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Abstract: In order to show novel generalizations of mathematical inequality, fractional integral
operators are frequently used. Fractional operators are used to simulate a broad range of scientific
as well as engineering phenomena such as elasticity, viscous fluid, fracture mechanics, continuous
population, equilibrium, visco-elastic deformation, heat conduction problems, and others. In this
manuscript, we introduce some novel notions of generalized preinvexity, namely the (1, tgs)-type
s-preinvex function, Godunova-Levin (s, m)-preinvex of the 1st and 2nd kind, and a prequasi
m-invex. Furthermore, we explore a new variant of the Hermite-Hadamard (H-H), Fejér, and
Pachpatte-type inequality via a generalized fractional integral operator, namely, a non-conformable
fractional integral operator (NCFIO). In addition, we explore new equalities. With the help of these
equalities, we examine and present several extensions of H-H and Fejér-type inequalities involving
a newly introduced concept via NCFIO. Finally, we explore some special means as applications in
the aspects of NCFIO. The results and the unique situations offered by this research are novel and
significant improvements over previously published findings.

Keywords: preinvex functions; fractional operator; Hadamard inequality; Fejér inequality; Pachpatte
inequality
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1. Introduction

Convexity theory has played a remarkable and essential role in the growth of many
subfields in modern mathematics, including optimization [1], financial mathematics [2],
economics [3], and engineering [4]. This theory provides an excellent framework for con-
structing arithmetic techniques for addressing and investigating complicated mathematical
issues. Many scholars and researchers in the past decade have tried to combine innova-
tive ideas into fractional analysis in order to introduce an additional aspect with various
characteristics to the subject of mathematical analysis and numerical methods. The anal-
ysis of fractional operators has many applications in transform theory [5], mathematical
biology [6], fluid flow [7], epidemiology [8], nanotechnology [9], modeling [10,11], and
control systems [12]. Given the aforementioned prevailing perspectives and importance,
the analysis of fractional operators has become an appealing one for readers and scholars,
who can refer to [13-16]. Numerous researchers have continued to work on the theory of in-
equalities during the previous century. This theory can be helpful in the subject of statistical
issues and quadrature-type formulas. Readers who are interested can refer to [17-22].

Fractional assessment and inequality concepts have co-evolved in the modern era.
Fractional inequality assessment is a core principle and a fundamental component in
the applied sciences. Scholars encourage learners to consider utilizing and employing
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the fractional operator to address real-world issues and problems. The H-H integral
inequalities [23], H-H-M inequalities [24], Simpson-type inequality [25], and Ostrowski
inequality [26] have all been discussed as utilizing the R-L fractional integral operators.
The KFIO in [27] was implemented to present the H-H inequality and the Fejér-type
integral inequalities, whereas [28] used the ABFO to study the 5-M integral inequality.
Also, the H-H-M inequality was explored via the CFFIO. The aforementioned analysis
demonstrates the close association between fractional integral operators and inequalities.
Hanson (see [29]) was the first to introduce invex functions. Mond and Weir (see [30])
investigated the idea that the introduction of preinvex functions results in the generalization
of convex functions. Mond and Ben-Israel’s [31] investigation and discussion related to the
invex theory and preinvexity using the bifunction can be seen as an important addition
to the field of optimization. According to Neogy and Mohan’s investigation (see [32]), the
terms invex theory and preinvexity in the sense of differentiable are equal under the right
circumstances. It has been demonstrated by numerous scholars that the characteristics of
preinvex functions have useful and relevant applications in the science of mathematical
programming and optimization. See references [33,34].

We started working in this area because of recent works on preinvexity and fractional
inequality that were stated above. In the near future, many authors will be drawn to
develop the concept of inequality and convexity in more creative ways by working with
various sorts of preinvexities and fractional operators. In 1985, the class of G-L function
was first proposed by Godunova and Levin (see [35]). The concept of a quasi-convex
function is more extended than classical convexity. There are numerous applications for
quasi-convex functions in economics, mathematical analysis, mathematical optimization,
and game theory. In the published articles [36-38], the researchers celebrated and proved
NCFIO and CDO, respectively. These terms have a broad range of purpose and approaches;
see references [39,40].

The current manuscript is arranged as follows:

Firstly, in Section 2, we recall some well-known concepts and terms that are ad-
vantageous in our exploration in the following sections. Further in this section, we in-
troduce some new definitions, namely, the (m,tgs)-type s-preinvex function, the G-L
(s, m)-preinvex of the 1st type, the G-L (s, m)-preinvex of the 2nd type, and the prequasi
m-invex. In Section 3, we construct a new variant of H-H-type inequality pertaining
to NCFIO with some interesting remarks and corollaries. In Section 4, we prove and
examine a new lemma and on the basis of this newly introduced lemma with the ad-
dition of newly introduced concepts and definitions; some extensions of H-H inequal-
ity are also explored. In Section 5, we construct a new variant of Fejér-type inequal-
ity pertaining to NCFIO with some interesting remarks and corollaries. In Section 6,
we present and investigate a new lemma and, on the basis of this newly introduced
lemma, with the addition of newly introduced concepts and definitions, some exten-
sions of the Fejér inequality are explored. In Section 7, we construct a new variant of
Pachpatte-type inequality pertaining to NCFIO with some interesting remarks and corollar-
ies. In Section 8, we explore some special means as applications in the aspects of NCFIO.
In the final Section 9, we offer a brief outcome and describe some possible and potential
subsequent study directions.

Fractional integral inequalities are useful in establishing the uniqueness of solutions
for certain fractional partial differential equations. They also provide upper and lower
bounds for the solutions of fractional boundary value problems.

2. Preliminaries

It is best to evaluate and elaborate in this section due to the quantity of theorems,
definitions, and remarks in order to ensure completeness, quality, and reader interest. The
purpose of this section is to demonstrate and analyze several recognizable definitions and
terms that we need for our assessment in later sections. The NCD, NCFIO, invex function,
and preinvex function are introduced first. Adding Condition C enhances the appeal of
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this portion. Further, some generalized form of the preinvex family, namely, the tgs—type
s-preinvex, the G-L preinvex, the s—-G-L preinvex of the 1st kind, and the s-G-L preinvex
of the 2nd kind are added. We sum up this portion with recalling the function, namely,
prequasi-invex, that is needed in our assessment. We also explore a new concept, namely,
the (m, tgs)-type s-preinvex function, the G-L (s, m)-preinvex of the 1st type, the G-L
(s, m)-preinvex of the 2nd type, and prequasi m-invex.

Definition 1 ([37]). Assume that () is a real valued function on [0, o0), then NCD of Q) is stated by

Q) — lim 20 F ) 00

e—0 €

where x € (0,1) and b € X.

Theorem 1 ([38]). Let Q1 and Q) be two a—differentiable functions at @ and a € (0,1), o > 0 then
(1) Nz (vO1 + 1) () = vng () (p) + png (Q2) (p), Vv, p € R,

2)  ne (1) () = D (F)ng () (9) + D (8) N Q2 (p0),
M () e (O1) () = (8) na (Q2) ()

3 n(E)(9) = = ——

4) Nng(x) =0, forall x € R,

(5) g(llap ) =1.

Definition 2 ([41]). Let a,bq,by € Rand by < by. We define the following linear spaces:
Loolr, bo] = {Q: by, b2] = RII8 = u| Q) € L' by, ba) for every u € [p1,5] ],
Lubor,ba] = {22 b1,ba] = RI(® —b1)™“Q(8), (b2 — 9) " Q(8) € Llby, b2l .
Note that, if & < 0, then Ly[b1,b2] = L'[by, ba].

Definition 3 ([41]). Foreach Q) € L{by,by] and 0 < by < by, then NCFIO is given by

N3]f: / p dpr
for every x,u € [by,b] and a € R.

Definition 4 ([41]). For each function Q) € L[bq,bs), then left and right NCFIO are stated by

NS0 = [ (- o) “Qe)ap,

NIL00) = [Pl -0,
for every x € [b1,b] and « € R.
Remark 1. Ifa = 0, then NCFIO collapses to the classical integrals, i.e., N, ];‘TQ(x) =N; ]%Q(x) =
12 0(p)dgp.
Definition 5 ([42]). X C R" is invex w.r.t ®(.,.), if
b1+ p®P(by,h1) € X

Y b1,br € Xand (oS [O,l].
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The term invexity has numerous uses in variational inequalities, nonlinear optimiza-
tion, and in the different areas of applied and pure sciences.

Definition 6 ([43]). Assume that ® : X x X x (0,1] — R" and X C R". Then let X be m—invex
wrt @, if
mby + pP(by, by, m) € X

holds ¥ b1,b, € X, m € (0,1] and p € [0,1].
Example 1 ([43]). Assume that m = %, X=[=F,0)U(0, %] and

mcos(by —b1) if by € (0,%],b2 € (0,5];
[

Cp(b b m) _ *ﬂ’lCOS(bz *]/ll) lf bl S [%7'(, ),bz S %H,O),
2o mecos(v) if by € (0,%],by € [5F,0);
—mecos(by) if by € [—=75,0),02 € (0, F]

Then, XV g € [0,1] is an m—invex set but not convex.

Weir and Mond [30], for the first time in 1988, utilized the concept of invex set and
elaborated on the concept of the preinvex function.

