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Abstract: Diabetic retinopathy (DR), which is seen in approximately one-third of diabetes patients
worldwide, leads to irreversible vision loss and even blindness if not diagnosed and treated in time.
It is vital to limit the progression of DR disease in order to prevent the loss of vision in diabetic
patients. It is therefore essential that DR disease is diagnosed at an early phase. Thanks to retinal
screening at least twice a year, DR disease can be diagnosed in its early phases. However, due
to the variations and complexity of DR, it is really difficult to determine the phase of DR disease
in current clinical diagnoses. This paper presents a robust artificial intelligence (AI)-based model
that can overcome nonlinear dynamics with low computational complexity and high classification
accuracy using fundus images to determine the phase of DR disease. The proposed model consists
of four stages, excluding the preprocessing stage. In the preprocessing stage, fractal analysis is
performed to reveal the presence of chaos in the dataset consisting of 12,500 color fundus images.
In the first stage, two-dimensional stationary wavelet transform (2D-SWT) is applied to the dataset
consisting of color fundus images in order to prevent information loss in the images and to reveal
their characteristic features. In the second stage, 96 features are extracted by applying statistical-
and entropy-based feature functions to approximate, horizontal, vertical, and diagonal matrices of
2D-SWT. In the third stage, the features that keep the classifier performance high are selected by a
chaotic-based wrapper approach consisting of the k-nearest neighbor (kNN) and chaotic particle
swarm optimization algorithms (CPSO) to cope with both chaoticity and computational complexity
in the fundus images. At the last stage, an AI-based classification model is created with the recurrent
neural network-long short-term memory (RNN-LSTM) architecture by selecting the lowest number
of feature sets that can keep the classification performance high. The performance of the DR disease
classification model was tested on 2500 color fundus image data, which included five classes: no DR,
mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative DR (PDR). The
robustness of the DR disease classification model was confirmed by the 10-fold cross-validation. In
addition, the classification performance of the proposed model is compared with the support vector
machine (SVM), which is one of the machine learning techniques. The results obtained show that the
proposed model can overcome nonlinear dynamics in color fundus images with low computational
complexity and is very effective and successful in precisely diagnosing all phases of DR disease.

Keywords: diabetic retinopathy; stationary wavelet transform; chaotic swarm intelligence optimiza-
tion; feature selection; recurrent neural network (RNN); long short-term memory (LSTM)

1. Introduction

Diabetes is a lifelong metabolic disease that occurs when blood sugar rises in the body
due to the pancreas’ inability to produce enough insulin hormone or to use insulin hormone
effectively. Diabetes, which is among the top 10 causes of death in adults, is seen in 9.3% of
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adults aged 20–79 worldwide, according to 2019 data. This rate corresponds to 463 million
adults. The number of adults aged 20–79 years living with diabetes has increased by 62%
in the last 10 years, and it is predicted that 578 million adults will live with diabetes in 2030
globally [1].

Since diabetes brings with it many diabetes-related diseases, it causes serious negative
effects on the quality of life of individuals. Diabetic retinopathy (DR), a specific microvas-
cular complication of diabetes, is damage to the blood vessels in the retinal mesh layer
due to diabetes [2]. The individual’s vision is impaired due to bleeding or fluid leaking
from the blood vessels in the retinal mesh layer [3]. Since DR disease has a progressive
process, patients are at risk of vision loss if the disease cannot be diagnosed at an early
phase and the necessary treatment cannot be applied in a timely manner [4]. The incidence
of DR disease in the community increases in parallel with the duration of diabetes and is
generally seen in approximately 30% of diabetics [5]. The progression of DR disease needs
to be limited in order to prevent diabetes patients from losing their vision. This can be
possible by diagnosing DR disease at an early phase. Therefore, it is recommended that
diabetic patients undergo retinal screening at least twice a year under the supervision of a
specialist ophthalmologist [6]. However, these scans take a lot of time and require good
experience and expertise. Detection and classification of DR disease in the current clinical
diagnosis is mainly based on a specialist ophthalmologist’s in-depth examination of the
color fundus image and then the assessment of the patient’s condition. This diagnostic
method is a time-consuming and laborious process, which can lead to more errors. The
high number of diabetic patients and the insufficient medical resources in some regions
make this process even more difficult. Today, it has become inevitable to benefit from fast
and reliable computerized automatic scanning and pre-diagnosis systems to overcome
this problem and assist ophthalmologists [7,8]. In this study, a robust artificial intelligence
(AI)-based hybrid classification model that can classify the phases of DR disease at an
early phase with high accuracy and low computational complexity is proposed to make it
possible to limit the progression of DR disease.

DR disease is essentially divided into two classes, non-proliferative DR (NPDR) and
proliferative DR (PDR). NPDR is defined as the early phase of the disease, while PDR is
defined as the advanced phase of the disease. The NPDR phase of the disease is separated
into three classes as mild, moderate, and severe. In the mild NPDR phase of the disease,
microaneurysms and a few small hemorrhages are seen in color fundus images. In the
moderate NPDR phase of the disease, diffusely increased microaneurysms in at least
one retinal layer, exudates, venous changes, hemorrhages, and intraretinal microvascular
abnormalities are observed in color fundus images. In the severe NPDR phase of the
disease, predominantly microaneurysms, exudates, hemorrhages, venous changes, diffuse
arteriolar occlusions, and increases in intraretinal microvascular abnormality density are
seen in color fundus images. In the PDR phase of the disease, in addition to the findings in
the NPDR phase, retinal neovascularization and minimal fibrous tissue proliferation are
detected in color fundus images [8–11]. These findings, shown in Figure 1, are distinctive
features in diagnosing the disease and determining its phase. If these findings, which cause
the patients’ vision to decrease and disappear, are diagnosed and treated immediately, the
deteriorated process can be taken under control and delayed [6].

In recent years, digital-fundus-image-based scanning programs have been used to
cope with DR disease. However, their use for larger populations is not common all over the
world due to the cost factor [12]. Meanwhile, the rapid increase in diabetes patients makes
the capabilities of current digital-fundus-image-based screening programs questionable
because these programs are heavily dependent on manual grading, which takes a significant
amount of time for each case [7]. Therefore, research in recent years has focused on the
automatic detection of DR disease at an early phase so that patients do not experience
vision loss. However, it is seen that nonlinear dynamics, especially chaoticity, in color
fundus images are ignored in most studies. The motivation of this paper is to develop a
robust model that can automatically diagnose and classify DR disease in fundus images by
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coping with nonlinear dynamics in the image. Color fundus images are classified according
to the severity of DR disease by the classification model with low computational complexity,
so that an end-to-end real-time classification can be obtained from the fundus image for the
patient’s condition. The main contributions of this study are summarized as follows:

• The presence of chaos in the images of each DR disease class along with the healthy
class is revealed by fractal analysis.

• Feature groups are extracted for each family by applying two-dimensional stationary
wavelet transform (2D-SWT) with biorthogonal, reverse biorthogonal, Daubechies,
Coiflet, symlet, and Fejer–Korovkin wavelet families to the dataset consisting of each
DR disease class together with the healthy class.

• The entropy- and statistical-based feature groups extracted for the 12 image matri-
ces obtained as a result of three-level decomposition contain nonlinear dynamics
representing the DR disease classes.

• The features that keep the model performance high are selected with a wrapper
approach consisting of the chaotic particle swarm optimization (CPSO) and k-nearest
neighbor (kNN) algorithms in order to keep the computational complexity of the
model at a minimum and to cope with the chaoticity in the fundus images.

• The most suitable chaotic map, which improves the convergence speed and optimum
solution of the optimization algorithm, is determined and included in the optimization
process to obtain the highest classification accuracy with the least features.

• The effect of the features selected by the chaotic wrapper approach on the model
performance is examined for each wavelet family.

• The selected optimum feature vectors are finally fed into the recurrent neural network-
long short-term memory (RNN-LSTM) for classifying DR disease sub-types like PDR,
mild NPDR, moderate NPDR, and severe NPDR.

• The model with the best performance is proposed, which includes the three-level 2D-
SWT technique based on the ‘bior 2.8’ wavelet family, the wrapper approach consisting
of logistic-chaotic-map-based CPSO and kNN, and the RNN-LSTM network for DR
disease classification.

• It is shown by experimental results that the proposed model can cope with nonlinear
dynamics, has low computational complexity, and can be used in real-time applications
thanks to these features.
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Figure 1. Diabetic retinopathy findings in fundus images: (a) microaneurysms, soft exudates, and ne-
ovascularization; (b) intraretinal microvascular abnormality, hard exudates, and hemorrhages. 
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The rest of this paper is organized as follows. Section 2 presents the background of the
study and related works on the diagnosis and classification of DR disease. The methodology
that makes up the diagnosis and classification model for DR disease, including 2D-SWT
with wavelet families, chaotic-based wrapper approach consisting of the kNN and CPSO
algorithms, the RNN-LSTM classifier, and performance metrics, is described in Section 3.
The results of this study and some concrete discussions proving the performance of the
proposed model are provided in Section 4. Finally, Section 5 highlights the conclusions.

