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Abstract: In this study, we explore a fractional non-linear coupled option pricing and volatility system.
The model under consideration can be viewed as a fractional non-linear coupled wave alternative
to the Black–Scholes option pricing governing system, introducing a leveraging effect where stock
volatility corresponds to stock returns. Employing the inverse scattering transformation, we find
that the Cauchy problem for this model is insolvable. Consequently, we utilize the Φ6-expansion
algorithm to generate generalized novel solitonic analytical wave structures within the system. We
present graphical representations in contour, 3D, and 2D formats to illustrate how the system’s
behavior responds to the propagation of pulses, enabling us to predict suitable parameter values that
align with the data. Finally, a conclusion is given.

Keywords: Φ6-model expansion scheme; M-truncated fractional operator; analytical solution; coupled
nonlinear volatility; option pricing model

1. Introduction

Fractional calculus, initially developed to construct non-integer derivatives and inte-
grals, constitutes a powerful mathematical framework for elucidating diverse phenomena
across various scientific domains [1–4]. In the realm of scientific modeling, it has become in-
creasingly valuable, particularly for simulating numerous physical processes characterized
by power law behaviors, multi-scale media, or non-Gaussian statistics, as evidenced by
various studies [5,6]. This increasing value stems from the demand for accurate simulations
of both historical and contemporary physical phenomena, as highlighted in references [7,8].
It has been demonstrated that fractional operators are useful for modeling natural phenom-
ena and that fractional-order models are more effective and productive than non-integer
(classical) systems. Numerous fields, including applied mathematics, seismology, biology,
control systems, engineering, mechanics, fluid mechanics, control systems, and control
systems, have looked into the benefits of fractional derivatives [9–11]. Fractional nonlinear
differential equations (fNLDEs) have garnered considerable attention due to their utility in
addressing a wide spectrum of technical and engineering challenges. Extensive research ef-
forts have been directed toward identifying optimal approaches for solving these equations,
as highlighted in previous studies [12]. Moreover, the precise representation of intricate
phenomena across diverse scientific domains, including signal processing, polymers, fluid
dynamics, viscoelastic materials, control systems, and more, has further fueled the recent
surge of interest in fNLDEs [13,14]. This growing interest underscores the importance of
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advancing our understanding and methods for tackling fNLDEs in various applications. In
order to theoretically characterize the phenomenon and overcome the underlying limita-
tions, it is possible to build the analytical wave solutions of these models. The analytical
solutions of the fNLDEs are more beneficial for examining more complex problems when
compared to the solutions of the integer-order equations.

Mathematical modeling is often the preferred method for representing physical
phenomena, as it accommodates the inherently nonlinear nature of all physical occur-
rences [15–19]. The utilization of partial differential equations has proven to be a powerful
tool in comprehending and unveiling the underlying characteristics of various physical
processes. One significant challenge in this context pertains to obtaining analytical solutions
for propagating waves within these models. Addressing this issue is of paramount impor-
tance in the realm of physics and mathematical modeling. Using an analytical approach for
pricing and analyzing non-linear coupled options in a fractional volatility system offers
several compelling motivations. Firstly, it provides a deeper understanding of complex
financial instruments, enabling investors to make more informed decisions in volatile
markets. Additionally, analytical methods can yield precise and efficient solutions, saving
both time and computational resources compared to numerical alternatives. This approach
empowers traders and risk managers to explore a broader range of scenarios, ultimately
enhancing risk management and strategy development. By embracing analytical tech-
niques in the context of fractional non-linear coupled option pricing and volatility, readers
can unlock valuable insights and gain a competitive edge in today’s intricate financial
landscape. The recent advent of several advanced comprehensive techniques has enabled
easier location of the analytical results of fNLDEs. Such methods include the auxiliary
method [20], generalized Kudryashov’s technique [21], the sine–cosine methodology [22],
the first integral scheme [23], the sine–Gordon method [24], the Φ6-expansion scheme [25],

the
(

G′
G

)
analytical technique [26], the modified tanh function methodology [27], the Hi-

rota bilinear method [28], and many more. Utilizing the Φ6-expansion scheme offers a
broad spectrum of solutions, which can be highly advantageous in addressing various
scenarios. As it covers different types of solutions, this may be helpful for researchers to
discuss the model with various initial and boundary conditions more effectively.

The well-known Black–Scholes option pricing model, often called Black–Scholes–
Merton, is described by the following equation: [29],

At +
σ2

2
s2 Ass + rAs − rA = 0. (1)

The geometric Brownian motion (i.e., the stochastic differential equation) dS = µsdt +
σdW(t) satisfied by the stock (asset) price S and the Ito lemma were presented [30], where
µ is the instantaneous mean return, r is the risk-free interest rate, A(s, t) is the value of
the European call option on the asset price s at time t, σ is the stock volatility, and W is a
Wiener process. This model has sparked significant interest, opening up an entirely new
avenue of research within the domains of financial mathematics and financial engineering.
While the Black–Scholes model serves as a widely utilized tool for pricing European-style
options, it encounters limitations when applied to evaluate unconventional option types,
such as American or Asian options. These limitations arise from the model’s inability
to accommodate exercise features and path dependencies [31–34]. As a result, there has
been a growing need to develop alternative approaches that can encompass these complex
financial instruments and their associated features.

