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Abstract: We here investigate the dynamic behavior of continuous and discrete versions of a fractional-
order predator–prey system with anti-predator behavior and a Holling type IV functional response.
First, we establish the non-negativity, existence, uniqueness and boundedness of solutions to the
system from a mathematical analysis perspective. Then, we analyze the stability of its equilibrium
points and the possibility of bifurcations using stability analysis methods and bifurcation theory,
demonstrating that, under specific parameter conditions, the continuous system exhibits a Hopf
bifurcation, while the discrete version exhibits a Neimark–Sacker bifurcation and a period-doubling
bifurcation. After providing numerical simulations to illustrate the theoretically derived conclusions
and by summarizing the various analytical results obtained, we finally present four interesting
conclusions that can contribute to better management and preservation of ecological systems.

Keywords: Caputo fractional derivative; memory effect; supercritical Hopf bifurcation; Neimark–Sacker
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1. Introduction

The study of predator–prey systems can be traced back to the 18th century. However,
the establishment of predator–prey systems in the modern sense is primarily attributed to
the work of Alfred J. Lotka and Vito Volterra in the early 20th century. They independently
proposed models for predator–prey systems and conducted in-depth research on their
dynamical behavior. Their research laid an important theoretical foundation for the dynam-
ics of predator–prey systems. Lotka–Volterra systems describe the interactions between
predator and prey, and quickly became a hot topic in dynamical research. Even today,
studying the dynamical relationship between predator and prey remains an important
subject. To comprehend the intricate dynamical properties presented in predator–prey sys-
tems, numerous researchers have dedicated themselves to studying predator–prey models
in depth. During the course of their research, they have found multitudes of fascinating
dynamical properties among various systems. Berryman [1] pointed out that the original
Lotka–Volterra predator–prey equations were built around the principle of mass action,
and equations derived in this way lead to the paradoxes of enrichment and biological
control. Wang and Chen [2] established the condition for the permanence of populations
and sufficient conditions under which positive equilibrium of the model is globally stable.
References [3,4] investigated the complex dynamical behavior of discrete predator–prey
systems. Qi and Meng [5] found that in a predator–prey system with prey refuge and
the fear effect, the survival rate of prey can be improved by increasing the strength of
the refuge, decreasing the cost of fear or reducing the intensity of white noise. Blasius,
Rudolf, et al. [6] found through experiments that a long-term cyclic persistence exists in a
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simple predator–prey model. Mukherjee [7] and Qiu and Guo [8] investigated the complex
dynamics of a predator–prey system with the fear effect and a predator–prey system with
prey taxis, respectively. Although we may subconsciously assume that prey are inherently
disadvantaged in a predator–prey system, there are many instances where prey can resist
predation and cause harm to predators, even leading to the death of the predator. The exis-
tence of such scenarios underscores the significance of determining which entities hold the
advantage of prey in a predator–prey system [9].

The anti-predator behavior of prey is widely observed in the natural world. Many
scholars have conducted research on the anti-predator behavior of prey and have identi-
fied two main ways in which prey exhibit such behaviors: (1) through morphological or
behavioral changes [10,11], or (2) by actively attacking the predator [12–14].

In 1987, Ives and Dobson [15] proposed the following system to simulate anti-predator
behavior (1): 

dx
dt = αx

(
1− x

k
)
− β− e−γβqxy

1+ax ,

dy
dt = be−γβqxy

1+ax − dy,
(1.1)

where the meanings of all parameters are presented in Table 1.

Table 1. Biological meanings of all parameters in system (1.1).

Parameter Meaning

x Prey population density

y Predator population density

α > 0 Natality of prey population

k > 0 Carrying capacity of the environment to prey

β > 0 Cost incurred by the prey as a result of anti-predator behavior

γ > 0 Effects resulting from the anti-predator behavior of prey
qx

1+ax , q > 0, a > 0 Holling II functional response function

b > 0 Conversion rate of prey consumed by predator

d > 0 Death rate of predator population

The prey requirements in anti-predator behavior (2) are higher, as they not only
demand that adult prey can resist predation by predators but also require adult prey to
have the ability to kill the juveniles of the predator. However, there have been few studies on
anti-predator behavior (2). In 2015, Tang and Xiao [16] proposed a system to simulate anti-
predator behavior (2), and considered the following Holling type IV functional response
function system: 

du
dt = au

(
1− u

k
)
− buv

h+u2 ,
dv
dt = cbuv

h+u2 − dv− guv,
(1.2)

where the meanings of all parameters are given in Table 2. It is worth noting that the
Holling type IV functional response function used in this paper was originally proposed by
W. Sokol [17] and has been widely applied in predator–prey systems for several decades. It
primarily describes a nonlinear interaction between a predator and its prey. The predation
rate of the predator adjusts to changes in the population density of prey, exhibiting a
saturation tendency.
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Table 2. Biological meanings of parameters in systems (1.2) and (1.3).

Parameter Meaning

u Prey population density

v Predator population density

a > 0 Natality of prey population

k > 0 Carrying capacity of the environment to prey

b > 0 Predator’s capture rate

c > 0 Conversion rate of prey into predator
bu

h+u2 , h > 0 Holling type IV functional response function

d > 0 Death rate of predator

g > 0 Mortality rate of predator due to the anti-predator effects of prey

0 < α ≤ 1 Order of fractional-order derivative

The concept of fractional derivatives can be traced back to the 18th century, and the
mathematician who first proposed fractional derivatives was Liouville [18]. In the 20th
century, the mathematician Riesz made the initial reference to the concept of fractional
derivatives and conducted research on their properties in reference [19], combining the
studies of Liouville and Riesz to establish the Riesz–Liouville definition of fractional
derivatives that is used today. Subsequently, the mathematician Caputo introduced the
Caputo definition of fractional derivatives in reference [20].

Definition 1. Denote
C
0 Dα

t f (t) = Jl−α f (l)(t), α > 0,

where f (l) denotes the derivative of f with order l, l is the nearest integer value of α, and Jq is the
operator of the Riemann–Liouville integral of q order:

Jqh(t) =

∫ t
0 (t− τe)q−1h(τe)dτe

Γ(q)
,

where Γ(q) is Euler’s Gamma function. The alpha-order Caputo differential operator is the term
used to describe the operator C

0 Dα
t .

From a biological perspective, considering a fractional-order predator–prey system
makes logical sense; for most organisms in the natural world, their current behaviors are
influenced by historical context. In fractional calculus, the rate of change at any given
moment, i.e., the fractional-order derivative, depends on the population density over a
certain period of time. Therefore, fractional-order predator–prey systems have unique
advantages in describing memory effects within populations. Over the past two decades,
owing to the advantages of fractional derivatives in studying various ecological systems’
memory effects, numerous mathematicians have turned their attention to investigating
fractional-order ecological systems, finding many interesting dynamical properties pre-
sented in them [21–28]. At present, a relatively comprehensive research framework has
been established for mathematical models of integer-order ecosystems, while the study
of fractional-order ecosystems is still in its early stages. Hence, the authors of this paper
intend to introduce the Caputo fractional derivation to system (1.2) and extend it to a
fractional-order ecosystem. We intend to employ the Caputo definition of fractional deriva-
tives to analyze how anti-predator behavior and the Holling type IV functional response
function in a fractional-order ecosystem will impact the dynamics of the system. As a result,
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we introduce the following fractional-order predator–prey system with a Holling type IV
functional response and anti-predator behaviors:

C
0 Dα

t u(t) = au
(
1− u

k
)
− buv

h+u2 ,
C
0 Dα

t v(t) = cbuv
h+u2 − dv− guv,

(1.3)

where the meanings of all parameters are presented in Table 2. For the method of introduc-
ing the Caputo fractional differential equation into an ecosystem model, reference [29] may
be consulted.

There is a current lack of comprehensive dynamic analysis methods for continuous
fractional-order predator–prey systems. For example, in the literature [30], the analysis of
fractional-order systems has mainly focused on Hopf bifurcations, while more extensive
research has been dedicated to analyzing integer-order cases.

In references [31,32], the authors, respectively, conducted dynamical analyses of dif-
ferent discretized predator–prey models and found that discrete predator–prey models,
in comparison to their continuous counterparts, exhibit a greater variety of dynamical
behaviors and hold advantages in numerical simulations. In reference [33], the authors
employed the piecewise constant approximation (PCA) method to discretize a continu-
ous fractional-order predator–prey system and analyzed the dynamical properties of and
discussed the types of bifurcations present in this system. Their work motivates us to
consider the discrete counterpart of system (1.3). In recent years, many researchers have
studied the dynamical behavior of discrete fractional-order predator–prey systems and
have discovered numerous intriguing dynamical properties within these systems [34–36].

Hence, in order to better understand the properties of system (1.3), we here also con-
sider discretizing system (1.3) for further dynamical analyses and comparing its properties
with the continuous model (1.3), finding that there are many differences in dynamical
properties between system (1.3) and its discrete version (1.6). This sufficiently shows that it
is very helpful to consider the same problems from different angles.

We use the PCA method to discretize model (1.3), and the specific steps are as follows:
Assume that the initial conditions of system (1.3) are u(0) = u0 and v(0) = v0.

The discretized version of model (1.3) is given as
C
0 Dα

t u(t) = au([ t
ρ ])
(
1−

u([ t
ρ ])

k
)
−

bu([ t
ρ ])v([

t
ρ ])

h+u([ t
ρ ])

2 ,

C
0 Dα

t v(t) =
cbu([ t

ρ ])v([
t
ρ ])

h+u([ t
ρ ])

2 − dv([ t
ρ ])− gu([ t

ρ ])v([
t
ρ ]).

First, let t ∈ [0, ρ), then t
ρ ∈ [0, 1). Thus, we obtain

C
0 Dα

t u(t) = au0
(
1− u0

k
)
− bu0v0

h+u2
0

,

C
0 Dα

t v(t) = cbu0v0
h+u2

0
− dv0 − gu0v0.

(1.4)

The answer to (1.4) is simplified to

u1(t) = u0 + Jα
(
au0
(
1− u0

k
)
− bu0v0

h + u2
0

)
= u0 +

tα

αΓ(α)
(
au0
(
1− u0

k
)
− bu0v0

h + u2
0

)
,

v1(t) = v0 + Jα
( cbu0v0

h + u2
0
− dv0 − gu0v0

)
= v0 +

tα

αΓ(α)
( cbu0v0

h + u2
0
− dv0 − gu0v0

)
.

Second, let t ∈ [ρ, 2ρ), so t
ρ ∈ [1, 2). Then,
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
C
0 Dα

t u(t) = au1
(
1− u1

k
)
− bu1v1

h+u2
1

,

C
0 Dα

t v(t) = cbu1v1
h+u2

1
− dv1 − gu1v1.

(1.5)

After simplifying (1.5), we can obtain the following solution

u1(t) = u1(ρ) + Jα
ρ

(
au1
(
1− u1

k
)
− bu1v1

h + u2
1

)
= u1(ρ) +

(t− ρ)α

αΓ(α)
(
au1
(
1− u1

k
)
− bu1v1

h + u2
1

)
,

v1(t) = v1(ρ) + Jα
ρ

( cbu1v1

h + u2
1
− dv1 − gu1v1

)
= v1(ρ) +

(t− ρ)α

αΓ(α)
( cbu1v1

h + u2
1
− dv1 − gu1v1

)
,

where Jα
ρ = 1

Γ(α)

∫ t
ρ (t− τe)α−1dτe, 0 < α < 1. After n repetitions, we obtain

un+1(t) = un(nρ) +
(t− nρ)α

αΓ(α)
(
aun(nρ)

(
1− un(nρ)

k
)
− bun(nρ)vn(nρ)

h + un(nρ)2

)
,

vn+1(t) = vn(nρ) +
(t− nρ)α

αΓ(α)
( cbun(nρ)vn(nρ)

h + un(nρ)2 − dvn(nρ)− gun(nρ)vn(nρ)
)
,

where t ∈ [nρ, (n + 1)ρ). For t→ (n + 1)ρ, the system above becomes un+1 = un +
(ρ)α

Γ(α+1)

(
aun
(
1− un

k
)
− bunvn

h+u2
n

)
,

vn+1 = vn +
(ρ)α

Γ(α+1)

( cbunvn
h+u2

n
− dvn − gunvn

)
.

