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Abstract: When the image is affected by strong noise and uneven intensity, the traditional active
contour models often cannot obtain accurate results. In this paper, a novel adaptive fractional
differential active contour image segmentation method is proposed to solve the above problem. At
first, in order to extract more texture parts of the image, an adaptively fractional order matrix is
constructed according to the gradient information of the image, varying the fractional order of each
pixel. Then, the traditional edge-stopping function in the regularization term is susceptible to noise,
and a new fractional-order edge-stopping function is designed to improve noise resistance. In this
paper, a fitting term based on adaptive fractional differentiation is introduced to solve the problem of
improper selection of the initial contour position leading to inaccurate segmentation results so that
the initial contour position can be selected arbitrarily. Finally, the experimental results show that the
proposed method can effectively improve the segmentation accuracy of noise images and weak-edge
images and can arbitrarily select the position selection of the initial contour.

Keywords: active contour model; image segmentation; fractional differential operator; edge-stopping
function; local fitting variance

1. Introduction

The active contour model (ACM) [1] has the advantages of sub-pixel accuracy, topol-
ogy adaptability, etc. Therefore, it has been widely used in the fields of image segmenta-
tion [2–5], video clipping [6,7], scene understanding [8], and object tracking [9,10]. Image
segmentation based on ACM is a nonlinear segmentation method. Its initial contour is
induced to move towards the image boundary, and the target area in the image domain is
finally extracted [11]. However, in practical applications, images are often affected by noise
and nonuniformity of intensity, resulting in over-segmentation or local minimum problems.
Therefore, it is necessary to optimize the image segmentation method based on ACM to
improve the image segmentation accuracy.

ACMs are roughly divided into two categories: edge-based models [12–15] and region-
based models [16–20]. The edge-based model mainly defines the edge-stopping function
according to the gradient information near the active contour curve. This method can
handle the image with a clear object boundary well, but the segmentation results of the
image with blurred boundary are generally unsatisfactory. In addition, it is easy to fall into
a local minimum due to factors such as noise and texture. The corresponding region-based
model pays more attention to global statistical information so that it can segment images
with weak edges and is robust to the initial contour position and noise. However, it is
difficult to obtain ideal segmentation results for some images with non-uniform gray levels
in the target or background area.

After years of research, scholars at home and abroad have proposed numerous ACMs.
The following were representative ACMs. In 1993, Caselles et al. [21] first introduced the
level set method into ACM and proposed the geodesic active contour (GAC) model. The
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basic idea of this model is to transform the problem of image segmentation into the problem
of finding the shortest geodesic, in which the weight is determined by the image gradient
at the position of the curve. Li et al. [22] designed a distance regularization term to be
added to the energy function of the GAC model to solve the problem of re-initializing
the level set function in the iterative process, thus ensuring the stability of the level set
function evolution. Chan and Vese [23] proposed the Chan–Vese (CV) model, which is
insensitive to noise as well as the position of the initial contour. However, it is difficult for
this model to obtain ideal segmentation results for some images with uneven gray levels in
the target or background areas. Li et al. [24] proposed a variable region fitting (RSF) model
by embedding local image information. The RSF model greatly improves the segmentation
performance of images with uneven intensity.

To further improve the segmentation performance of noise and weak edge images,
scholars at home and abroad have found that fractional differential plays a special role in
signal singularity detection and extraction [25–28]. It can improve the high-frequency com-
ponent of the signal while retaining the low-frequency component of the signal nonlinearly.
Ref. [12] proposed a fractional edge-stopping function using a fractional gradient instead of
a conventional gradient. Ref. [18] proposed a fractional active contour model by applying
different types of noise to images. Ref. [29] introduced new edge energy, which is driven
by the difference between the inward and outward fractional differential of the evolution
profile. The above fractional order models have advantages over traditional ACM. How-
ever, these models perform fixed order differentiation on the image, which means that the
texture part of the image is easy to be smoothed or destroyed due to improper order, and
the experiment needs to be repeated to obtain the desired order. Refs. [30,31] proposed a
fractional differential model with adaptive fractional order, and its segmentation perfor-
mance is improved to a certain extent compared with the fixed order fractional ACM. In
the research process of adaptive fractional order, Refs. [32–34] provides research strategies
for nonlinear parameter optimization, to effectively and quickly determine the optimal
value of parameters. Refs. [35,36] adaptively selects fractional order according to the noise
standard deviation of the source image, which not only retains the gradient feature but also
makes up for the lack of ignoring pixels. At present, ACMs based on adaptive fractional
order show improvement, but they only rely on the edge or region information of the image,
and still have the problem of instability. To solve these problems, this paper proposes a
new active contour image segmentation method based on the edge and region information
of the image to achieve accurate segmentation of noisy images and weak edge images.

