

Table 7 shows the top 10 research institutions and universities actively involved in
research on the search query, “fractal theory in thin films”. The top 10 ranking consists of
institutions whose contribution to the subject is almost 2% in terms of research outputs in
the form of peer-reviewed journal articles. As shown, Islamic Azad University tops the
list with 74 (5.6%) outputs, followed by Chinese Academy of Sciences (70, 5.3%), Technical
University of Cluj Napoca (64, 4.8%), CNSR (52, 3.9%) and Russian Academy of Sciences
(41, 3.1%), in that order, make the top five institutions. The other institutions in this list
include League of European Research Universities, Tsingua University, US Department of
Energy, IIT system in India and UDICE French Research Universities. These institutions
and universities are mostly based in China, Europe and the US, although other Asian
institutions are ranked. As shown in Figure 8, these countries are industrialized and have
embraced Industry 4.0 technologies in their economies and, therefore, their institutions
are obliged to provide solutions in the relevant fields, such as thin film manufacturing.
In addition, countries, such as Iran and United Arab Emirates (UAE), in which Islamic
Azad University is based, are rapidly growing their economies through manufacturing
and, hence, the university has taken the advantage of the government’s policy to become
the leader in research on thin films and analyses.

Table 7. Top 10 research institutions on fractal theory in thin film deposition and technologies.

Rank Research Institution/University Number of Outputs % of Total Outputs

1 Islamic Azad University 74 5.6
2 Chinese Academy of Sciences 70 5.3
3 Technical University of Cluj Napoca 64 4.8
4 Centre National De La Recherche Scientifique CNSR 52 3.9
5 Russian Academy of Sciences 41 3.1
6 League of European Research Universities, LERU 31 2.3
7 Tsinghua University 31 2.3
8 United States Department of Energy, DOE 31 2.3
9 Indian Institute of Technology System IIT System 27 2.0

10 UDICE French Research Universities 24 1.8

Bibliographic coupling of institutions occurs when publications from one institu-
tion are cited by publications from two different institutions. Figure 9 shows a complex
VOSviewer bibliographic network of coupling amongst the institutions. There is diversity
and interconnections of research work being undertaken from various institutions. As
shown, there are four clusters in this network and it can be seen that there are four insti-
tutions that have coupling link strengths above 10,000, namely, Technical University of
Cluj-Napoca (Romania), Islamic Azad University (Iran), University of Warmia and Mazury
(Poland) and Malayer University (Iran). The bibliographic coupling of institutions is con-



Fractal Fract. 2022, 6, 489 15 of 24

tradictory to the results presented in Table 7; i.e., the most influential institutions in terms
of the number of publication outputs and citations do not imply the most influential in
terms of bibliographic coupling. The observation may be attributed to high collaborations
among these four institutions with the rest of the world (for instance, see the recent research
of [85] with institutions from Romania, Russia, Iran and Czech Republic). For instance,
although the Chinese Academy of Sciences is highly ranked in terms of publications and
citations, it has lower bibliographic coupling than the University of Johannesburg (South
Africa). A snippet review of some of the publications by the South African institutions on
fractal theory and thin films shows very high diversity in collaborating institutions—Czech
Republic, India, Romania, Russia, etc. [81].
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3.6. Author Analysis

The top 10 contributing authors in the topic of fractal theory and thin films are shown
in Table 8. The authors are ranked in terms of the quantity of publications. The author
with the leading number of publications is Professor Ştefan Ţălu, who has almost twice
the number of publications as the second-ranked author. Most of Ţălu’s publications in-
volve multifractal, mathematical methods of surface analyses, fractal geometry and fractal
analysis. He has a Web of Science (WoS) h-index of 33. The other nine authors in this list
include Solaymani (35 articles), Yadav (26 articles), Chen (23 articles), Kulesza (22 arti-
cles), Bramowicz (21 articles), Matos (18 articles), Rezaee (18 articles), Shek (18 articles)
and Arman (17 articles). Professor Ştefan Ţălu has the highest number of citations in the
field of fractal theory and thin films with his highly cited article, titled “AFM imaging
and fractal analysis of surface roughness of AIN epilayers on sapphire substrates”. The
article has 77 citations as per Web of Science database and it deals with fractal characteriza-
tion of 3D surface morphology of AFM imaging of AlN epilayers deposited on sapphire
substrates through magnetron sputtering [83]. Other highly cited articles by the author
include “Micromorphology characterization of copper thin films by AFM and fractal analy-
sis [86]”(68 citations), “Microstructure and Tribological Properties of FeNPs@a-C:H Films by
Micromorphology Analysis and Fractal Geometry [87]” (67 citations) and “Ion implantation
of copper oxide thin films; statistical and experimental results [88]”(66 citations).
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Table 8. Top 10 most influential authors in fractal theory in thin films.