(1.6)

The overall structure of this paper is described as follows: In Section 2, some pre-
liminaries are provided for some definitions, lemmas and theorems that will be used to
analyze the dynamical properties of systems (1.3) and (1.6). In Section 3, the well-posedness
of system (1.3) is analyzed. In Section 4, the existence and stability of the equilibrium
points of systems (1.3) and (1.6) are investigated, respectively. In Section 5, we demonstrate
that, under certain parameter conditions, system (1.3) exhibits a Hopf bifurcation, while
system (1.6) exhibits a Neimark–Sacker bifurcation and a period-doubling bifurcation. In
Section 6, numerical simulations are performed to validate the results of our theoretical
analysis. In Section 7, interesting conclusions are drawn based on some findings in the
previous sections.

2. Preliminaries

In this section, we primarily introduce the definition and some conclusions of Caputo
fractional derivatives that are necessary for our subsequent research.

Definition 2 ([37]). Under the definition of Caputo fractional derivatives, the fractional derivative
of function f (ξ) ∈ ACn([0,+∞],R) is given as

C
0 Dα

ξ f (ξ) =
∫ ξ

0

f (n)(ϑ)
Γ(n− α)(ξ − ϑ)α−n+1 dϑ,

where α represents the order of the fractional derivative.
When n = 1, the fractional derivative C

0 Dα
ξ f (ξ) takes the form of

C
0 Dα

ξ f (ξ) =
∫ ξ

0

f (ϑ)
Γ(1− α)(ξ − ϑ)α

dϑ.
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Definition 3 ([37]). The Mittag–Leffler function Mi, when the order i of Mi is positive, is defined as

Mi(ζ) =
∞

∑
j=0

ζ j

Γ(ji + 1)
, ζ j ∈ C,

as the sequence converges.

Definition 4 ([38]). Let Q(u, v) be a fixed piont of system (1.6) with multipliers λ1 and λ2.
(i) If |λ1| < 1 and |λ2| < 1, the fixed point Q(u, v) is called a sink, and the sink is locally
asymptotically stable.
(ii) If |λ1| > 1 and |λ2| > 1, the fixed point Q(u, v) is called a source, and the source is locally
asymptotically unstable.
(iii) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), the fixed point Q(u, v) is called a saddle.
(iv) If either |λ1| = 1 or |λ2| = 1, the fixed point Q(u, v) is called non-hyperbolic.

Lemma 1 ([39]). For C
0 Dα

ξ f (ξ) ∈ AC([0, Ξ],R), if f (ξ1) = 0 and f (ξ0) > 0 (all ξ0 ∈ [0, ξ1)),
then C

0 Dα
ξ f (ξ1) < 0.

Lemma 2 ([40]). For the fractional-order system

C
0 Dα

ξ Y(ξ) = Z(ξ, Y), ξ ≥ 0,

with initial condition Y(0) = (u(0), v(0)), where 0 < α ≤ 1, Z : [0,+∞)× τ → Rn, τ ⊆ R,
if Z(ξ, Y) fulfills the local Lipschitz condition for Z ∈ Rn,

‖Z(ξ, Y)− Z(ξ, Ỹ)‖ ≤ ∆ · ‖Y− Ỹ‖,

then the system has a unique solution on [0,+∞)× τ, and

‖Y(y1, y2, y3, . . . , yn)−Y(ỹ1, ỹ2, ỹ3, . . . , ỹn)‖ ≤
n

∑
i=1
|yi − ỹi|,

for i = 1, 2, 3, . . . , n, yi, ỹi ∈ R.

Lemma 3 ([41]). Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose λ1
and λ2 are two roots of F(λ) = 0. Then, the following statements hold.
(i) If F(1) > 0, then
(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(i.2) λ1 = −1 and λ2 6= −1 if and only if F(−1) = 0 and B 6= 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if and only if−2 < B < 2
and C = 1;
(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and B = 2.
(ii) If F(1) = 0, namely, 1 is a root of F(λ) = 0, then the another root λ satisfies |λ| = (<,>)1 if
and only if |C| = (<,>)1.
(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1, ∞). Moreover,
(iii.1) The other root λ satisfies λ < (=)− 1 if and only if F(−1) < (=)0;
(iii.2) The other root −1 < λ < 1 if and only if F(−1) > 0.

Theorem 1 ([42]). The Laplace transform of C
0 Dα

ξ f (ξ) is

L
[C

0 Dα
ξ f (ξ)

]
= ϑαF(ϑ)−

n−1

∑
j=0

ϑα−j−1 f j(0),
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where F(ϑ) = L [ f (ξ)] , α ∈ (n− 1, n), n ∈ Z+.

Theorem 2 ([43]). Assume α > 0, β > 0 and K ∈ Cn×n, then

L [ξβ−1Eα,β(Kξα)] =
ϑα−β

ϑα − K
,

for Re(ϑ) > ‖K‖ 1
α , where Re(ϑ) is the real part of complex number ϑ and Eα,β is the Mittag–

Leffler function.

Theorem 3 ([44]). For the following fractional-order system

C
0 Dα

ξ f (ξ) = g( f (ξ)), f (0) = f0 ∈ RN , α ∈ (0, 1),

where f (ξ) = ( f1(ξ), f2(ξ), f3(ξ), . . . , fn(ξ))T ∈ Rn and g = (g1, g2, g3, . . . , gn)T : Rn →
Rn. If g( f ∗) = 0, then f ∗ is an equilibrium point. Set J( f ∗) as the Jacobian matrix J =
∂g
∂ f = ∂(g1,g2,g3,...,gn)

∂( f1, f2, f3,..., fn)
for f = f ∗. If the characteristic values λi(i = 1, 2, 3, . . . , n) of J( f ∗) meet

|arg(λi)| > απ
2 (i = 1, 2, 3, . . . , n), then f ∗ is locally asymptotically stable.

Theorem 4 ([45]). We say that a fractional-order system undergoes a fractional Hopf bifurcation if
there exists a critical value β = βc such that the following conditions are satisfied:

1. λ1(βc) and λ2(βc) satisfy |arg(λi(βc))|= πα
2 , (i = 1, 2);

2. |arg(λi(βc))|6= πα
2 , (i = 3, 4, 5, . . . , n);

3. d
dβ |arg(λi(β))||β=βc 6= 0, (i = 1, 2),

where λ represents the eigenvalues of the Jacobian matrix of the system.

3. Analysis of the Well-Posedness of System (1.3)

In this section, we consider the uniqueness, non-negativity and boundedness of the
solutions of system (1.3).

Theorem 5. For the initial condition (u(0), v(0)) ∈ A, system (1.3) has a unique solution U(t) =
(u(t), v(t)) ∈ A for all t ≥ 0, where A = {(u, v) ∈ R2 : max{|u|, |vs.|} < γ1, min{|u|, |vs.|} >
γ2}.

Proof. Consider the time interval [0, t1], t1 < +∞. Construct a mapping G(U) = (G1(U),
G2(U))T , where U = (u, v)T and G1(U) = au

(
1− u

k
)
− buv

h+u2 ,

G2(U) = cbuv
h+u2 − dv− guv.

For U, Ũ ∈ A, we have

‖G(U)− G(Ũ)‖
= |G1(U)− G1(Ũ)|+ |G2(U)− G2(Ũ)|

= |au(1− u
k
)− buv

h + u2 − aũ(1− ũ
k
) +

bũṽ
h + ũ2 |
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+
∣∣ cbuv
h + u2 − dv− guv− cbũṽ

h + ũ2 − dṽ− gũṽ
∣∣

≤ a|u− ũ|+ a
k
|u + ũ||u− ũ|+

∣∣ buv(h + ũ2)− bũṽ(h + u2)

(h + u2)(h + ũ2)

∣∣
+
∣∣ cbuv(h + ũ2)− cbũṽ(h + u2)

(h + u2)(h + ũ2)

∣∣+ d|v− ṽ|+ g|uv− ũṽ|

= a|u− ũ|+ a
k
|u + ũ||u− ũ|

+ (1 + c)
∣∣ bhu(v− ṽ) + bhṽ(u− ũ)

(h + u2)(h + ũ2)
+

bu2ũ(v− ṽ)− buũv(u− ũ)
(h + u2)(h + ũ2)

∣∣
+ d|v− ṽ|+ g|u(v− ṽ) + ṽ(u− ũ)|

≤
(
a + gγ1 +

2aγ1

k
+

b(1 + c)(hγ2 + γ3
2)

(h + γ2
2)

2

)
|u− ũ|

+
(
d + gγ1 +

b(1 + c)(hγ2 + γ3
2)

(h + γ2
2)

2

)
|v− ṽ|

= L1|u− ũ|+ L2|v− ṽ| ≤ L‖U − Ũ‖,

where L = max{L1, L2} with L1 = a + gγ1 +
2aγ1

k +
b(1+c)(hγ2+γ3

2)

(h+γ2
2)

2 and L2 = d + gγ1 +

b(1+c)(hγ2+γ3
2)

(h+γ2
2)

2 .

Hence, G(U) conforms to the local Lipschitz condition, and system (1.3) has a unique
solution by Lemma 2.

Theorem 6. All solutions of system (1.3) initiating from (u(0), v(0)) ∈ R+ are non-negative and
bounded in the region W, where

W =

{
(u(t), v(t) ∈ R2

+)‖0 ≤ u(t) +
v(t)

c
≤ k(a + d)2

4ad

}
.

Proof. First, let us prove the non-negativity of the solution. Assume that there exists a
constant µ(> 0) that satisfies 

u(t) > 0, t ∈ [0, µ),

u(µ) = 0,

u(µ+) < 0.

We can easily find that C
0 Dα

t u(t)|µ = 0, and derive u(µ+) = 0 from Lemma 1, which
obviously contradicts u(µ+) < 0. Thus, u(t) > 0 for any t ∈ [0,+∞). Similarly, we can
prove v(t) > 0 for ∀t ∈ [0,+∞).

Now, construct a function X(t) = u(t) + v(t)
c , which will help us prove the bounded-

ness of the solution. The Caputo fractional derivative of X(t) with order α is

C
0 Dα

t X(t) = au(t)− au(t)2

k
− dv(t)

c
− guv

c

= au(t)(1− u(t)
k

)− gu(t)v(t)
c

− d(X(t)− u(t)).
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Then,

C
0 Dα

t X(t) + dX(t) = au(t)(1− u(t)
k

)− gu(t)v(t)
c

+ du(t)

≤ k(a + d)2

4a
− (u(t)

√
a
k
− (a + d)

2

√
k
a
)2

≤ k(a + d)2

4a
,

i.e.,

C
0 Dα

t X(t) + dX(t) ≤ k(a + d)2

4a
.

Applying Theorem 1 and taking the Laplace transform on both sides of the above
inequality at the same time, one has

L
[C

0 Dα
t X(t) + dX(t)

]
≤ L

[ k(a + d)2

4a
]
.