Definition 7 ([30]). Assume that ® : X x X — R" and X C R". Then Q) : X — R is preinvex
w.rt O if

Q2 +p@(1,02)) < pQb1) + (1 =) Qb2), Vo1, 02X, pel01].
For the author’s excellent work and relevance, see the published articles [44—46].
Over the last decade, a great number of scholars have ended up working on refining

the concept of preinvexity in various directions. Kalsoom [47] examined and investigated
generalized m-preinvexity, which is stated by

Definition 8. Assume that ® : X x X x (0,1] — R" and X C R". Then Q : X — Ris
generalized m-preinvex w.r.t. ® if

Q(mby 4+ @ (b1, b2, m)) < pQ(by) +m(1 — p)Q(b2), (1)
holds for every by,by € X, m € (0,1] and p € [0,1].

Matloka [48] was the first to investigate and examine the idea of h-preinvexity in 2013,
which is defined by:

Definition 9. Assume that h : [0,1] — R. Then inequality of the form
Qb + p®(b2,01)) < h(1 = p)Q02) + h()Q01),
Vb1,br € Qand p € [0,1] is said to be h-preinvex with respect to P.

Definition 10 ([49]). Assume that ® : X x X x (0,1] = R, X C Rand h: [0,1] — R. Then an
inequality of the form

Q(mb1 + p® (b2, 01,m)) < h(p)Q(b2) + mh(1 - p)O(b1), @

Vbq,by € Xand p € [0,1] is said to be generalized (m, h)-preinvex function.



Fractal Fract. 2023, 7, 405

50f 32

Condition C: Assume that ® : X X X — Rand X C R. Then let X be an open invex
subset w.r.t. ®. For any bq,b; € Xand p € [0,1],
D (b1, b1+ p P(h2,01)) = —p P(b2,b1)
(D(bQ, b1 + © q)(bz, bl)) (1 — p) Cp(bz, bl)

For any bq,by € H, o1, 2 € [0,1], then according to the above equations, we have

D01 + o2 P(b2,01), b1+ 91 P(b2,01)) = (2 — 1) P(b2,b1).

The above Condition C plays a crucial part in the creation of the theory of inequalities
and optimization (see [50,51] and references therein).

The following extended Condition C regarding an aspect of m-preinvex function was
also introduced and investigated by Du in [52].

Extended Condition C: Assume that ® : X x X x (0,1] — Rand X C R. Then let X
be an open invex subset w.r.t. ®. For any by,b; € X, p € [0, 1], then we have

D(by, mby + o ®(by,bp,m),m) = —p P(by,by,m)
Dby, mby + o P(by1,bp,m),m) = (1—p) P(by,bp,m)
@(bl,bz,m) = *‘D(bz,bl,m).

Definition 11 ([44]). A function () : X — R is tgs-type s-preinvex if
Qb1 + pP(b2,01)) < (1 — p)°[Q(b1) +Q(b2)], ®)
holds V¥ © € [0,1] and b1,b, € X.
Definition 12 ([49]). A function () : X — R is (m,tgs)-type preinvex if
Q(mby + p®(ba, b1,m)) < p(1 = p)[mQ(b1) + Q(b2)], )
holds ¥ € [0,1], m € [0,1] and by,bp € X.

Next, we explore and investigate the new definition, namely, the (m,tgs)-type
s-preinvex function.

Definition 13. A function Q : X — Ris (m, tgs)-type s-preinvex if
Q(mby + p®(by, by, m)) < (1 — p)°[mQ(b1) + Q(b2)], )
holds ¥ o € [0,1], m € [0,1] ,s € [0,1] and bq,b; € X.

Remark 2. (1)  Ifwe set m=1, then we get Definition 11.
(2)  If we set s=1, then we get Definition 12.
(3)  If we set m=s=1, then we get Definition 7.

Definition 14 ([45]). A real-valued function Q) is G-L preinvex or Q-preinvex if

Qb1 + pP(b2,01)) < o .

holds ¥V o € (0,1) and by,by € X.

In 2014, Noor (see [53]) was the first to explore the families of s-G-L preinvex functions
of the 1st and 2nd kind.
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Definition 15. A real-valued function Q) is s-G—L preinvex of the 1st kind with s € (0,1], if

Qb1+ pP(h2,b1)) <

, @)
holds ¥ o € (0,1) and by,by € X.

Definition 16. A real-valued function Q) is s-G—L preinvex of the 2nd kind with s € [0,1], if

Q1)

Q(bl + p@(bz, bl)) < (1 _ KJ)s pS

, ®)

holds ¥ p € (0,1) and by,by € X.

Inspired and motivated by the above literature, here we introduce new definitions,
namely, the G-L m-preinvex, the G-L (s, m)-preinvex of the 1st kind, and the G-L (s, m)-
preinvex of the 2nd kind.

Definition 17. A real-valued function ) is G-L m-preinvex if
Q(b Qb
mQ(b1) + (b2) ) )

Q(mbq 4+ p®(hy, b1, m)) < 1—p o

holds ¥ o € (0,1) by,bp € Xand m € [0,1].

Definition 18. A real-valued function Q) : X — R is said to be G-L (s, m)-preinvex of the 1st
kind with s € (0,1] and m € [0,1] if

mQ(by)
-0 ' o

Q(mby + p®@(by, by, m)) < (10)

holds ¥ ¢ € (0,1) and by,by € X.

Definition 19. A real-valued function () : X — R is said to be G-L (s, m)-preinvex of the 2nd
kind with s € [0,1] and m € [0,1] if

mQ(by)

Q(mbd1 + pP (b, 01,m)) < A

, (11)

holds ¥ o € (0,1) and by,b; € X.

Pini (see [46]) was the first to explore prequasi-invex functions. This function is not
quasi—convex but satisfies Condition C generally (Example 1.1, see [46]).

Definition 20. Assume that X C R" is an invex set w.r.t. ®(.,.). Then Q : X — R is
prequasi-invex on X if

Qb1 + pP(b2,01)) < max{Q(by), Q(b2)}, (12)
holds ¥ by,by € X and o € [0,1].
Remark 3. Taking ®(v,,b1) = b» — by, then the above Definition 20 collapses to a quasi-convex function.

Here we investigate a new definition of the prequasi m-invex function, which is
defined by:
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Definition 21. Let X C R" be an m-invex set w.r.t. ®(.,.). Then, the real-valued function
Q) : X = R is prequasi m-invex on X if

Q(mby + p®(by, b1, m)) < max{Q(b1), Q(b2)}, (13)
holds ¥ by,by € X and p € [0,1] and m € [0,1].

3. Hermite-Hadamard Inequality via Non-Conformable Fractional Integral Operator

Since the notion of convex analysis was initiated several decades earlier, numerous
important inequalities for the family of convex functions have been presented. In the field
of inequalities, one of the most significant and remarkable inequalities is Hadamard’s
inequality. Hermite and Hadamard [54] were the initial researchers to define this inequality.
It has an incredibly fascinating geometric interpretation and a broad range of uses. The
H-H inequalities are a modification of the idea of convexity, and they follow Jensen’s
inequality. The premise of this inequality impressed several mathematicians to evaluate and
inspect classical inequalities using various senses of convexity. For example, Kirmaci [55],
Mehreen [56], and Xi [57] proved some new variants of this inequality via convex functions.
Ozcan [58], Dragomir [59], and Hudzik [60] worked on the idea of s-convexity and explored
a new kind of this inequality. Rashid [61] and Butt [62] modified this inequality pertaining
to a new family of convexity in the polynomial sense.

The main objective of this section is to present a new version of the H-H-type inequality
for a preinvex function via NCFIO.

Theorem 2. Assume that ® : X x X — Rand X C R with by,by € X, such that X is an open
invex subset w.r.t. ®. If Q) : [mby, mby + P(by, by, m)] — (0, c0) is a preinvex function such that
Q € Lyo[mby, mby + ®(by, by, m)] and satisfies Condition C, then the following inequalities for
NCFIO are given as:

Q<2mbl + P (s, bl,m>>
2
1—uw
S W |:N3]g1b;r0<mbl + q)(bZI bl/ m)) + N3]f:1b1+¢'(b2,b1,m)7ﬂ(mb1)
(1) + Qo+ (og,br,m))] _ Qmby) + O (ba)
2 - 2 ¢

<

with « < 0.