Ivancevic recently presented a novel nonlinear option pricing model (called the Ivance-
vic option pricing model) [35] based on Lo’s modern adaptive market hypothesis [36,37],
the Elliott wave market theory [38,39], and the quantum neural computation approach [40].

iBt +
σ

2
Bss + β|B|2B = 0, (2)
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to satisfy behavioral and efficient markets, and the fundamental nonlinear complexities of
those markets, where the dispersion frequency coefficient σ is the volatility (which can either
be a constant or stochastic process itself), A(s,t) denotes the option–price wave function,
and the Landau coefficient β = β(r, w) represents the adaptive market potential. Ivancevic
introduced a coupled nonlinear volatility and option pricing model, as documented in [41].
This model integrates controlled stochastic volatility into the adaptive-wave model (2):

iQt +
1
2
Qss + β

(
|Q|2 + |V|2

)
Q = 0,

iVt +
1
2
Vss + β

(
|Q|2 + |V|2

)
V = 0,

(3)

and transforms into a fractional model, such as

iDM,α
t Q+

1
2
Qss + β

(
|Q|2 + |V|2

)
Q = 0. (4)

iDM,α
t V+

1
2
Vss + β

(
|Q|2 + |V|2

)
V = 0. (5)

This transformation is executed to produce a leverage effect, i.e., stock volatility has
been shown to be (negatively) correlated with stock returns [42,43]. In this context,
Equations (4) and (5) are commonly referred to as the volatility model and the option
pricing model, respectively. Additionally, Q(s, t) represents the option pricing wave func-
tion, which serves as a nonlinear coefficient in the volatility model, while V(s, t) represents
the volatility wave function, acting as a nonlinear coefficient in the option pricing model.
In this context, both processes evolve within a unified self-organizing market heat poten-
tial, offering an accurate portrayal of adaptively controlled Brownian behavior within a
hypothetical financial market.

As a future direction of this research, one may aim to extend the planar dynami-
cal framework of the equation described above by exploring the potential of alternative
transformation techniques beyond the Galilean transformation. Focus may be placed on
investigating the emergence of chaotic and quasiperiodic behaviors, particularly for specific
parameter values within the examined system. Conducting sensitivity and multistability
analyses, while considering a range of initial conditions, could be the next point of consid-
eration to gain deeper insights into the dynamics of periodic and quasiperiodic behaviors.

To the best of our knowledge, there is currently no existing literature addressing
analytical solutions for the considered model. To bridge this gap, we employ the Φ6-
expansion method to derive analytical solutions based on Jacobi elliptic functions and
provide a comprehensive demonstration of their sensitivity.

2. The Formation of Solitary Wave Solutions

2.1. The Description of the Φ6-Expansion Approach

Consider a basic differential equation:

R(Q,Qt,Qs,Qtt,Qss, . . .) = 0. (6)

It can be changed into an ordinary differential equation:

M(P,P′,P′′, . . .) = 0, (7)

by using the traveling-wave transformation,

Q(s, t) = P(ϕ), (8)
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where ϕ = k1x + k2t. ϕ is particularly useful because it allows us to analyze the behavior
of a wave-like phenomenon at a specific moment in time, without worrying about its entire
time evolution. It also helps us to study and predict steady-state behavior, independent of
transient effects.

Let us consider the solution of Equation (7),

P(ϕ) =
2c

∑
q=0

[
aqR

q(ϕ)

]
. (9)

In the context of this study, we introduce a homogeneous balancing constant, denoted as
‘c’, and we examine the differential equation that R(ϕ) satisfies, which is as follows:

R′2(ϕ) = h0 + h2R
2(ϕ) + h4R

4(ϕ) + h6R
6(ϕ),

R′′(ϕ) = h2R(ϕ) + 2h4R
3(ϕ) + 3h6R

5(ϕ).
(10)

Equation (10) satisfies

R(ϕ) =
Φ(ϕ)√

f Φ2(ϕ) + g
, (11)

where f Φ2(ϕ) + g > 0 and Φ(ϕ) represents the solution to the Jacobi elliptic equation:

Φ′2(ϕ) = l0 + l2Φ2(ϕ) + l4Φ4(ϕ), (12)

In the following discussion, we encounter unknown constants, denoted as l0, l, and l4,
alongside given functions, f and g, which are defined as follows (Table 1):

f =
h4(l2 − h2)

3l0l4 + (h2
2 − l2

2)
, g =

3h4l0
3l0l4 + (h2

2 − l2
2)

, (13)

along with,

3h6[−l2
2 + h2

2 + 3l0l4]2 + h2
4(l2 − h2)[9l0l4 − (2l2 + h2)(l2 − h2)] = 0.

Table 1. Limiting cases for functions.