2. Background and Related Works

DR disease, which develops due to diabetes and occurs as a result of damage to the
vessels in the retinal layer of the eye, can be treated and vision loss can be prevented when
it is diagnosed effectively in the early phases. In the literature review, there are many
AI-based studies for the diagnosis and classification of DR disease. In [13], an AI-based
model consisting of four stages, namely preprocessing, feature extraction, feature reduction,
and classification, was proposed for the early diagnosis of DR. In the preprocessing stage
of the model, techniques such as image scaling, green channel subtraction, and top-bottom
line transformation were used to improve fundus images. The optic disc and blood vessels
were segmented by two independent U-Net models. The features of the fundus images
were extracted by the convolutional neural network (CNN)-singular value decomposition
(SVD) hybrid model. It was stated that 100 of the 256 extracted features were selected and
used by SVD. In the classification layer of the model, transfer-learning-based Inception-v3
architecture is preferred. The highest performance of the proposed model in three different
datasets was measured as 97.92%. In [14], a segmentation-based learning approach was
proposed by utilizing deep learning to detect and classify DR and DR lesions. With
the proposed approach, it is aimed to deal with irregular lesions of DR. Fundus images
with different contrast, image resolution, and illumination were preprocessed, and image
segments were removed from the preprocessed image. The image segments were fed into
the CNN classifier considering the segment level to evaluate the DR probabilities. The
performance of the proposed model was measured to be approximately 96.3%. In [15],
the prognosis of microaneurysm and an early diagnosis system were introduced for an
NPDR system that is capable of training effectively a deep CNN (DCNN) for the semantic
segmentation of fundus images, which can improve the accuracy and efficiency of NPDR
detection. In [16], a hybrid deep neural network (DNN) model based on feature extraction
and optimization-based feature selection was proposed for the early detection of DR. The
most important features in the dataset were extracted using principal component analysis
(PCA). The firefly algorithm was applied to reduce the size of the feature matrix. The
selected features were fed into the DNN to classify the DR dataset. The performance of the
model was also compared with the predominant machine learning methods in terms of
accuracy, recall, precision, specificity, and sensitivity, and it was reported that the results
obtained were superior to the machine learning models of the proposed model.

It is noteworthy that in the detection and classification of many DR diseases today,
swarm-based optimization algorithms are used either to improve the parameters of the
proposed AI-based algorithms to overcome the hyperparameter problem or to select the
features that maximize the classifier performance [17–22]. In [17], a model was proposed
for the DR classification problem in which CNN parameters were optimized with a hybrid
genetic and ant colony optimization (HGACO) algorithm. The proposed model was built in
three stages. In the first step, the noise at the edges of the DR images was removed. In the
second step, the region of interest (ROI) features were extracted from the DR images using
K-means cluster-based growing region segmentation. In the final stage, DR images were
classified at four severity levels with the HGACO-based CNN algorithm. It was reported
that the accuracy performance of the proposed model was measured as 97.7%. In [21], the
severity of DR was categorized using a two-level classification strategy. At the first level,
DR in fundus images was detected using SqueezeNet tuned by hybridized fractional war
strategy optimization. At the second level, DR disease was classified according to severity
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levels by DCNN trained with the designed fractional war royale optimization algorithm.
It was stated that the accuracy performance of the proposed strategy was measured as
91.6% at the first level and 91.1% at the second level. In the literature, there is no study that
addresses both the model hyperparameter problem and high classification accuracy in the
classification of DR disease. This study presents a model with both low computational cost
and high classification accuracy to classify DR disease by overcoming nonlinear dynamics
in fundus images.

3. Framework of the Diagnosis and Classification Algorithm for Diabetic Retinopathy

This section introduces our approach framework that can classify DR disease with
minimal model complexity and high accuracy. Entropy- and statistical-based feature groups
in the fundus image set, which consists of each DR disease class together with the healthy
class and includes nonlinear dynamics, are extracted by 2D-SWT using biorthogonal,
reverse biorthogonal, Daubechies, Coiflet, symlet, and Fejer–Korovkin wavelet families.
To cope with the chaoticity in the fundus images, feature selection is performed with a
wrapper approach consisting of the CPSO and kNN algorithms. The fitness function of the
optimization algorithm is formed to obtain the highest model performance with the least
computational cost. The selected feature vectors are finally fed into the RNN-LSTM, and
the DR disease classification performance of the model is tested. The methodology used in
our DR classification model is presented in detail in the following subsections.

3.1. Stationary Wavelet Transform

Wavelet transform, which is mostly preferred in the analysis of non-stationary signals,
is a transform technique that separates the data into different frequency components and
examines each component with its resolution at that scale [23]. Wavelet transform uses
scalable windows that can be shifted along the signal. In this way, spectral behavior
can be examined for each new location. Wavelets that provide a good tool for time–
frequency analysis are mathematical functions that decompose data into different frequency
components and then express each component with a resolution matched to the scale of
the component. The priority in the wavelet transform is to choose the prototype function
called the parser or mother wavelet [24]. Time analysis is performed with a compressed
high-frequency version of the mother wavelet. Similarly, this analysis is repeated with the
extended low-frequency version of the mother wavelet. The original signal is expressed in
terms of the coefficients of a propagating wavelet. If a wavelet that is well matched to the
original signal is selected, or if coefficients below a certain threshold value are assigned,
the most approximate partial representation of the original signal is obtained.

There are two types of wavelet transforms, the continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT). The CWT of signal x(t) is represented as

CWTψX(a, b) =
〈

x(t), ψa,b(t)
〉
=
∫ +∞

−∞
x(t)ψ∗a,b(t)dt (1)

where ∗ indicates the complex conjugate operation, ψ(t) is the mother wavelet, x(t) is a
square integrable function, and ψa,b(t) is the wavelet family and is expressed as

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
(2)

where a 6= 0 and b are real and positive numbers representing scaling and shifting parame-
ters, respectively. Note that the wavelet function is a function of two variables, scale and
position coefficients, while the original function x(t) is only a function of time. The inverse
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CWT of a signal is possible if the mother wavelet function ψ(t) satisfies the admissibility
criterion, which is given by

Cψ =
∫ +∞

−∞

|ψ(s)|2

|s| ds < ∞ (3)

and requires that the Fourier transform ψ(s) of ψ(t) satisfies certain properties. The
admissibility criterion ensures that ψ(t) has finite energy, is localized both in time and
frequency domains, and has a zero mean. This allows for the wavelet transform to be
applied to signals of finite energy. If 0 < Cψ < ∞, then the inverse CWT is mathematically
defined as [25]:

x(t) =
{

CWTψX(a, b)
}−1

=
1

Cψ

∫ +∞

a=0

∫ +∞

b=−∞

1

|a|2
CWTψX(a, b)ψa,b(t)dbda (4)

Thus, the function can be synthesized from its wavelet transform by integrating over
all scales and shifts.

CWT is a powerful tool for analyzing non-stationary signals in continuous time, but it
requires a lot of computations and memory resources. On the other hand, DWT operates
on a discretized version of the signal, making it more efficient and practical for many
applications. The DWT is a useful tool for signal processing and analysis, particularly
in cases where efficiency, multiresolution analysis, discretization, and compression are
important considerations [26,27]. The DWT of the signal can be represented as the inner
product of the signal x(t) with a wavelet function ψm,n that has been scaled and shifted
using dyadic variables m and n, respectively. The DWT can also be expressed in terms of
the original signal’s samples, x(k), as

DWTψX(m, n) = 〈x, ψm,n〉 = a−m/2
0 ∑

k
x(k)ψ∗m,n

(
k− nam

0 b0

am
0

)
(5)

where ψ*
m,n denotes the complex conjugate of the wavelet function, a0 > 1 and b0 > 0 are

scaling and translation parameters, m and n are integers, and x(t) is the discrete signal
being analyzed. The wavelet function ψm,n is obtained from the mother wavelet function
by scaling and shifting it using the parameters am

0 and nam
0 b0, respectively.

In the DWT, a signal is decomposed into a set of discrete frequency sub-bands by
applying a series of low-pass and high-pass filters. However, the filter banks used in the
DWT are not shift-invariant, which means that the DWT coefficients are not localized in
time. The stationary wavelet transform (SWT) is a type of wavelet transform that aims to
address the shift-variance problem of the DWT. The SWT is performed by convolving the
signal with a series of shifted and scaled versions of a single wavelet function, similar to
the DWT. However, unlike the DWT, the scaling factor is fixed at 1, which means that
the wavelet function is not dilated or contracted as it moves across different scales. This
results in a stationary property, which means that the wavelet coefficients at a given scale
and position are not affected by the coefficients at neighboring scales and positions, which
makes them more robust to noise and small signal variations [28].

The SWT is a variant of the DWT but with a different sampling scheme. While the
scales in both transforms are dyadic, the SWT does not subsample time steps at each level,
resulting in non-dyadic time sampling. The SWT can be considered as a representation
that lies between the high-redundancy CWT and the non-redundant DWT in terms of
redundancy. The SWT preserves a non-redundancy frequency representation by maintain-
ing a dyadic sampling of the scales while having an almost continuous and uniform time
sampling [29]. The general transformation equation of SWT can be written based on the
coefficients cm,n calculated as follows:

cm,n = 〈x, ψm,n〉 = ∑
k∈Z

x(k)ψ∗m,n(k) (6)
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where ψ*
m,n is the discrete wavelet defined by

ψ∗m,n(k) = 2−m/2ψ
(
2−mk− n

)
(7)

The scaling and wavelet coefficients, represented by cam,n and cdm,n, respectively, are
obtained through a convolution chain of the original signal sequence x(k), along with the
level-adaptive low-pass filter

{
l1} and high-pass filter

{
h1}. These filters are size-varying

and adapt to the level of decomposition. The scaling coefficients provide an approximation
of the signal, while the wavelet coefficients provide detailed information [30]. One can
obtain the first scale and detail coefficients, ca1,n and cd1,n, of the SWT by convolving the
input signal x(k) with the low-pass filter

{
l1} and high-pass filter

{
h1}, respectively. The

calculation can be expressed as follows:

ca1,n(k) = ∑
k∈Z

l1(k− τ)x(τ) (8)

cd1,n(k) = ∑
k∈Z

h1(k− τ)x(τ) (9)

The above statement can be generalized to different coefficient scales by

cam,n(k) =
[
↑ 2m−1[l1] ∗ cam−1,n

]
= ∑

k∈Z
lm(k− τ)cam−1,n(τ) (10)

cdm,n(k) =
[
↑ 2m−1[h1] ∗ cam−1,n

]
= ∑

k∈Z
hm(k− τ)cam−1,n(τ) (11)

where ↑ 2m−1[l1] = lm(k) is the oversampling of the low-pass filter
{

lm−1(k)
}

coefficients,
while ↑ 2m−1[h1] = hm(k) is the oversampling of the high-pass filter

{
hm−1(k)

}
coefficients.