Proof. Since bq,b; € X and X is an open invex set w.r.t. @,V p € [0,1], we have mby +
P (b, by, m) € X. By preinvexity of (), we have for every u, v € [mby, mby + P (by, by, m)]
with p = %,

s 2} < QM1 00)

u=mby+ (1— p)P(by, by, m)

If we choose

and
v =mby + p®(by, by, m),
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by using Condition C, we have

2
(Zp — 1)q)(b2r blr m))

20 (mb1 b (1= p)D(bg,by,m) + D(mby + P (b, by, m), mby + (1 — p)d)(bz,bl,m)))

=20 (mbl + (1 —)®(by, b1, m) + >

_ 20<2mb1 —l—(bz(bz, bl,m)>

< Q(mby + (1= p)P(ba, by, m)) + Q(mbdy + P (b2, b1,m))

and multiplying by ¢ ~%, we can write

Zp_lxﬂ (th + CDZ(bz, |71, m) )

< tQ(mby + (1 — p)P(bg, b1, m)) + o~ “Q(mby + EP(b, b1, m)). (14)
Now, by integrating the inequality (14) w.r.t. p over [0,1], we obtain

2 Q<2mb1 + CD(bg,bl,m))

1—«a 2

1 1
S/O o Qmby + (1 - @)Cp(bzlblim))dp—i—/o 0~ Q(mby + p®@(ba, by, m))dgp
1 by +®(vg,by,m) .
= @1 (by, by, m) Mbl (mby + D(bg, by, m) — x) " Q(x)dx
mby+®@(bp,by,m)
+ [ (x— mbl)_‘"Q(x)dx}

mb]
1

= T (by, by, m) {NJ%TQ("M + D(by, b1, m)) + N3]Zb1+q>(b2,bl,m)—0(mb1)}~

For the proof of the 2nd inequality, we first note that Q) is preinvex on [mbq, mby +
®(by, b1, m)] and the mapping of ® satisfies Condition C; then, for every p € [0,1], Condi-
tion C yields

Q(mby + p®@(by, by, m)) = Q(mby + P(by, b1, m) + (1 — )P (mby, mby + ®(by, b1, m)))
< pQ(mby + ®(bg, by, m)) + (1 — )Q(mby), (15)

and similarly

Q(mby + (1 — )P (ba, by, m)) = Q(mby + D (by, by, m) + P (mbq, mby + P (ba,by,m)))
< (1= p)Q(mby + P(bg, b1, m)) + pQ(mb1). (16)
Adding the inequalities (15) and (16), we obtain
Q(mby + p®(by, by, m)) + Q(mby + (1 — )P (by, by, m)) < Q(mbq) + Q(mby + (b, b1, m)).

Now, multiplying by ©~* and integrating w.r.t. © over [0,1], we obtain the following
required inequality

1 44 (44
DT (by, by, m) [N T 1+ @ (02,01,)) - 8 T - 1)

<

<1 a [Q(mbq) + Q(mby + P (b, b1, m))],

which completes the proof. [
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Remark 4. Assuming that « = 0 and m = 1, we obtain the H-H inequality in the sense of the
preinvex function that is investigated by Noor (see [63]).

Remark 5. If « = 0 and ®(bp,by,m) = by — mby, then we obtain the H-H inequality for
m—convexity, which is explored by Dragomir and Toader [64].

Remark 6. If « = 0, m = 1, and ®(by, b1, m) = by — mby, then we retrieve the classical H-H
inequality proved by Hadamard (see [54]) in the aspect of the convex function.

Corollary 1. If & = 0, then we obtain the H-H inequality for m-preinvexity, given as:

o) <2mb1 + q)z(bz, b1, m) )
1 et [Q(mbq) + Q(mby + D(by, b1, m))]
= B0, by, m) /mbl Q(x)dx < : |

Corollary 2. Ifwe set m = 1, then we obtain the H-H inequality via NCFIO for preinvexity, given as:

2by + @ (b, by) 1-a .
Q( T ) Schlfwz,bl)[Nafer(bl* @(2,51) + NS5, 403500 Q01|

< [001) + 001 + P(b2,b1))]
- 2

Corollary 3. If we set D (b, by, m) = by — mby, then we obtain the H-H inequality via NCFIO in
the aspects of convexity, given as:

_ O(mdy) + O ()

mbl + bz 1 - o o
Q< 2 ) = 2(by — mby)1—# [N?»]mbr0<b2) + NB']b;Q(mbl)} = 2

Corollary 4. If we set m = 1, then we obtain the H-H inequality via NCFIO in the aspects of
convexity, given as:

b1+b2 1—w o ” Q(bl)+0(b2)
Q( 2 ) = 20, —pp)1 e [NSJbTQ(b2) + stbgﬂ(bl)] S— 5

4. Generalizations of H-H-Type Inequality via Non-Conformable Fractional
Integral Operator

Numerous researchers have started collaborating on new thinking pertaining to this
issue from various perspectives in the sphere of convex theory. Many investigators have
established new expansions, estimations, and refinements of this inequality in the form
of various versions of preinvexity. It is also worth noting that certain classical inequalities
with special means as applications can be retrieved from the H-H inequality using the
convenience of unique convex functions. Inequalities for convex functions are essential in
reviewing and in other aspects of applied and pure mathematics. H-H inequalities in the
mode of convexity have gained considerable interest in recent decades and, as a result, a
considerable number of incremental improvements and assertions have been obtained.

The intent of this section is to investigate and demonstrate a new equality. On the basis
of this newly investigated equality, we acquire some new improvements to the H-H-type
inequalities involving an NCFIO. We add some comments to enhance the content and to
pique the interest of readers. We begin with a lemma involving NCFIO.
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Lemma 1. Let « < —1,mby < by and Q : [mby,ba] — R be a differentiable function.
IfQ S L,X,l[mbl, bz], then

{Q(mbl)—l—ﬂ(mm + ®(bg,by,m)) | 1—uw
2 2<q)(b2/ bl/m))_a

Ngfﬂllm,(bz,bl,m)—Q(mbl) + NJf‘J%Q(mh + q’(bzlbbm))] (17)
(2-a)

(D(bz, bl, ) |:N3]filb1+q>(b2,b1,m)7Q<mb1) =+ N3]z1bfr0(mbl + q)(bZI bl/ m))i| }

:< (b2/;1/ ))2 (Il+12)/

where
1 1 "
L = /0 o(1— )20 (mby + (1 — p)®(bq, b1, m))dg,
1 1 "
I, = /0 p(1— ) Q" (mby + p®(by, b1, m))dp.
Proof. It is obvious that
1
L = / p(1— ) Q" (mby + (1 — ) @(b2, b1, m))dp
- / e (1 — ) (mby 4+ p®(by, by, m))dp
= / Q" (mby + @ (ba, by, m))dp.

Now, integrating by parts, we get

Q(mby + P(by, by, 1— 1
h= (W(l 1(b2 bi 2 )i & (®(b2 |71D€H1))2 [_“/0 oI by - (02, 01, m))do
—(2—« / p mbl + @(D(bz, bl, )) p]
Q(mby + (b, by, m)) 1—« { mb1+@(bg,by,m) a1
= + —mb Q(x)d
(@ (b, by, m))? (@ (b, by, 1)) “/mbl (x = mb) (x)dx
B (2 —_ “) mb1+<1>(b2,b1,m) 7 —a :|
st /mbl (x — mb1) " Q(x)dx
_ Q(mby +®(bp,by,m)) 11—« atl
— (®(ba,by,m))? (®(ba, by, m))> ™" [(XN3]mb1+<I>(b2,b1,m)_Q(mbl)

22—«

(41
T B0, by, m) i, m)Q(mbl)].

Similarly, we have
! 1—- "
L= [ (1= )70 oy + 9 o2, by, m))dg
_/ O (1 — ) (mby + (1 — p)®@(by, by, m))dg

= /0 (917 — @*)Q" (b1 + (1 — ) D (5, by, m))dg
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Again, applying integration by parts, we find

Jlfa 2«
b:%maﬁ%ﬁnwmru1—m¢wLWm»%
N m /01((1 —w)p " = (2= a)p" Q' (mby + (1 )@(b2,by,m))dp
_ —a _ 1-a
= ‘q»(bz,lm,m) {(1 a)fb(bz, bfm);( 0= )0l )l
1

S @ = 0 — (= )@— a)g)mn + (1- 9) @, b1, )

_ Q(mbq) . (1—a)
(P(ba,b1,m))2  (P(b2,b1,m))?
—(2-a) /01 o Qb + (1 — p)@(bQ,bl,m))dp}

_ O(mh) . (1—-ua)
(@(b2,b1,m ))2 (@ (o2, 01,m))

{—lx /01 p—“—lﬁ(mbl + (1= p)®(by, by, m))dp

mby+P(ba,b1,m) i
% (@ (b, by, m)) * b / (mby + @ (b, by, m) — x) O (x)dx
2/ 1,m mpy
b1+ (ba,b1,m) 3
(@0 b ~at1 / b (mby + @ (b2, by, m) — x) " Q(x)dx
2,91, M mpy

:<®mmbmf (@ (b2, b1, m))>"

x{ (T 12 o1 + (o2, by, m)) ) + 2_'X)(Nslfﬁlw()(mbl+d>(b2,b1,m)))}

® (b2, 01

From the above developments, we get

Q(mby) + Q(mby + D(bp,by,m)) 1—a
(@(bg, b1, m))? (®(by, by, m))> "

X {0 [Nt oy 01) + N SOy + (02, by, m))]

L+ =

o
(2-a)
B On5r ) [ o @lon iy Q01) 8T Qs+ @ b1, m)) ] 5.

(bzbl m)

Multiplying both sides of the above equality by , we obtain the proof of

Lemma 1. [

Theorem 3. Assume that X is defined as in Theorem 2. Let Q) : X — R be a differentiable function
such that Q) € L{mby, mby 4+ ®(by, by, m)]. If the function ’Q"’ is (m,tgs)—type s-preinvex
on [mby,by + P (b, by, m)], then the fractional integral inequality ¥V o« < —1and s € [0,1) is
given as:

) < MB(S—FZ,S—D&-FZ) <m‘Q”(b1)’ + ‘Q”(bz)D,

U= [Q(mbl)+Q(mb1+fb(b2,b1,m))} _ 1—a
2 (@ (b2, by, m)) "

X {zx [N3Ig1;l+q>(b2,bl,m)0(mbl) + Ns]%}}ﬂ(mbl + q)(bz,bl,m))}

2 —
2-) )[N3]g1b1+‘1>(b2,b1,’rrZ)‘Q(mbl)+N3];anfr0(mbl+q)(b2’b1’m))]}’

D0, b1, m
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and B(x,y) = f01 11— ) ldp, x>0,y >0.