The Jacobi Elliptic Functions

No. Functions n → 1 n → 0

1 sn(ϕ, n) tanh(ϕ) sin(ϕ)
2 dn(ϕ, n) sech(ϕ) 1
3 cn(ϕ, n) sech(ϕ) cos(ϕ)
4 ns(ϕ, n) coth(ϕ) csc(ϕ)
5 ds(ϕ, n) csch(ϕ) csc(ϕ)
6 cs(ϕ, n) csch(ϕ) cot(ϕ)
7 sc(ϕ, n) sinh(ϕ) tan(ϕ)
8 sd(ϕ, n) sinh(ϕ) sin(ϕ)
9 cd(ϕ, n) 1 cos(ϕ)
10 nc(ϕ, n) cosh(ϕ) sec(ϕ)

2.2. Analytical Traveling-Wave Solutions

Using the following transformation:

Q(s, t) = P(ϕ)ei(s+t+θ), V(s, t) = L(ϕ)ei(s+t+θ), where ϕ = s− Γ(γ + 1)
α

(ctα) (14)
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the system described by Equations (4) and (5) is converted (for more details, see [16,20] and
the references therein):

− icP′ + 1
2
P′′ + iP′ − 3

2
P+ β

(
|P|2 + |L|2

)
P = 0,

− icL′ +
1
2
L′′ + iL′ − 3

2
L+ β

(
|P|2 + |L|2

)
L = 0.

(15)

The imaginary part of Equation (15),

− icP′ + iP′ = 0, =⇒ c = 1,

− icL′ + iL′ = 0 =⇒ c = 1.
(16)

The real part of Equation (15),

1
2
P′′ − 3

2
P+ β

(
|P|2 + |L|2

)
P = 0,

1
2
L′′ − 3

2
L+ β

(
|P|2 + |L|2

)
L = 0.

(17)

Let us now contemplate a transformation, denoted as P = L+ κ, which results in the
transformation of Equation (17) to the following form:

L′′ + 4βL3 + 4βκL2 + (2βκ2 − 2)L = 0. (18)

Equation (18) yields j = 1; thus,

L(s, t) = b0 + b1R(ϕ) + b2R
2(ϕ), (19)

where

R′2(ϕ) = h0 + h2R
2(ϕ) + h4R

4(ϕ) + h6R
6(ϕ),

R′′(ϕ) = h2R(ϕ) + 2h4R
3(ϕ) + 3h6R

5(ϕ).
(20)

Equation (19) is substituted into Equation (18),

L0 : 2 b0β κ2 + 4 β κ b0
2 + 4 β b0

3 + 2 b2h0 − 3 b0 = 0,

L1 : 2 β κ2b1 + 8 β κ b0b1 + 12 β b0
2b1 + b1h2 − 3 b1 = 0,

L2 : 2 β κ2b2 + 8 β κ b0b2 + 4 β κ b1
2 + 12 β b0

2b2 + 12 β b0b1
2 + 4 b2h2 − 3 b2 = 0,

L3 : 8 β κ b1b2 + 24 β b0b1b2 + 4 β b1
3 + 2 b1h4 = 0,

L4 : 4 β κ b2
2 + 12 β b0b2

2 + 12 β b1
2b2 + 6 b2h4 = 0,

L5 : 12 β b1b2
2 + 3 b1h6 = 0,

L6 : 4 β b2
3 + 8 b2h6 = 0.

In this study, we employ a computational tool known as Maple software to seek solutions
for the previously mentioned system (21).
Solution set:[

b0 = ±
(

1
3

κ +

√
−v

6β

)
, b1 = 0, b2 = ±3

√
− 1

v
,

h0 =

v2
(

2
√
− 1

v β κ + 1
)(
− 10β2κ2

v + 27β
v − 2

√
− 1

v β κ + 1
)

324 h4β2 , h6 =
9h4

2β

2v

]
.

(21)
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where v = 2 β2κ2 + 12 β h2 − 9 β. One can obtain the general solution by plugging (21)
into (19),

L(ϕ) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v
R2(ϕ), (22)

Category 1. if l0 = 1, l2 = −1 − s2, l4 = s2, n ∈ (0, 1), then Φ(ϕ) = sn(ϕ, n) or
Φ(ϕ) = cd(ϕ, n); thus, we have

V1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sn2(ϕ, n)

f sn2(ϕ, n) + g

)
× ei(s+t+θ) (23)

Q1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sn2(ϕ, n)

f sn2(ϕ, n) + g

)
+ κ, (24)

or

V2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cd2(ϕ, n)

f cd2(ϕ, n) + g

)
, (25)

Q2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cd2(ϕ, n)

f cd2(ϕ, n) + g

)
+ κ, (26)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f =
h4
(
n2 + h2 + 1

)
n4 − n2 − h2

2 + 1
, g = −3

h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 = h4
2
(
−n2 − h2 − 1

)(
9 n2 −

(
−n2 − h2 − 1

)(
−2 n2 + h2 − 2

))
+

27 h4
2β
(

3 n2 −
(
−n2 − 1

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

The possibility of deriving a single wave analytical solution arises as we approach the limit n→ 1.

V1,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tanh2(ϕ, n)

f tanh2(ϕ, n) + g

)
, (27)

Q1,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tanh2(ϕ, n)

f tanh2(ϕ, n) + g

)
+ κ, (28)

along with the condition:

0 = h4
2(−2− h2)(9 − (−2− h2)(−4 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

The potential to formulate a single wave analytical solution emerges as we approach the limit n→ 0.

V1,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + g

)
, (29)
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Q1,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + g

)
+ κ, (30)

or

V2,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cos2(ϕ, n)

f cos2(ϕ, n) + g

)
, (31)

Q2,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cos2(ϕ, n)

f cos2(ϕ, n) + g

)
+ κ, (32)

along with the condition:

0 = h4
2(−h2 − 1)(−(−h2 − 1)(h2 − 2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

In Figures 1–3, 3D, contour and 2D propagation of Q1,2(s, t) at different fractional-
order α are given. While in Figures 4–6, 3D, contour and 2D propagation of V1,2(s, t) at
different fractional-order α are presented.