This leads to

ϑαF(ϑ)− ϑα−1X(0) + dF(ϑ) ≤ 1
ϑ

k(a + d)2

4a
,

where F(ϑ) = L [X(t)]. Hence,

F(ϑ) ≤ k(a + d)2

4ϑa(ϑα + d)
+

ϑα−1

ϑα + d
X(0).

By using the inverse Laplace transform on both sides of the above inequality, we may derive

L −1[F(ϑ)] ≤ TL −1[ 1
ϑ(ϑα + d)

]
+ X(0)L −1[ ϑα−1

ϑα + d
]

⇒X(t) ≤ TL −1[ ϑ−1

ϑα + d
]
+ X(0)L −1[ ϑα−1

ϑα + d
]
,

where T = k(a+d)2

4a . From Theorem 2, one obtains

X(t) ≤ TtαEα,α+1(−dtα) + X(0)Eα,1(−dtα).

According to the properties of the Mittag–Leffer function, we get

Eα,1(−dtα) = −dtαEα,α+1(−dtα) +
1

Γ(1)
,

i.e.,

−1
d
[Eα,1(−dtα)− 1] = tαEα,α+1(−dtα),

which displays

X(t) ≤ (X(0)− T
d
)Eα,1(−dtα) +

T
d

.

Note that Eα,1 → 0 when t→ ∞. Thus, we have X(t) ≤ T
d for large t, i.e., X(t) ≤ k(a+d)2

4ad
for large t. Accordingly, all solutions of system (1.3) are bounded in the region
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W =

{
(u(t), v(t)) ∈ R2

+‖0 ≤ u(t) +
v(t)

c
≤ k(a + d)2

4ad

}
.

The proof is over.

4. Local Stability of Systems (1.3) and (1.6)

In this section, we first identify the equilibrium points of systems (1.3) and (1.6), which
are the same, then analyze their local stability.

4.1. Existence of an Equilibrium Point

We first can easily observe that the two points Q0(0, 0) and Qk(k, 0) always are equi-
librium points of systems (1.3) and (1.6).

Next, we consider the positive equilibrium points of systems (1.3) and (1.6). It is
evident that the positive equilibrium solutions of systems (1.3) and (1.6) satisfy the follow-
ing equations: {

a(1− u
k )−

bv
h+u2 = 0,

cbu
h+u2 − d− gu = 0.

(4.1)

By performing a transformation on the second equation, we find that the component
u of positive equilibrium point (u,v) meets the following equation

p(u) = gu3 + du2 + (gh− cb)u + dh = 0, (4.2)

while the positive component v = a
b (1−

u
k )(h + u2). Therefore, the problem of finding

positive equilibrium points of systems (1.3) and (1.6) is transferred to that of solving the
positive solutions of Equation (4.2). It is easy to derive

p
′
(u) = 3gu2 + 2du + gh− cb, p

′′
(u) = 6gu + 2d. (4.3)

Obviously, p
′′
(u) > 0 always holds for u > 0. This implies p

′
(u) is monotonically

increasing for u > 0. Now, consider the solutions of p(u) = 0 according to the following
two cases.

Case 1: gh− cb ≥ 0. Then, p
′
(u) > 0, indicating that p(u) is monotonically increasing.

Again, p(0) = dh > 0. Therefore, there are no positive solutions of p(u) = 0 for gh− cb ≥ 0,
which then implies that system (1.3) has no positive equilibrium points.
Case 2: gh − cb < 0. Then, p

′
(u) = 0 has a unique positive solution, denoted by u∗,

where u∗ =
−d+
√

d2−3g(gh−cb)
3g . Furthermore, since p

′
(u) is monotonically increasing, we

can conclude that p(u) is monotonically decreasing in the interval (0, u∗), whereas it is
monotonically increasing in the interval (u∗,+∞). Thus, the function p(u) has a minimum
at u = u∗ for u ∈ (0, ∞). Substituting u∗ into (4.2), we obtain

p(u∗) =
1

27g2

[
R3 + 3(3hg2 − 3bcg− d2)R + 3(d2 + 3bcdg + 6dhg2)

]
=

1
27g2

[
− 2R3 + 3(d2 + 3bcdg + 6dhg2)

]
=

2
27g2 (R3

0 − R3),

where R =
√

d2 − 3g(gh− cb) and R0 = 3
√

3
2 (d

2 + 3bcdg + 6dhg2). Then, we can discuss
the positive solution of p(u) = 0 in view of the following three subcases:
Subcase 1. p(u∗) > 0 ⇐⇒ R < R0. This means that the equation p(u) = 0 has no
positive roots.
Subcase 2. p(u∗) = 0⇐⇒ R = R0. This indicates that there is only one positive solution
u∗ of the equation p(u) = 0.
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Subcase 3. p(u∗) < 0 ⇐⇒ R > R0. This means that there are two positive roots of the
equation p(u) = 0, denoted by u1 and u2. Namely,

u1 =
−d +

√
R(cos( o

3 )−
√

3sin( o
3 ))

3g
,

u2 =
−d +

√
R(cos( o

3 ) +
√

3sin( o
3 ))

3g
,

where o = arccot(J), J = 2dR2−3gT
2R3 (J ∈ (−1, 1)) and T = d(gh − cb)− 9ghd. Evidently,

0 < u1 < u∗ < u2.

Denote the two positive equilibria as Qi(ui, vi) if ui < k, i = 1, 2. Summarizing the
above analysis, we can obtain the following result.

Theorem 7. Let R, R0, u∗, u1, u2 be, respectively, defined in Case 2 and Case 3. For the existence
of an equilibrium point of systems (1.3) and (1.6), the following statements hold.

1. Regardless of the value of the parameters, systems (1.3) and (1.6) always have a trivial
equilibrium point Q0(0, 0) and a boundary equilibrium point Qk(k, 0).

2. When gh− cb ≥ 0, systems (1.3) and (1.6) do not have positive equilibrium points.
3. When gh− cb < 0, we further have the following conclusions.

(a) If R0 > R, then systems (1.3) and (1.6) do not have positive equilibrium points.
(b) If R0 = R, then, for 0 < k ≤ u∗, systems (1.3) and (1.6) do not have positive

equilibrium points; for u∗ < k, systems (1.3) and (1.6) have one positive equilibrium
point Q∗(u∗, v∗).

(c) If R0 < R, then, for 0 < k ≤ u1, systems (1.3) and (1.6) do not have positive
equilibrium points; for u1 < k ≤ u2, systems (1.3) and (1.6) have only one positive
equilibrium point Q1(u1, v1); for u2 < k, systems (1.3) and (1.6) have two positive
equilibrium points Q1(u1, v1) and Q2(u2, v2).

Next, we analyze the stability of these equilibrium points of systems (1.3) and (1.6).

4.2. Stability Analysis of Equilibrium Points of System (1.3)

The Jacobian matrix of system (1.3) at any equilibrium Q(u, v) is as follows

Jc(u, v) =

a
(
1− 2u

k
)
− bv

h+u2 +
2bu2v

(h+u2)2 − bu
h+u2

bcv(h−u2)
(h+u2)2 − gv bcu

h+u2 − d− gu

.

4.2.1. The Stability of the Trivial Equilibrium Point Q0(0, 0)

Theorem 8. The trivial equilibrium point Q0(0, 0) is a saddle.

Proof. Substituting the trivial equilibrium point Q0(0, 0) into the Jacobian matrix Jc(u, v),
we obtain

Jc(Q0) =

(
a 0

0 −d

)
,

and it is easy to see that the Jacobian matrix Jc(Q0) has two eigenvalues: λ1 = a > 0 and
λ2 = −d < 0. Since |arg(λ1)| = 0 < απ

2 and |arg(λ2)| = π > απ
2 , the trivial equilibrium

point Q0 is a saddle.
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4.2.2. The Stability of Boundary Equilibrium Point Qk(k, 0)

Theorem 9. The boundary equilibrium point Qk(k, 0) is a stable node for d > cbk
h+k2 − gk, while it

is a saddle for d < cbk
h+k2 − gk.

Proof. Substituting boundary equilibrium point Qk(k, 0) into the Jacobian matrix Jc(u, v),
we have

Jc(Qk) =

−a −bk
h+k2

0 cbk
h+k2 − d− gk

.

Now, consider the following two cases:

Case 1: d < cbk
h+k2 − gk. Then, we obtain the two eigenvalues of the Jacobian matrix

Jc(Qk): λ1 = −a < 0 and λ2 = cbk
h+k2 − gk − d > 0. Therefore, |arg(λ1)| = π > απ

2 and
|arg(λ2)| = 0 < απ

2 . Thus, the boundary equilibrium point Qk is a saddle.
Case 2: d > cbk

h+k2 − gk. Then, the two eigenvalues of the Jacobian matrix Jc(Qk) are

λ1 = −a < 0 and λ2 = cbk
h+k2 − d − gk < 0. As a result of |arg(λ1)| = π > απ

2 and
|arg(λ2)| = π > απ

2 , the boundary equilibrium point Qk is a stable node.

4.2.3. The Stability of Positive Equilibrium Points Qi(ui, vi) (i = 1, 2)

Theorem 10. The positive equilibrium point Q1(u1, v1) is stable for k >
h+3u2

1
2u1

and unstable for

k <
h+3u2

1
2u1

; the postive equilibrium point Q2(u2, v2) is always a saddle point.

Proof. For a better comprehension, let us begin to analyze the stability of the positive
equilibrium point Q2(u2, v2).

Substituting the equilibrium point Q2(u2, v2) into the Jacobian matrix Jc(u, v), one obtains

Jc(Q2) =

−a u2
k +

2bu2
2v2

(h+u2
2)

2 − bu2
h+u2

2
bcv2(h−u2

2)

(h+u2
2)

2 − gv2 0

,

from which we can easily derive the following result:

|Jc(Q2)| =
bu2v2

h + u2
2

( bc(h− u2
2)

(h + u2
2)

2
− g
)
. (4.4)

From (4.2), we can deduce

h =
bcu2

gu2 + d
− u2

2. (4.5)

Substituting (4.5) into (4.4) obtains

|Jc(Q2)| =
(gu2 + d)v2

bc2u2
(bcd− 2g2u3

2 − 4gdu2
2 − 2d2u2). (4.6)

Let q(u2) = bcd− 2g2u3
2 − 4gdu2

2 − 2d2u2. Since p
′
(u∗) = 0, p(u∗) < 0 and q(u2) is

monotonically decreasing for u2 > 0, we can obtain
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q(u2) < q(u∗) = bcd− 2g2u∗3 − 4gdu∗2 − 2d2u∗

= g(dh− 2gu∗3 − du∗2)

< g(−2gu∗3 − du∗2 − gu∗3 − du∗2 − (gh− cb)u∗)

= gu∗(−3gu∗2 − 2du∗ − gh + cb) = 0.

(4.7)

This verifies that |Jc(Q2)| < 0 holds if Q2 exists, which reads λ1λ2 < 0. Accordingly,
λ1 > (<)0⇒ |arg(λ1)| < (>) απ

2 and λ2 < (>)0⇒ |arg(λ1)| > (<) απ
2 . Thus, the postive

equilibrium point Q2(u2, v2) is always a saddle.
Similarly, for the postive equilibrium point Q1(u1, v1), we have

q(u1) = bcd− 2g2u3
1 − 4gdu2

1 − 2d2u1

> g(dh− 2gu∗3 − du∗2)

> gu∗(−3gu∗2 − 2du∗ − gh + cb) = 0.