These coefficients are expressed as

lm(2k) = lm−1(k) (12)

lm(2k + 1) = 0 (13)

hm(2k) = hm−1(k) (14)

hm(2k + 1) = 0 (15)

It is evident from Equations (10) and (11) that the low-pass filter
{

l1} and the high-pass
filter

{
h1} are upsampled by a factor of two at each stage. As a result, the decomposition

coefficients, namely approximation and detail, have the same length KC as the original
signal x(k), where KC = 2m. This makes the output signal more accurate than the one
obtained with DWT.

In our study, we used the SWT, which is capable of characterizing texture properties
at multiple scales owing to its tight framework and fast iterative algorithm. The feature
groups for each wavelet family were obtained using three-level SWT, as shown in Figure 2.
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3.2. Multiresolution Analysis

It is possible to extract and classify features from signals in both the time domain
and the frequency domain. Multiresolution analysis (MRA) based on the SWT is highly
beneficial in extracting features from image signals. This approach can effectively separate
undesirable components, such as trends and noise, from signals [31]. The computation of
scaling and wavelet functions is utilized to analyze signals in both the time and frequency
domains. The scaling function, denoted by {ϕm,n(k)}, and the wavelet function, denoted
by {ψm,n(k)}, are defined by

ϕm,n(k) = 2−m/2 ϕ
(
2−mk− n

)
(16)

ψm,n(k) = 2−m/2ψ
(
2−mk− n

)
(17)

where m, n ∈ Z. In SWT, the components with a high scale and low frequency correspond
to the approximation coefficients {ϕ(k)}, whereas the components with a low scale and
high frequency correspond to the detail coefficients {ψ(k)}. These coefficients are expressed
by

ϕ(k) = ∑
k∈Z

l(k− 2n)x(k) (18)

ψ(k) = ∑
k∈Z

h(k− 2n)x(k) (19)

where l(k) and h(k) represent the coefficients of the low-pass filter and the high-pass filter,
respectively.

3.3. Wavelet Families

The subsections following this one introduce the biorthogonal, Coiflet, Daubechies,
Fejer–Korovkin, reverse biorthogonal, and symlet wavelet families that are utilized to
compute the low- and high-pass filter coefficients of the SWT. Two-dimensional SWT (2D-
SWT) with all the specified wavelet families was applied to the image set consisting of DR
disease classes. The row and column of the image are, respectively, represented by the
variables x and y. Horizontal, vertical, and diagonal directions correspond to ψH , ψV , and
ψD, respectively.
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3.3.1. Biorthogonal Wavelet

Biorthogonal wavelets possess a compactly supported symmetrical structure that is
not based on vanishing moments. In the biorthogonal scenario, there exist two scaling
functions

{
ϕ,
∼
ϕ
}

that can produce different MRA and correspondingly two distinct wavelet

functions
{

ψ,
∼
ψ
}

, instead of having only one scaling and wavelet function. The recursive
computations of the scaling function and mother wavelet for orthogonal wavelets are
denoted by [32]

ϕ(k) = 2∑
n

l0(n)ϕ(2k− n) (20)

∼
ϕ(k) = 2∑

n

∼
l 0(n)

∼
ϕ(2k− n) (21)

ψ(k) = 2∑
n

h1(n)ϕ(2k− n) (22)

∼
ψ(k) = 2∑

n

∼
h1(n)

∼
ϕ(2k− n) (23)

where dual scaling functions ϕ(k) and
∼
ϕ(k), as well as dual mother wavelet functions ψ(k)

and
∼
ψ(k), are related to a set of dual filter coefficients denoted by l0,

∼
l 0, h1, and

∼
h1.

In this study, the 2D-SWT with the biorthogonal wavelet family was applied to the
dataset consisting of DR disease classes. The scaling and wavelet functions of the ‘bior2.8’
wavelet, which provides the best classification performance for the biorthogonal wavelet
family used in the study, are given in Figure 3.
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classification performance for the biorthogonal wavelet family in the study.

3.3.2. Coiflet Wavelet

Coiflet wavelets are a family of wavelets introduced by Ingrid Daubechies. They
are derived from scaling functions, are orthogonal and compactly supported, and have
a high degree of smoothness, which make them useful in a variety of applications such
as image compression, denoising, feature extraction, and analysis of signals containing
sharp transitions or discontinuities [33]. The Coiflet wavelet of order N, denoted by ψ(k),
is defined as

ψ(k) =
2N−1

∑
n=0

l(n)ϕ(2k− n) (24)

where l(n) is the Coiflet scaling filter, and ϕ(k) is the scaling function. The scaling filter l(n)
is obtained from the low-pass filter coefficients of the Daubechies wavelet of order 2N − 2.

Coiflet wavelets are also characterized by their vanishing moments, which determine
how well they can represent functions with different degrees of smoothness. The Coiflet
wavelet of order N has 2N− 1 vanishing moments, which means it can accurately represent
polynomials of a degree up to 2N − 2. This property makes Coiflet wavelets particularly
useful for analyzing signals that have a mixture of smooth and oscillatory behaviors [34].
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In this study, the 2D-SWT with the Coiflet wavelet family was applied to the dataset
consisting of DR disease classes. The scaling and wavelet functions of the ‘coif5’ wavelet,
which provides the best classification performance for the Coiflet wavelet family used in
the study, are given in Figure 4.
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3.3.3. Daubechies Wavelet

The Daubechies wavelets are a family of orthonormal wavelets that are defined by
a set of scaling coefficients and wavelet coefficients. They are characterized by their
vanishing moments, which determine the degree of smoothness of the wavelet function.
The Daubechies wavelets satisfy the admissibility condition, which guarantees that they
form an orthonormal basis for L2(R), the space of square-integrable functions over the
real line. The filter coefficients for the Daubechies wavelets have finite support, meaning
that they are non-zero only on a finite interval. The number of non-zero coefficients is
2N − 1, where N is the order of the wavelet. The scaling function and wavelet function of
the Daubechies of order N have a support size in the range of [0, 2N − 1], while the scaling
function has 2N non-zero scaling coefficients. This property makes them particularly
useful for signal processing applications where a localized representation of the signal is
important [35].

The scaling function ϕ(k) and the wavelet function ψ(k) of the Daubechies wavelets
can be written as follows:

ϕ(k) =
√

2
N−1

∑
n=0

ln ϕ(2k− n) (25)

ψ(k) =
N−1

∑
n=0

(−1)nhN−1−n ϕ(2k− n) (26)

where N is the number of coefficients, and ln and hN−1−n are the scaling and wavelet coef-
ficients, respectively. These coefficients are determined by the Daubechies filter, which is a
set of coefficients that satisfy certain orthogonality and vanishing moment conditions [36].

In this study, the 2D-SWT with the Daubechies wavelet family was applied to the
dataset consisting of DR disease classes. The scaling and wavelet functions of the ‘db5’
wavelet, which demonstrated the highest classification performance in the Daubechies
wavelet family used in the study, are illustrated in Figure 5.
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3.3.4. Fejer–Korovkin Wavelet

The Fejer–Korovkin wavelet is characterized by a higher degree of symmetry com-
pared to Daubechies filters, although it is less smooth. It also has a frequency response
that is adequate as the support increases. These properties make it a useful tool for signal
processing and analysis. By using the MRA filter m0, the scaling function associated with
an MRA can be defined as

ϕ̂(ξ) =
∞

∏
j=1

m0(2−jξ) (27)

where ξ is the index of the vector, m0 is a trigonometric function, and the sufficient condition
for filter m0 satisfies

|m0(ξ)|2 + |m0(ξ + π)|2 = 1 (28)

and taking on the value 1 at 0, to be an MRA filter, m0 does not vanish on [−π/2, π/2].
The kernel function is described by

K(ξ) = 1 + π
N−1

∑
l=0

(−1)l(2l + 1)a1cos((2l + 1)ξ) (29)

where ξ is the index of the vector, and a1 is the sequence of coefficients. The relationship
between K(ξ) and m0 can be defined as

|mn
0 (ξ)|

2 =
1

2π

∫ π/2

−π/2
K(ξ − u)du (30)

where mn
0 has length n + 1 if n is odd and length n if n is even [37].

In this study, the dataset containing DR disease classes was subjected to 2D-SWT
using the Fejer–Korovkin wavelet family. Figure 6 illustrates the scaling and wavelet
functions of the ‘fk14’ wavelet, which achieved the best classification performance among
the Fejer–Korovkin wavelets used in the study.
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3.3.5. Reverse Biorthogonal Wavelet

Reverse biorthogonal wavelets are a type of wavelet that has become increasingly
popular in signal and image processing applications. They are closely related to biorthog-
onal wavelets, which are sets of wavelet functions that form a basis for the space of
square-integrable functions. The key difference between reverse biorthogonal wavelets and
biorthogonal wavelets is the order in which the scaling coefficients and wavelet coefficients
are computed during the wavelet transform. In biorthogonal wavelets, the scaling coef-
ficients and wavelet coefficients are computed in a particular order, and their associated
dual wavelets are used to reconstruct the original signal or image. In reverse biorthogonal
wavelets, the order of the computations is reversed, resulting in a different set of dual
wavelets that can be used for signal or image reconstruction.

A reverse biorthogonal wavelet pair
{∼

ψ(k),
∼
ϕ(k)

}
can be defined as the dual function

of a given biorthogonal wavelet pair {ψ(k), ϕ(k)}, where ψ(k) is the wavelet function, and
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ϕ(k) is the scaling function. Specifically, the reverse biorthogonal wavelet pair is defined as
follows: ∼

ψ(k) = (−1)kψ(1− k) (31)

∼
ϕ(k) = (−1)kϕ(1− k) (32)

One advantage of reverse biorthogonal wavelets is their ability to achieve nearly
perfect reconstruction of signals and images with a relatively small number of coefficients.
This makes them useful in applications such as image compression, where it is important
to represent the image using as few coefficients as possible. Another advantage of reverse
biorthogonal wavelets is their ability to provide high directional selectivity in image
processing applications. This makes them useful for tasks such as edge detection and
feature extraction [38].