Based on these previous works, we propose an adaptive fractional differential active
contour image segmentation method. The main contributions of the paper are summarized
as follows:

• According to the gradient information of the image, an adaptively changing order
matrix is constructed, and the fractional order of each pixel of the image is adaptively
changed. Different differential orders are used in the edge texture and smooth area of
the image, which preserves richer image information.

• A fractional-order edge-stopping function is proposed, which can effectively improve
the performance of the segmentation of noisy images. It solves the problem that the
traditional edge-stopping function is trapped in a local minimum due to the influence
of noise points.

• The fitting term is designed by combining adaptive fractional differential and Gaussian
kernel function, which makes the new method effectively overcome the problem of
sensitivity to the initial contour position.

The rest of the structure of the paper is as follows. Section 2 introduces the related
knowledge of the classical active contour model. Section 3 proposes an adaptive fractional
differentiation and fractional edge-stopping function. Section 4 proposes an adaptive
fractional derivative active contour image segmentation method. The experimental results
are given in Section 5 to illustrate the effectiveness of the algorithm. Finally, the conclusions
are given in Section 6.
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2. Active Contour Classic Model

In this section, we briefly introduce two classical active contour models, the edge-
based distance-regularized level set evolution (DRLSE) model [37] and the region-based
region scalable fitting (RSF) model [24].

2.1. Distance Regularized Level Set Evolution (DRLSE) Model

Let Ω be the image area, and φ(x, y) be the level set function defined on Ω. The energy
function of the DRLSE model in [37] is defined as follows,

E(φ) = µ
∫

Ω
R(|∇φ|)dx + λ

x

Ω
g(x, y)δ(φ)|∇φ|dxdy + v

x

Ω
g(x)H(−φ)dxdy, (1)

where µ > 0, λ > 0, and ν ∈ R are the weight coefficients of the respective energy terms.
R(|∇φ|) is a double-well potential function. g(x, y) is the edge-stopping function. δ(·) and
H(·) are the Dirac function and the Heaviside function respectively.

The first term in the Equation (1) is a penalty term, which essentially maintains the
regularity of the level set function in the evolution process; the second term is the long
term, and the line integral of the edge-stopping function on the contour of the zero level set
is calculated; the third term is the area term, which calculates the weighted area of the area
within the active contour. The second and third terms are used to drive the curve to evolve
towards the target boundary.

The integrand used in this model is,

R(|∇φ|) =


1

(2π)2 [1− cos(2π|∇φ|)], |∇φ| < 1

1
2 (|∇φ| − 1)2, |∇φ| ≥ 1

. (2)

In addition, for most edge-based active contour models [12–15], the edge-stopping
function g(x, y) is defined as follows,

g(x, y) =
1

1 + |∇Gσ · I(x, y)|2
, (3)

where Gσ is a Gaussian kernel function with standard deviation σ, which is used to smooth
the image to reduce the effect of noise. I(x, y) is image information.

δ(·) and H(·) are defined in [37] as follows,

δε(x) =


1
2ε

[
1 + cos(πx

ε )
]
, |x| < ε

0, |x| > ε
, (4)

Hε(x) =


1
2 (1 +

x
ε +

1
π sin(πx

ε )), |x| ≤ ε

1, x > ε

0, x < −ε

(5)

where ε is the smoothing parameter, and its value is usually set to 1.5.
In Equation (1), E(φ) is a function of the level set function φ, and the optimal φ is found

by minimizing the energy function E(φ). Using the variational method and according to
the gradient descent flow theory [38], the gradient descent flow equation of the level set
function φ is obtained as follows,

∂φ

∂t
= µdiv(dR|∇φ| · ∇φ) + λδε(φ)div(g

∇φ

|∇φ| ) + vgδε(φ), (6)
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where div is the divergence operator, and the function dR is defined as,

dR(|∇φ|) = R′(|∇φ|)
|∇φ| =


sin(2π|∇φ|)

2π|∇φ| , |∇φ| < 1

1− 1
|∇φ| , |∇φ| ≥ 1

. (7)

Compared with the traditional edge active contour model, the DRLSE model can
accurately and stably segment objects with a clear boundary. However, when segmenting a
noisy image, the evolution curve tends to fall into a local minimum due to noise interference;
relying only on edge information, the result is sensitivity to the position of the initial contour.
In addition, at the weak boundary of the image, the gradient of the image is small, which
makes the value of the edge-stopping function larger, and the evolution curve easily crosses
the target boundary.