Category 2. In the scenario where specific values are assigned to the constants, namely, l0 = 1− s2,
l2 = 2s2 − 1, l4 = −s2, and n ∈ (0, 1) our expression Φ(ϕ) = cn(ϕ, n). Consequently, we obtain
the following relationship:

V3(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cn2(ϕ, n)

f cn2(ϕ, n) + g

)
, (33)

Q3(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cn2(ϕ, n)

f cn2(ϕ, n) + g

)
+ κ, (34)

where ϕ = s− Γ(γ+1)
α (ctα), f , and g, given below:

f = −
h4
(
2 n2 − h2 − 1

)
n4 − n2 − h2

2 + 1
, g = 3

(
n2 − 1

)
h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(

2 n2 − h2 − 1
)(
−9
(
−n2 + 1

)
n2 −

(
2 n2 − h2 − 1

)(
4 n2 + h2 − 2

))
+

27 h4
2β
(
−3
(
−n2 + 1

)
n2 −

(
2 n2 − 1

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V3,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sech2(ϕ, n)

f sech2(ϕ, n) + g

)
, (35)

Q3,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sech2(ϕ, n)

f sech2(ϕ, n) + g

)
+ κ, (36)
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along with the condition:

0 = h4
2(1− h2)(−(1− h2)(2 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 3. if l0 = s2 − 1, l2 = 2− s2, l4 = −1, n ∈ (0, 1), then Φ(ϕ) = dn(ϕ, n); thus,
we have

V4(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
dn2(ϕ, n)

f dn2(ϕ, n) + g

)
, (37)

Q4(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
dn2(ϕ, n)

f dn2(ϕ, n) + g

)
+ κ, (38)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f =
h4
(
n2 + h2 − 2

)
n4 − n2 − h2

2 + 1
, g = −3

(
n2 − 1

)
h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(
−n2 − h2 + 2

)(
−9 n2 + 9−

(
−n2 − h2 + 2

)(
−2 n2 + h2 + 4

))
+

27 h4
2β
(
−3 n2 + 3−

(
−n2 + 2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V4,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sech2(ϕ, n)

f sech2(ϕ, n) + g

)
, (39)

Q4,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sech2(ϕ, n)

f sech2(ϕ, n) + g

)
+ κ, (40)

along with the condition:

0 = h4
2(−h2 + 1)(−(−h2 + 1)(2 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 4. In the scenario where specific values are assigned to the constants, namely, l0 = s2,
l2 = −1− s2, l4 = 1, n ∈ (0, 1), then Φ(ϕ) = ns(ϕ, n) or Φ(ϕ) = dc(ϕ, n); thus, we have

V5(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
ns2(ϕ, n)

f ns2(ϕ, n) + g

)
, (41)

Q5(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
ns2(ϕ, n)

f ns2(ϕ, n) + g

)
+ κ, (42)

or

V6(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
dc2(ϕ, n)

f dc2(ϕ, n) + g

)
, (43)
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Q6(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
dc2(ϕ, n)

f dc2(ϕ, n) + g

)
+ κ, (44)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f =
h4
(
n2 + h2 + 1

)
n4 − n2 − h2

2 + 1
, g = −3

n2h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(
−n2 − h2 − 1

)(
9 n2 −

(
−n2 − h2 − 1

)(
−2 n2 + h2 − 2

))
+

27 h4
2β
(

3 n2 −
(
−n2 − 1

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V5,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
coth2(ϕ, n)

f coth2(ϕ, n) + g

)
, (45)

Q5,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
coth2(ϕ, n)

f coth2(ϕ, n) + g

)
+ κ, (46)

along with the condition:

0 = h4
2(−h2 − 2)(9− (−2− h2)(−4 + h2)) +

27 h4
2β
(

3− 4 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 0,

V5,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csc2(ϕ, n)

f csc2(ϕ, n) + g

)
, (47)

Q5,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csc2(ϕ, n)

f csc2(ϕ, n) + g

)
+ κ, (48)

or

V6,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sec2(ϕ, n)

f sec2(ϕ, n) + g

)
, (49)

Q6,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sec2(ϕ, n)

f sec2(ϕ, n) + g

)
+ κ, (50)

along with the condition:

0 = h4
2(−h2 − 1)(−(−h2 − 1)(h2 − 2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.
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Category 5. if l0 = −s2, l2 = −1 + 2s2, l4 = 1− s2, n ∈ (0, 1), then Φ(ϕ) = nc(ϕ, n); thus,
we have

V7(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
nc2(ϕ, n)

f nc2(ϕ, n) + g

)
, (51)

Q7(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
nc2(ϕ, n)

f nc2(ϕ, n) + g

)
+ κ, (52)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f = −
h4
(
2 n2 − h2 − 1

)
n4 − n2 − h2

2 + 1
, g = 3

n2h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(

2 n2 − h2 − 1
)(
−9
(
−n2 + 1

)
n2 −

(
2 n2 − h2 − 1

)(
4 n2 + h2 − 2

))
+

27 h4
2β
(
−3
(
−n2 + 1

)
n2 −

(
2 n2 − 1

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V7,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cosh2(ϕ, n)

f cosh2(ϕ, n) + g

)
, (53)