In this study, 2D-SWT using the reverse biorthogonal wavelet family was applied
to the dataset containing DR disease classes. Figure 7 presents the scaling and wavelet
functions of the ‘rbior6.8’ wavelet achieving the best classification performance.
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3.3.6. Symlet Wavelet

Symlet wavelets were introduced to the literature by Daubechies [34] and are similar
in structure to Daubechies wavelets. They are known as orthogonal, biorthogonal, and
least asymmetrical wavelets. Daubechies made modifications to wavelets to increase the
symmetry of the wavelets while keeping the simplicity. While Daubechies wavelets have a
maximum phase, symlet wavelets have a minimum phase. Unlike Daubechies wavelets,
symlet wavelets have smoothed wavelet functions with near-zero moments [25]. Even
though symlet wavelets have a support size of 2N− 1 with N vanishing moments, they are
more symmetrical than Daubechies. Symlet wavelet coefficients for various filter lengths
were computed in [34].

The dataset consisting of DR disease classes was analyzed in this study using 2D-SWT
with the symlet wavelet family. The wavelet with the ‘sym5’ label, which provided the
most effective classification performance, is displayed in Figure 8, along with its scaling
and wavelet functions.
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3.4. Two-Dimensional Stationary Wavelet Transform (2D-SWT)

SWT-derived sub-signals maintain the original signal’s length and are insensitive to
translation, while also containing valuable information on the middle frequency range
that can aid in image segmentation. The 2D-SWT is a multiresolution analysis tool used to
decompose a 2D signal into different frequency bands. It is a type of DWT that is stationary
in nature, which means that the transformation retains the spatial coordinates of the original
image. The new image has the same resolution as the approximation signal at higher levels,
and shift invariance is achieved at the expense of redundant decomposition. Despite its
redundancy, the SWT has a low computational cost. Based on the aforementioned reasons,
the SWT was chosen for this study.

Assuming we have an image f (x, y) with dimensions M × N, we can define three
2D-wavelet functions ψH(x, y), ψV(x, y), and ψD(x, y) as

ψH(x, y) = ψ(x)ϕ(y) (33)

ψV(x, y) = ϕ(x)ψ(y) (34)

ψD(x, y) = ψ(x)ψ(y) (35)

representing the horizontal, vertical, and diagonal directions, respectively. The decomposi-
tion at level i in the 2D-SWT can be described as follows [39]:

cai+1(a, b) = ∑
j

∑
k

li
jl

i
kcai(a + j, b + k) (36)

cdH
i+1(a, b) = ∑

j
∑
k

hi
jl

i
kcai(a + j, b + k) (37)

cdV
i+1(a, b) = ∑

j
∑
k

li
jh

i
kcai(a + j, b + k) (38)

cdD
i+1(a, b) = ∑

j
∑
k

hi
jh

i
kcai(a + j, b + k) (39)

where a = 1, 2, 3, . . . , M, and b = 1, 2, 3, . . . , N. li
j and li

k are low-pass filters. hi
j and hi

k
are high-pass filters. cai and cai+1 are the low-frequency sub-band at levels i and i + 1,
respectively. The coefficients cdH

i+1, cdV
i+1, and cdD

i+1 correspond to the horizontal, vertical,
and diagonal detail components, respectively.

In this study, the three-level 2D-SWT with biorthogonal, reverse biorthogonal, Daube-
chies, Coiflet, symlet, and Fejer–Korovkin wavelet families was applied to the dataset
consisting of color fundus images to prevent information loss and reveal the characteris-
tic features. To capture the nonlinear dynamics of DR disease classes, 96 features were
extracted by applying entropy- and statistical-based feature functions to the resulting
12 image matrices. These features serve to represent the characteristics of the disease.

3.5. Chaotic Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computing algorithm inspired
by the social interactions of birds and their swarm behavior. In this algorithm, each bird
is represented by a particle, and a group of these particles form a swarm. By leveraging
its previous experiences, each particle adjusts its position toward the best position within
the swarm. The main objective of PSO is to bring individual positions in the swarm
closer to the best position found within the entire swarm. This process occurs randomly,
with individuals typically improving their positions with each iteration. The algorithm
continues until it reaches the target, continually refining the positions of the particles in the
swarm [40].
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In the PSO algorithm, a set of particles is randomly initialized within the search space.
Each particle represents a potential solution to the optimization problem and has its own
position vector, denoted as Xi, and velocity vector, denoted as Vi. The objective function is
used to evaluate the position of each particle, and the goal of PSO is to identify the set of
particle positions that optimize this function. The equation for updating the position of
particle i can be formulated as

Xi(t + 1) = Xi(t) + Vi(t + 1) (40)

where t is the current iteration, and t + 1 is the next iteration. The equation for updating
the velocity of particle i can be expressed as

Vi(t + 1) = ωVi(t) + c1r1(Pi(t)− Xi(t)) + c2r2
(

Pg(t)− Xi(t)
)

(41)

where ω is the inertia weight, r1 and r2 are random numbers between 0 and 1, and c1 and
c2 are the cognitive and social acceleration coefficients, respectively. For each iteration,
Pi specifies the best location the particle has ever visited, and the best position found by
the swarm is indicated by Pg. The inertia weight ω determines the balance between the
particle’s current velocity and its tendency to follow its previous direction of motion. A high
value of ω promotes global exploration, while a low value promotes local exploitation. The
acceleration coefficients c1 and c2 control the influence of the particle’s own best position
and the best position found by the swarm, respectively. The random numbers r1 and r2
introduce stochasticity into the algorithm and help the particles explore the search space.

The behavior of a chaotic system can be characterized by a phenomenon where even a
minor alteration in the initial condition results in nonlinear changes in future outcomes.
The system demonstrates diverse behaviors across different phases, including periodic
oscillations, stable fixed points, ergodicity, and bifurcations [41]. Chaos optimization, which
is among the latest search algorithms, primarily aims to transform variables from a chaotic
state to the solution space. The key rationale for employing the chaos optimization algo-
rithm in this research lies in its ability to avoid local minima and achieve fast convergence.
Utilizing chaos theory represents an effective and significant approach to surmounting
these challenges. In CPSO, the algorithm uses chaotic maps to enhance the exploration
and exploitation capabilities of the traditional PSO algorithm. The chaotic maps introduce
randomness and nonlinearity to the particle movements, allowing them to explore the
search space more effectively and escape from local optima. By incorporating chaotic maps
presented in Table 1 into the position and velocity updates, CPSO introduces additional
randomness and exploration into the search process, enabling the algorithm to escape
local optima and explore a larger portion of the solution space. It is important to note
the choice of the chaotic map, the length of the chaotic sequence, and the values of the
acceleration coefficients.

When employing CPSO in our model, we also considered the benefits offered by the
chaotic meta-heuristic optimization algorithm, including its simplicity, scalability, and
ability to reduce computation time. The behavior of the algorithm can be greatly influenced
by the selection of the chaotic map and scaling factor. It is important to note that various
chaotic maps may exhibit varying levels of effectiveness when applied to different types
of optimization problems. During our study, we evaluated all the chaotic maps listed in
Table 1, and ultimately, we chose to utilize the logistic map. This particular map showcases
the highest accuracy performance while requiring the fewest features.
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Table 1. Description of chaotic maps.

No Name Description Range

1 Logistic dt+1 = µdt(1− dt) and µ = 4 (0, 1)

2 Chebyshev dt+1 = cos
(
0.5cos−1dt

)
(−1, 1)

3 Sine dt+1 = sin(πdt) (0, 1)

4 Sinusoidal dt+1 = 2.3dt
2sin(πdt) (0, 1)

5 Singer dt+1 = 1.07
(

7.86dt − 23.31dt
2 + 28.75dt

3 − 13.302875dt
4
)

(0, 1)

6 Iterative dt+1 = sin
(

0.7π
dt

)
(−1, 1)

7 Circle dt+1 = mod
(

dt + 0.2−
(

0.5
2π

)
sin(2πdt), 1

)
(0, 1)

8 Tent dt+1 =

{
dt
0.7 f or dt < 0.7

10
3 (1− dt) f or dt ≥ 0.7 (0, 1)

9 Gauss/mouse dt+1 =

{
1 f or dt = 0
1

mod(dt ,1)
, otherwise (0, 1)

10 Piecewise dt+1 =


dt
0.4 f or 0 ≤dt < 0.4

dt−1
0.1 f or 0.4 ≤ dt < 0.5

0.6−dt
0.1 f or 0.5 ≤ dt < 0.6
1−dt
0.4 f or 0.6 ≤ dt < 1

(0, 1)

The addition of chaotic maps can enhance the exploration and exploitation capabilities
of the algorithm. The position update equation for particle i in CPSO can be written as

Xi(t + 1) = Xi(t) + Vi(t + 1) + Fi(t + 1) (42)

where Xi(t) is the position vector of particle i at iteration t, Vi(t + 1) is the velocity vector
of particle i at iteration t + 1, and Fi(t + 1) is the chaotic perturbation term. The chaotic
perturbation term is calculated using a chaotic map, such as the logistic map as follows:

Fi(t + 1) = C(randi(t + 1)− 0.5) (43)

where C is a scaling factor that controls the magnitude of the perturbation, and randi(t + 1)
is a random number generated by the chaotic map. The chaotic map generates a sequence
of numbers that are used to modify the particle updates, making them more diverse and
unpredictable. The velocity update equation for particle i in CPSO is similar to that of PSO,
except that the acceleration coefficients are also modified by the chaotic perturbation term:

Vi(t + 1) = ωVi(t) + c1r1(Pi(t)− Xi(t)) + c2r2
(

Pg(t)− Xi(t)
)
+ Fi(t + 1) (44)

where ω, r1, r2, c1, and c2 are the same as in PSO [41]. The first term in Equation (44)
represents the inertia of the particle, the second term represents the particle’s attraction to
its own best position, the third term represents the particle’s attraction to the best position
found by the swarm, and the fourth term represents the chaotic perturbation.

3.6. Classification Using Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM)

Each neuron in a neural network acts as a processing unit that receives input from
the output of its node. Before generating the output, each neuron undergoes a nonlinear
activation function. This activation function is crucial as it enables neural networks to
model nonlinear relationships. However, traditional neural models are limited in their
ability to simulate time relationships, as all data points are composed of fixed-length vectors.
This limitation reduces the processing effect of the model when there is a strong correlation
with the input phasor. To address this limitation, recurrent neural networks (RNNs) were
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introduced, which have the ability to explicitly model time by incorporating hidden-layer
feedback connections and adding across time points from the hidden layer.