Rank Authors Record Count % of Total WoSh-Index Institution Country Total Citations

1 Ţălu S 64 4.8 33 Technical University of
Cluj-Napoca Romania 1466

2 Solaymani S 35 2.6 29 Islamic Azad University Iran 851

3 Yadav RP 26 2.0 14 DeenDayal Upadhyay Govt
PG Coll India 362

4 Chen ZW 23 1.73 12 University of Science and
Technology of China China 292

5 Kulesza S 22 1.66 19 University of
Warmia & Mazury Poland 588

6 Bramowicz M 21 1.59 20 University of
Warmia & Mazury Poland 586

7 Matos RS 18 1.36 10 Universidade Federal
de Sergipe Brazil 113

8 Rezaee S 18 1.36 Islamic Azad University 176

9 Shek CH 18 1.36 40 Hong Kong
Polytechnic University Hong Kong 223

10 Arman A 17 1.30 16

Academic Center for
Education, Culture &
Research (ACECR),
Sharif University

Iran 298

A co-citation occurs when two documents are cited by the same third document. The
co-citation of authors occurs when two documents from different authors receive a citation
from a third document from a different author. The analysis relies on the assumption
that papers cited by the same document are highly related and their objectives are similar.
Figure 10 shows the map network visualization of the co-citation of authors in fractal theory
and thin film deposition and the analysis was based on a minimum threshold of 20 citations.
As shown, each author is represented by a circle and the relationship between authors
(co-citations) is represented by the links. The higher the total link strength, the larger the
circle and larger the name of the author. As shown, there are six clusters in the co-citation
visualization map. The first cluster (Cluster 1 in red) is anchored by researchers, such as
Mandelbrot, Yadav and Raoufi; the cluster is composed of heterogenous topics, involving
classical formulation of fractals and their applications in thin films characterization. The
second cluster (Cluster 2 in green) is anchored by authors, such as Stockman, Stauffer,
Feder, Shalaev and Yagil, and these authors undertake research involving mathematic
formulations of fractal theory. The third cluster (Cluster 3 in blue) is anchored by Witten,
Chen and Vicsek and the researchers have been involved in basic applications of fractal
theory in thin film deposition. Cluster 4 (yellow) consists of Talu, Stach, Matos, Dalouji and
Mwema; the authors in this cluster undertake research involving innovative applications
of fractal theory in thin film technology, such as prediction of film growth and properties,
patterning and manufacturing of high-performing devices (e.g., solar cells, electronic
circuits, etc.). The applications of AFM techniques for fractal characterisation have also
been underscored by the authors in Cluster 4. Meakin, Hwang, Amar and other authors
anchor Cluster 5 (purple) and the authors are involved in research on fractal characterisation
of various thin films. Finally, Cluster 6 (green) consists of authors, such as Ghosh and
Swain, who focus on multifractality, chaos and thin film depositions, such as sol–gel.

Figure 11 illustrates bibliographic coupling of authors publishing in the field of fractal
theory in thin films. There are four clusters distinguished by various colours. The green
cluster is anchored by Stefan Talu, who focuses on mathematical techniques for fractal
analyses of thin film materials and other surfaces. The red cluster is anchored by Yadav,
Chen, Raoufi and Gosh, who have generally worked on various fractal techniques in the
characterisation of thin film materials. The blue cluster is anchored by authors, such as
Solaymani, Bramowicz and Dalouji, whereas the blue cluster is anchored by two authors,
Karani and Mallik.
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Figure 11. Bibliographic coupling of authors publishing in fractal theory of thin film materials.
Minimum number of documents and citations for each author is 5 and 20, respectively.