Proof. Employing Lemma 1, we have
) o= )40 (i + (1= 12062, 50, m)d

+ [} 901 00120 (4 (om0 )t
< / Lol py

+/ (1-p) 0

Employing the property of (m,tgs)-type s-preinvexity, we have

Q' (b + (1= 9)P(o2, b1, m))|dp

Q' (b + 9P (o2, by, m) | do.

/Olp(l p)

< [ o= orora - o (nfa 6] +]0 (52)] )

O (11 + (1= 9) o2, b1, m)) |

=B(s+2,5s—a+2) <M‘Q//(|71)‘ + ‘Q//(bZ)D

and
/ 0)|Q" (mby —I—pCD(bz,bl,m))‘dp
=B(s+2,s—a+2) (m‘Q (h1) ’4_‘0 (b2) D
Hence, we have
iu| < ME’(S—!—ZS —a+2) <m|Q"(b1)| + Q"(b2)|>_
O

Remark 7. If we take s = 1, then fractional integral inequality is given as:

(q>(b2/ bl/ m 2
2

lu| < ) B(S,3—a)<m‘0”(b1)‘+‘Q“(b2)

Remark 8. If we take ®(by, b1, m) = by — mby, then the fractional integral inequality is given as

).

where U is explored in Theorem 3.

—_— 2 " "
Uy| < WB(S+2,S—0¢+2)(111‘Q (bl)‘+’0 (b2)

where

U, = [Q(’”bl)ﬂLQ(bz)} - 1-a

2 2 bz - mbl)ilx
X{ {N3]b+10(mbl)+ NJ“HQ( )}

+®(22—_7sb)1) [NJ;(EQ(mbl) + Na];ilbfﬂ(bz)} }



Fractal Fract. 2023, 7, 405 13 of 32

Remark 9. If we take Condition C, then the fractional integral inequality is given as

|u| < (q)(bZI bl/ m))z
- 2

B(s+2,5—a+2) <m‘0”(bl)‘ + ‘Q”(mbl + ®(by, by, m))

)

Theorem 4. Assume that X is defined as in Theorem 2 and Q) is defined as in Theorem 3. If
‘Q”‘ is a G-L (s, m)-preinvex function on [mbq, mby + ®(by, b1, m)], then the fractional integral

)

where U is explored in Theorem 3.

inequality V o < —1and s € [0,1) is given as

(q>(b2/ bl/ m
2

u| < )’ [B(—s+2,—a+2)+B(2,—s—a+2)] (m‘ﬂ"(m)’ + ‘Ql'(bz)

where U is defined in Theorem 3 and B(x,y) = fol O 11— p)ldp, x>0,y >0.
Proof. Employing Lemma 1, we have
1 "
[ 0= 0 i+ (1= )@, 1,
1 "
+ [ o1 0180 (o + (o0 )l

Q" (b1 + (1= 9)®(52, 51, m))|dp

< [Mon-oy

+ /01 p(1—p)'

Q' (o1 + @ (52, b1,m))|d.
Since ‘Q”' is G-L (s, m)-preinvexity, we get

/(;1 p(1—p)*

< m’QN(bl)’ /01 o (1— o) %dp + ‘Q”(bz)’ /01 o(1— ) dp

= [m‘ﬂ//(ln))l?(—s $2,—a+2)+ ‘Q”(bZ)’B(Z, —s—a+2)|

Q' (md1 + (1= 9)(ba, b1,m))|do

and

/01 p(1—p)' ™"
= [m‘QN(bl))B(Z, —s—a+2)+ ]Q/’(bz)‘zﬁ(—s +2,—+2)].

Q,,(mbl + p‘b(bzrblrm))’d@

Hence, we get

2
[B(—s+2,—a+2) + B(2,—s — a +2)] <m‘0”(b1)] + \Q”(bz)]).

Remark 10. If we take s = 1, then the fractional integral inequality is given as

(Cp(bz, bl, m
2

| < V21501, 2) + BE,—a+1) <m\0”<b1)\ + [0 ()

)

where U is discussed in Theorem 3.
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Remark 11. If we take ®(by, b1, m) = by — mby, then the fractional integral inequality is given as

(by — mbq)?

U] < >

[B(—s+2,—a+2) +B(2,—s —a+2)] <m‘Q”(b1)’ + ‘Q/'(b)D,
where U, is discussed in Remark 8.

Remark 12. If we take s = 1 and ®(by, by, m) = by — mby, then the fractional integral inequality
is given as

(by — mbq)?
2

Uy | < [B(1,—a+2) + B2, —a+1)] <m‘0”(b1)‘ + ‘Q”(bz)D,

where U, is discussed in Remark 8.

Remark 13. If we take Condition C, then the fractional integral inequality is given as

| < (@02,m)?
- 2

W [B(—s+2,—a+2)+ B2, —5—a+2)] (m‘Q"(bl)’ + [0 (b + q>(b2,b1,m))\>,

where U is discussed in Theorem 3.

Theorem 5. Assume that X is defined as in Theorem 2 and () is defined as in Theorem 3. If ‘Q“ ‘ is

prequasi m-invex on [mby, mby + ®(by, by, m)]|, then forallg > 1, o € [0,1] and « < —1, the
fractional integral inequality is given as

<=

(®(ba, by, m))? q

2—a)3—0a)

where U is explored in Theorem 3.

uf < ,

[max (m‘Q”(bl)

Q”(bz)’qﬂ ,

Proof. Employing Lemma 1 and utilizing the power mean inequality, we get

2
‘u‘ < ((D(bz’;l’m)) [/Ol p(l _ p)1—0<

+ /01 p(1—p)' "

Q' (mby + (1 = p)®(ba, by, m))|dp

0 (i + (o by, )| .

It is obvious that

1
p(1— )1 2Q" (mby + (1 — p)® (b2, b1, m))dp

1
P! (1 — ) Q" (mby + p® (b2, b1, m))dgp

1
(p' % — ) (mby + p®(ba, b2, m))dp

I

[l
S— S— S—

and

1

L= [ p(1-p) Q" (mby + p®@(v2,b1,m))dp

1
P! (1= ) Q" (mby + (1 — )P (b2, b1, m))dp

1
(plﬂx _ pZﬂX)Q”(mbl + (1= )@ (b2, by, m))dp.

Il
S— S— S—
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Hence

m))2
) < (@0zom) K [l ooy

+(Alpﬂ-pf“

= (2 max (ol G o o))

1

Q' (mhy + (1 p)b(bs, bl,m))‘qdp> q

1
Q' (b1 + 9@ (o2, m,m»\qdp) ]

=

This is the required desired proof. O

Remark 14. Taking ®(by, by, m) = by — mbq, the fractional integral inequality is given as

(by — mby)? Q”(bz)‘q)}é,

) {max(m‘()” (b1) !

U< =56

4

where Uy is discussed in Remark 8.
Remark 15. Taking Condition C in Theorem 5, the fractional integral inequality is given as

(@(ba, by, m))?
2-a)(3-a)

where U is explored in Theorem 3.

|u| < [max(m‘ﬂ//(ln) 7 Q" (mby +<I>(b2,b1,m))‘q)]}’,

7

5. Fejér-Type Inequality via Non-Conformable Fractional Integral Operator

Integral inequalities are pertinent and have implementations in orthogonal polynomi-
als, combinatory and linear programming, dynamics, number theory, quantum theory, and
optimization theory. This topic has drawn a lot of consideration from mathematicians and
other researchers. In the literature, this inequality is the most widely recognized one related
to the subject of convex analysis. The weighted version of the H-H-type inequality is the
Fejér-type inequality. In 1906, Fejér [65] was the first to examine and study this inequality.
Varosanec and Bombardelli [66] presented the aspects of h-convexity in this inequality in
2009, stating that

fbbfw(")d"ncl 7)< [ awax

< (2= 01)(Q1) + Q02) [ W)W (o + (1= p)o2)ds.

where W : [b1,b2] — R, W > 0, and symmetric w.r.t. lezrbz.

Mattoka in [67] examined and explored a new variant of the Fejér inequality in the
sense of h-preinvexity in 2014, which states that

fbﬁ-q)(bz,bl) W(x)dx

n
Zh(%)

< @(o2,51) (1) + Q(02)) - [ B(p)Won -+ (02, 01)

Q(x)W(x)dx

/'leF(D(bz/bl)

1
Qf by + =D(by, b <
(1+2 (b2 1)) b
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In 2017, Mattoka [67] presented the Fejér inequality via RLFIO in the sense of h-
preinvexity utilizing Condition C, which is given as

I'(a)
2. h(%) - ®(hy, by )"

1 (44 (44

< w5 [t WOO00) + T WO+ @52, 51001 + D052 51))]
< [001) +00)] - [ o () + (1= o)W (o1 + 9@ (oz,b1))d

Mattoka [67] presented the Fejér inequality via RLFIO in the sense of h-preinvexity,
which is given as

I'(a+1)

W {I‘;}W(bl + ®(by, 1)) QA(b1 + P(by,b1)) + I?ler(I)(bz,?l))*W(bl)Q(bl)

LW o1 4 @0, 50)) 001+ Bloz,b1)) + 15 g, W 01O (bl)}

B @(b;m[n(bl @ (0, 01))W (o1 + D(b,b1)) + Q(bl)w(bl)}|

< [|Q'(n)] + Q' (b2)]] - /01 "W (b1 + p@(ba,b1))[h(p) + (1 — p)]dp.