Q7,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cosh2(ϕ, n)

f cosh2(ϕ, n) + g

)
+ κ, (54)

along with the condition:

0 = h4
2(1− h2)(−(1− h2)(2 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 0,

V7,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sec2(ϕ, n)

f sec2(ϕ, n) + g

)
, (55)

Q7,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sec2(ϕ, n)

f sec2(ϕ, n) + g

)
+ κ, (56)

along with the condition:

0 = h4
2(−h2 − 1)(−(−h2 − 1)(h2 − 2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 6. In the scenario where specific values are assigned to the constants, namely, l0 = −1,
l2 = 2− s2, l4 = −1 + s2, n ∈ (0, 1), then Φ(ϕ) = nd(ϕ, n); thus, we have

V8(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
nd2(ϕ, n)

f nd2(ϕ, n) + g

)
, (57)
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Q8(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
nd2(ϕ, n)

f nd2(ϕ, n) + g

)
+ κ, (58)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f =
h4
(
n2 + h2 − 2

)
n4 − n2 − h2

2 + 1
, g = 3

h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(
−n2 − h2 + 2

)(
−9 n2 + 9−

(
−n2 − h2 + 2

)(
−2 n2 + h2 + 4

))
+

27 h4
2β
(
−3 n2 + 3−

(
−n2 + 2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V8,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cosh2(ϕ, n)

f cosh2(ϕ, n) + g

)
, (59)

Q8,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cosh2(ϕ, n)

f cosh2(ϕ, n) + g

)
+ κ, (60)

along with the condition:

0 = h4
2(1− h2)(−(1− h2)(2 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 7. In the scenario where specific values are assigned to the constants, namely, l0 = 1,
l2 = 2− s2, l4 = 1− s2, n ∈ (0, 1), then Φ(ϕ) = sc(ϕ, n); thus, we have

V9(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sc2(ϕ, n)

f sc2(ϕ, n) + g

)
, (61)

Q9(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sc2(ϕ, n)

f sc2(ϕ, n) + g

)
+ κ, (62)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f =
h4
(
n2 + h2 − 2

)
n4 − n2 − h2

2 + 1
, g = −3

h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(
−n2 − h2 + 2

)(
−9 n2 + 9−

(
−n2 − h2 + 2

)(
−2 n2 + h2 + 4

))
+

27 h4
2β
(
−3 n2 + 3−

(
−n2 + 2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V9,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sinh2(ϕ, n)

f sinh2(ϕ, n) + g

)
, (63)
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Q9,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sinh2(ϕ, n)

f sinh2(ϕ, n) + g

)
+ κ, (64)

along with the condition:

0 = h4
2(1− h2)(−(1− h2)(2 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

One can develop a periodic solution if n→ 0,

V9,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tan2(ϕ, n)

f tan2(ϕ, n) + g

)
, (65)

Q9,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tan2(ϕ, n)

f tan2(ϕ, n) + g

)
+ κ, (66)

along with the condition:

h4
2(−h2 + 2)(9− (−h2 + 2)(h2 + 4)) +

27 h4
2β
(

3− 4 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 8. if l0 = 1, l2 = 2s2 − 1, l4 = −s2(1− s2), n ∈ (0, 1), then Φ(ϕ) = sd(ϕ, n); thus,
we have

V10(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sd2(ϕ, n)

f sd2(ϕ, n) + g

)
, (67)

Q10(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sd2(ϕ, n)

f sd2(ϕ, n) + g

)
+ κ, (68)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f = −
h4
(
2 n2 − h2 − 1

)
n4 − n2 − h2

2 + 1
, g = −3

h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(

2 n2 − h2 − 1
)(
−9
(
−n2 + 1

)
n2 −

(
2 n2 − h2 − 1

)(
4 n2 + h2 − 2

))
+

27 h4
2β
(
−3
(
−n2 + 1

)
n2 −

(
2 n2 − 1

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 0,

V10,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + g

)
, (69)

Q10,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + g

)
+ κ, (70)
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along with the condition:

0 = h4
2(−h2 − 1)(−(−h2 − 1)(+h2 − 2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 9. In the scenario where specific values are assigned to the constants, namely l0 = 1− s2,
l2 = 2− s2, l4 = 1, n ∈ (0, 1), then Φ(ϕ) = cs(ϕ, n); thus, we have

V11(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cs2(ϕ, n)

f cs2(ϕ, n) + g

)
, (71)

Q11(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cs2(ϕ, n)

f cs2(ϕ, n) + g

)
+ κ, (72)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f =
h4
(
n2 + h2 − 2

)
n4 − n2 − h2

2 + 1
, g = 3

(
n2 − 1

)
h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(
−n2 − h2 + 2

)(
−9 n2 + 9−

(
−n2 − h2 + 2

)(
−2 n2 + h2 + 4

))
+

27 h4
2β
(
−3 n2 + 3−

(
−n2 + 2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V11,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csch2(ϕ, n)

f csch2(ϕ, n) + g

)
, (73)

Q11,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csch2(ϕ, n)

f csch2(ϕ, n) + g

)
+ κ, (74)

along with the condition:

0 = h4
2(1− h2)(−(−h2 + 1)(2 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