2.2. Region Scalable Fitting (RSF) Model

The RSF model [24] uses the Gaussian kernel function to define the energy functional,
and the expression is as follows,

E(φ) = λ1
s

Ω Kσ(x− y)(I(y)− f1(x))2H(φ(y))dxdy

+λ2
s

Ω Kσ(x− y)(I(y)− f2(x))2(1− H(φ(y)))dxdy

+µ
∫

Ω
1
2 (|∇φ| − 1)2dx + ν

∫
Ω |∇H(φ(x))|dx

(8)

where Kσ(x) is a Gaussian kernel function with a standard deviation of σ, f1(x), f2(x) are
the fitting means of the given pixel x in the local area inside and outside the contour curve
respectively, and the expression is,

fi(x) =
Kσ(x) · [Hi(φ(x))I(x)]

Kσ(x) · Hi(φ(x))
i = 1, 2, (9)

where H1(φ(x)) = H(φ(x)), H2(φ(x)) = 1− H(φ(x)).
The first term in the Equation (8) is a local fitting term, which is used to drive the

evolution curve to stop at the target contour; the second term is the penalty term to prevent
the re-initialization of the evolution curve; the third term is the regular term, which controls
the length of the evolution curve.

The gradient descent flow equation of the level set function φ is obtained by minimiz-
ing the energy functional (8) as follows,

∂φ
∂t = δ(x)(−λ1

∫
Kσ(x− y)(I(y)− f1(x))2dy

+λ2
∫

Kσ(x− y)(I(y)− f2(x))2dy

+µ(∇2φ− div( ∇φ
|∇φ| )) + νδ(x)div( ∇φ

|∇φ| )

(10)

The RSF model greatly improves the segmentation performance of the image with
uneven intensity. Because only the local information of the image is used, the model is
very sensitive to noise. In addition, the model is prone to fall into local optimization and
is sensitive to the initial position of the evolution curve. To obtain the ideal segmentation
result, it is necessary to select the appropriate initial position according to the segmentation
result, which limits its application.

Through the above brief analysis of DRLSE and RSF models, it can be concluded that
both models are sensitive to the position of the initial contour and noise. In addition, this is
not applicable to the target edge blurred image. Therefore, it is necessary to optimize the
active contour image segmentation method.
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3. Adaptive Fractional Differential

The fractional differential has the characteristic of increasing the high-frequency com-
ponent of the signal while retaining the low-frequency component of the signal nonlinearly.
Therefore, fractional differentiation can increase the signal size of the image edge and
texture part, while retaining the regional information where the gray value changes slowly,
and has good robustness to noise. Therefore, fractional differentiation has received more
and more attention and applications in the field of image processing.

3.1. Fractional Differential

Fractional order differential is a branch of integer order differential, which extends
the traditional integer order differential. There are three classical fractional differential
definitions, namely Riemann–Liouville (R-L), Grüwald–Letnikov (G-L), and Caputo [25–28].
R-L and Caputo are both defined by the Cauchy integral formula, which is complex and
is not conducive to large-scale data calculation. The definition referenced by G-L can be
converted into convolution form, so the former has a better effect on image processing than
the other two definitions.

G-L of function f (t) is defined as follows,

GL
a Dα

t f (t) = lim
h→0

h−α
[(t−a)/h]

∑
j=0

(−1)j
(

α
j

)
f (t− jh)

≈ h−α
[(t−a)/h]

∑
j=0

ω
(α)
j f (t− jh)

(11)

where
(

α
j

)
represents the combination number parameter.

For n×m a two-dimensional image f (x, y), the definition of fractional differential in
the x− and the y− directions are as follows:

∂α f (x,y)
∂xα ≈ f (x, y) + (−α) f (x− 1, y) + (−α)(−α+1)

2 f (x− 2, y)

+ · · ·+ Γ(−α+1)
n!Γ(−α+n+1) f (x− n, y) + · · ·

(12)

∂α f (x,y)
∂yα ≈ f (x, y) + (−α) f (x, y− 1) + (−α)(−α+1)

2 f (x, y− 2)

+ · · ·+ Γ(−α+1)
n!Γ(−α+n+1) f (x, y− n) + · · ·

(13)

3.2. Adaptive Fractional Differential

The traditional image processing method, based on the fractional differential, is to use
the same order differential operation for each pixel in the image. This is often inconsistent
with the characteristics of different pixel values so that the texture details of the image
are smoothed or destroyed, and eventually, the image information is lost. It will seriously
affect the image quality and further analysis and processing.