Traditional neural networks lack a cyclic process in their intermediate layer. Given
a specified input sequence x0, x1, x2, . . ., xt, neurons process the data and produce cor-
responding outputs h0, h1, h2, . . ., ht. In each training iteration, there is no need for
information transfer between the neurons. However, RNNs differ in that they require
neurons to transfer information in each training iteration. During training, neurons use the
output of the previous neuron as input, similar to a recursive function. Figure 9 illustrates
the expanded form of the RNN, where A represents the hidden layer, xi denotes the input
vector, and hi indicates the hidden layer’s output. In Figure 9, the output of each hidden
layer is fed as input to the next hidden layer [42].
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Long short-term memory (LSTM) is a specific type of RNN that addresses the issue of
vanishing gradients, which can occur when training traditional RNNs on long sequences.
LSTM networks are capable of learning long-term dependencies in sequential data by intro-
ducing memory cells and gating mechanisms. The LSTM network is an architecture within
RNNs that can effectively capture order dependencies in nonlinear sequence prediction
problems. It exhibits the ability to retain information for extended periods. Instead of tradi-
tional hidden layers, the core component of the LSTM network is the memory cell. While
RNNs have recurrent cells, LSTM cells are equipped with input, output, and forget gates
that interact with the cell, in contrast to a single gate found in conventional RNNs. These
gates control the flow of information into and out of the cell, allowing the cell to remember
values over arbitrary time intervals. By considering the previous state, available memory,
and current input, the LSTM network can selectively activate and update cells [43]. One
significant advantage of LSTM networks is their ability to mitigate the vanishing gradient
problem that often arises in training conventional RNNs. The architecture depicted in
Figure 10 effectively addresses this issue, enabling the neural network to retain information
over long distances. Consequently, LSTM networks are highly suitable for tasks involving
time-series data, such as classification, processing, and making predictions, where sig-
nificant events in the series may be separated by unknown time intervals. Compared to
RNNs, hidden Markov models, and other sequence learning methods, LSTM networks
offer relative insensitivity to the duration of gaps, which proves advantageous in many
applications [44].

Figure 10 illustrates the process of determining new information to be incorporated
into the cell. This involves multiplying the input data with the output of the input gate.
Similarly, to calculate the information that can be propagated through the network, the
output data of the network is multiplied by the activation of the output gate. Additionally,
the decision of whether to forget the previous cell state is determined by multiplying the
cell states from the previous time step with the activation of the forget gate.
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The operational procedure of the LSTM can be described as follows. To start, let us
establish the notations employed in LSTM:

• xt represents the input at time step t.
• ht denotes the hidden state at time step t.
• Ct represents the cell state at time step t.
• Wxi, Wx f , Wxo, and Wxg denote the weight matrices for the input xt at time step

t associated with the input gate, forget gate, output gate, and candidate cell state,
respectively.

• Whi, Wh f , Who, and Whg represent the weight matrices for the hidden state ht−1 at time
step t− 1 associated with the input gate, forget gate, output gate, and candidate cell
state, respectively.

• bi, b f , bo, and bg denote the bias vectors for the input gate, forget gate, output gate,
and candidate cell state, respectively.

Let us delve into the equations that govern the operations of an LSTM network [45]:
At each time step, an LSTM cell receives an input vector xt and the hidden state vector

from the previous time step, ht−1. The LSTM cell performs a series of computations to
update its internal memory and produce an output for the current time step.

(i) Input gate (it)

The input gate controls how much of the current input xt and the previous hidden
state ht−1 should be stored in the cell state Ct. It is calculated using the sigmoid activation
function as

it = σ(Wxixt + Whiht−1 + bi) (45)

where σ denotes the sigmoid function.

(ii) Forget gate ( ft)

The forget gate determines how much of the previous cell state Ct−1 should be retained
or forgotten. It is calculated using the sigmoid activation function as

ft = σ(Wx f xt + Wh f ht−1 + b f ) (46)

(iii) Output gate (ot)

The output gate controls how much of the updated cell state Ct should be exposed as
the hidden state ht. It is calculated using the sigmoid activation function as

ot = σ(Wxoxt + Whoht−1 + bo) (47)
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(iv) Candidate cell state (
∼
Ct)

The candidate cell state represents the new information that can be added to the cell
state Ct. It is calculated using the hyperbolic tangent (tanh) activation function as

∼
Ct = tanh(Wxgxt + Whght−1 + bg) (48)

(v) Cell state update (Ct)

The cell state is updated by combining the previous cell state Ct−1 with the new

information from the input gate (it) and the candidate cell state (
∼
Ct). The update equation

is
Ct = ft

⊙
Ct−1 + it

⊙ ∼
Ct (49)

where
⊙

denotes element-wise multiplication.

(vi) Hidden state (ht)

The hidden state is the output of the LSTM at each time step and is based on the
updated cell state Ct. It is calculated by applying the tanh activation function to the cell
state (Ct) and multiplying it by the output gate (ot):

ht = ot
⊙

tanh(Ct) (50)

These equations govern the operations of an LSTM network. By incorporating memory
cells, input gates, forget gates, and output gates, LSTM networks can effectively capture
and utilize long-term dependencies in sequential data.

3.7. Performance Metrics for Classification

The dataset used in this study, consisting of color fundus images, is divided randomly
into two independent datasets: 80% for training and 20% for testing. To evaluate the per-
formance of the models created for DR disease classification, the study employs the 10-fold
cross-validation method. The performance of each classification model is calculated by av-
eraging the accuracy values obtained from each fold. The study measures the performances
of all classification models on the test data using the metrics defined in Equations (51)–(54).
These metrics, which are derived from the confusion matrix, utilize the symbols TP (true
positives), FP (false positives), TN (true negatives), and FN (false negatives).

Accuracy =
TP + TN

TP + TN + FP + FN
, (51)

Precision =
TP

TP + FP
, (52)

Recall =
TP

TP + FN
, (53)

F1− score =
2× Recall × Precision

Recall + Precision
. (54)

Accuracy is a metric used to measure how often a classifier makes correct predictions.
It is calculated by dividing the number of correct predictions by the total number of
predictions. Accuracy provides an overall assessment of the classifier’s performance.
Precision is the ratio of correctly predicted positive samples to the total number of positive
predictions made by the classifier. It is calculated by dividing the number of true positive
predictions by the sum of true positives and false positives. Precision reflects the classifier’s
ability to make accurate positive predictions. Recall, also known as sensitivity, is a measure
of the proportion of actual positive samples that are correctly identified as positive by
the classifier. It is calculated by dividing the number of true positive predictions by the
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sum of true positives and false negatives. Recall indicates the classifier’s ability to identify
positive samples correctly. F1− score combines both recall and precision into a single
metric. It is the harmonic mean of recall and precision and provides a balanced assessment
of the classifier’s performance. F1− score is particularly useful when there is an imbalance
between the number of positive and negative samples in the dataset [46].

3.8. Framework of the Proposed DR Disease Classification Model

In this study, we propose a robust hybrid model that can classify DR disease with
low computational cost, minimum model complexity, and high accuracy by dealing with
nonlinear dynamics in the image. The framework of the proposed model is illustrated in
Figure 11, and the processing steps are briefly outlined below.

Step 1: Data preparation involves randomly dividing the dataset, which contains
images from each DR disease class, as well as the healthy class, into two independent
datasets. Eighty percent of the data is allocated for the training phase, while the remaining
twenty percent is reserved for the test phase. Fractal analysis is used to uncover the
presence of chaos in the images belonging to each DR disease class, as well as the healthy
class.

Step 2: Employing 2D-SWT for signal processing, the feature groups are obtained for
each wavelet family by applying 2D-SWT using biorthogonal, Coiflet, Daubechies, Fejer–
Korovkin, reverse biorthogonal, and symlet wavelet families to the dataset that comprises
images from each DR disease class, as well as the healthy class. Following a three-level
decomposition, a total of 12 image matrices are derived, consisting of vertical, horizontal,
diagonal, and approximate matrices.

Step 3: The feature extraction process includes extracting entropy- and statistical-based
features from the vertical, horizontal, diagonal, and approximate matrices obtained through
2D-SWT. The following eight features, namely entropy, Renyi entropy, Shannon entropy,
energy, arithmetic mean, standard deviation, kurtosis, and skewness, are applied to these
four matrices. This procedure is repeated for the second- and third-level decomposition
in 2D-SWT. As a result of this step, a total of 96 features are extracted. These extracted
features encompass the nonlinear dynamics that represent the classes of DR disease.

Step 4: In the feature selection stage using CPSO-kNN, a wrapper approach is utilized,
combining the CPSO and kNN algorithms, to select features that minimize computational
complexity, address chaos in fundus images, and ensure high model performance. The
fitness function is constructed to meet these criteria. The effectiveness of various chaotic
maps is tested to enhance the convergence speed and optimal solution of the optimization
algorithm, and the most suitable one is integrated into the optimization process to achieve
the highest classification accuracy with the least number of features. The extracted features
for each wavelet family are subjected to normalization, and the most appropriate ones are
selected.

Step 5: In the classification stage with RNN-LSTM, the selected optimum feature
vectors are finally fed into the RNN-LSTM for classifying DR disease sub-types like PDR,
mild NPDR, moderate NPDR, and severe NPDR, as well as healthy cases. The classification
performance of the model is evaluated using metrics such as accuracy, precision, recall, and
F1-score, and its effectiveness is compared to the SVM classifier.
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4. Results and Discussion

This section includes studies that exhibit the classification effectiveness of the proposed
model on a dataset comprising color fundus images. The dataset contains disease classes
such as mild NPDR, moderate NPDR, severe NPDR, and PDR, as well as the healthy class.
The presence of chaos in the dataset is revealed by fractal dimension analysis. The proposed
model involves a three-level 2D-SWT technique based on the ‘bior2.8’ wavelet family, the
CPSO and kNN wrapper approach based on the logistic chaotic map, and the RNN-LSTM
network. The impact of the features selected through the chaotic wrapper approach on the
model’s performance is analyzed for each wavelet family. The performance of our model
built with the RNN-LSTM network is compared with the performance of the model built
with SVM.