Matloka [67] presented the Fejér inequality via RLFIO in the sense of h-preinvexity
utilizing the power mean inequality, which is given as

F(a+1)
(g, 01T [Iﬁ‘TW(bl + @(bg,51)) Qb1 + D (by,b1)) + I[(X71+<I>(b2,b1))fW(bl)Q(bl)
—Iﬁ‘lflw'(bl + @ (by,01))Q (b1 + D(by, b)) + (b +¢>(b2 ) W (b1)Q(b )]
1

- W[Q(bl + @ (b, b1) )W (b1 + D(bg,b1)) + Q(b1)W(b1)]

1

é(ail)l_;({m’(bwluQ’bz 7] [ IV + 090020+ 0 - o)

Matloka [67] presented the Fejér inequality via RLFIO in the sense of h-preinvexity
utilizing the Holder inequality, which is given as

I'(a+1)

O {I“+W(b1 +@(02,01)) Q01 + P(02,01)) + T, L pip,7)- W1 QUb1)

I (o1 @(5,51)) 001 + @02, 00)) + I‘(*bﬁ@(bbbl))W’(bl)Q(bl)}

1

W{Q(bl + ®(bg, b1) )W (b1 + ®(b2,b1)) + Q(h)W(bl)}‘
< #1 ( [’Q’(h)‘q + ‘Q/(bz)"q , /1[W(b1 N p@(bz,bl))]qh(p)d@) %,
(ap+1)7 0

1,1 _
wherep+q—1.
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The purpose of this section is to start investigating and introducing a new variant of
the Fejér inequality via NCFIO. Some corollaries and remarks are provided to enhance the
objectives of this section.

Theorem 6. Suppose Q) : [mby, mby + P (by, b1, m)| — Ris an (m, h)-preinvex function, Condi-
tion C for ® holds, ®(by, by, m) > 0, h(3) > 0, and W : [mby, mby + ® (b, b1, m)] - R, W >0
is symmetric w.r.t. mby + 3®(by, by, m). Then the inequality via NCFIO is given as

Q (Wlb1 + %Cp(bz, |71, Wl))

Zh(%)Q(bz,bl,m)l—“

1 ®
= @(by, by, m)1— {N3]mb1+<l>(b2,b1,m)Q(mb1)W(mb1)

(86T ) WD1) + Ny T W (b + D (5, b1, )|

+ Ny [y, + Qb1 + @ (ba, by, m) )W (1mby + D (b, by, 1))
< [00m1) +Q02)) [ 574[h(o) + (1~ p) Wby + (03, 51,m)) .
Proof. Employing the property of (m, h)-preinvexity and Condition C for ®, we have
021+ 302, m,m) ) < (1) 00 + p@(3m,1,m)) + Q1 + (1 )@(o,,m)].
Multiplying both sides by

O “W(mby + p®(by, b1, m)) = p “W(mby + (1 — p)®(by, b1, m)),

and then integrating the resulting inequality w.r.t. p over [0, 1], we obtain
[ (30002, 00,m) ) o7 W+ 90052, 51,m)i
<(3) | [ o0t + g2, m) Wi + (o1, )
4 [0 001+ (1 )@(oa, b, m)W(my + (1= 6)o2, by, m)d
Since

1
/ o Wby + 9@ (oo, b, m))dp = G ST Ns S 4 @60 m)- VY (101,

/ o~ QU (mby + p® (52, by, m) )W (mbdy + p® (02, by, m))dp
WNJZW@@MM)—Q(mbl)W(mbl)/
and
[ 07 -+ 6oy, m) Wy + (1= ) (02,1, )

WNS]fnbﬁQ(mbl + @ (b2, b1, m) )W (mby + P(b2,b1,m)),
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from the above simplifications, we have

@) (mbl + %(D(bg, bl, m))
D(by, by, m)l—

N Jiioy 4 (5 oy, )~ VY (1101

1 1
<h (2> —CD(bz, bl,m)1*“ [N3]z1b1+q>(b2,b1,m)Q(mbl)w(mbl) (18)

+ N3];anl+0(mb1 + q)(bz, bl,m))W(mbl + (I)(bz, bl,m)) .

Similarly, we also have

QO (mbl + %‘D(bz, b1, m))
CD(I?Q, bl,m)l—"‘

1 1 .
<) @y st OOV v

NSIzlbl+W(mb1 + @(bz, bl, m))

=+ N3]::1b1+0(mb1 + CD(bZI bl,ﬂ’l))W(mb] + q)(bzl bl/ m)) .

After the addition of the above inequalities (18) and (19), we have the proof of the 1st
inequality. For the 2nd inequality, we employ the property of (m, h)-preinvexity, which is

given as
Q(md1 + pP (b2, 01,m)) < h(1 = p)Q(mb1) + k() (b2),

Q(mby + (1 — p)@(bz, by, m)) < h(p)Q(mby) +h(1 — p)Q(b2).
By adding these inequalities, we have
Q(mby + p® (b2, b1, m)) + Q(mb1 + (1 — )P(ba,b1,m)) < h(1— )+ h(p)[Q(mby) + Q(b2)].
If we multiply both sides by
P W(mby + p®@ (b2, b1,m)) = o~ W(mby + (1 — p)P(b, b1, m)),

and then integrate the obtained inequality over [0, 1], we find
[ 07 Qs+ (o2, 1, m)) Wby + (5, 1, m)
+ [ om0 + (1= )02, 01,m) Wi + (1= ) @02, b )
< [0ms1) + 0(62)] [ 97 h(0) +H(1— Q)W by + (o2, b1, ),

which readily follows

_ 1
q)(bz,h)l*”‘

+ N3]fnb1+9(mb1 + @ (b2, by, m) )W (mby + (b2, b1, m))

|:N3]z1b1+d>(b2,b1,m)Q(mbl)w(mbl)

< [00m1) + 002)] [ 97 h(0) +h(1 ~ QW1 + (s, 51,m))ds.

This completes the proof of the desired Theorem 6. [
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Remark 16. If we take & = 0 and m = 1, then we obtain the Fejér inequality in the aspects of
h-preinvexity proved by Mattoka (see [67]).

Remark 17. If we take x = 0, m = 1 and WW(x) = 1, then we obtain the H-H-type inequality via
h-preinvexity examined by Mattoka (see [48]).

Remark 18. Ifwe take w = 0, m =1, W(x) = 1, and h(p) = p, then we obtain the H-H-type
inequality in the aspects of preinvexity investigated by Noor (see [63]).

Remark 19. If we take & = 0, m = 1, and ®(by, b1, m) = by — mby, then we obtain the Fejér-type
inequality involving h—convexity explored by Varosanec and Bombardelli (see [66]).

Remark 20. Ifwe take x =0, m =1, ®(by, by, m) = by — mby, and W(x) = 1, then we obtain
the H-H-type inequality via h—convexity proved by Sarikaya (see [68]).

Remark 21. If we take « = 0, ®(by, by, m) = by — mby, W(x) = 1, and h(p) = g, then we
obtain the H-H-type inequality in the aspects of the m-convex function that were first investigated
and explored by Toader and Dragomir [64].

Remark 22. Ifwe take x = 0, m =1, ®(by, by, m) = by — mby, W(x) =1, and h(p) = p, then
we obtain the H-H-type inequality in the aspects of convexity examined by Hadamard (see [54]).

Remark 23. If we take « = 0, m = 1, D(bp, by, m) = by —mby, W(x) = 1, and h(p) = ¢°,
then we obtain the H-H inequality in the aspects of s—convexity examined and investigated by
Fitzpatrick and Dragomir (see [59]).

Corollary 5. If we take « = 0, then we obtain the Fejér-type inequality in the aspects of (m, h)-
preinvexity, which is given by

W(p)dp

Q(mby + 3®(bp, by, m)) /m71+<1>(bz,b1,m)
2h(%>q>(b2,b1,m)
1 mb1+d>(b2,b1,m)
< - -
N q)(bZ/ b1/"1) -/mbl

< 1001 +0o)

mby
Qp)W(p)dp
[ h0) + 11 = W+ 650,

Corollary 6. If we take & = 0 and YW (x) = 1, then we obtain the H-H-type inequality in the
aspects of (m, h)-preinvexity, which is given by

Q(mbl + %(D(bz, bl/m)) 1 mby+P(by,bq,m)
2h<%) = B0 01,m) /mbl Qp)dg
= w /(;1[%1(@) (1 - ).

Corollary 7. Ifwe take x = 0, W(x) =1, and h(p) = g, then we obtain the H-H-type inequality
in the aspects of m-preinvexity, which is given by

Q(p)dp < [Q(mb1) + Q(by)] .

0 ) 1 o b 1 mby+®(ba,b1,m)
— <
(m 1+2‘1>( 2, 1,7’1))_4) /mbl 5

(ba, by, m) .