(4.8)

Thus, |Jc(Q1)| > 0, which reads λ1λ2 > 0. In order to determine the signs of λ1
and λ2, we need to further consider the sign of the trace of matrix Jc(Q1). Note that the

trace of Jc(Q1) is tr(Jc(u1, v1)) = −a u1
k +

2bu2
1v1

(h+u1)2 . Note that cbu1v1
h+u2

1
− dv1 − gu1v1 = 0 and

v1 = a
b (1−

u1
k )(h + u2

1). So,

tr(Jc(u1, v1)) =
2au2

1
k(h + u2

1)
(k−

h + 3u2
1

2u1
) > (=,<) 0⇔ k > (=,<)

h + 3u2
1

2u1
.

Therefore, we can conclude that if k <
h+3u2

1
2u1

, then λ1 < 0(⇒ |arg(λ1)| > απ
2 ) and

λ2 < 0(⇒ |arg(λ2)| > απ
2 ); thus, system (1.3) is stable at Q1(u1, v1). If k >

h+3u2
1

2u1
, then

λ1 > 0(⇒ |arg(λ1)| = 0 < απ
2 ) and λ2 > 0(⇒ |arg(λ2)| = 0 < απ

2 ); hence, system (1.3) is
unstable at Q1(u1, v1).

For readers’ convenience, we summarize the stability of the equilibrium points of
system (1.3) in Table 3.

Table 3. The stability of the equilibrium points of system (1.3).

Point Conditions Properties

Q0(0, 0) saddle

Qk(k, 0)
d > bck

h+k2 − gk stable

d < bck
h+k2 − gk saddle

Q1(u1, v1)
k <

h+3u2
1

2u1
unstable

k >
h+3u2

1
2u1

stable

Q2(u2, v2) saddle

4.3. Stability Analysis of the Equilibrium Points of System (1.6)

The Jacobian matrix of system (1.6) at any equilibrium point Q(u, v) is as follows:

Jd(u, v) =

1 + ρα

Γ(α+1)

(
a
(
1− 2u

k
)
− bv

h+u2 +
2bu2v

(h+u2)2

) ρα

Γ(α+1)

(
− bu

h+u2

)
ρα

Γ(α+1)

( bcv(h−u2)
(h+u2)2 − gv

)
1 + ρα

Γ(α+1)

( bcu
h+u2 − d− gu

)
.
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The characteristic polynomial of the Jacobian matrix J(Q) reads

F(λ) = λ2 − P̂λ + Q̂,

where

P̂ = 2 +
ρα

Γ(α + 1)
(
− au

k
+

2bu2v2

(h + u2)2

)
,

Q̂ = 1 +
ρα

Γ(α + 1)
(
− au

k
+

2bu2v2

(h + u2)2

)
+

ρ2αbuv
(Γ(α + 1))2h + u2

( bc(h− u2)

(h + u2)2 − g
)
.

Denote ∆ = ρα

Γ(α+1) , Ω1 = buv
h+u2

( bc(h−u2)
(h+u2)2 − g

)
, and Ω2 = − au

k + 2bu2v2

(h+u2)2 .

4.3.1. The Stability of Trivial Equilibrium Point Q0(0, 0)

Theorem 11. The following statements about the trivial equilibrium point Q0(0, 0) of system (1.6)
are true.

1. If d < 2
∆ , then Q0(0, 0) is a saddle.

2. If d = 2
∆ , then Q0(0, 0) is non-hyperbolic.

3. If d > 2
∆ , then Q0(0, 0) is a stable node.

Proof. Substituting the trivial equilibrium point Q0(0, 0) into the Jacobian matrix Jd(u, v),
we obtain

Jd(Q0) =

1 + ∆a 0

0 1− ∆d

,

and it is easy to see that the Jacobian matrix Jd(Q0) has two eigenvalues: λ1 = 1 + ∆a > 1
and |λ2| = |1− ∆d| < (=,>)1 for d < (=,>) 2

∆ . By using Definition 4, we can derive
Theorem 14.

4.3.2. The Stability of Boundary Equilibrium Point Qk(k, 0)

Theorem 12. The following conclusions for the fixed point Qk(k, 0) of system (1.6) are true.

1. If a < 2
∆ , then,

(a) For d < cbk
h+k2 − gk or d > 2

∆ + cbk
h+k2 − gk, Qk(k, 0) is is a saddle;

(b) For d = cbk
h+k2 − gk or d = 2

∆ + cbk
h+k2 − gk, Qk(k, 0) is non-hyperbolic;

(c) For cbk
h+k2 − gk < d < 2

∆ + cbk
h+k2 − gk, Qk(k, 0) is a stable node, i.e., a sink.

2. If a = 2
∆ , then Qk(k, 0) is non-hyperbolic.

3. If a > 2
∆ , then,

(a) For d < cbk
h+k2 − gk or d > 2

∆ + cbk
h+k2 − gk, Qk(k, 0) is an unstable node, i.e., a source;

(b) For d = cbk
h+k2 − gk or d = 2

∆ + cbk
h+k2 − gk, Qk(k, 0) is non-hyperbolic;

(c) For cbk
h+k2 − gk < d < 2

∆ + cbk
h+k2 − gk, Qk(k, 0) is a saddle.

Proof. Substituting boundary equilibrium point Qk(k, 0) into the Jacobian matrix Jd(u, v),
we have

Jd(Qk) =

1− ∆a −∆ bk
h+k2

0 1 + ∆
( cbk

h+k2 − d− gk
)
.

Now, consider the following three cases.

Case 1: a < 2
∆ . Then, the two eigenvalues of the Jacobian matrix Jc(Qk) satisfy |λ1| =

|1−∆a| < 1 and |λ2| = |1+∆
( cbk

h+k2 − d− gk
)
| > 1 for d < cbk

h+k2 − gk or d > 2
∆ + cbk

h+k2 − gk,
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so Qk(k, 0) is a saddle; |λ2| = 1 for d = cbk
h+k2 − gk or d = 2

∆ + cbk
h+k2 − gk, then Qk(k, 0) is

non-hyperbolic; and |λ2| < 1 for cbk
h+k2 − gk < d < 2

∆ + cbk
h+k2 − gk, thus Qk(k, 0) is a stable

node, i.e., a sink.
Case 2: a = 2

∆ . Then, one eigenvalue of the Jacobian matrix Jc(Qk) meets |λ1| = |1− ∆a| = 1.
Thus, Qk(k, 0) is non-hyperbolic.
Case 3: a > 2

∆ . Then, the two eigenvalues of the Jacobian matrix Jc(Qk)meet |λ1| = |1−∆a| > 1
and |λ2| = |1+∆

( cbk
h+k2 − d− gk

)
| > 1 for d < cbk

h+k2 − gk or d > 2
∆ + cbk

h+k2 − gk, then Qk(k, 0)

is an unstable node, i.e., a source; |λ2| = 1 for d = cbk
h+k2 − gk or d = 2

∆ + cbk
h+k2 − gk, then

Qk(k, 0) is non-hyperbolic; and |λ2| < 1 for cbk
h+k2 − gk < d < 2

∆ + cbk
h+k2 − gk, then at this

time, Qk(k, 0) is a saddle.

The proof is over.

4.3.3. The Stability of Positive Equilibrium Points Qi(ui, vi) (i = 1, 2)

Theorem 13. When the positive equilibrium Qi(ui, vi) (i = 1, 2) exists, let Ω1(i) =
buivi
h+u2

i

( bc(h−u2
i )

(h+u2
i )

2 −

g
)
, Ω2(i) = − aui

k +
2bu2

i v2
i

(h+u2
i )

2 (i = 1, 2). Then, the results for the positive fixed points Qi(ui, vi)

(i = 1, 2) of system (1.6) summarized in Tables 4 and 5 are true.

Proof. Substituting the positive equilibrium points Qi(ui, vi)(i = 1, 2) into the Jacobian
matrix Jd(u, v), one can see

Jd(Qi) =

1 + ∆
(
a
(
1− 2ui

k
)
− bvi

h+u2
i
+

2bu2
i vi

(h+u2
i )

2

)
∆
(
− bui

h+u2
i

)
∆
( bcvi(h−u2

i )

(h+u2
i )

2 − gvi
)

1 + ∆
( bcui

h+u2
i
− d− gui

)
.

We first analyze the stability of the positive equilibrium point Q2(u2, v2). By comput-
ing Jd(Q2), we can obtain its characteristic polynomial

F2(λ) = λ2 − P̂2λ + Q̂2,

where

P̂2 = 2 + ∆
(
− au2

k
+

2bu2
2v2

2
(h + u2

2)
2

)
,

Q̂2 = 1 + ∆
(
− au2

k
+

2bu2
2v2

2
(h + u2

2)
2

)
+ ∆2 bu2v2

h + u2
2

( bc(h− u2
2)

(h + u2
2)

2
− g
)
.

Denote Ω1(2) =
bu2v2
h+u2

2

( bc(h−u2
2)

(h+u2
2)

2 − g
)

and Ω2(2) = − au2
k +

2bu2
2v2

2
(h+u2

2)
2 . Then,

F2(1) = ∆2Ω1(2), F2(−1) = Ω1(2)∆2 + 2Ω2(2)∆ + 4.

From (4.7), we know that Ω1(2) < 0; hence, F2(1) < 0, which shows that F2(λ) = 0
has one root lying in (1, ∞). For the value of F2(−1), we consider the following three cases
for discussion:

Case 1: 0 < ∆ <
−Ω2(2)−

√
Ω2

2(2)−4Ω1(2)
Ω1(2)

. Then, F2(−1) > 0. Lemma 3 reads that |λ1| > 1
and |λ2| < 1, which shows that Q2 is a saddle.

Case 2: ∆ =
−Ω2(2)−

√
Ω2

2(2)−4Ω1(2)
Ω1(2)

. Then, F2(−1) = 0. This shows that Q2 is non-
hyperbolic.

Case 3: ∆ >
−Ω2(2)−

√
Ω2

2(2)−4Ω1(2)
Ω1(2)

. Then, F2(−1) < 0. Lemma 3 tells us that |λ1| > 1 and
|λ2| > 1, so Q2 is an unstable node.
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Next, we discuss the stability of the positive equilibrium point Q1(u1, v1). Similarly,
after calculating Jd(Q1), we obtain its characteristic polynomial

F1(λ) = λ2 − P̂1λ + Q̂1,

where

P̂1 = 2 + ∆
(
− au1

k
+

2bu2
1v2

1
(h + u2

1)
2

)
,

Q̂1 = 1 + ∆
(
− au1

k
+

2bu2
1v2

1
(h + u2

1)
2

)
+ ∆2 bu1v1

h + u2
1

( bc(h− u2
1)

(h + u2
1)

2
− g
)
.

Let Ω1(1) =
bu1v1
h+u2

1

( bc(h−u2
1)

(h+u2
1)

2 − g
)

and Ω2(1) = − au1
k +

2bu2
1v2

1
(h+u2

1)
2 . Then,

F1(1) = ∆2Ω1(1), F1(−1) = Ω1(1)∆2 + 2Ω2(1)∆ + 4.

From (4.8), we know that Ω1(1) > 0, so F1(1) > 0. Note also that Q̂1 > (=,<)1⇐⇒
∆ > (=,<)− Ω2(1)

Ω1(1)
. Now, consider the following three cases for discussion.

Case 1: Ω2
2(1)− 4Ω1(1) < 0. This implies that F1(−1) > 0. Thus, we consider the following

three subcases for discussion:
Subcase 1. ∆ < −Ω2(1)

Ω1(1)
. Then, Q̂1 < 1. Lemma 3 reads |λ1| < 1 and |λ2| < 1. Thus, Q1 is a

stable node, i.e., a sink.
Subcase 2. ∆ = −Ω2(1)

Ω1(1)
. Then, Q̂1 = 1.