In this paper, we propose a new fractional-order varying method for each pixel and
construct an adaptive fractional order matrix, P, according to the gradient information of
the image. So, different differential orders are adopted in the smooth part and the edge
texture part of the image to obtain more abundant image information. The expression of
the adaptive order matrix P is,

P =
|∇I(x, y)|+ α · ones
|∇I(x, y)|+ β · ones

, (14)

where I(x, y) is a two-dimensional image of n×m, |∇I(x, y)| is the gradient information of
the image I(x, y), and the dimension is n×m, the ones represents a matrix whose elements
are all 1 and its dimension is n×m, and α and β are the correction parameters. The order
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interval of the fractional differential operation is controlled by the value of the correction
parameter, and the value depends on the specific situation in different images.

The experimental object of this paper is mainly infrared images. Because the infrared
image is obtained by “measuring” the heat radiated from the object, it usually has the
characteristics of poor resolution, low contrast, large background noise, and blurred visual
effect. Through many experiments and relevant literature references, combined with the
characteristics of infrared images, the interval of differential order and the constraint
conditions of modified parameters will be analysed later.

The fractional order matrix P can be adaptively adjusted according to the local statis-
tical information and structural features of the image. Make it have a larger differential
order at the strong edges of the image and a smaller differential order at the weak edges
and textures of the image. Taking the template of image grayscale information 5× 5 as
an example, the correction parameters are α = 1, β = 0.8, and the corresponding order
changes are shown in Figure 1.
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In this paper, the fractional-order variable differential of the image I(x, y) can be
obtained by using the definition of G-L, and the results of the fractional-order differential
operation with different orders for each pixel point are as follows,

GLDP I(x, y) =


DP11 I(1, 1) DP12 I(1, 2) · · · DP1m I(1, m)
DP21 I(2, 1) DP22 I(2, 2) · · · DP2m I(2, m)

...
...

. . .
...

DPn1 I(n, 1) DPn2 I(n, 2) · · · DPnm I(n, m)

 ∈ Rn×m, (15)

where GLDP I(x, y) is fractional order changing image, Pnm is the element in the fractional
order matrix P.

Since the fractional derivative is a linear operator, in this paper, the absolute value
operations in x, y directions are used to ensure that the linear change of the image grayscale
information is preserved. The image I(x, y) processed by adaptive fractional differentiation
can be updated as,

GLDP I(x, y) = (DP
x I(x, y),DP

y I(x, y)), (16)∣∣∣GLDP I(x, y)
∣∣∣ = ∣∣∣DP

x I(x, y)
∣∣∣+ ∣∣∣DP

y I(x, y)
∣∣∣. (17)

3.3. Fractional Edge-Stopping Function

In the edge-based active contour model, the edge stop function plays an important role
in image segmentation. The traditional edge stop function can be a non-negative function
with monotone decreasing, and its main function is to control the evolution speed of the
curve. However, because it only depends on the gradient information of the image, it is
easy to be affected by noise and can not accurately segment the noisy image and the target
edge blurred image.
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To improve the robustness of the traditional edge-stopping function to noise, this
paper introduces the adaptive fractional differential into the Equation (3), defines a new
edge-stopping function, and proposes an edge-stopping function based on the adaptive
fractional differential,

g(x, y) =
1

1 + Gσ · |GLDP I(x, y)|
, (18)

where
∣∣GLDP I(x, y)

∣∣ is the result of performing the fractional-order variable operation on
each pixel point of the image I(x, y). The calculation method is shown in Equation (17).

4. Image Segmentation Based on Adaptive Fractional Differentiation

In this section, combined with Section 3, an image segmentation method based on
adaptive fractional differentiation is proposed. The energy functional of this method
consists of three parts: penalty term EP, regularization term ER, and fitting term EF, which
will be described in detail below,

E = EP + ER + EF. (19)

4.1. Penalty Term EP

The first term in the Equation (19) is the penalty term, and its function is to avoid the
re-initialization step of ACM. The energy function is as follows,

EP = µ
∫

Ω
R(|∇φ|)dx, (20)

where µ > 0 is the weight coefficient, and φ is the level set function. As defined in
Equation (2), this is a double-well potential function.

In Ref [22], the accumulated function is the symbol distance function (SDF), and its
expression is p = (|∇φ| − 1)2/2. The diffusion rate of the integrand can be obtained from
the gradient flow equation, and its expression is r1 = 1− (1/|∇φ|). When |∇φ| = 1, the
level set function is the target boundary, and the diffusion rate r1 = 0 is stable; when
|∇φ| = 0, the level set function be far from the target boundary, and the diffusion rate is
r1 → −∞ . This will make the level set function more and more irregularly in the iterative
process, resulting in oscillation during the evolution process. As a result, the calculation
accuracy will be seriously affected, and the stability of the level set evolution will be
destroyed. Therefore, the integrand proposed in [37] is introduced in this paper, and the
diffusion rate of the integrand (2) can be obtained from the gradient flow equation,

r2 =


(|∇φ| − 1)(2|∇φ| − 1), |∇φ| < 1

1− 1
|∇φ| , |∇φ| ≥ 1

. (21)

It can be seen from Equation (21) that when |∇φ| = 1, r1 = 0 is in a stable state; when
|∇φ| = 0, r1 = 1 is also in a stable state. Therefore, under the action of the double-well
potential function, the final level set function is relatively smoother, as shown in Figure 2.