One can develop a periodic solution if n→ 0,

V11,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cot2(ϕ, n)

f cot2(ϕ, n) + g

)
, (75)

Q11,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cot2(ϕ, n)

f cot2(ϕ, n) + g

)
+ κ, (76)

along with the condition:

0 = h4
2(−h2 + 2)(9− (−h2 + 2)(h2 + 4)) +

27 h4
2β
(

3− 4 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.
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Category 10. if l0 = −s2(1− s2), l2 = 2s2 − 1, l4 = 1, n ∈ (0, 1), then Φ(ϕ) = ds(ϕ, n);
thus, we have

V12(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
ds2(ϕ, n)

f ds2(ϕ, n) + g

)
, (77)

Q12(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
ds2(ϕ, n)

f ds2(ϕ, n) + g

)
+ κ, (78)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f = −
h4
(
2 n2 − h2 − 1

)
n4 − n2 − h2

2 + 1
, g = −3

n2(n2 − 1
)
h4

n4 − n2 − h2
2 + 1

,

along with the condition:

0 =h4
2
(

2 n2 − h2 − 1
)(
−9
(
−n2 + 1

)
n2 −

(
2 n2 − h2 − 1

)(
4 n2 + h2 − 2

))
+

27 h4
2β
(
−3
(
−n2 + 1

)
n2 −

(
2 n2 − 1

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V12,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csch2(ϕ, n)

f csch2(ϕ, n) + g

)
, (79)

Q12,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csch2(ϕ, n)

f csch2(ϕ, n) + g

)
+ κ, (80)

along with the condition:

0 = h4
2(1− h2)(−(1− h2)(2 + h2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β

We may be able to develop a single wave analytical solution if n→ 0,

V12,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csc2(ϕ, n)

f csc2(ϕ, n) + g

)
, (81)

Q12,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
csc2(ϕ, n)

f csc2(ϕ, n) + g

)
+ κ, (82)

along with the condition:

0 = h4
2(−h2 − 1)(−(−h2 − 1)(h2 − 2)) +

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.
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Category 11. if l0 = 1−s2

4 , l2 = 1+s2

2 , l4 = 1−s2

4 , n ∈ (0, 1), then Φ(ϕ) = nc(ϕ, n)± sc(ϕ, n)

or Φ(ϕ) = cn(ϕ,n)
1±sn(ϕ,n) ; thus, we have

V13(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(nc(ϕ, n)± sc(ϕ, n))2

f (nc(ϕ, n)± sc(ϕ, n))2 + g

)
, (83)

Q13(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(nc(ϕ, n)± sc(ϕ, n))2

f (nc(ϕ, n)± sc(ϕ, n))2 + g

)
+ κ, (84)

or

V14(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cn2(ϕ, n)

f cn2(ϕ, n) + (1± sn2(ϕ, n))g

)
, (85)

Q14(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cn2(ϕ, n)

f cn2(ϕ, n) + (1± sn2(ϕ, n))g

)
+ κ, (86)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f =
h4

(
1
2 n2 + 1

2 − h2

)
3
(
− 1

4 n2 + 1
4

)2
−
(

1
2 n2 + 1

2

)2
+ h2

2
, g = 3

(
− 1

4 n2 + 1
4

)
h4

3
(
− 1

4 n2 + 1
4

)2
−
(

1
2 n2 + 1

2

)2
+ h2

2
,

along with the condition:

0 =h4
2
(

1
2

n2 +
1
2
− h2

)(
9
(
−1

4
n2 +

1
2

)2
−
(

1
2

n2 +
1
2
− h2

)(
n2 + h2 + 1

))
+

27 h4
2β

(
3
(
− 1

4 n2 + 1
4

)2
−
(

1
2 n2 + 1

2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We might be able to develop a unified analytical wave solution when n→ 1

V13,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(cosh(ϕ, n)± sinh(ϕ, n))2

f (cosh(ϕ, n)± sinh(ϕ, n))2 + g

)
, (87)

Q13,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(cosh(ϕ, n)± sinh(ϕ, n))2

f (cosh(ϕ, n)± sinh(ϕ, n))2 + g

)
+ κ, (88)

or

V14,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sech2(ϕ, n)

f sech2(ϕ, n) + (1± tanh2(ϕ, n))g

)
, (89)

Q14,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sech2(ϕ, n)

f sech2(ϕ, n) + (1± tanh2(ϕ, n))g

)
+ κ, (90)

along with the condition:

0 = h4
2(1− h2)

(
9
8
− (1− h2)(2 + h2)

)
+

27 h4
2β
(
−1 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.
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One can develop a periodic solution if n→ 0,

V13,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(sec(ϕ, n)± tan(ϕ, n))2

f (sec(ϕ, n)± tan(ϕ, n))2 + g

)
, (91)

Q13,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(sec(ϕ, n)± tan(ϕ, n))2

f (sec(ϕ, n)± tan(ϕ, n))2 + g

)
+ κ, (92)

or

V14,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cos2(ϕ, n)

f cos2(ϕ, n) + (1± sin2(ϕ, n))g

)
, (93)

Q14,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
cos2(ϕ, n)

f cos2(ϕ, n) + (1± sin2(ϕ, n))g

)
+ κ, (94)

along with the condition:

0 = h4
2
(

1
2
− h2

)(
9
4
−
(

1
2
− h2

)
(h2 + 1)

)
+

27 h4
2β
(

1
8 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

In Figures 7–9, 3D, contour and 2D propagation of Q13,2(s, t) at different fractional-
order α are given. While in Figures 10–12, 3D, contour and 2D propagation of V13,2(s, t) at
different fractional-order α are presented. In Figures 13–15, 3D, contour and 2D propagation
of Q14,2(s, t) at different fractional-order α are given. While in Figures 16–18, 3D, contour
and 2D propagation of V14,2(s, t) at different fractional-order α are presented.