Subcase 3. ∆ > −Ω2(1)
Ω1(1)

. Then, Q̂1 > 1. Thus, |λ1| > 1, |λ2| > 1, and hence Q1 is an
unstable node, i.e., a source.

Case 2: Ω2
2(1)− 4Ω1(1) = 0. Consider the following three subcases:

Subcase 1. ∆ < −Ω2(1)
Ω1(1)

. Then, F1(−1) > 0, Q̂1 < 1. Hence, |λ1| < 1, |λ2| < 1, and so Q1 is
a stable node, i.e., a sink.
Subcase 2. ∆ = −Ω2(1)

Ω1(1)
. Then, F1(−1) = 0. Thus, Q1 is non-hyperbolic.

Subcase 3. ∆ > −Ω2(1)
Ω1(1)

. Then, F1(−1) > 0 and Q̂1 > 1. It follows from Lemma 3 that
|λ1| > 1 and |λ2| > 1. Thus, Q1 is an unstable node, i.e., a source.

Case 3: Ω2
2(1)− 4Ω1(1) > 0. Then, Ω2(1) > 2

√
Ω1(1) or Ω2(1) < −2

√
Ω1(1). Consider

the following two subcases:

Subcase 1. Ω2(1) > 2
√

Ω1(1). Then, ∆ > 0 >
−Ω2(1)+

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

. So, F1(−1) > 0, Q̂1 > 1,
which, in view of Lemma 3, implies |λ1| > 1 and |λ2| > 1. Thus, Q1 is an unstable node,
i.e., a source.
Subcase 2. Ω2(1) < −2

√
Ω1(1). We further consider the following five subsubcases.

Subsubcase 1. 0 < ∆ <
−Ω2(1)−

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

< −Ω2(1)
Ω1(1)

. Then, F1(−1) > 0, Q̂1 < 1,
indicating |λ1| < 1, |λ2| < 1. Hence, Q1 is a stable node, i.e., a sink.

Subsubcase 2. ∆ =
−Ω2(1)−

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

. Then, F1(−1) = 0 and so Q1 is non-hyperbolic.

Subsubcase 3. −Ω2(1)−
√

Ω2
2(1)−4Ω1(1)

Ω1(1)
< ∆ <

−Ω2(1)+
√

Ω2
2(1)−4Ω1(1)

Ω1(1)
. Then, F1(−1) < 0.

In light of Lemma 3, |λ1| > (<)1, |λ2| < (>)1. Thus, Q1 is a saddle.

Subsubcase 4. ∆ =
−Ω2(1)+

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

. Then, F1(−1) = 0 and so Q1 is non-hyperbolic.

Subsubcase 5. ∆ >
−Ω2(1)+

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

> −Ω2(1)
Ω1(1)

. Then, F1(−1) > 0, Q̂1 > 1 and so
|λ1| > 1, |λ2| > 1. Therefore, Q1 is an unstable node, i.e., a source.
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The proof is finished.

Table 4. Properties of the fixed point Q1(u1, v1) of system (1.6).

Conditions Eigenvalues Properties

Ω2
2(1)− 4Ω1(1) < 0

∆ < −Ω2(1)
Ω1(1)

|λ1| < 1, |λ2| < 1 sink

∆ = −Ω2(1)
Ω1(1)

|λ1| = 1 or |λ2| = 1 non-hyperbolic

∆ > −Ω2(1)
Ω1(1)

|λ1| > 1, |λ2| > 1 source

Ω2
2(1)− 4Ω1(1) = 0

∆ < −Ω2(1)
Ω1(1)

|λ1| < 1, |λ2| < 1 sink

∆ = −Ω2(1)
Ω1(1)

|λ1| = 1 or |λ2| = 1 non-hyperbolic

∆ > −Ω2(1)
Ω1(1)

|λ1| > 1, |λ2| > 1 source

Ω2
2(1)− 4Ω1(1) >0 Ω2(1) > 2

√
Ω1(1) |λ1| > 1,|λ2| > 1 source

Ω2(1) < −2
√

Ω1(1)

∆ <
−Ω2(1)−

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

|λ1| < 1, |λ2| < 1 sink

∆ =
−Ω2(1)−

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

|λ1| = ( 6=)1, |λ2| 6= (=)1 non-hyperbolic

−Ω2(1)−
√

Ω2
2(1)−4Ω1(1)

Ω1(1)
< ∆ <

−Ω2(1)+
√

Ω2
2(1)−4Ω1(1)

Ω1(1)

,
|λ1| < (>)1, |λ2| > (<)1 saddle

∆ =
−Ω2(1)+

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

|λ1| 6= (=)1, |λ2| = ( 6=)1 non-hyperbolic

∆ >
−Ω2(1)−

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

|λ1| > 1, |λ2| > 1 source

Table 5. Properties of the fixed point Q2(u2, v2) of system (1.6).

Conditions Eigenvalues Properties

∆ <
−Ω2(2)−

√
Ω2

2(2)−4Ω1(2)
Ω1(2)

|λ1| > 1, |λ2| < 1 saddle

∆ =
−Ω2(2)−

√
Ω2

2(2)−4Ω1(2)
Ω1(2)

|λ1| > 1, |λ2| = 1 non-hyperbolic

∆ >
−Ω2(2)−

√
Ω2

2(2)−4Ω1(2)
Ω1(2)

|λ1| > 1, |λ2| > 1 source

5. Bifurcation Analysis

In this section, we, respectively, analyze the existence of bifurcations in the positive
equilibrium point Q1(u1, v1) of systems (1.3) and (1.6).

5.1. Bifurcation Analysis of the Positive Equilibrium Point Q1(u1, v1) in System (1.3)

In Section 3, we see that the Jacobian matrix of system (1.3) at the positive equilibrium
point Q1(u1, v1) is as follows:

J(Q1) =

−a u1
k +

2bu2
1v1

(h+u2
1)

2 − bu1
h+u2

1

cbv1(h−u2
1)

(h+u2
1)

2 − gv1 0

.

The characteristic equation of the Jacobian matrix J(Q1) is given by

λ2 −
(
− a

u1

k
+

2bu2
1v1

(h + u2
1)

2

)
λ +

bu1

h + u2
1

( cbv1(h− u2
1)

(h + u2
1)

2
− gv1

)
= 0. (5.1)
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Substituting v1 = a
b
(
1− u1

k
)
(h + u2

1) into Equation (5.1), we have

λ2 − au1
(2ku1 − 3u2

1 − h
k(h + u2

1)

)
λ + au1

(
1− u1

k
)( cb(h− u2

1)

(h + u2
1)

2
− g
)
= 0. (5.2)

Take k as the bifurcation parameter of system (1.3). If k takes a critical value, k0 > 0,
such that the corresponding eigenvalues are λk0 = reiγ, where γ = ± απ

2 , then a bifurcation
occurs. Now, we look for k0 such that λk0 satisfies Equation (5.2).

Substituting λk0 into (5.2), we can obtain the following equation:

r2e2iγ − au1
(2k0u1 − 3u2

1 − h
k0(h + u2

1)

)
reiγ + au1

(
1− u1

k0

)( cb(h− u2
1)

(h + u2
1)

2
− g
)
= 0.

Namely,

r2(cos(2γ) + isin(2γ))− au1
(2k0u1 − 3u2

1 − h
k0(h + u2

1)

)
r(cosγ + isinγ)

+ au1
(
1− u1

k0

)( cb(h− u2
1)

(h + u2
1)

2
− g
)
= 0.

Hence,
r2cos(2γ)− au1

( 2k0u1−3u2
1−h

k0(h+u2
1)

)
rcosγ + au1

(
1− u1

k0

)( cb(h−u2
1)

(h+u2
1)

2 − g
)
= 0,

r2sin(2γ)− au1
( 2k0u1−3u2

1−h
k0(h+u2

1)

)
rsinγ = 0.

. (5.3)

Since we are interested in non-zero solutions for r in (5.3), from the second equation
of (5.3) we can derive r = au1

( 2k0u1−3u1−h
2cosγk0(h+u2

1)

)
. After substitution into the first equation

of (5.3), one has

(2k0u1 − 3u2
1 − h

k0(h + u2
1)

)2 −a2u2
1

4cos2γ
+ au1

(
1− u1

k0

)( cb(h− u2
1)

(h + u2
1)

2
− g
)
= 0.

So,

au1
(2k0u1 − 3u2

1 − h
k0(h + u2

1)

)2
= 4cos2γ

(
1− u1

k0

)( cb(h− u2
1)

(h + u2
1)

2
− g
)
,

namely,

ω1k2
0 −ω2k0 + ω3 = 0, (5.4)

where

ω1 = 4au3
1 − 4cos2γ

(
cb(h− u2

1)− g(h + u2
1)

2),
ω2 = 4au2

1(3u2
1 + h)− 4cos2γ u1

(
cb(h− u2

1)− g(h + u2
1)

2),
ω3 = au1(3u2

1 + h)2 > 0.

|J(Q1)| > 0 implies cb(h− u2
1)− g(h + u2

1)
2 > 0. Let γ0 = au1

3

cb(h−u2
1)−g(h+u2

1)
2 . Then,

γ0 > 0. After a lengthy and tedious calculation, we can classify the following three cases
for further discussion:

Case 1: cos2γ > γ0. Then, we have ω1 < 0. Due to k0 > 0, we can obtain

k0 =
ω2−
√

ω2
2−4ω1ω3

2ω1
.

Case 2: cos2γ = γ0. Then, ω1 = 0. Noticing k0 > 0, we can obtain k0 = ω3
ω2

.
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Case 3: cos2γ < γ0. Then, we have ω1 > 0 and ω2 > 0. Calculate ω2
2 − 4ω1ω3 to ob-

tain ω2
2 − 4ω1ω3 = 16u1cos2γ[u1cosγ2(cb(h− u2

1)− g(h + u2
1)) + a(3u2

1 + h)(u2
1 + h)] > 0.

Then, we can derive that k0 has two values: ω2±
√

ω2
2−4ω1ω3

2ω1
.

In any case, the critical value k0 always exists. Next, we prove that system (1.3) satisfies
the conditions of Theorem 4 at the positive equilibrium point Q1(u1, v1).

From the existence of k0, we see that |arg(λi(k0))| = απ
2 (i = 1, 2); hence, the first

condition in Theorem 4 holds true. The Jacobian matrix of system (1.3) has only two
eigenvalues; thus, we do not need to consider the second condition in Theorem 4. Next,
we focus on proving that system (1.3) satisfies the third condition of Theorem 4. Take the
derivative of Equation (5.2) with respect to k to obtain

2λ
dλ

dk
− au1

( 2u1

h + u2
1
−

3u2
1 + h

k(h + u2
1)

)dλ

dk
− au1

3u2
1 + h

k2(h + u2
1)

λ+

au2
1

k2

( cb(h− u2
1)

(h + u2
1)

2
− g
)
= 0.