The gradient descent flow equation of the level set function φ obtained by minimizing
the energy functional (20) is as follows,

∂φ

∂t
= µdiv(dR|∇φ| · ∇φ), (22)

where the function dR is defined as Equation (7).
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4.2. Regularization Term ER

The second term in the Equation (19) is a regular term, which is used to maintain the
regularity of the evolution curve and calculate the line integral of the curve. The energy
function is as follows,

ER = ν
x

Ω
g(x, y)(|∇H(φ)|)dxdy, (23)

where ν > 0 is the weight coefficient, and g(x, y) is the fractional edge-stopping function,
as shown in Equation (18) and described in detail in Section 3.

The gradient downflow equation of the level set function φ is obtained by minimizing
the energy functional (23) as follows,

∂φ

∂t
= νgδ(φ) · div(

∇φ

|∇φ| ). (24)

Due to the introduction of a fractional-order edge-stopping function in this term, the
model has a certain robustness to noise. The improved fractional-order edge-stopping
function only relies on the gradient information of the image and cannot solve the problem
that the model is sensitive to the initial contour position. Therefore, in Section 4.3, the
adaptive fractional derivative is introduced into the region fitting term, and the use of the
fractional derivative can enhance the advantages of the image texture details and optimize
the segmentation method.

4.3. Fitting Term EF

The third term in the Equation (19) is a fitting term, which is used to drive the evolution
curve to stop at the target contour and make the model robust to the initial contour position.
The fitting term proposed in this paper includes two parts: one is the local region fitting
term introduced from [24], and the other is the fitting term based on the adaptive fractional
differential. The energy functional is as follows,

EF = λ
[s

Ω Kσ(x− y)(I(y)− f1(x))2H(φ(y))dxdy

+
s

Ω Kσ(x− y)(I(y)− f2(x))2(1− H(φ(y)))dxdy
]

+EFF

(25)

where f1(x) and f2(x) are respectively the fitting mean of the local area inside and outside
the contour curve of a given pixel point x, and the expression is Equation (9). Kσ(x)
is the Gaussian kernel function with standard deviation σ, I(y) is the intensity of the
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image I(x, y) at point y, φ(y) is the level set function at a point y, and δ(·) and H(·) are
Equations (4) and (5).

The energy function of the fitting term EFF, based on adaptive fractional differentia-
tion is,

EFF = γ
[s

Ω Kσ(x− y)(FI(y)− b1(x))2H(φ(y))dxdy

+
s

Ω Kσ(x− y)(FI(y)− b2(x))2(1− H(φ(y)))dxdy
] (26)

where b1(x) and b2(x) are the local area fitting means of the given pixel x inside and outside
the contour curve, respectively,

bi(x) =
Kσ(x) · [Hi(φ(x))FI(x)]

Kσ(x) · Hi(φ(x))
i = 1, 2. (27)

Among them, FI(x, y) is the image I(x, y) after adaptive fractional differential pro-
cessing. The specific derivation can be obtained from Equation (17) and is described in
detail in Section 3.2,

FI(x, y) = I(x, y) +
∣∣∣GLDP I(x, y)

∣∣∣. (28)

The gradient descent flow equation of the level set function φ obtained by minimizing
the energy functional (25) is as follows,

∂φ
∂t = −λδ(φ)

[∫
Kσ(x− y)(I(y)− f1(x))2dx

−
∫

Kσ(x− y)(I(y)− f2(x))2dx
]

−γδ(φ)
[∫

Kσ(x− y)(FI(y)− b1(x))2dx

−
∫

Kσ(x− y)(FI(y)− b2(x))2dx
]

(29)

Finally, the gradient descent flow equation by minimizing the level set function φ of
the total energy functional (19) in this paper is as follows,

∂φ
∂t = µdiv(dR|∇φ| · ∇φ) + νgδ(φ) · div( ∇φ

|∇φ| )

−λδ(φ)
[∫

Kσ(x− y)(I(y)− f1(x))2dx

−
∫

Kσ(x− y)(I(y)− f2(x))2dx
]

−γδ(φ)
[∫

Kσ(x− y)(FI(y)− b1(x))2dx

−
∫

Kσ(x− y)(FI(y)− b2(x))2dx
]

(30)

Then the level set evolution equation in Equation (30) can be discretized as,

φ
n+1

i,j − φ
n

i,j

∆t
= L(φ

n

i,j), (31)

where (i, j) is the spatial index, k is the time index, and L(φ
n

i,j) is the numerical approxima-
tion of the function on the right side of the evolution Equation (31).