4.1. Dataset

In this study, an experimentally prepared publicly available dataset for DR classifi-
cation known as APTOS 2019 was used [47]. The dataset comprises color fundus images
categorized into five classes, namely healthy, mild NPDR, moderate NPDR, severe NPDR,
and PDR, as depicted in Figure 12. The dataset was split into two groups using the holdout
method: 80% of the data was allocated for the training phase, while the remaining 20% was
reserved for the test phase. This division was performed randomly and independently. The
training dataset consists of 10,000 color fundus images, with 2000 images from each class,
while the test dataset consists of 2500 color fundus images, with 500 images from each class.
In total, 12,500 color fundus image data were employed for the study. The size of each
image in the dataset was reduced to 512× 512 pixels in order to overcome the problems of
limited memory and computational cost during the training phase of the model.
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4.2. Fractal Dimension Analysis with Fourier Power Spectrum

The lesions and vessels in the original color fundus image were revealed using the
green channel image. The aim here is to enhance the visibility of surface density in
both lesions and vessels. Fractal theory can be employed to assess surface intensity by
representing pixels that exhibit self-similarity across various scales. In the absence of
lesions, the fractal dimension of the surface is smaller compared to a surface that includes
lesions.

The fractal pattern present in the image is identified by the fractal dimension derived
from the Fourier power spectrum. The fractal Fourier method is used to determine the
fractal dimension of an image. Fast Fourier transform is applied to the images in 24 different
directions, using 30-degree angles. The resulting average power spectrum (F) is a function
of frequency ( f ). This function satisfies the following relationships:

F ∝ f 2−β (55)

β = 2Hn + 2 (56)

where Hn represents the Hurst coefficient [48]. The curve of the resulting power spectrum
versus frequency is plotted on a log-log scale for each class in Figure 13. Here, a curve is
fitted using linear regression versus the plotted curve, and β is obtained from the slope
of this curve. The fractal dimension (FD) of the image is calculated using the obtained β
value as follows:

FD =
6 + β

2
(57)

A total of 24 slopes are derived from the graphs presented in Figure 13, as 24 different
directions are utilized in power spectrum analysis. The average of these 24 slopes is then
calculated to determine the fractal dimension for each class using Equation (57). The
measured fractal dimensions for each class are as follows: 1.49 for the healthy, 1.58 for
mild NPDR, 1.62 for moderate NPDR, 1.72 for severe NPDR, and 1.79 for PDR. When
Figure 13 and the measured fractal dimensions are evaluated together, it is observed that
the fractal dimension increases depending on the severity of the disease. The increase
in fractal dimension indicates an increase in the complexity of the image. The obtained
findings indicate that the dataset utilized exhibits fractal behavior and reveals the existence
of nonlinear dynamics that vary based on the severity of the disease.

4.3. Feature Extraction Applying 2D-SWT with Wavelet Families

The features of DR diseases are extracted using 2D-SWT with various wavelet families,
including biorthogonal, Coiflet, Daubechies, Fejer–Korovkin, reverse biorthogonal, and
symlet. The filter lengths for each wavelet family are specified in Table 2. The original image
matrix of size 512× 512 pixels undergoes a three-level decomposition. This decomposition
yields image matrices for vertical, horizontal, diagonal, and approximation coefficients for
each wavelet family. It is noted that the size of the resulting image matrices is 512× 512.

Table 2. Wavelet families with filter parameters.

Wavelet Family Filter Length

Biorthogonal (1.) 1, 3, 5, (2.) 2, 4, 6, 8, (3.) 1, 3, 5, 7, 9, (4.) 4, (5.) 5, (6.) 8
Coiflet 1, 2, 3, 4, 5
Daubechies 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Fejer–Korovkin 4, 6, 8, 14, 18, 22
Reverse biorthogonal (1.) 1, 3, 5, (2.) 2, 4, 6, 8, (3.) 1, 3, 5, 7, 9, (4.) 4, (5.) 5, (6.) 8
Symlet 2, 3, 4, 5, 6, 7, 8
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In the study, entropy- and statistical-based features were utilized to achieve accurate
classification of DR diseases. The entropy- and statistical-based features listed in Table 3
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were applied to the image matrices, I =
{

IV
1 , IH

1 , ID
1 , IA

1 , IV
2 , IH

2 , ID
2 , IA

2 , IV
3 , IH

3 , ID
3 , IA

3
}

, ob-
tained from the first-, second-, and third-level decompositions for each wavelet family. A
total of 96 features were extracted, and each feature was labeled as shown in Table 4.

Table 3. Index labels corresponding to features extracted from image matrices.

F1 F2 F3 F4 F5 F6 F7 F8

IV
1 1 2 3 4 5 6 7 8

IH
1 9 10 11 12 13 14 15 16

ID
1 17 18 19 20 21 22 23 24

IA
1 25 26 27 28 29 30 31 32

IV
2 33 34 35 36 37 38 39 40

IH
2 41 42 43 44 45 46 47 48

ID
2 49 50 51 52 53 54 55 56

IA
2 57 58 59 60 61 62 63 64

IV
3 65 66 67 68 69 70 71 72

IH
3 73 74 75 76 77 78 79 80

ID
3 81 82 83 84 85 86 87 88

IA
3 89 90 91 92 93 94 95 96

Table 4. Entropy- and statistical-based features with their mathematical representations.

Label Feature Name Mathematical Representation

F1 Arithmetic mean mean = 1
m×n

m
∑
x

n
∑
y

∣∣∣Ii
j(x, y)

∣∣∣
F2 Entropy entropy =

m
∑
x

n
∑
y

Ii
j(x, y)log

∣∣∣Ii
j(x, y)

∣∣∣
F3 Standard deviation std =

√
1

m×n

m
∑
x

n
∑
y

(∣∣∣Ii
j(x, y)

∣∣∣−mean
)2

F4 Skewness skw = 1
m×n

m
∑
x

n
∑
y

( ∣∣∣Ii
j (x,y)

∣∣∣−mean
std

)3

F5 Kurtosis krts = 1
m×n

m
∑
x

n
∑
y

( ∣∣∣Ii
j (x,y)

∣∣∣−mean
std

)4

F6 Energy energy =

√
m
∑
x

n
∑
y

(
Ii
j(x, y)

)2

F7 Shannon entropy
shn_entropy =

−
m
∑
x

n
∑
y
P
(

Ii
j(x, y)

)
ln
(
P
(

Ii
j(x, y)

))
F8 Renyi entropy rny_entropy = 1

1−α ln

(
m
∑
x

n
∑
y

(
P
(

Ii
j(x, y)

))α
)

4.4. Feature Selection with CPSO-kNN

The 2D-SWT method is utilized to generate 12 image matrices and extract features.
Prior to directly employing these feature groups in the classification stage, it is crucial to
identify the most suitable subset of features that can maintain high performance while
minimizing model complexity. Inspired by the social interactions and swarm behavior
of birds, the CPSO algorithm is used to select the most suitable features for each wavelet
family from the normalized feature set with the help of chaotic maps. This selection process
aims to maintain the high performance of the kNN classifier. This selection process is
guided by the fitness function denoted as

f itness = µ× er + σ×
(

selected f eature subset
total number o f f eatures

)
(58)
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where er represents the classification error of the kNN classifier. The significance of classi-
fication quality and subset length is represented by µ and σ, respectively. In this context,
µ takes values between 0 and 1, while σ is calculated as (1− µ). The fitness function
takes into account both the number of features utilized in the model and the model’s
performance. By considering these factors, the fitness function aims to minimize model
complexity and computational cost. The parameter values for the CPSO-kNN wrapper
approach employed in the study are provided in Table 5. It is important to highlight that
the feature selection process in the models constructed for each wavelet family is conducted
based on the parameter values outlined in Table 5.

Table 5. Parameter values of CPSO-kNN used for feature selection.

Parameters Value

total number of solutions 200
total number of features 96
total number of iterations 100
threshold 0.5
cognitive factor 2
social factor 2
inertia weight 0.99

fitness function maximization of classifier performance and minimization of
the number of selected features

The number of features selected during iteration for the wavelet families with the
highest performance with the CPSO-kNN wrapper approach is illustrated in Figure 14.
It can be said that the best performance is obtained for the ‘bior2.8’ wavelet family. As
the iteration progresses, it is observed that the number of selected features decreases. It
is noteworthy that the convergence speed of CPSO in selecting features that maintain
high model performance is higher compared to other wavelet families when extracting
features using the ‘bior2.8’ wavelet family. It should be noted that this condition reduces
the complexity of the model.
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The heat map in Figure 15 shows the percentage of total selection rates for the best
feature groups obtained from the biorthogonal, Coiflet, Daubechies, Fejer–Korovkin, re-
verse biorthogonal, and symlet wavelet families after 100 iterations in CPSO. The analysis
of the 12 image matrices obtained from 2D-SWT reveals that the highest number of features
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was extracted from IH
1 , IH

2 , and ID
2 for the biorthogonal wavelet family, IV

1 , IH
1 , and IH

2 for
the Coiflet wavelet family, ID

1 and IA
2 for the Daubechies wavelet family, IH

2 and ID
2 for the

Fejer–Korovkin wavelet family, IV
1 , IH

1 , ID
2 , and ID

3 for the reverse biorthogonal wavelet
family, and ID

1 for the Symlet wavelet family.
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ing wavelet families: (a) biorthogonal, (b) Coiflet, (c) Daubechies, (d) Fejer–Korovkin, (e) reverse
biorthogonal, and (f) symlet.
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The feature F4, which is one of the statistical-based features, is selected in at least 25%
of all wavelet families. In addition to the F4 feature, F1, F2, and F5 for the biorthogonal,
F3, F5, and F7 for the Coiflet, F2 and F5 for the Daubechies, F2, F3, F5, F7, and F8 for the
Fejer–Korovkin, F1, F3, F5, F6, F7, and F8 for the reverse biorthogonal, and F5 and F8 for the
symlet are selected in at least 10%. However, in the DR disease model, the feature F8 for
the biorthogonal wavelet family, F1 for the Coiflet wavelet family, F3 for the Daubechies
wavelet family, F1 for the Fejer–Korovkin wavelet family, F2 for the reverse biorthogonal
wavelet family, and F2 for the symlet wavelet family are employed the least. The selection
rate for these features ranges approximately between 6% and 8%.