Figure 12 shows a co-authorship network map of authors publishing in fractal theory
in thin film deposition and materials. As per the analyses, 63 authors satisfied the search
criterion and their co-authorship map is shown in Figure 13. The co-authorship map
shows the various authors publishing various articles together and the interconnection
strength is determined by the number of co-authored articles. It can be seen that most of
the authors are not interconnected and, therefore, the co-authorship in this subject seems to
be low. However, around 30 authors have extensively co-authored publications together in
the subject.
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An expanded view of Figure 12, showing the co-authorship network of the 30 authors,
is shown in Figure 13. There are four clusters, which are anchored around the highly
publishing authors, namely, Talu, Solaymani, Yadav and Rezaee. It is not surprising that
the highly publishing authors (top 10) shown in Table 8 feature as the anchors in the
co-authorship map. There is a direct relationship between co-authorships and research
impact and, therefore, for acceleration of developments in the thin film industry and fractal
techniques, authors across different regions and institutions are encouraged to collaborate
and co-author research outputs together. It can also be observed that publications with a
high number of co-authors, recently, attract a larger audience and more citations. Research
findings presented in such articles tend to be highly trusted and, therefore, attract higher
readability and applications. Professor Ştefan Ţălu is the most trusted researcher on this
topic due to the various collaborations and co-authored works he has generated; he has
published widely on fractal theory and applications to nearly all methods of deposition,
including physical vapour depositions, chemical vapour depositions, chemical methods
and so many others. He has also applied various techniques in fractal analyses, including
power spectral density, Minskowski functions, multifractal, area based and so forth [43].
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3.7. Applications and Future Directions

From the preceding bibliometric analysis, there is no doubt that fractal techniques
are extensively gaining interest in the study of thin films and depositions. The WoS
database reveals a very large content of fractals and thin films. Besides the journal articles,
there are several review papers, which clearly outline the power of fractal theory in thin
films and applications. The most recent review article on this topic, titled “Application of
Fractal Geometry in Gas Sensor: A Review” and published by Tian and co-authors in 2021 in
IEEE Sensors Journal, underscores the importance of the search query in this bibliometric
analysis [89]. The article reveals that gas sensors exhibiting fractal geometry have superior
performance as compared to others. Since thin films are used as sensing structures in these
applications, the creation of thin films exhibiting fractal-like morphologies is very important.
As such, fractal techniques and theory can be applied to build superior performing gas
sensing devices. Analogically, solar cells exhibiting fractal-like characteristics have been
shown to perform better than the traditional types and, therefore, fractal theory can be used
to create such solar devices [90]. Fractal-like thin film materials, such as silver oxide [91],
tetra-cyanoquinodimethane (TCNQ) [92], gold, palladium [93], etc., have been fabricated
for such applications.

Fractal techniques have been traditionally preferred over statistical methods in com-
puting surface roughness of thin film structures. The fractal techniques describe both
lateral and vertical roughness properties of a surface and, therefore, can study the growth
of thin films during deposition. In addition, fractal methods are not influenced by the
measuring parameters of the imaging equipment and, therefore, more reliable [94]. In this
regard, fractal dimension is mostly used to quantify the extent of roughness of a struc-
ture [36,79,95–97]. Through the fractal theory, therefore, detailed roughness information,
through various mathematical models and image manipulation, is provided for thin film
materials and surfaces.

The lateral characterisation of thin films through fractal techniques has made it easier
to understand the growth behaviour of thin film structures during deposition. Several



Fractal Fract. 2022, 6, 489 20 of 24

studies relating the deposition characteristics to the fractal parameters during thin film
growth have been published [30,38,98,99]. The general inference from these publications is
that through the use of computer-generated structures (using fractal theory), it is possible to
predict the morphology and behaviour of thin films from a specific deposition technique. A
detailed demonstration of the application of fractal theory in thin film property prediction
was published by Mwema and co-authors (2021) in a book titled, “Sputtered Thin Films:
Theory and Fractal Descriptions” [36] and in an article titled, “demystifying fractal analysis
of thin films” [51]. The prediction models presented in these references were solely based on
image analyses and future work can focus on numerical tools using computation software,
such as MATLAB programs, to build open-source models. In addition, fractal techniques
and tools can be extended to simulate the creation of property-tuned morphologies for
specific deposition thin film techniques and applications.