The iterative equation of the level set function can be expressed as,

φ
n+1

i,j = φ
n

i,j + ∆t · L(φn

i,j). (32)

4.4. Implementation and Algorithm

The implementation and algorithm steps of the active contour model of image segmen-
tation, based on adaptive fractional differentiation proposed in this paper, are as follows:
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Step1: Input the image I(x, y), initialize the level set function, and set the initial
parameter values: µ = 0.2, ν = 1.5, λ = γ = 1, ∆t = 5, σ = 3, ε = 1.5.

Step2: Calculate the result GLDP I(x, y) after the adaptive fractional differential opera-
tion from the Equation (15) in Section 3.2, and update the image I(x, y) according to the
Equation (17).

Step3: Calculate the fractional-order edge-stopping function g(x, y) from the Equation (18)
in Section 3.3.

Step4: Calculate the penalty term energy function EP from the Equation (20)
in Section 4.1.

Step5: Calculate the energy function of the regular term ER by the Equation (23)
in Section 4.2.

Step6: Calculate the energy function of the fitting term EFF based on the adaptive
fractional differential by the Equation (26) in Section 4.3, and then calculate the energy
function of the total fitting term EF by the Equation (25).

Step7: Calculate the gradient descent flow equation ∂φ/∂t of the level set function φ
of the total energy function E by the Equation (30) in Section 4.3.

Step8: Calculate from the Equation (32) in Section 4.3, and update the level set function
φn+1(x) and φn(x).

Step9: Check whether the set number of iterations is reached. If the number of
iterations is reached, the curve stops evolving to output the final target contour; otherwise,
return to Step 2.

Algorithm The algorithm for solving the proposed model

Input: Infrared image I(x, y) ∈ n×m.
Output: Image segmentation results.
1: Set initialization parameters: µ, ν, λ, γ, ∆t, σ, ε, Itermax;
2: Calculate GLDP I(x, y) by Equation (16);
3: forn = 1 : Itermax do
4: Calculate the penalty term energy function EP by Equation (20);
5: Calculate the regularization term energy function ER by Equation (23);
6: Calculate the fitting term energy function EF by Equation (25);
7: Calculate the gradient descent flow equation ∂φ/∂t of the total energy function E by
Equation (30);
8: Update the level set function φn+1(x) and φn(x) by Equation (32);
9: if n == Itermax then
10: break;
11: end if
12: end for

5. Experimental Results

In this section, the experimental contents are the robustness verification to noise,
the robustness verification of the initial contour position, the comparison between fixed-
order and adaptive differentiation, and the comparison with other methods (CV, RSF,
Ref. [39], Ref. [40]). The computer configuration used in the experiment is an Intel CORE i5
processor, 8 GB memory, Windows 10 operating system, and the experimental platform
MATLAB (R2016a).

In this paper, dice similarity coefficient (DSC) and intersection over union (IOU) are
selected as performance evaluation indicators,

DSC(A, B) =
2|RA ∩ RB|
|RA|+ |RB|

, (33)

IOU(A, B) =
|RA ∩ RB|
|RA ∪ RB|

. (34)

The segmentation results were quantitatively compared with the expert manual seg-
mentation results, and the area-based DSC index and the IOU overlap performance index
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were used for comparison. Among them, | · | is the number of pixels, RA and RB are the
expert segmentation area and the experimental segmentation result area respectively. The
closer the DSC and IOU values are to 1, the higher the segmentation accuracy.

5.1. Verify the Robustness of Noise

To verify that the active contour image segmentation method based on adaptive
fractional differentiation proposed in this paper has good noise resistance, this section will
conduct verification experiments on different types of noisy images.

In Figure 3, the infrared thermal image of candle burning is taken as the experimental
object. From top to bottom are the original image, the noise image with Gaussian noise,
speckle noise, and mixed noise. The mixed noise includes Gaussian noise and speckle
noise, and the noise density is 0.03. From left to right are the noisy image, CV, RSF, Ref. [39],
Ref. [40], and our method. The red rectangle in Figure 3a represents the initial contour, and
the green curve in (b–f) represents the evolution result of the contour curve. The number of
iterations of this experiment is Itermax = 20.
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As shown in Figure 3b–e, the segmentation result is affected by noise to varying
degrees, and some noise points are mistakenly considered as edges of the image. From the
segmentation results in Figure 3f, it can be seen that the method proposed in this paper
obtain better segmentation results under three types of noise conditions. These results
show that the Gaussian kernel in the local fitting term is effective in dealing with the noise
of the evolution process.
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In addition to visual effects, IOU and DSC performance index values under different
models in Table 1 were also compared. It can be seen that our model can obtain better
performance indicators and segmentation results.