4.5. Evaluation and Discussion of Classification Models

All the models discussed in the study were executed on a personal computer equipped
with an Intel Core i7-12700H CPU, a 6 GB NVIDIA GeForce RTX 3060 graphics card, and
16 GB of RAM. All the codes were compiled using MATLAB 2022b. The models developed
in the study were tested on a dataset of 2500 samples belonging to five different classes.
Each model was run 50 times, and the performance was evaluated in terms of mean and
standard deviation. The study investigated the influence of both the optimization algorithm
and the classifier algorithms on the performance of the model. The parameter values for
the proposed classifier algorithm are provided in Table 6.

Table 6. Parameter values of LSTM for classification.

Parameters Value

number of hidden units 100
fully connected layer 5
output mode last
state activation function tanh
gate activation function hard-sigmoid
optimization algorithm Adam
maximum number of epochs 200
minimum batch size 32
initial learning rate 0.01
gradient threshold 1

The effect of using the CPSO algorithm with the 10 chaotic maps listed in Table 1 on
the performance of the model was investigated. The wavelet family that yielded the best
performance for each chaotic map is presented in Table 7. Models built using selected
features extracted from the reverse biorthogonal wavelet family, utilizing Chebyshev, circle,
and piecewise chaotic maps, demonstrate the highest performance for the respective maps.
Similarly, models built using selected features extracted from the biorthogonal wavelet
family utilizing iterative, logistic, and sine chaotic maps exhibit the highest performance for
the respective maps. Furthermore, models built using selected features extracted from the
Coiflet wavelet family, with Gauss and tent chaotic maps, as well as models created using
selected features extracted from the Daubechies wavelet family, with singer and sinusoidal
chaotic maps, demonstrate the highest performance for the respective maps. Notably, it
is observed that there are no models utilizing features extracted from the Fejer–Korovkin
and symlet wavelet families that achieve the highest performance among chaotic maps.
The performance of models constructed using RNN-LSTM stands out, exceeding the 99%
threshold for all chaotic maps. However, the performance of the models built with SVM
is around 94% to 98%. Among all the models created in the study, the architecture that
shows the superior performance is the one that feeds RNN-LSTM with selected features
generated from the ‘bior2.8’ wavelet family, using the logistic-chaotic-map-based CPSO-
kNN approach.
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Table 7. The wavelet families that demonstrate the best performance for each chaotic map.

Maps Wavelet Family LSTM
(%)

SVM
(%)

Chebyshev rbior2.6 99.32 ± 0.12 94.80 ± 0.40

Circle rbior2.2 99.44 ± 0.34 95.76 ± 0.36

Gauss coif1 99.44 ± 0.24 97.84 ± 0.04

Iterative bior2.4 99.48 ± 0.28 98.36 ± 0.36
Logistic bior2.8 99.64 ± 0.04 96.32 ± 0.32
Piecewise rbior6.8 99.36 ± 0.36 96.56 ± 0.16

Sine bior2.4 99.40 ± 0.20 98.04 ± 0.24

Singer db5 99.40 ± 0.20 96.12 ± 0.08

Sinusoidal db5 99.44 ± 0.04 96.84 ± 0.24

Tent coif4 99.56 ± 0.36 96.72 ± 0.52

The performance of the RNN-LSTM and SVM classification models, which were
created using features selected by the CPSO-kNN wrapper approach based on the logistic
chaotic map, was evaluated based on the accuracy metric. The corresponding results
are presented in Table 8. When examining all the models in Table 8 in terms of the
accuracy performance metric, it is observed that the model including the three-level 2D-
SWT technique based on the ‘bior2.8’ wavelet family, the wrapper approach consisting
of logistic-chaotic-map-based CPSO and kNN, and the RNN-LSTM network exhibited
the highest performance. Therefore, this model is proposed for DR disease classification.
The performance of the proposed model was measured as 99.64%. Furthermore, the low
standard deviation confirms the robustness of the model.

Table 8. Comparison of the performance of RNN-LSTM and SVM classifiers for features selected by
CPSO-kNN.

Wavelet
Family

Number of
Selected Features Selected Features

Accuracy (%)

RNN-LSTM SVM

Bi
or

th
og

on
al

1.1 13 12, 19, 46, 50, 52, 53, 58, 74, 84, 88, 92, 94, 96 98.88 ± 0.08 95.52 ± 0.28

1.3 17 3, 4, 5, 13, 17, 18, 31, 32, 44, 46, 52, 70, 78, 82, 84, 88, 92 98.24 ± 1.04 92.88 ± 0.32

1.5 15 12, 24, 25, 42, 44, 46, 53, 60, 73, 79, 83, 84, 89, 92, 96 98.16 ± 0.16 94.88 ± 0.08

2.2 16 4, 9, 12, 18, 32, 37, 47, 61, 66, 67, 70, 71, 74, 76, 81, 87 99.16 ± 0.16 95.60 ± 0.20

2.4 18 3, 4, 9, 12, 14, 15, 18, 20, 27, 28, 32, 36, 45, 54, 70, 72, 92, 93 98.84 ± 0.24 95.56 ± 0.04

2.6 14 4, 5, 11, 12, 18, 23, 51, 53, 55, 60, 68, 76, 83, 89 99.00 ± 0.02 96.28 ± 0.08
2.8 14 1, 7, 9, 12, 15, 58, 61, 69, 71, 74, 76, 89, 92, 93 99.64 ± 0.04 96.32 ± 0.32
3.1 14 3, 8, 11, 18, 20, 23, 28, 30, 33, 49, 52, 75, 81, 96 97.68 ± 0.12 91.12 ± 0.12

3.3 16 7, 20, 21, 29, 44, 46, 48, 52, 60, 75, 79, 81, 85, 90, 91, 94 98.72 ± 0.12 95.68 ± 0.28

3.5 17 2, 7, 9, 12, 16, 20, 27, 37, 44, 47, 52, 54, 60, 61, 74, 81, 90 98.88 ± 0.12 95.28 ± 0.08

3.7 18 10, 18, 20, 21, 25, 28, 44, 52, 53, 57, 59, 62, 63, 71, 75, 76, 86, 93 98.64 ± 0.04 94.08 ± 0.08

3.9 14 3, 4, 10, 20, 27, 28, 34, 37, 44, 52, 53, 78, 89, 92 98.72 ± 0.12 94.60 ± 0.01

4.4 16 8, 14, 20, 23, 25, 36, 37, 40, 44, 45, 50, 60, 71, 76, 78, 85 99.20 ± 0.02 97.60 ± 0.02

5.5 19 4, 9, 14, 18, 36, 38, 42, 49, 52, 57, 68, 72, 75, 76, 80, 81, 85, 92, 96 99.00 ± 0.20 94.20 ± 0.20

6.8 13 2, 12, 26, 28, 32, 42, 44, 47, 53, 61, 62, 67, 82 99.12 ± 0.32 96.20 ± 0.40
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Table 8. Cont.

Wavelet
Family

Number of
Selected Features Selected Features

Accuracy (%)

RNN-LSTM SVM

C
oi

fle
t

1 14 4, 5, 11, 12, 23, 35, 44, 58, 74, 79, 80, 92, 93, 96 99.32 ± 0.12 98.24 ± 0.24

2 18 4, 12, 20, 21, 25, 44, 47, 48, 58, 63, 64, 67, 68, 73, 75, 87, 93, 95 98.88 ± 0.08 93.68 ± 0.68

3 14 2, 3, 12, 17, 30, 32, 36, 44, 55, 59, 76, 84, 92, 95 99.12 ± 0.72 95.48 ± 0.28

4 13 4, 6, 9, 20, 44, 53, 58, 61, 64, 66, 85, 86, 92 98.76 ± 0.96 94.48 ± 0.08

5 17 4, 7, 12, 18, 28, 29, 31, 51, 52, 54, 62, 73, 78, 91, 93, 94, 96 99.36 ± 0.16 95.48 ± 0.32

D
au

be
ch

ie
s

1 13 16, 20, 27, 29, 30, 33, 34, 43, 44, 53, 60, 84, 87 99.04 ± 0.04 95.04 ± 0.04

2 16 4, 9, 10, 12, 22, 23, 25, 27, 36, 37, 44, 48, 50, 60, 84, 96 99.12 ± 0.12 96.68 ± 0.48

3 13 7, 12, 20, 37, 56, 58, 60, 70, 71, 74, 76, 82, 84 98.32 ± 0.12 87.56 ± 0.56

4 13 20, 28, 44, 52, 53, 58, 67, 69, 74, 76, 79, 80, 85 98.64 ± 0.64 92.20 ± 0.02

5 18 4, 5, 10, 12, 14, 17, 20, 29, 50, 52, 55, 58, 60, 65, 66, 70, 85, 86 99.28 ± 0.48 96.32 ± 0.32

6 13 4, 20, 28, 30, 42, 44, 52, 69, 80, 88, 89, 93, 96 99.00 ± 0.01 97.72 ± 0.12

7 19 3, 12, 17, 19, 20, 25, 26, 32, 50, 52, 55, 58, 60, 61, 65, 72, 82, 84, 93 98.72 ± 0.97 95.52 ± 0.12

8 13 4, 5, 8, 9, 12, 57, 59, 60, 68, 79, 84, 93, 96 98.32 ± 0.32 95.04 ± 0.24

9 13 2, 4, 5, 19, 52, 53, 54, 57, 58, 60, 61, 69, 72 99.16 ± 0.36 97.40 ± 0.20

10 13 6, 8, 10, 20, 27, 41, 44, 65, 68, 86, 92, 93, 95 97.48 ± 0.48 91.00 ± 0.20

Fe
je

r–
K

or
ov

ki
n

4 19 3, 5, 7, 10, 15, 17, 18, 24, 38, 46, 52, 60, 67, 73, 77, 83, 84, 85, 88 98.40 ± 0.01 94.20 ± 0.01