Corollary 8. If we take & = 0, ®(by, b1, m) = by — mbq, and W(x) = 1, then we obtain the
H-H-type inequality in the aspects of (m, h)—convexity, which is given by

Q(Mnt2) 1 b2 [Q(mbq) +Q(by)] [T
2h é) : by — mby ,/mbl Qlp)dp < # ./0 (hlp) +1(1 = p)ldg.
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Corollary 9. If we take « = 0 and ® (b, by, m) = by — mbq, then we obtain the Fejér-type
inequality in the aspects of (m, h)—convexity, which is given by

Q(@) /72

Zh(%)(bz — mby)
1 b

< e L, QOW(G)dp

< [0 + )

W(p)dp

mb1

[ 0) + 1= )W (52 + m(1 — o)),

Corollary 10. Choosing o = 0, ®(by, by, m) = by —mby, W(x) = 1, and h(p) = ©°, then we
obtain the H-H-type inequality via (s, m)—convexity, which is given by

Cag(mrthay _ 1 _ [Qmhy) + Q)
2 Q( 2 ) = by —mbq /rnbl()(p)dp_ s+1 '

Corollary 11. Choosing h = 1, we obtain the Fejér inequality via NCFIO in the aspects of
m-preinvexity, which is given by

Q(mbl + %Cb(bz, b1, m))
q)(bz, bl, m)lf”‘

1 o
S W |:N3]mbl+q>(b2,bl,m) Q(mb])W(mbl)

[N3]:1b1+q)(b2,b1,m)7W(mb1> + N3]:,lb1+w(mbl + ®(b2/ bl/ m)):|

+ Ng]f:zlerQ(mbl + q)(bZI b]/ m))W(mbl + CD(I)Z/ I)l/ m))

[Q(mb1) + Q ()]
= ®(by, by, m)l— ™ 1o+ (5,0 )~ YV (X)-

Corollary 12. Choosing h = 1 and m = 1, we obtain the Fejér inequality via NCFIO in the aspects
of m-preinvexity, which is given by

Q(b1 + %Cp(bz, bl))
(I)(bz, bl)l_“

l (4
= S0 {N3]b1+<1>(bz,n)Q<b1)W(b1)

(N2 gy (1) + as T2 W (b1 + @ (2, 51)]

+ N3];(1+Q(|71 + cD(bz, bl))W(b1 + CD(I?z, I?l))

Q1) +Q(b .
- WNs]bﬁ@(bz,bl)—W(x)-

Corollary 13. Choosing m = 1 and ®(bp,b1) = by — by, we obtain the Fejér inequality via
NCFIO in the aspects h—convexity, which is given by
b1+b
0(*32)
20(3) (b2 —by)1 "

[ JEWO1) + N W ()|

= <b2—1m>1 Ny, QOUW (1) +N3]§‘1+Q(b2)w(bz)}
: W _/01 o “[h(p) +h(1 = p)IW (1 + p(b2 —b1))dp.
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Corollary 14. Choosing h = 1 and ®(by,bq,m) = by — mbq, we obtain the Fejér inequality via
NCFIO in the aspects of m—convexity, which is given by

a(2y)

wlblﬂ"‘ {stfzﬂ(mh)W(mbl) + N3]:1b1+0(b2)w(b2)}
_ [0(m>1) + O(52)
T (b2 —mby)e

JEW(mby) + g J%, W (62)]

<

NJE;—W(X)-

Corollary 15. Choosing h =1, m = 1, and ®(by,b1) = by — by, we attain the Fejér inequality
via NCFIO in the aspects of convexity, which is given by

O(242)
(ba —by)1—x I
= (bz_lbl)l— [stﬁ‘zﬂ(bl)w(m + N3I;“1+Q(bz)w<b2>]
[A01) +Q02)]
(bp —by)t®

JEW01) + NS W)

6. Refinements of Fejér Inequality via Non-Conformable Fractional Integral Operator

Several academics and mathematicians have recently been working on fresh ideas
related to this issue from various angles in the convex analysis field. Several new Fejér
type inequalities were established in the literature by using different kinds of convexity
and different kinds of fractional operators. The main goal of this section is to explore
and investigate a new lemma. By utilizing this newly introduced lemma, we obtain some
extensions, estimations, and generalizations of the Fejér inequality via NCFIO. In order
to obtain the results, we utilize the idea of the (m, h)-preinvex function with the help of
the power mean and the Holder inequality. Several corollaries are offered to illustrate
this section.

Lemma 2. Assume that ® : X x X — Rand X C R, such that X is an open m-invex subset
w.rt. ®and by, by € Xwith ®(by, by, m) > 0. Suppose that Q) : H — R is differentiable mapping
on X such that QY € L([mby, mby + @ (b, by, m)]). f W : X — [0, 00) is differentiable, then the
following equality holds

-1
/O [(1 - @)—2:»( + 53_2“} W(mbl + p(l)(bzl I71/ m))Q/(mbl + p(l)(l)zl I?],Wl))d@
2

- = 200—1
= Sh S (ijb; W(mby + ®(ba, by, m))Q(mby + D(by, by, m))

+N3 ](2;2;11--<I>(b2,b1,m))*W(Mb1)0(mb1))
1
 ®(by, by, m)I
8 Loy (o)~ WV (1) QL (m01)
1
- D(ba, by, m)

m

(N Izirwl(’”bl + ®(by, by, m))QA(mby + P(by, b1, m))
3

[W(mbl)Q(mbl) — Q(mb1 + Cp(by_, b1, m))W(mb1 + @(bz, b1, m))]
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Proof. Integrating by parts,

1
/0 (1= )72+ ™2 | W (imby + 9@ (b2, b1, m)) QY (mby + 9D (o2, by, m))do
__ v
B q)(bz, b1/7’77)
2 ! _ —2a—1 —2a—1
" ®(by, by, m) /0 [(1 2 +p }W(mbl + P (by, by, m))

x Q(mby + p®(ba, by, m))dgp

1
(1o + (b, bi, m) )W (b + 9@ (b2, by, m)) [ (1 = 9) ™2 + 2]

1
- /0 [(1 —p) "+ @_2“} W' (mby 4 @ (b2, by, m))Q(mby + p®(by, b1, m))dgp
_ 1
o q)(bz, bl/ I’I’l)
Lw
D(by, by, m) "2
+N3](251b7]l+q,(,2/b1/m))—W(mb1>0(mbl))
1
— D(hy, by, m) 12

TN I(zribﬁ@(bz,bl,m)yW'(mbﬁﬂ(mbl)),

W (mbq)Q(mbq) — Q(mbq + P(ba, by, m))W(mby + P(b, by, m))]

(N2 W01 + @ (o2, 51,10)) 21 + @ (o2, 51,m))
(T WV (01 + (3, b1, m)) Q01 + B(3,51,m))
3

which completes the proof. [

Theorem 7. Assume that ® : X x X — Rand X C R, such that X is an open m-invex subset
w.r.t. ®and by,by € X with ®(by, by, m) > 0. Suppose that Q) : X — R is a differentiable
mapping on X and W : X — [0, 00) is differentiable and symmetric to mby + 3®(by, by, m). If
|QY| is generalized (m, h)-preinvex on X, we have the following inequality via NCFIO given as

20
(I)(bz, blr m)—2“

< ]iﬂl;l;lW(mbl +q)(b2, bl,m>)Q(mb1 +q>(b2/ b1/ m))
N3

T L ) W) )

1 2
- W (NSIm”ETW/(mbl + cD(bz, b],m))Q(mbl + cD(bz, bl, T}’l))

TN ](2;?1b1+<1>(b2,b1,m))W,(mbl)Q(mb1>>

v
q)(bz, blr m)

< [l o) [+ 10/C2)] [ o2 Wy + o2, b1,m)) () + (1~ ).

(W (mbq)Q(mby) — Q(mbq + @ (b, by, m) )W (mby + P(by, by, m))]

Proof. Employing Lemma 2 and utilizing the property of (m, h)-preinvexity of |()'|, we have
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2u o1
‘W (stm"} W (mby + ®@(by, by, m))Q(mby + @ (by, by, m))
L o) W(mbl)ﬂ(mb1)>

1 u
_ W (strznbf W (mbq + ®(by, by, m))Q(mby + P (by, by, m))

N ](Z;Twﬁq:(bz,bl,m))—W/(mbl)ﬂ(mh))
(W(mb1)Q(mby) — Q(mby 4 P(b2, by, m) )W (mby + P(b2, b1, m))]
1
—2u —2u
< [Ja-o ™40

1
g/o [(1—p)*2“+p*2“]W(mbl+pq>(b2,b1,m))[mh (1= )| (b1)| + 1) | (b2)]]dp

W(mbl =+ pq)(bZ/ b1/ m)) ‘Q/(mbl + q)(bZI b1/ m)) |dp

= m| QY (by)] - / (1= )2 W (b + p® (52, by, m))h(1 — )dg
+m| QY (by |/ 0 W (b + oD (by, by, m))h(1 — )dg
+ |0 (b)) - / (1= ) 2W(mby + p®(by, by, m) h(p)dg
O G| [ 072 Wono1 + by, ) ()
= [m|Q'(b1)| + | (b2)]] /(;1 O W (mby + p®(ba, b1, m)) - h(p)dp
+ [m| QY (o1)| + | (b2)]] /01 0 W (b + p®(ba, by, m)) - h(1 — )dg
= (OG0 + [ G2)[] - [0 2 W oy + (o2, 1, m) () + (1~ ),
which completes the proof. []