(5.5)

Thus,

dλ

dk
=

au1(3u2
1+h)

k2(h+u2
1)

λ− au2
1

k2

( cb(h−u2
1)

(h+u2
1)

2 − g
)

2λ +
3au3

1+au1h−2aku2
1

k(h+u2
1)

. (5.6)

It suffices for us to verify λ1,k0 = rei απ
2 . Substituting k = k0 and λ1,k0 = rei απ

2 into the
right-hand side of (5.6) obtains

dλ

dk

∣∣∣∣
k=k0

=

au1(3u2
1+h)

k2
0(h+u2

1)
reiγ − au2

1
k2

0

( cb(h−u2
1)

(h+u2
1)

2 − g
)

2reiγ +
3au3

1+au1h−2ak0u2
1

k0(h+u2
1)

=

au1(3u2
1+h)

k2
0(h+u2

1)
r(cosγ + isinγ)− au2

1
k2

0

( cb(h−u2
1)

(h+u2
1)

2 − g
)

2r(cosγ + isinγ) +
3au3

1+au1h−2ak0u2
1

k0(h+u2
1)

=
ψ1 + ψ2i
ψ2

3 + ψ2
4

,

(5.7)

where

ψ1 =
( au1(3u2

1 + h)
k2

0(h + u2
1)

rcosγ−
au2

1
k0

( cb(h− u2
1)

(h + u2
1)

2
− g
))

×
(
2rcosγ +

3au3
1 + au1h− 2ak0u2

1
k0(h + u2

1)

)
+

au1(3u2
1 + h)

k2
0(h + u2

1)
2r2sin2γ,

ψ2 =
( a(3u2

1 + h)(3u2
1 + h− 2k0u1)

k3
0(h + u2

1)
2

+
2
k0

( cb(h− u2
1)

(h + u2
1)

2
− g
))

au2
1rsinγ,

ψ3 =2rcosγ +
3au3

1 + au1h− 2ak0u2
1

k0(h + u2
1)

, ψ4 = 2rsinγ.

Denote λ(k) = m(k)+ i n(k), then arg(λ(k)) = arctan( n
m ). By differentiating arg(λ(k))

with respect to k, we get

d
dk

arg(λ(k)) =
mn

′ − nm
′

m2 + n2 =
W(m, n)
|λ(k)|2

(5.8)
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where W(m, n) =

∣∣∣∣∣∣ m n

m
′

n
′

∣∣∣∣∣∣.
Therefore,

d
dk

arg(λ(k))
∣∣∣∣
k=k0

=
W(m(k0), n(k0))

|λ(k0)|2

=
1

|λ(k0)|2

∣∣∣∣∣∣ m(k0) n(k0)

m
′
(k0) n

′
(k0)

∣∣∣∣∣∣
=

1
|λ(k0)|2

∣∣∣∣∣∣ rcosγ rsinγ
ψ1

ψ2
3+ψ2

4

ψ2
ψ2

3+ψ2
4

∣∣∣∣∣∣.
(5.9)

We can easily deduce that when k0 exists, |λ(k0)|2 6= ∞ holds true.
Next, we prove the conditions under which W(m, n)(k0) 6= 0 holds true.
In fact,

W(m, n)(k0) =

∣∣∣∣∣∣ rcosγ rsinγ
ψ1

ψ2
3+ψ2

4

ψ2
ψ2

3+ψ2
4

∣∣∣∣∣∣ 6= 0

⇐⇒ 1
ψ2

3 + ψ2
4

(
rcosγψ2 − rsinγψ1

)
6= 0

⇐⇒ cosγψ2 − sinγψ1 6= 0

⇐⇒ 4u1rcosγ
( cb(h− u2

1)

(h + u2
1)

2
− g
)
+

u1
( cb(h− u2

1)

(h + u2
1)

2
− g
)(3au3

1 + au1h− 2ak0u2
1

k0(h + u2
1)

)
− 2r2 3u2

1 + h
k0(h + u2

1)
6= 0

⇐⇒ k0 6= kh,

(5.10)

where

kh =
2r2(3u2

1 + h)(h + u2
1)

2 − u1
(
cb(h− u2

1)− g(h + u2
1)
)
(3au3

1 + au1h)
u1
(
cb(h− u2

1)− g(h + u2
1)
)(

4rcosγ(h + u2
1)− 2au2

1
) . (5.11)

This is true by adding the assumption k0 6= kh. So, summarizing the above analysis,
one has the following results.

Theorem 14. Suppose that all parameters in system (1.3) are positive. Let R0, R, k0, kh be defined
as above. If gh− cb < 0, R0 < R, u1 < k, k0 6= kh, then system (1.3) undergoes a fractional Hopf
bifurcation at the positive equilibrium point Q1(u1, v1).

5.2. Bifurcation Analysis of the Positive Equilibrium Point Q1(u1, v1) in System (1.6)

In this subsection, we study the bifurcation problems of system (1.6) at the pos-
itive equilibrium point Q1(u1, v1) by using the center manifold theorem and local
bifurcation theory.

5.2.1. Neimark–Sacker Bifurcation at the Fixed Point Q1(u1, v1)

From Case 1 in the proof of Theorem 13 for the stability of the positive equilibrium
point Q1(u1, v1), we see that the dimension numbers for the stable manifold and unstable
manifold of system (1.6) at the positive equilibrium point Q1(u1, v1) change when ∆ varies
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in the vicinity of ∆0 (correspondingly, ρ varies in the vicinity of ρ0) for ∆ < − 4
Ω2(1)

and

Ω2
2(1)− 4Ω1(1) < 0, where

∆0 == −Ω2(1)
Ω1(1)

, ρ0 = (Γ(1 + α)∆0)
1
α . (5.12)

Thus, a bifurcation, to be shown to be Neimark–Sacker, may occur. Let

N̂SQ1 =

{
(a, b, c, d, g, h, k, α, ρ) ∈ R7

+|∆ < − 4
Ω2(1)

, Ω2
2(1)− 4Ω1(1) < 0

}
.

To analyze the Neimark–Sacker bifurcation, we perform the following.
Let xn = un − u1, yn = vn − v1, which transforms the fixed point Q1(u1, v1) to the

origin O(0, 0). Assume that ρ∗ is a small perturbation of ρ with |ρ∗| � 1. After shifting and
perturbation, system (1.6) takes the following form: xn+1 = xn +

(ρ+ρ∗)α

Γ(α+1)

(
a(xn + u1)

(
1− (xn+u1)

k
)
− b(xn+u1)(yn+v1)

h+(xn+u1)2

)
,

yn+1 = yn +
(ρ+ρ∗)α

Γ(α+1)

( cb(xn+u1)(yn+v1)
h+(xn+u1)2 − d(yn + v1)− g(xn + u1)(yn + v1)

)
.

(5.13)

Using the Taylor series expansion of system (5.13) at O(0, 0) to the third order results
in the following system:

xn+1 = ε10xn + ε01yn + ε20x2
n + ε11xnyn + ε02y2

n

+ε30x3
n + ε21x2

nyn + ε12xny2
n + ε03y3

n + o(ρ3
1),

yn+1 = ζ10xn + ζ01yn + ζ20x2
n + ζ11xnyn + ζ02y2

n

+ζ30x3
n + ζ21x2

nyn + ζ12xny2
n + ζ03y3

n + o(ρ3
1),

(5.14)

where ρ1 =
√

x2
n + y2

n,

ε10 =1 +
ρα

Γ(α + 1)
(
a(1− 2u1

k
)− bv1

( h− u2
1

(u2
1 + h)2

))
, ε01 = − ραbu1

Γ(α + 1)(u2
1 + h)

,

ε20 =
ρα

Γ(α + 1)
(
(3h− u2

1)
bu1v1

(u2
1 + h)3

− a
k
)
, ε02 = 0, ε11 =

ραb
Γ(α + 1)

( u2
1 − h

(u2
1 + h)2

)
,

ε30 =
ραbv1

Γ(α + 1)(u2
1 + h)3

(
h +

2u2
1(3u2

1 − h)
u2

1 + h
− 5u2

1
)
, ε03 = 0,

ε21 =
ραbu1

Γ(α + 1)(u2
1 + h)2

(
2−

3(u2
1 − h)

u2
1 + h

)
, ε12 = 0,

ζ10 =
ραv1

Γ(α + 1)
( bc

u2
1 + h

(1−
2u2

1
u2

1 + h
)− g

)
, ζ01 = 1− ρα

Γ(α + 1)
(
d + gu1 −

bcu1

u2
1 + h

)
,

ζ20 =
ραbcu1v1

Γ(α + 1)(u2
1 + h)2

, ζ02 = 0, ζ11 =
ρα

Γ(α + 1)
( bc

u2
1 + h

(1−
2u2

1
u2

1 + h
)− g

)
,

ζ30 =
ραbcv1

Γ(α + 1)(u2
1 + h)2

( 4u2
1

u2
1 + h

+ 4u2
1(1− 2u2

1)− 1
)
, ζ03 = 0

ζ21 =
ραbcu1

Γ(α + 1)(u2
1 + h)2

( 4u2
1

u2
1 + h

− 3
)
, ζ12 = 0.

The characteristic equation of the linearized equation of system (5.14) is

λ2 + P̂1(ρ
∗)λ + Q̂1(ρ

∗) = 0,
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where P̂1(ρ
∗) = 2 + ∆(ρ∗)Ω2(1), Q̂1(ρ

∗) = 1 + ∆(ρ∗)Ω2(1) + ∆2(ρ∗)Ω1(1),
∆(ρ∗) = (ρ+ρ∗)α

Γ(α+1) . Noting that ∆(0) = ∆0 and P̂2
1 (0)− 4Q̂1(0) = ∆2

0(Ω
2
2(1)− 4Ω1(1)) < 0,

the two roots of the characteristic equation are

λ1,2(ρ
∗) =

−P̂1(ρ
∗)± i

√
4Q̂1(ρ∗)− P̂2

1 (ρ
∗)

2
.

Moreover,

(|λ1,2(ρ
∗)|)

∣∣
ρ∗=0 =

√
Q̂1(ρ∗)

∣∣
ρ∗=0 = 1,(d|λ1,2(ρ

∗)|
dρ∗

)∣∣∣∣
ρ∗=0

= −ρα−1Ω2(1)
2Γ(α)

6= 0.

It is obvious that λi
1,2(0) 6= 1, for i = 1, 2, 3, 4. Thus, the transversal and nondegenerate

conditions hold for a Neimark–Sacker bifurcation to occur.
In order to derive the normal form of system (5.14), let

T =

0 ε01

µ 1−ω

,

where ω = − P̂1(ρ
∗)

2 ,µ =

√
4Q̂1(ρ∗)−P̂2

1 (ρ
∗)

2 . Then, we have

T−1 =

ω−1
µε01

1
µ

1
ε01

0

.

Change the variables to
(x, y)T = T(U, V)T ,

then, system (5.14) changes to the following form:U

V

→
ω −µ

µ ω

U

V

+

F(U, V) + o(ρ3
2)

G(U, V) + o(ρ3
2)

,

where ρ1 =
√

x2
n + y2

n

F(U, V) = η20x2 + η11xy + η02y2 + η30x3 + η21x2y + η12xy2 + η03y3,

G(U, V) = θ20x2 + θ11xy + θ02y2 + θ30x3 + θ21x2y + θ12xy2 + θ03y3,

x = ε01V, y = µU + (1−ω)V,

η20 =
ε20(ω− 1)

µε01
+

ζ20

µ
, η02 =

ε02(ω− 1)
µε01

+
ζ02

µ
, η11 =

ε11(ω− 1)
µε01

+
ε11

µ
,

η30 =
ε30(ω− 1)

µε01
+

ζ30

µ
, η03 =

ε03(ω− 1)
µε01

+
ζ03

µ
, η21 =

ε21(ω− 1)
µε01

+
ζ21

µ
,

η12 =
ε12(ω− 1)

µε01
+

ζ12

µ
,

θ20 =
ε20

ε01
, θ02 =

ε11

ε01
, θ11 =

ε02

ε01
, θ30 =

ε30

ε01
, θ03 =

ε03

ε01
, θ21 =

ε21

ε01
, θ12 =

ε12

ε01
.
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Furthermore,

FUU |(0,0)= 2η02µ3, FUV |(0,0)= η11ε01µ + 2η02µ(1−ω),

FVV |(0,0)= 2η02ε2
01 + 2η11ε01(1−ω), FUUU |(0,0)= 6η03µ3,

FUUV |(0,0)= 2η21ε01µ2 + 6η03µ2(1−ω),

FUVV |(0,0)= 2η21ε2
01µ + 4η12ε01µ(1−ω) + 6η03µ(1−ω)2,

FVVV |(0,0)= 4(1−ω)3 + 6η30ε3
01 + 4η21ε2

01(1−ω) + 6η12ε01(1−ω)2,

GUU |(0,0)= 2θ02µ3, GUV |(0,0)= θ11ε01µ + 2θ02µ(1−ω),

GVV |(0,0)= 2θ02ε2
01 + 2θ11ε01(1−ω), GUUU |(0,0)= 6θ03µ3,

GUUV |(0,0)= 2θ21ε01µ2 + 6θ03µ2(1−ω),

GUVV |(0,0)= 2θ21ε2
01µ + 4θ12ε01µ(1−ω) + 6θ03µ(1−ω)2,

GVVV |(0,0)= 4(1−ω)3 + 6θ30ε3
01 + 4θ21ε2

01(1−ω) + 6θ12ε01(1−ω)2.