6 13 2, 4, 8, 12, 22, 28, 37, 38, 44, 46, 52, 72, 79 98.56 ± 0.24 92.60 ± 0.40

8 15 6, 7, 12, 16, 26, 33, 37, 51, 52, 58, 60, 68, 82, 87, 96 98.40 ± 0.60 94.00 ± 0.40

14 14 2, 3, 20, 31, 38, 42, 44, 49, 50, 53, 61, 76, 80, 92 99.28 ± 0.08 96.68 ± 0.28

18 14 3, 4, 5, 13, 20, 44, 48, 69, 74, 76, 84, 91, 92, 95 99.00 ± 0.20 96.20 ± 0.20

22 13 4, 7, 11, 19, 28, 30, 44, 52, 59, 65, 81, 87, 96 98.44 ± 0.44 95.32 ± 0.28

R
ev

er
se

Bi
or

th
og

on
al

1.1 13 2, 3, 15, 52, 62, 65, 66, 69, 71, 76, 80, 84, 85 97.56 ± 0.36 95.20 ± 0.20

1.3 13 3, 12, 20, 38, 51, 52, 60, 73, 83, 84, 85, 86, 93 97.80 ± 0.01 92.60 ± 0.20

1.5 17 2, 4, 10, 17, 20, 23, 25, 27, 33, 39, 43, 47, 52, 54, 69, 84, 92 98.32 ± 0.32 94.40 ± 0.20

2.2 13 6, 12, 24, 32, 41, 47, 50, 58, 65, 68, 72, 84, 92 98.88 ± 0.28 94.28 ± 0.08

2.4 17 4, 5, 6, 8, 9, 11, 15, 22, 27, 31, 35, 36, 52, 65, 76, 89, 95 98.96 ± 0.04 94.36 ± 0.36

2.6 16 12, 15, 16, 21, 22, 29, 37, 44, 45, 68, 70, 72, 88, 91, 94, 95 98.96 ± 0.36 95.08 ± 0.52

2.8 13 9, 12, 18, 21, 28, 32, 44, 52, 59, 65, 68, 88, 94 98.72 ± 0.72 93.32 ± 0.32

3.1 13 5, 11, 13, 31, 35, 41, 48, 52, 57, 60, 71, 82, 84 98.08 ± 0.08 93.04 ± 0.04

3.3 16 2, 4, 10, 23, 28, 31, 40, 41, 49, 55, 71, 76, 82, 84, 88, 93 98.32 ± 0.08 94.84 ± 0.04

3.5 16 7, 16, 19, 31, 33, 37, 41, 44, 53, 60, 72, 74, 75, 76, 77, 88 97.68 ± 0.12 91.52 ± 0.12

3.7 21 4, 7, 8, 10, 18, 20, 23, 28, 30, 32, 37, 38, 39, 44, 46, 48, 53, 75, 83, 85, 91 98.20 ± 0.01 93.76 ± 0.24

3.9 15 1, 3, 4, 16, 19, 20, 26, 37, 48, 57, 60, 63, 69, 75, 88 98.56 ± 0.16 93.44 ± 0.44

4.4 14 4, 12, 14, 22, 28, 45, 55, 60, 62, 69, 74, 76, 83, 86 99.20 ± 0.40 96.84 ± 0.44

5.5 14 2, 4, 6, 12, 17, 25, 31, 35, 38, 41, 43, 68, 84, 88 98.64 ± 0.24 94.84 ± 0.04

6.8 19 12, 22, 25, 26, 27, 28, 32, 36, 40, 52, 54, 62, 72, 75, 77, 78, 80, 89, 95 99.24 ± 0.24 96.00 ± 0.40
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Table 8. Cont.

Wavelet
Family

Number of
Selected Features Selected Features

Accuracy (%)

RNN-LSTM SVM

Sy
m

le
t

2 13 4, 16, 26, 36, 53, 56, 61, 65, 69, 76, 87, 92, 94 98.64 ± 0.64 96.96 ± 0.36

3 16 3, 19, 20, 29, 31, 53, 60, 69, 71, 73, 76, 77, 84, 85, 92, 95 98.20 ± 1.40 94.68 ± 0.28

4 15 12, 20, 28, 32, 37, 40, 41, 44, 56, 57, 65, 70, 82, 85, 95 98.48 ± 0.32 93.40 ± 0.40

5 19 4, 7, 8, 17, 19, 20, 34, 37, 39, 42, 46, 61, 64, 67, 68, 85, 88, 91, 92 98.96 ± 0.36 94.48 ± 0.12

6 18 9, 12, 20, 22, 28, 32, 34, 37, 39, 44, 53, 55, 72, 74, 76, 85, 86, 94 98.68 ± 0.12 94.08 ± 0.08

7 15 4, 13, 20, 23, 46, 48, 56, 57, 59, 60, 67, 74, 84, 85, 90 98.48 ± 0.32 92.32 ± 0.08

8 15 4, 14, 20, 27, 28, 30, 36, 43, 44, 49, 52, 53, 61, 84, 96 98.56 ± 0.04 95.40 ± 0.40

Fourteen subsets of features generated from the 2D-SWT technique based on the
‘bior2.8’ wavelet family were selected for the proposed classification model of DR disease
using the CPSO-kNN wrapper approach. Among the selected features for the proposed
model, it is observed that arithmetic mean, skewness, kurtosis, and Shannon-entropy-based
features are the most frequently selected. Additionally, it is noteworthy that half of the
selected features were extracted from the third-level decomposition. This finding provides
an explanation for why three-level decomposition was utilized in the study. The selection
of the least number of features while achieving the highest classification performance with
the proposed model structure also demonstrates the capability of the optimization process
to cope with nonlinear dynamics.

The confusion matrix for the proposed RNN-LSTM and SVM classifiers in the study,
depicting the classification of healthy, mild NPDR, moderate NPDR, severe NPDR, and
PDR, is presented in Figure 16. When examining Figure 16, it can be observed that the
model built with the RNN-LSTM classifier achieves a classification performance of 99.8%
for healthy cases, 99.8% for mild NPDR, 99.4% for moderate NPDR, 99.8% for severe NPDR,
and 99.4% for PDR. On the other hand, the model built with the SVM classifier achieves
a classification performance of 93.4% for healthy cases, 99.0% for mild NPDR, 96.8% for
moderate NPDR, 96.0% for severe NPDR, and 96.4% for PDR. It can be said that the model
constructed with the SVM classifier misclassified color fundus images into two or more
incorrect classes for each class, indicating a serious threat to the reliability of the model.

The performance of models constructed with the RNN-LSTM and SVM classifiers for
the ‘bior2.8’ wavelet family and logistic chaotic map was evaluated using multiple metrics
such as precision, recall, F1-score, and accuracy. These results are provided in Table 9.

Table 9. Comparison of the performance of classifiers for the proposed wavelet family and chaotic
map using multiple metrics including precision, recall, F1-score, and accuracy.

Wavelet Chaotic Map Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)

bior 2.8 logistic LSTM 99.64 99.64 99.64 99.64
SVM 96.32 96.37 96.32 96.35

The results in Table 9 demonstrate that the proposed DR disease classification model
effectively handles nonlinear dynamics and exhibits superior performance in terms of
all metrics used in the study. Experimental findings indicate that our model, with low
computational complexity, accurately classifies DR disease grades with high performance.
This confirms the feasibility of applying our model in real-time scenarios.
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5. Conclusions

The development of an effective and accurate model for diagnosing and classifying DR
disease is of utmost importance in order to prevent irreversible vision loss and blindness in
diabetic patients. This study addresses this critical issue by proposing a robust AI-based
model that overcomes the nonlinear dynamics of DR through low computational com-
plexity and high classification accuracy. The proposed model follows a four-stage process
incorporating fractal analysis, 2D-SWT, feature extraction using entropy and statistical
functions, a chaotic-based wrapper approach, and an RNN-LSTM architecture. Several
significant contributions are highlighted in this study. Fractal analysis is utilized to identify
chaos in the images of each DR disease class and healthy cases. The application of the 2D-
SWT helps extract feature groups for each wavelet family, revealing characteristic features
of DR disease. Entropy- and statistical-based features are then extracted from the image
matrices obtained through 2D-SWT, capturing the nonlinear dynamics representing the DR
disease classes. To select features that maintain high model performance while minimizing
computational complexity and addressing chaoticity in color fundus images, a wrapper
approach combining CPSO and kNN algorithms is employed. The effectiveness of various
chaotic maps is evaluated, and the most suitable one is integrated into the optimization
process to achieve the highest classification accuracy with minimal features. Finally, the
RNN-LSTM architecture is utilized for classifying DR disease sub-types and healthy cases.
The proposed model’s performance is evaluated using metrics such as accuracy, precision,
recall, and F1-score and is compared to the SVM classifier. The results obtained from
extensive experiments demonstrate that the proposed model effectively copes with the
nonlinear dynamics in color fundus images while maintaining low computational com-
plexity. The model achieves precise diagnosis and classification of all stages of DR disease,
including mild NPDR, moderate NPDR, severe NPDR, PDR, and cases with no DR. The
model’s robustness is confirmed through 10-fold cross-validation. The proposed model,
incorporating three-level 2D-SWT using the ‘bior2.8’ wavelet family, a chaotic-based wrap-
per approach (using a logistic-chaotic-map-based CPSO and kNN), and an RNN-LSTM
network, demonstrates the best performance for the DR disease classification. Experimental
results affirm that the proposed model effectively addresses nonlinear dynamics, offers
low computational complexity, and can be applied in real-time scenarios. In conclusion,
the developed AI-based model presents a significant advancement in the early diagnosis
and classification of DR disease through fundus image analysis. By effectively overcoming
nonlinear dynamics and ensuring low computational complexity, the model provides real-
time, end-to-end classification, enabling timely intervention and prevention of vision loss
in diabetic patients. The findings of this study contribute to improving healthcare practices
and hold promising potential for enhancing the diagnosis and management of DR globally.
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