Corollary 16. Choosing h(p) = o and W(x) = 1, Theorem 7 via NCFIO in the aspects of
m-preinvexity is given as

2 e
‘Wl—i‘) <N3] ab+10<mbl + (b2, 01,m)) +N; ](mb11+<l>(b2 by,m))~ (mbl)>
1
= B3, by, ) [201) = O + (o, b1, m))
< mQ b1)] + 19 (b2)]
o 1— 2« ’

Corollary 17. Choosing h(p) = o, m =1, and W(x) = 1, Theorem 7 via NCFIO in the aspects
of preinvexity is given as

‘27“
D(by, bq) 2
1
~ 35,500 — 00 +<I>(|72,|71))]‘
< 10| +19'(b2)]
- 1—2a

(N3]blx 1Q(b1 + q)(bZ/ bl)) +N3 ](;Cl+1q>(b2 by))~ Q(b1>>
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Corollary 18. Choosing h(p) = @° and W(x) = 1, Theorem 7 via NCFIO in the aspects of
(s, m)-preinvexity is given as

2w 20—1 20—1
@m0 (Nafm»; Qb+ B (02,01, 1)) 85 Sy (351, - A071)
1

~ (g, oy, 200) — O + (52, b1,m)|

< [l 6ol + 0G|

1 I(1-2x)(s+1)
1+s—2a T'(s—2a—2) }

Corollary 19. Choosing h(p) = ¢°, m =1, and W(x) = 1, Theorem 7 via NCFIO in the aspects
of s-preinvexity is given as

2 - —_
‘qy(Tfl)—Za (wslflf 10 (b1 + @(b2,01)) +n, f?fl+l<1><»2,bl>>—0(b1)>
1
= a5y A01) ~ 01 + @)

<[]0 (b1)| + | (52)]] - { 1 r(lfza)r(sﬂ)}

1+s72¢x+ I'(s—2a—2)

Theorem 8. Assume that X and W are defined as in Theorem 7. If |QV'|1, q > 1, is generalized
(h, m)-preinvex on X, then one has

20—1
B (b, b1, m) <Nf i VYo @2 m) Oy + @020, m))

2
) <23%El+<1><bzm,m>>*W(’”bl)mmbl)>

1 20
- W <N3]”’b1+ W/(mbl + @(bz, bl, m))Q(mbl + @(bz, b],m))

3 By W (1) 020 )

_ 1
q)(bz, b1,m)

< <1f2a>1*ﬁ({m|0’(bl)|q+|Q/(b2)‘ﬂ

x [ 2DV + 920, ) () + (1~ )] "

W (mb1)Q(mbq) — Q(mby + D(by, b1, m))W (mby + @ (by, b1, m))]

Proof. Employing Lemma 2 and utilizing the property of the (1, m)-preinvex function and
power mean inequality, we have

2
q)(bz, b],m)fz”"

< ]iiljlw(mbl + @(b2, b1, m))Q(mby + P(ba, b1, m))
N3

(mby+®(b2,01,m))

SR e ,W(mbl)n(mb1)>

_ 1 20 !
3,5y, M <N3]mb1+W (mbq 4+ @ (ba, by, m))Q(mby + D(by, b1, m))

TN ](zzbl‘*'q’(?zrbl,m))’ W/ (ror ) Qi )>

1
~ ®(by, by, m)

) </(;1 [(1 —p) pizu}dpyi%

. </0.1 [(1 —p) 4 p_z"‘] W (mby + p®(by, b1, m)))7|QY (mby + p¢(b2,b1,m))|qdp>

[W (b1 ) Qb1 ) — by + B (ba, by, m) )W (imby + P (by, bl,m))]‘

1
q
1

S( 2 )1*§<[m}0/(b1)|q+|Q/(b2)|Q]

1—2a

.

< [ o Wi+ 9261, ) lh0) + (1~ )l )

which completes the proof. [
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Corollary 20. Choosing h(p) = g and w(x) = 1, Theorem 8 via NCFIO in the aspects of
m-preinvexity is given as

20 . .
‘W (NanblHQ(mbl @201, m) ¥y ](zmb11+<1>(bz,b1,m))’Q(mbl))
1
= S0 MO0 = Oy + @, o1, m))|

2\ mGD [+ ()]
—\1-—2« 1—2a '

Corollary 21. Choosing h(p) = o, m = 1 and w(x) = 1, then the Theorem 8 via NCFIO in the
aspects of preinvexity is given as:

20 o .
’W (NJb L1 + @(b2,b1)) +n, ]<2b1+1<1><72,b1>)—9(b1>)
1
W[Q(bl) -0+ @(bz,bl))}‘

(2 Tl ()Y
—\1-2«a 1-—2a )

Corollary 22. Choosing h(p) = ¢°, and w(x) = 1, Theorem 8 via NCFIO in the aspects of
(s, m)-preinvexity is given as

20 _
5 Dby, by, m) 2 ai (W o 2y + @ (52, 01,)) 40, T 550y 00
1

S, by, ) M) — Olmby + (o2, bl,m))]‘

() (o] [ P

Corollary 23. Choosing h(p) = ©°, m = 1, and w(x) = 1, Theorem 8 via NCFIO in the aspects
of s-preinvexity is given as

2
|W:i)za(wsfbﬁ 1001+ @(b2,01)) +5 o) - Q(bl))

(bz ») [Q(b1) — Qb1 + D(b2,b1))] |

S<i>17%<[|0’(b1)|q+|Q'(bz)ﬂ'{ 1 +F(1—2oc)r(s+1)]>%.

1-2a 14+s—2a T(2+s—2a)

Theorem 9. Assume that X and W are defined as in Theorem 7. If |(Y'|,q > 1, is generalized
(h, m)-preinvex on H, then the following inequality via NCFIO holds

2 201
W <N3]mb1+ W(mbl + qD(bz, b],m))Q(mbl + (D(b2, bl,m))

N W(mbl)Q(mb1)>

1
R ORIES ( T WV (01 + @ (02,51, m))moy + @03, b1, m))

N ]<2r’fm+c1>(bz,b1,m)r W/(mbl)ﬂ(mbl))

,W W (b1 )Q (b1 — Qg + B (ba, by, m) )W (1mby + D (b, bl,m))]'

T

2 e ter] ) )
< (172@)% <[m10(b1)| +‘O(b2)|] ./o [W(mb1+gd>(b2,b],m))yih(g)dp> )

141 _
wherep—i-l7 1.
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Proof. Employing Lemma 2 and utilizing the property of the (, m)-preinvex function and
Holder inequality, we have

270‘ 20—1
‘q’(bz,bllm)_z ( T W(mbl + @ (b2, by, m))Q(mby + D (b2, by, m))

+N3](mb1+¢‘(b2 by,m))~ (mbl)Q(mbl))
1 4
_ W (N3]51b1+W/(mb1 + ®(by, by, m))Q(mby + P(by, by, m))

N, ]%gtbﬁdxbz,n,m))—wl(mbl)Q(mb1)>
1

B0 p V1)) = i+ (o, o1, m))W (s 2o, bl,m))}‘

([ =0 205) " ( [V 0o 0 )62 1+ 50 1,0 i)

+ </01 @_zﬂépdp) v . (/0‘1 [W(mbl + @W(bzbl,m))mﬂl(mbl + p‘b(bZ, bl,m))‘qdp) 7
(1;’0); ( [m\Q/(h)w + |Q/(b2)|q] ,/01 Wby + p@(bz,bl,m))]qh(p)dp) a.

<

<

O

Corollary 24. Choosing h(p) = p and w(x) = 1, Theorem 9 for via NCFIO in the aspects of
m-preinvexity is given as:

20 B
‘W (NS]iiflﬂ(mbl + @ (02,51, m)) 485 T e 30 m)) Q(W)
1
- W[Q(mbl) — Qmb "‘q)(bz,bl,m))]’
<2 (mIQ’(b1)|q+ |Q’(b2)|ﬂ)3,
T (1-2ap)” 2

Corollary 25. Choosing h(p) = o, m =1, and w(x) = 1, Theorem 9 via NCFIO in the aspects
of preinvexity is given as

2

‘@(bz ;xl) (stfi‘ Q01+ @(02,01) T8 T o)) (b1)>
1

- W[Q(h) - Qb +‘1’(|?2,|71))]‘

(1- Zocp)% 2

o2 (|0'<b1>|q+0'<b2>|q>5‘

Corollary 26. Choosing h(p) = ° and w(x) = 1, Theorem 9 via NCFIO in the aspects of
(m, s)-preinvexity is given as

20 251 -
‘W <N3]m“br Q(mb] + ¢(b2/ bl/ m)) +N3 ] ::Zb]Jrq)(bz,?l,m))_Q(mbl))
1

~ B, by, ) MO01) — Omby + @b, o1,m))]|
< 2 ]
(1—2ap)?(s+1)7

=

(€ (b1) |7+ 0 (52)])
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Corollary 27. Choosing h(p) = ©°, m = 1, and w(x) = 1, Theorem 9 via NCFIO in the aspects

of s-preinvexity is given as

’ 20
(b, by) 2%

1
= 50,5100 — 001 + @020
2
< (19607 + [0/ 62)]7) "
(1—2ap)7 (s + 1)’

(N T2 10201 + @ 02,51)) e B T, 2(01))

Y

==

7. Pachpatte-Type Inequality via Non-Conformable Fractional Integral Operator

Currently, the subject of convex analysis has gained popularity due to the fact that it
is connected to the topic of inequality. Different inequalities are commonly documented
as a result of convexity applications in practical sciences. The term preinvexity has been
elaborated by a lot of researchers and scientists, and numerous papers have been produced
on the subject that offer fresh estimates, extensions, generalizations, and importance.
Many investigations have been done on the famous inequality, namely, the Pachpatte-type
inequality pertaining to fractional integral operators. The concept of preinvexity has been
crucial to the advancement of generalized convex programming. Many improvements to
and expansions of this inequality were discovered in the literature. In this section we study
and explore this inequality via NCFIO. We enhance this section’s utility through the notes
that are provided.