Table 1. Corresponding evaluation index values.

Noise Image Performance
Index

Models

CV RSF Ref. [39] Ref. [40] Ours

Clear
IOU 0.9146 0.9033 0.8153 0.7104 0.9856
DSC 0.9368 0.9492 0.8983 0.8307 0.9927

Gaussian
IOU 0.9183 0.8678 0.7540 0.8109 0.9814
DSC 0.9335 0.9292 0.8598 0.8955 0.9898

Speckle IOU 0.9276 0.7696 0.8058 0.7125 0.9714
DSC 0.9431 0.8698 0.8925 0.8321 0.9898

Gaussian + Speckle IOU 0.9222 0.7813 0.7428 0.7310 0.9687
DSC 0.9402 0.8772 0.8524 0.8446 0.9930

5.2. Initial Contour Position Robustness Verification

In this section, test experiments are used to verify the robustness of the proposed
model to the initial curve, and the infrared image of the aircraft is taken as the experimental
object. Figure 4 shows the segmentation results of different models and the proposed
method for non-uniform images with different initial shapes. In Figure 4, from left to right
are the input image, CV, RSF, Ref. [39], Ref. [40], and the proposed method where the input
image has initial contours at different locations. In addition, the evolution process diagram
of the level set function of different models is shown inFigure 5, which verifies the stability
of the level set function of the model in this paper during the evolution process. The red
rectangle in Figure 4a represents the initial contour, and the green curve in (b–f) represents
the evolution result of the contour curve. The number of iterations of this experiment is
Itermax = 40.

The results in Figure 4c–e show that the three models are sensitive to the initial
contour position and often fail to achieve ideal segmentation results due to improper initial
conditions. In Figure 4b–e, the CV model and the method in this paper can obtain similar
results under different initial conditions. It is verified that our model is robust to the
position of the initialization contour. In Figure 5a–d, the level set functions of other models
will become more and more irregular in the iteration process, leading to oscillation in the
evolution process, and then the accuracy of calculation will be seriously affected. Finally,
the stability of level set evolution will be destroyed. In Figure 5e under the action of the
double-well potential function, the final level set function is relatively smoother, which is
conducive to the stability of the model.

5.3. Comparison between Fixed Order and Adaptive Differential

In this subsection, we will segment images with blurred object edges, and verify the
performance of combining local region fitting and adaptive fractional differentiation in
image segmentation. Furthermore, we validate the constraints on the correction parameters
in adaptive fractional differentiation.

In the segmentation results in Figure 6, there are five different infrared images
Pic 1–Pic 5 from top to bottom. The image contents are aircraft, human arms, and daily
living environment. From left to right are the input image and initial contour, ordinary
integer-order differential, 0.8-order fixed-order fractional differential, and our method. The
red rectangle in Figure 6a represents the initial contour, and the green curve in (b–d) repre-
sents the evolution result of the contour curve. The number of iterations of this experiment
is Itermax = 40.
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The above is the segmentation result and performance index after processing the
infrared grayscale image. Figure 6b shows that for infrared images with large background
noise and blurred visual effects, ordinary integer order differential is easy to fall into a
local minimum. In Figure 6c, a 0.8-order fixed-order fractional order G-L differential is
adopted, and the same order differential processing is performed in the low-frequency part
and the high-frequency part of the image, resulting in smooth texture details of the image.
Therefore, compared with ordinary integer order differentials, the segmentation result
and performance index are poor. In Figure 6d, after adding the adaptive fractional local
region fitting term, we observe it has certain robustness to noise, can effectively separate
the background and the target, and is more noise resistant. At the same time, due to the
adaptive fractional differentiation for different parts of texture details, more target details
of the image can be extracted, and a better image segmentation effect is achieved. Table 2
also shows the effectiveness of this method in terms of evaluation index values.
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Table 2. Corresponding evaluation index values are in Figure 6.