To determine the stability and direction of the bifurcated closed orbit of system (1.4),
the following discriminating quantity L should be calculated and not to be zero, where

L = −Re
( (1− 2λ1)λ

2
2

1− λ1
τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 + Re(λ2τ21), (5.15)

τ20 =
1
8
[FXX − FYY + 2GXY + i(GXX − GYY − 2FXY)]|(0,0),

τ11 =
1
4
[FXX + FYY + i(GXX + GYY)]|(0,0),

τ02 =
1
8
[FXX − FYY − 2GXY + i(GXX − GYY + 2FXY)]|(0,0),

τ21 =
1

16
[FXXX + FXYY + GXXY + GYYY + i(GXXX + GXYY − FXXY

− FYYY)]|(0,0).

We now come to the following conclusion as a result of the analysis derived above.

Theorem 15. Suppose that the positive equilibrium point Q1(u1, v1) of system (1.6) exists. Let
the parameters (a, b, c, d, g, h, k, α, ρ) ∈ N̂SQ1 and ∆0 and ρ0 be defined as in (5.12). If the
parameter ρ varies in a vicinity of ρ0 (correspondingly, ∆ varies around ∆0) and L 6= 0, then system
(1.6) undergoes a Neimark–Sacker bifurcation at the equilibrium point Q1(u1, v1). Moreover,
if L < (>)0, a stable (an unstable) smooth closed invariant curve can be bifurcated out and the
bifurcation is supercritical (subcritical).

5.2.2. Period-Doubling Bifurcation at the Fixed Point Q1(u1, v1)

From Case 3 in the proof of Theorem 13 for the stability of the positive equilibrium point
Q1(u1, v1), one can see that the dimension numbers for the stable manifold and unstable
manifold of system (1.6) at the equilibrium point Q1(u1, v1) change when ∆ varies in the
vicinity of ∆0 (correspondingly, ρ varies in the vicinity of ρ0) for Ω2(1) < −2

√
Ω1(1), where

∆0 =
−Ω2(1)±

√
Ω2

2(1)− 4Ω1(1)

Ω1(1)
, ρ0 = (Γ(1 + α)∆0)

1
α . (5.16)
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Hence, a bifurcation may occur. Noting that λ1 = −1 and |λ2| 6= 1 for ∆ = ∆0, we
show that this bifurcation is a period-doubling one. Let

P̂DQ1 =

{
(a, b, c, d, g, h, k, α, ρ) ∈ R7

+|Ω2(1) < −2
√

Ω1(1)
}

.

To analyze the period-doubling bifurcation of system (1.6) at the fixed point Q1(u1, v1),

it suffices for us to consider ∆0 =
−Ω2(1)+

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

. The proof for the case

∆0 =
−Ω2(1)−

√
Ω2

2(1)−4Ω1(1)
Ω1(1)

is completely similar and will be omitted here. Now, pro-
ceed in the following way.

Let xn = un − u1, yn = vn − v1, which transforms the fixed point Q1(u1, v1) to the
origin O(0, 0). Consider ρ∗ as a small perturbation of ρ, i.e., ρ∗ = ρ− ρ0, with |ρ∗| � 1.
After the perturbation, system (1.6) takes the following form: xn+1 = xn +

(ρ+ρ∗)α

Γ(α+1)

(
a(xn + u1)

(
1− (xn+u1)

k
)
− b(xn+u1)(yn+v1)

h+(xn+u1)2

)
,

yn+1 = yn +
(ρ+ρ∗)α

Γ(α+1)

( cb(xn+u1)(yn+v1)
h+(xn+u1)2 − d(yn + v1)− g(xn + u1)(yn + v1)

)
.

(5.17)

Set ρ∗n+1 = ρ∗n = ρ∗, then (5.17) can be seen as
xn+1 = xn +

(ρ+ρ∗)α

Γ(α+1)

(
a(xn + u1)

(
1− (xn+u1)

k
)
− b(xn+u1)(yn+v1)

h+(xn+u1)2

)
,

yn+1 = yn +
(ρ+ρ∗)α

Γ(α+1)

( cb(xn+u1)(yn+v1)
h+(xn+u1)2 − d(yn + v1)− g(xn + u1)(yn + v1)

)
ρ∗n+1 = ρ∗n,

(5.18)

Taylor expanding system (5.18) at (xn, vn, ρ∗n) = (0, 0, 0) results in


xn

yn

ρ∗n

→


ε100 ε010 0

ζ100 ζ010 0

0 0 1




xn

yn

ρ∗

+


M(xn, yn, ρ∗n) + o(ρ3

3)

N(xn, yn, ρ∗n) + o(ρ3
3)

0

, (5.19)

where ρ3 =
√

x2
n + y2

n + ρ∗n
2,

M(xn, yn, ρ∗n) =ε200x2
n + ε020y2

n + ε002ρ∗n
2 + ε110xnyn + ε101xnρ∗ + ε011ynρ∗n

+ ε300x3
n + ε030y3

n + ε003ρ∗n
3 + ε210x2

nyn + ε120xny2
n

+ ε021y2
nρ∗n + ε012ynρ∗n

2 + ε201x2
nρ∗n + ε102xnρ∗n

2 + ε111xnynρ∗n,

N(xn, yn, ρ∗n) =ζ200x2
n + ζ020y2

n + ζ002ρ∗n
2 + ζ110xnyn + ζ101xnρ∗ + ζ011ynρ∗n

+ ζ300x3
n + ζ030y3

n + ζ003ρ∗n
3 + ζ210x2

nyn + ζ120xny2
n

+ ζ021y2
nρ∗n + ζ012ynρ∗n

2 + ζ201x2
nρ∗n + ζ102xnρ∗n

2 + ζ111xnynρ∗n,

ε100 = 1 +
ρα

Γ(α + 1)
(
a(1− 2u1

k
)− bv1

( h− u2
1

(u2
1 + h)2

))
, ε010 = − ραbu1

Γ(α + 1)(u2
1 + h)

,

ε200 =
ρα

Γ(α + 1)
(
(3h− u2

1)
bu1v1

(u2
1 + h)3

− a
k
)
, ε020 = 0,

ε002 =
α(1− αρα−2u1)

2Γ(α + 1)
(
a(

u1

k
− 1) +

bv1

u2
1 + h

)
, ε110 =

ραb
Γ(α + 1)

( u2
1 − h

(u2
1 + h)2

)
,
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ε101 =
αρα−1

Γ(α + 1)
( bv1

u2
1 + h

(
2u2

1v1

u2
1
− 1) + a(1− 2u1

k
)
)
, ε011 = − αρα−1bu1

Γ(α + 1)(u2
1 + h)

,

ε300 =
ραbv1

Γ(α + 1)(u2
1 + h)3

(
h +

2u2
1(3u2

1 − h)
u2

1 + h
− 5u2

1
)
, ε030 = 0,

ε003 =
α(3α− α2 − 2)ρα−3

6Γ(α + 1)
(
au1(

u1

k
− 1) +

bu1v1

u2
1 + h

)
,

ε210 =
ραbu1

Γ(α + 1)(u2
1 + h)2

(
2−

3(u2
1 − h)

u2
1 + h

)
, ε120 = 0, ε021 = 0,

ε012 =
α(1− α)ρα−2bu1

2Γ(α + 1)(u2
1 + h)

, ε201 =
αρα−1

Γ(α + 1)
(
(3h− u2

1)
bu1v1

(u2
1 + h)3

− a
k
)
,

ε102 =
α(1− α)ρα−2bu1

2Γ(α + 1)(u2
1 + h)

, ε111 =
αρα−1b(u2

1 − h)
Γ(α + 1)(u2

1 + h)2
,

ζ100 =
ραv1

Γ(α + 1)
( bc

u2
1 + h

(1−
2u2

1
u2

1 + h
)− g

)
, ζ010 = 1− ρα

Γ(α + 1)
(
d + gu1 −

bcu1

u2
1 + h

)
,

ζ200 =
ραbcu1v1

Γ(α + 1)(u2
1 + h)2

, ζ020 = 0, ζ002 =
α(1− α)ρα−2v1

2Γ(α + 1)
(
d− gu1 −

bcu1

u2
1 + h

)
,

ζ110 =
ρα

Γ(α + 1)
( bc

u2
1 + h

(1−
2u2

1
u2

1 + h
)− g

)
, ζ101 =

αρα−1v1

Γ(α + 1)
( bc

u2
1 + h

(1− 2u1

u2
1 + h

)− g
)
,

ζ011 =
αρα−1

Γ(α + 1)
( bcu1

u2
1 + h

− d− gu1
)
, ζ300 =

ραbcv1

Γ(α + 1)(u2
1 + h)2

( 4u2
1

u2
1 + h

+ 4u2
1(1− 2u2

1)− 1
)
,

ζ030 =0, ζ003 =
α(3α− α2 − 2)ρα−3

6Γ(α + 1)
(
d + gu1 −

bcu1

u2
1 + h

)
,

ζ210 =
ραbcu1

Γ(α + 1)(u2
1 + h)2

( 4u2
1

u2
1 + h

− 3
)
, ζ120 = 0, ζ021 = 0,

ζ012 =
α(1− αρα−2)

2Γ(α + 1)
(
d + gu1 −

bcu1

u2
1 + h

)
, ζ201 =

αρα−1bcu1v1

Γ(α + 1)
( 4u2

1
u2

1 + h
− 1
)
,

ζ102 =
α(1− α)ρα−2v1

2Γ(α + 1)
(

g− bc
u2

1 + h
(1− 2u1

u2
1 + h

)
)
,

ζ111 =
αρα−1

Γ(α + 1)
( bc

u2
1 + h

(1−
2u2

1
u2

1 + h
− g)

)
.

Take

T =

 ε010 ε010

−1− ε100 λ2 − ε100

,

which is invertible. Now, using the transformationxn

yn

 = T

ū

v̄

,

system (5.19) becomes  ūn+1 = −ūn + M(xn, yn, ρ∗n),

v̄n+1 = λ2v̄n + N(xn, yn, ρ∗n).
(5.20)
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System (5.20) has a center manifold Wc(0, 0, 0) at (0, 0) in the neighborhood of ρ∗ = 0,
which can be deduced using the center manifold theorem and is essentially expressed
as follows:

Wc(0, 0, 0) =
{
(ūn, v̄n, ρ∗) ∈ R3 : v̄n = η1ū2

n + η2ūnρ∗ + o((|ūn|+ |ρ∗|)2)

}
where

η1 =
ε010((1 + ε100)ε200 + ε010ζ200) + ζ020(1 + ε100)

2 − (1 + ε100)(ε110(1 + ε100) + ε010ζ110)

1− λ2
2

,

η2 =
(1 + ε100)(ε011(1 + ε100) + ε010ζ011)

ε010(1 + λ2)2 − (1 + ε100)(ε101 + ε010ζ101)

(1 + λ2)2 .