Category 12. If l0 = − (1−s2)2

4 , l2 = 1+s2

2 , l4 = − 1
4 , n ∈ (0, 1), then Φ(ϕ) = s cn(ϕ, n)±

dn(ϕ, n); thus, we have

V15(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(n cn(ϕ, n)± dn(ϕ, n))2

f (n cn(ϕ, n)± dn(ϕ, n))2 + g

)
, (95)

Q15(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(n cn(ϕ, n)± dn(ϕ, n))2

f (n cn(ϕ, n)± dn(ϕ, n))2 + g

)
+ κ, (96)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f = −8
h4
(
n2 − 2 h2 + 1

)
n4 + 14 n2 − 16 h2

2 + 1
, g = 12

(
n2 − 1

)2h4

n4 + 14 n2 − 16 h2
2 + 1

,

along with the condition:

0 =h4
2
(

1
2

n2 +
1
2
− h2

)(
9
(
−n2 + 1

)2

16
−
(

1
2

n2 +
1
2
− h2

)(
n2 + h2 + 1

))
+

27 h4
2β

(
3
16
(
−n2 + 1

)2 −
(

1
2 n2 + 1

2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.
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We may be able to develop a single wave analytical solution if n→ 1,

V15,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(n sech(ϕ, n)± sech(ϕ, n))2

f (n sech(ϕ, n)± sech(ϕ, n))2 + g

)
, (97)

Q15,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(n sech(ϕ, n)± sech(ϕ, n))2

f (n sech(ϕ, n)± sech(ϕ, n))2 + g

)
+ κ, (98)

along with the condition:

0 = h4
2(1− h2)(−(1− h2)(h2 + 1)) +

27 h4
2β
(
− 1

16 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 0,

V15,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(n cos(ϕ, n)± 1)2

f (n cos(ϕ, n)± 1)2 + g

)
, (99)

Q15,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
(n cos(ϕ, n)± 1)2

f (n cos(ϕ, n)± 1)2 + g

)
+ κ, (100)

along with the condition:

0 = h4
2
(

1
2
− h2

)(
9

16
−
(

1
2
− h2

)
(h2 + 1)

)
+

27 h4
2β
(
− 1

16 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 13. if l0 = 1
4 , l2 = 1−2s2

2 , l4 = 1
4 , n ∈ (0, 1), then Φ(ϕ) = sn(ϕ,n)

1 ± cn(ϕ,n) ; thus, we have

V16(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sn2(ϕ, n)

f sn2(ϕ, n) + (1± cn2(ϕ, n))g

)
, (101)

Q16(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sn2(ϕ, n)

f sn2(ϕ, n) + (1± cn2(ϕ, n))g

)
+ κ, (102)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f = 8
h4
(
2 n2 + 2 h2 − 1

)
16 n4 − 16 n2 − 16 h2

2 + 1
, g = −12

h4

16 n4 − 16 n2 − 16 h2
2 + 1

,

along with the condition:

0 =h4
2
(
−n2 + 1/2− h2

)( 9
16
−
(
−n2 + 1/2− h2

)(
−2 n2 + h2 + 1

))
+

27 h4
2β
(

3/16−
(
−n2 + 1/2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V16,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tanh2(ϕ, n)

f tanh2(ϕ, n) + (1± sech2(ϕ, n))g

)
, (103)
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Q16,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tanh2(ϕ, n)

f tanh2(ϕ, n) + (1± sech2(ϕ, n))g

)
+ κ, (104)

along with the condition:

0 = h4
2
(
−1

2
− h2

)(
9
16
−
(
−1

2
− h2

)
(−1 + h2)

)
+

27 h4
2β
(
− 1

16 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.

One can develop a periodic solution if n→ 0,

V16,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + (1± cos2(ϕ, n))g

)
, (105)

Q16,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + (1± cos2(ϕ, n))g

)
+ κ, (106)

along with the condition:

0 = h4
2
(

1
2
− h2

)(
9

16
−
(

1
2
− h2

)
(h2 + 1)

)
+

27 h4
2β
(
− 1

16 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.