Theorem 10. Assume that X is defined as in Theorem 2. Suppose that (31, )y : X — Roare
differentiable functions such that Oy, Qp € Ly o[mby, mby + P (by, by, m)]. If O, Q) are preinvex
functions on [mby, mby + @ (by, by, m)], then fractional integral inequality for & < 0 is given as

1
(D(by, by, m)) "

1 2 s
< 00
_(3—¢x+a3—6¢x2+110¢—6)m (h€2) (1)

1 -2
O10) (b
Jr(3—04+rx3—6042+1104—6)( 102)(52)
L

a2 —5u+6

{N3]z1bl+<p(b2,b1,m)f OO (mby) +n, ]fnb; OO (mby + D(ba, by, m))}

(@1(01)Q2(b2) + Q1 (b2) Q2 (b1))-
Proof. Since ()1,(); are m-preinvex, then by the definitions of m-preinvexity, we have
Oy (mby + pP(b2,b1,m)) < m(1— ) (b1) + O (b2)

and
O (mby + p®(ba, b1, m)) < m(1— ) (b1) + P (b2).

If we multiply these inequalities, we get
Oy (1mby + P (b2, b1, m)) N (mby + 9P (b2, b1,m))
<m?(1- ) (D) (01) + 9> (1 D) (52)
+mp(1 = 9)[Qn (01)Q2(b2) + Q1 (b2) Q2 (b1)]-
Multiplying both sides by %, we obtain
(M) (mby + pP(by, b1, m))
< o mP(1— ) (D) (01) + * (1) (02)
+ o' m(1 = 9)[Q1(b1) D (b2) + Q1 (02) Qa2 (b1)].
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Now, by integrating the resulting inequality w.r.t p over [0,1], we have
[ 07 (010) oy + 6250, m)i
< [ (972 = 020 60) + 2 (0 (62) ) o
+ [ (o= ) 61)0a(02) + 1 62)0(01)] o

Consequently,

1
|| 97 (@02 (mby + 9o 1, )
1 1
<m(0)(n) [ 971 - 9P+ ()(0) [ oF
01 (1) (02) + 1 (02)0260)] [ 141~ o)

By computing the above process, we obtain

1
(D(by, by, m))

—2m?
—6a2+11la—6
m

+ m(ﬂl(bl)ﬂz(bz) + Q1 (b2) 0 (b1)).

=2 Na ooy + (o0, m) - (1 Q2) (D7)

(0102) () + 50— (0102 (52) 20)

Similarly, we obtain
[ o7 @u0) by + (1= ) b1, m))d
P (10)01) [ 2o+ (0 02) [ 01— )
01 (1) (02) + 1 (2)0261)] [ 141 o)

Therefore, by computing, we derive

1
(@ (bz,blf )

o No Lot (1 02) (b1 + D (b2, by, m1))

< 3 (0102)(b1) t a3z 6a2_f11a—6(0102)(b2) (21)
+ 7[01@1)02@2) + Q1(b2) 0 (b1)]-

Sa+6
By adding the inequalities (20) and (21), we get the proof. [J

Remark 24. If o = 0 and m = 1, then we obtain Theorem 3.4 in [69].

Remark 25. Ifa =0, m = 1, and ®(by, by, m) = by — mby, then we obtain Theorem 1 in [70].

8. Applications

This section’s primary goal is to establish several novel kinds of inequalities for the
harmonic and arithmetic means. Due to their significant performance and outstanding
utilization in statistics, probability, numerical approximation, and machine learning, the
following methods are well-known and well-liked. A particular instance of the power
mean is the harmonic mean. Since this mean is the most suitable measurement for rates
and ratios, it equalizes the weights of each data point.
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The purpose of this section is to demonstrate and analyze some special means in the
aspects of NCFIO for positive numbers by, by with by < by:

(1) The arithmetic mean

by +b
A= A(by,hy) = %
(2) The harmonic mean
2b1by
H=H = .
(bl/bZ) bl +b2

However, in the literature, the simple connection between harmonic and arithmetic
mean is given by
H(b1,b2) < G(by,ba) < A(bq,b2).

Proposition 1. Assuming that 0 < by < by; then

1—
Al b2) < 5

W[NJEX;Q(M + N3]§‘;Q(b1)] < A(by,h2). 22)

Proof. Taking Q)(x) = x for x > 0 in Corollary 4, Proposition 1 is easily obtained. [J

Proposition 2. Let 0 < by < by, then

1—
A1) < 5 [N 002) + N Q0] < AGE ). (23)

(b2 = by)t=2
Proof. Taking Q)(x) = x" for x > 0 in Corollary 4, Proposition 2 is easily obtained. [

Proposition 3. Let 0 < by < by; then

11—«

-1 R
AT = o0,

[ 5 0b2) + i J8 O01)| < H 1 (01,52). (24)

Proof. Taking Q(x) = x~! for x > 0 in Corollary 4, Proposition 3 is easily obtained. [

Proposition 4. Let 0 < by < by; then

1 < 1—«
A2(by,b2) ~ 2(by —by)

. 1
5 [NJ8Q02) + Q0] < (25)

(b1,b2)
Proof. Taking Q)(x) = xl—z for x > 0 in Corollary 4, Proposition 4 is easily obtained. [

9. Conclusions

Fractional calculus has grown to be a key area of research as a consequence of its
applications in the mathematical modeling of several complex and nonlocal nonlinear
systems. It is very important while researching optimization issues because it has a range
of beneficial inequalities. Many authors and investigators from many different disciplines
have expressed interest in fractional calculus. With the help of convexity theory, we may
develop novel frameworks for numerical models that may be employed to challenge and
overcome a broad spectrum of challenges in both the applied and pure sciences. Integral
inequalities have applications in physics, functional analysis, optimization theory, and
statistical theory. Convex analysis and inequalities have therefore gradually grown in
popularity among scholars and attracted attention as a result of several developments,
variations, extensions, widely held opinions, and applications.

In this work:

(1) First, we defined new notions of the preinvex family, namely, the G-L m-preinvex
function, the G-L (s, m)-preinvex function of the 1st type, the G-L (s, m)-preinvex
function of the 2nd type, and the prequasi m-invex function.
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@)
®)

4)
©)

(6)
@)

We constructed a novel sort of H-H inequality via NCFIO with some amazing corol-
laries and remarks.

We investigated and explored a new integral identity and, on the basis of this new
integral identity with the newly developed concept and definitions, some novel
versions and extensions of H-H inequality were examined.

We constructed a novel sort of Fejér inequality via NCFIO with some amazing corol-
laries and remarks.

We investigated and explored a new integral identity and, on the basis of this new
integral identity with the newly developed concept and definitions, some novel
versions and extensions of Fejér inequality were examined.

We constructed a new variant of the generalized fractional Pachpatte-type inequality
via a newly introduced concept.

We added some special means as applications in the frame of the fractional operator.

It is possible to apply the paper’s interesting techniques and practical notions to

study Raina functions. The aforementioned inequalities can be discussed in the field of
interval analysis and quantum calculus. The field of integral inequalities is one of the most
rapidly developing fields of study. Every scientist should be intrigued to understand how
different versions of quantum calculus and interval-valued analysis can be implemented
for integral inequalities.

Author Contributions: Conceptualization, M.T. and S.K.N.; methodology, M.T., SK.N. and A.A.S;
software, M.T. and S.K.N,; validation, M.T., S.K.N. and A.A.S,; formal analysis, S K.N. and A.A.S.;

inves

tigation, M.T. and S.K.N.; resources, S.K.N.; data curation, A.A.S.; writing—original draft

preparation, M.T.; writing—review and editing, M.T. and A.A.S.; supervision, S.K.N., A.A.S. All
authors have read and agreed to the published version of the manuscript.

Fund

Data

ing: This research received no external funding.

Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

NCFIO  Non-conformable fractional integral operator

NCD Non-conformable derivative

CDO Conformable derivative operator

G-L Godunova-Levin

KFIO Katugampola fractional integral operator
ABFO Atangana-Baleanu fractional operator

CFFIO Caputo-Fibrizio fractional integral operator

H-H

Hermite-Hadamard

H-H-M  Hermite-Hadamard-Mercer

R-L

Riemann-Liouville

RLFIO  Riemann-Liouville fractional integral operator

w.r.t.
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