So, system (5.20) restrained on the center manifold Wc(0, 0, 0) has the following form:

ūn+1 = −ūn + θ1ū2
n + θ2ūnρ∗ + θ3ū2

nρ∗ + θ4ūnρ∗2 + θ5ū3
n + o((|ūn|+ |ρ∗|)3) ≡ Z(ūn, ρ∗),

where

θ1 =
η2((λ2 − η1)ε200 − η2ζ200)

1 + λ2
− ζ020(1 + η1)

2

1 + λ2
− (1 + η1)((λ2 − η1)ε110 − η2ζ110)

1 + λ2
,

θ2 =
(λ2 − η1)ε101 − η2ζ101

1 + λ2
− (1 + η1)(λ2 − η1)ε011 − η2ζ011

η2(1 + λ2)
,

θ3 =
(λ2 − ε100)η1ε101 − ε010ζ101

1 + λ2
+

((λ2 − ε100)ε011 − η2ζ011)(λ2 − ε100)η1

ε010(1 + λ2)

− (1− ε100)((λ2 − ε100)ε111 − ε010ζ111)

1 + λ2
+

ε010((λ2 − ε100)ε201 − ε010ζ201)

1 + λ2

− ζ021(1− ε100)
2

1 + λ2
+

2ε100η2((λ2 − ε100)ε200 − ε010ζ200)

1 + λ2

− 2ζ020η2(1 + ε100)(λ2 − ε100)

1 + λ2
+

η2((λ2 − ε100)ε110 − ε010ζ110)(λ2 − 1− 2ε100)

1 + λ2
,

θ4 =
η2((λ2 − ε100)ε101 − ε010ζ101)

1 + λ2
+

((λ2 − ε100)ε011 − ε010ζ011)(λ2 − ε100)η2

ε010(1 + λ2)

+
2ε010η2((λ2 − ε100)ε200 − ε010ζ200)

1 + λ2
+

2ζ020η2(1 + ε100)(λ2 − ε100)

1 + λ2

+
η2(λ2 − 1− 2ε100)((λ2 − ε100)ε110 − ε010ζ110)

1 + λ2
,

θ5 =
2ε010η1((λ2 − ε100)ε200 − ε010ζ200)

1 + λ2
+

η1(λ2 − 1− 2ε100)((λ2 − ε100)ε200 − ε010ζ200)

2 + λ2

+
2ζ020η1(λ2 − ε100)(1 + ε100)

1 + λ2
+

η2
2((λ2 − ε100)ε300 − ε010ζ300)

1 + λ2

− η2(1 + ε100)((λ2 − ε100)ε210 − ε010ζ210)

1 + λ2
.

In order for the period-doubling bifurcation to occur, the two determinating quantities
ξ1 and ξ2 must both be nonzero, where

ξ1 =

(
∂2Z

∂ū∂ρ∗
+

1
2

∂Z
∂ρ∗

∂2Z
∂ū2

)
|(0,0), ξ2 =

(
1
6

∂3Z
∂ū3 +

(1
2

∂2Z
∂ū2

)2
)
|(0,0).

Finally, the outcome of the analysis above is as follows.
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Theorem 16. Suppose that the positive equilibrium point Q1(u1, v1) of system (1.6) exists. Let the
parameters (a, b, c, d, g, h, k, α, ρ) ∈ P̂DQ1 and ∆0 and ρ0 be defined as in (5.16). If the parameter
ρ varies in a neighbourhood of ρ0 (correspondingly, ∆ varies around ∆0) and ξ1ξ2 6= 0, then system
(1.6) undergoes a period-doubling bifurcation at the equilibrium point Q1(u1, v1). Furthermore,
for ξ2 > (<) 0, the period-two orbit that bifurcates from Q1(u1, v1) is stable (unstable).

6. Numerical Simulation

In this section, we perform numerical simulations of the dynamical behavior of sys-
tems (1.3) and (1.6) using Matlab, aiming to provide readers with a more intuitive under-
standing to the dynamics of systems (1.3) and (1.6) .

In Figure 1, the parameter values in system (1.3) are c = 0.015, k = 0.3, a = 0.1, b = 0.9,
d = 0.3, h = 0.2, g = 0.1 and α = 0.98. Figure 1a displays the trajectories of system (1.3)
starting from different points. Although it can be observed that system (1.3) exhibits a
saddle at the origin, it is not entirely clear. To provide a more clear representation of the
behavior of system (1.3) at the origin, we constructed streamline plots, depicted in Figure 1b.
From Figure 1b, it is evident that system (1.3) possesses a saddle at the origin.

In Figure 2a,b, the parameter values of system (1.3) are c = 0.9, k = 10, b = 0.2, a = 3,
h = 0.9, d = 0.2, g = 0.2 and α = 0.98, which satisfy d > cbk

h+k2 − gk. Figure 2a shows
that the behavior of system (1.3), regardless of whether it starts from the point (30, 10),
(30, 12) or (30, 14), will eventually converge to the point (10, 0). Figure 2b demonstrates
how the populations of prey and predator change over time when starting from the point
(30, 10). We can observe that as time increases, the population of prey tends to 10, while
the predator becomes extinct. In Figure 2c, the parameter values of system (1.3) are c = 0.6,
k = 1, b = 0.5, a = 0.1, h = 0.6, d = 0.1, g = 0.1 and α = 0.98, which satisfy d < cbk

h+k2 − gk.
We can clearly see that system (1.3) exhibits a saddle at the boundary equilibrium point
(1, 0).

For the positive equilibrium point of system (1.3), we are interested in its bifurcation
behavior. In Figure 3, the parameter values of system (1.3) are c = 0.6, b = 0.5, a = 0.1,
h = 0.6, d = 0.1, g = 0.1 and α = 0.98. Figure 3a,b shows that the positive equilibrium
point Q1(u1, v1) is stable and unstable when k = 1 and k = 10, respectively. Furthermore,
we can see from Figure 3b that when k crosses the critical value, a stable limit cycle emerges,
indicating the occurrence of a supercritical Hopf bifurcation in system (1.3).

(a)

Figure 1. Cont.
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(b)

Figure 1. (a) shows the trajectories of system (1.3) starting from points (0.8, 0.4), (0.7, 0.3)
and (0.6, 0.35), respectively; (b) represents the streamline plots of system (1.3) at the origin.

(a) (b)

(c)

Figure 2. (a) The properties of system (1.3) at the boundary equilibrium point (10,0) for d > cbk
h+k2 − gk;

(b) the quantities of prey and predators starting from the point (30, 10) over time; (c) the properties
of system (1.3) at the boundary equilibrium point (1,0) for d < cbk

h+k2 − gk.

With values of α = 0.75, b = 0.9, a = 0.2, k = 3, h = 5, c = 0.7, d = 0.2 and
g = 0.1, Figure 4 is the bifurcation diagram of system (1.6) starting from the point
(u0, v0) = (0.6, 0.1), and we can clearly observe that system (1.6) undergoes a period-
doubling bifurcation at the critical value. With values of α = 0.75, b = 0.9, a = 0.2, k = 3,
h = 5, c = 1, d = 0.2, g = 0.1, Figure 5 is the bifurcation diagram of system (1.6) starting
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from the point (u0, v0) = (0.5, 0.1), and it is clear that system (1.6) undergoes a Neimark–
Sacker bifurcation at the critical value.

(a) (b)

Figure 3. The existence of a supercritical Hopf bifurcation of system (1.3) with the parameter values
c = 0.6, b = 0.5, a = 0.1, h = 0.6, d = 0.1, g = 0.1 and α = 0.98 for k = 1 (a) and k = 10 (b).

Figure 6 depicts the phase diagram of system (1.6) starting from the point
(u0, v0) = (0.5888, 4.324) with parameters α = 0.75, b = 0.9, a = 0.2, k = 3, h = 5, c = 1,
d = 0.2, g = 0.1. We can observe that as ρ increases, the equilibrium point gradually
transitions from a stable focus to an unstable focus, and a stable limit cycle emerges.

Figure 4. The existence of a period-doubling bifurcation of system (1.6) with the k taking values from
8 to 11.6.

Figure 5. The existence of a Neimark–Sacker bifurcation of system (1.6) with the k taking values from
10.6 to 11.4.
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(a) ρ = 2 (b) ρ = 0.75

(c) ρ = 0.9 (d) ρ = 1

(e) ρ = 1.25 (f) ρ = 1.5

(g) ρ = 1.75 (h) ρ = 2

Figure 6. Phase portraits of system (1.6) with α = 0.75, b = 0.9, a = 0.2, k = 3, h = 5, c = 1, d = 0.2,
g = 0.1 and different ρ when the initial value (x0, y0) = (0.5888, 0.4324).
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7. Conclusions

In this paper, we propose a fractional-order predator–prey model with a Holling type
IV functional response and anti-predator behavior. According to the discrete and contin-
uous versions, from two different perspectives we analyzed their dynamical behavior in
detail, including the feasibility, existence and stability of equilibrium points and the possi-
bility of local bifurcations. Our main aim is to provide readers with a better understanding
of the dynamics of the system. As there is currently a lack of effective ways and methods to
study the dynamics of fractional-order differential systems, in this paper, we propose an
effective way to consider this problem from different angles—both continuous and discrete.
This is the novelty of this paper. Indeed, we find that there exist some differences in the dy-
namics of the system between the continuous version and the discrete version. Numerical
simulations also illustrate corresponding theoretical results. By analyzing the dynamical
behavior of systems (1.3) and (1.6), respectively, we can deduce the following conclusions:

(1) By analyzing the stability of the equilibrium point Q0(0, 0) and conducting numer-
ical simulations, we can determine that the equilibrium point Q0(0, 0) is a saddle point.
This implies that under any conditions existing in nature, the simultaneous extinction of
predator and prey does not occur.

(2) Through the study of the dynamical behavior of the boundary equilibrium point
Qk(k, 0) and numerical simulations, we have found that when d is large, it leads to the
extinction of predator. In this case, the prey population tends towards a stable density.
On the other hand, when d is small, the extinction of the predator does not occur, and the
prey population tends to a stable state. This indicates that when a detrimental condition
for the survival of predator and prey arises in nature, the predator may tend towards
extinction, while the prey population, although it may decrease, does not tend towards
extinction. Instead, it stabilizes at a certain level.

(3) Based on the analysis and numerical simulations of the positive equilibrium point
Q1(u1, v1), we can draw the following conclusions: When the parameter k exceeds a critical
value, the system exhibits a stable limit cycle. This implies that the interaction between
predator and prey leads to periodic oscillations. The presence of this limit cycle indicates
that the system exhibits rich dynamic behavior, and under specific conditions, the pop-
ulations of predator and prey undergo periodic fluctuations. Therefore, we can achieve
a steady coexistence state and eliminate the limit cycle by reducing the environmental
carrying capacity to the prey.

(4) Through the bifurcation analysis used in this paper, we find that the analysis
methods for bifurcation problems are applicable to other types of fractional differential
systems. It is well known that the current analysis methods for bifurcation problems
in fractional-order dynamic systems are not well developed. Thus, in order to better
understand the dynamics of this system, we discretize the fractional-order system to study
its dynamics from a different angle. A richer set of dynamical properties is obtained,
indicating that investigations after discretizing this system are indeed more valuable
and helpful to understanding the properties of this system.
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