Image Performance Index
Models

General Derivative Fixed Order Adaptive Order

Pic1
IOU 0.9881 0.9798 0.9896
DSC 0.9940 0.9898 0.9948

Pic2
IOU 0.9792 0.9722 0.9846
DSC 0.9895 0.9859 0.9923

Pic3
IOU 0.8465 0.8200 0.9760
DSC 0.9169 0.9001 0.9878

Pic4
IOU 0.9532 0.9680 0.9748
DSC 0.9760 0.9838 0.9900

Pic5
IOU 0.9688 0.7847 0.9760
DSC 0.9842 0.8794 0.9878
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In addition, [32–34] solved the optimal control problem of nonlinear fractional order
systems through gradient-based optimization methods. In this paper, the nonlinear pa-
rameter optimization strategy is used to process the modified parameters α and β, taking
the performance indicators IOU and DSC as the objective function, and the modified pa-
rameter α, β as the input variables, taking random values in [0, 1], and finally obtaining the
optimal values of IOU and DSC. In Figure 7, the corresponding IOU and DSC values of the
correction parameters under random values are shown respectively.
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Figure 7 shows that for infrared images, when α > β, the image segmentation per-
formance IOU and DSC values are better than α < β. Therefore, in the order matrix P
with adaptive order change, the constraint condition α > β of its modified parameters is
established; in combination with the highest points of Figure 7a,b, the optimal values of α
and β are 1 and 0.8 respectively. Next, this paper selects those α and β values of the best and
non-best in Figure 7, processes different infrared images, and compares their processing
effects in the edge part. In Figure 8, from left to right, there are seven different infrared
images, including human body movements, flames when candles burn, aircraft, and daily
living environment. From top to bottom are the input image, the nonoptimal segmentation
result, and the optimal segmentation result. The red rectangle in the first row of images
represents the initial contour, and the green curve in the second and third rows of images
represents the evolution result of the contour curve.

The results in Figure 8 show that, for infrared images, the best correction parameters
enable the method in this paper to obtain finer edge contours and show better results.

5.4. Compare with Other Methods

In this subsection, we compare the proposed model with CV, RSF, Ref. [39], and
Ref. [40]. The effectiveness of the proposed model in processing noisy and uneven grayscale
infrared images is verified. In Figure 9, there are five different infrared images Pic6–Pic10
from top to bottom. The image content is the infrared thermal image of burning candles,
human palms, and animals. From left to right are the input image and the segmentation
results of the initial contour, CV, RSF, Ref. [39], Ref. [40], and the proposed model in this
paper, respectively. The red rectangle in Figure 9a represents the initial contour, and the
green curve in (b–d) represents the evolution result of the contour curve. The number of
iterations of this experiment is Itermax = 40.
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Figure 8. Comparison of infrared image segmentation results between the best and non-best. (a) In-
frared image of human motion in simple background; (b) Infrared image of human motion in
complex background; (c) Infrared image of candle burning flame; (d) Infrared image of aircraft;
(e) Infrared image of fighter; (f) Infrared image under complex background; (g) Infrared image under
complex background.

The above is the segmentation result and performance index after processing the
infrared thermal image. Figure 9b–e show that for infrared images with large background
noise and blurred visual effect, the four models are easily affected by noise and initial
contour position, and finally fall into the local minimum value. In Figure 9f, the method
proposed in this paper can effectively separate the background from the target, has more
noise resistance, extracts more target details of the image, and achieves a better image
segmentation effect. It is shown in Table 3 that when fractional variable order differential
processing is adopted, our model can obtain finer edge contours and better handle some
details compared with other models. At the same time, it can also reflect the effectiveness
of this model in evaluating the index value.

Table 3. Performance index values corresponding to Figure 9.

Image Performance Index
Models

CV RSF Ref. [39] Ref. [40] Ours

Pic6
IOU 0.8781 0.9059 0.7293 0.5759 0.9832
DSC 0.9351 0.9506 0.8435 0.7309 0.9915

Pic7
IOU 0.6245 0.5139 0.4482 0.3717 0.7101
DSC 0.7689 0.6789 0.6190 0.5420 0.8579

Pic8
IOU 0.9331 0.6589 0.6410 0.5809 0.9510
DSC 0.9654 0.7944 0.7812 0.7349 0.9749

Pic9
IOU 0.8125 0.8647 0.8309 0.8256 0.9929
DSC 0.8966 0.9275 0.9077 0.9045 0.9965

Pic10
IOU 0.7527 0.6988 0.7135 0.6666 0.9539
DSC 0.8589 0.8227 0.8328 0.7999 0.9764
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6. Conclusions

In this paper, an adaptive fractional differential active contour image segmentation
method is proposed. Adaptive fractional differentiation is adopted to extract more textured
parts from the image by adaptive order differentiation for each pixel. The fractional
edge-stopping function improves noise resistance. Additionally, the fitting term based on
adaptive fractional differentiation solves the problem that improper selection of the initial
contour position will lead to inaccurate segmentation results. The experimental results
show that for the infrared image with strong noise and blurred edges, this method can
solve the problems of being sensitive to noise and initial contour position, and effectively
segment the image of the weak edge target. In future research work, we will explore
adaptive weighting techniques to achieve faster calculations and use fewer parameters and
construct a better-performing active contour model for image segmentation.
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