4. Conclusions

In this article, bibliometric analysis of fractal theory/techniques and thin films was
presented. Based on the bibliographic information of original (data-based) journal articles
in the Web of Science digital database, data regarding bibliographic coupling, co-citation,
co-authorship and co-occurrence of authors, documents, institutions and regions was
generated and analysed in VOSviewer software. The results in this article provide insights
into the evolution of application of fractal theory in the thin film industry since 1982. It
is clear that China and the USA are the most influential countries due to the obvious
reason of huge investment in thin films and nanotechnology by these countries. There
is heterogeneity in terms of the most influential authors in this subject; bibliographic
coupling and co-citation analyses indicate non-uniform clusters in terms of subjects and co-
authorship in this subject. However, as expected, regions, such as Africa and Asia (except
China and India), lag behind in this subject, although there are few authors featuring
among the top 100 in terms of research publications and co-authorship.

From the bibliometric study, the application of fractal theory in thin films can be sum-
marized in four areas, namely, (1) a tool for creation of superior devices, (2) characterization
of roughness and structure evolution, (3) prediction of structure evolution during thin film
depositions and (4) an optimization tool for thin film (structure) creation.
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32. Ţălu, Ş.; Stach, S.; Raoufi, D.; Hosseinpanahi, F. Film thickness effect on fractality of tin-doped In2O3 thin films. Electron. Mater.

Lett. 2015, 11, 749–757. [CrossRef]
33. Arabatzis, I.M.; Stergiopoulos, T.; Bernard, M.C.; Labou, D.; Neophytides, S.G.; Falaras, P. Silver-modified titanium dioxide thin

films for efficient photodegradation of methyl orange. Appl. Catal. B Environ. 2003, 42, 187–201. [CrossRef]

http://doi.org/10.2320/matertrans.M2009183
http://doi.org/10.1016/S0013-4686(02)00246-3
http://doi.org/10.3934/matersci.2019.2.174
http://doi.org/10.1088/0031-8949/32/4/001
http://doi.org/10.1126/science.156.3775.636
http://doi.org/10.1023/A:1007585811281
http://doi.org/10.1006/aima.1995.1066
http://doi.org/10.1007/s12220-021-00753-7
http://doi.org/10.1016/0016-0032(94)90085-X
http://doi.org/10.1016/j.patcog.2009.03.001
http://doi.org/10.1002/wics.142
http://doi.org/10.1007/BF02065874
http://doi.org/10.1007/s11192-009-0146-3
http://doi.org/10.1016/j.jbusres.2021.04.070
http://doi.org/10.1002/asi.4630240406
http://doi.org/10.1016/j.techfore.2020.120487
http://doi.org/10.2166/wh.2022.228
http://doi.org/10.1080/2374068X.2021.1945267
http://doi.org/10.1080/21645698.2022.2038525
http://doi.org/10.1016/j.crbiot.2021.07.001
http://doi.org/10.1049/ote2.12036
http://doi.org/10.1007/s11082-013-9783-0
http://doi.org/10.3762/bjnano.12.88
http://www.ncbi.nlm.nih.gov/pubmed/34858773
http://doi.org/10.3390/sym13122391
http://doi.org/10.1155/2021/9912247
http://doi.org/10.1115/1.2920588
http://doi.org/10.3389/fpls.2016.00149
http://doi.org/10.1038/ncomms4266
http://www.ncbi.nlm.nih.gov/pubmed/24509865
http://doi.org/10.1371/journal.pone.0229945
http://doi.org/10.1007/s13391-015-4280-1
http://doi.org/10.1016/S0926-3373(02)00233-3


Fractal Fract. 2022, 6, 489 22 of 24
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