Category 14. if l0 = 1
4 , l2 = 1+s2

2 , l4 = (1−s2)2

4 , n ∈ (0, 1), then Φ(ϕ) = sn(ϕ,n)
cn(ϕ,n) ± dn(ϕ,n) ;

thus, we have

V17(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sn2(ϕ, n)

f sn2(ϕ, n) + g(cn(ϕ, n)± dn(ϕ, n))2

)
, (107)

Q17(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sn2(ϕ, n)

f sn2(ϕ, n) + g(cn(ϕ, n)± dn(ϕ, n))2

)
+ κ, (108)

where ϕ = s− Γ(γ+1)
α (ctα), and f and g are given below:

f = −8
h4
(
n2 − 2 h2 + 1

)
n4 + 14 n2 − 16 h2

2 + 1
, g = −12

h4

n4 + 14 n2 − 16 h2
2 + 1

,

along with the condition:

0 =h4
2
(

1
2

n2 +
1
2
− h2

)(
9
(
−n2 + 1

)2

16
−
(

1
2

n2 +
1
2
− h2

)(
n2 + h2 + 1

))
+

27 h4
2β

(
3/16

(
−n2 + 1

)2 −
(

1
2 n2 + 1

2

)2
+ h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

We may be able to develop a single wave analytical solution if n→ 1,

V17,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tanh2(ϕ, n)

f tanh2(ϕ, n) + g(sech(ϕ, n)± sech(ϕ, n))2

)
, (109)

Q17,1(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
tanh2(ϕ, n)

f tanh2(ϕ, n) + g(sech(ϕ, n)± sech(ϕ, n))2

)
+ κ, (110)
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along with the condition:

0 = h4
2(1− h2)(−(1− h2)(2 + h2)) +

27 h4
2β
(
−12 + h2

2
)2

4 β2κ2 + 24 β h2 − 18 β
.

One can develop a periodic solution if n→ 0,

V17,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + g(cos(ϕ, n)± 1)2

)
, (111)

Q17,2(s, t) = ±
(

1
3

κ +

√
−v

6β

)
± 3

√
− 1

v

(
sin2(ϕ, n)

f sin2(ϕ, n) + g(cos(ϕ, n)± 1)2

)
+ κ, (112)

along with the condition:

0 = h4
2
(

1
2
− h2

)(
9
16
−
(

1
2
− h2

)
(h2 + 1)

)
+

27 h4
2β
(
− 1

16 + h2
2
)2

4 β2κ2 + 24 β h2 − 18 β
.

(a) (b) (c)

Figure 1. (a) A 3D propagation of Q1,2(s, t) at fractional-order α = 0.1. (b) Contour propagation of
Q1,2(s, t) at fractional-order α = 0.1. (c) A 2D propagation of Q1,2(s, t) at fractional-order α = 0.1.

(a) (b) (c)

Figure 2. (a) A 3D propagation of Q1,2(s, t) at fractional-order α = 0.5. (b) Contour propagation of
Q1,2(s, t) at fractional-order α = 0.5. (c) A 2D propagation of Q1,2(s, t) at fractional-order α = 0.5.
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(a) (b) (c)

Figure 3. (a) A 3D propagation of Q1,2(s, t) at fractional-order α = 0.9. (b) Contour propagation of
Q1,2(s, t) at fractional-order α = 0.9. (c) A 2D propagation of Q1,2(s, t) at fractional-order α = 0.9.

(a) (b) (c)

Figure 4. (a) A 3D propagation of V1,2(s, t) at fractional-order α = 0.1. (b) Contour propagation of
V1,2(s, t) at fractional-order α = 0.1. (c) A 2D propagation of V1,2(s, t) at fractional-order α = 0.1.

(a) (b) (c)

Figure 5. (a) A 3D propagation of V1,2(s, t) at fractional-order α = 0.5. (b) Contour propagation of
V1,2(s, t) at fractional-order α = 0.5. (c) A 2D propagation of V1,2(s, t) at fractional-order α = 0.5.

(a) (b) (c)

Figure 6. (a) A 3D propagation of V1,2(s, t) at fractional-order α = 0.9. (b) Contour propagation of
V1,2(s, t) at fractional-order α = 0.9. (c) A 2D propagation of V1,2(s, t) at fractional-order α = 0.9.
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(a) (b) (c)

Figure 7. (a) A 3D propagation of Q13,2(s, t) at fractional-order α = 0.1. (b) Contour propagation of
Q13,2(s, t) at fractional-order α = 0.1. (c) A 2D propagation of Q13,2(s, t) at fractional-order α = 0.1.

(a) (b) (c)

Figure 8. (a) A 3D propagation of Q13,2(s, t) at fractional-order α = 0.5. (b) Contour propagation of
Q13,2(s, t) at fractional-order α = 0.5. (c) A 2D propagation of Q13,2(s, t) at fractional-order α = 0.5.

(a) (b) (c)

Figure 9. (a) A 3D propagation of Q13,2(s, t) at fractional-order α = 0.9. (b) Contour propagation of
Q13,2(s, t) at fractional-order α = 0.9. (c) A 2D propagation of Q13,2(s, t) at fractional-order α = 0.9.

(a) (b) (c)

Figure 10. (a) A 3D propagation of V13,2(s, t) at fractional-order α = 0.1. (b) Contour propagation of
V13,2(s, t) at fractional-order α = 0.1. (c) A 2D propagation of V13,2(s, t) at fractional-order α = 0.1.
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(a) (b) (c)

Figure 11. (a) A 3D propagation of V13,2(s, t) at fractional-order α = 0.5. (b) Contour propagation of
V13,2(s, t) at fractional-order α = 0.5. (c) A 2D propagation of V13,2(s, t) at fractional-order α = 0.5.

(a) (b) (c)

Figure 12. (a) A 3D propagation of V13,2(s, t) at fractional-order α = 0.9. (b) Contour propagation of
V13,2(s, t) at fractional-order α = 0.9. (c) A 2D propagation of V13,2(s, t) at fractional-order α = 0.9.

(a) (b) (c)

Figure 13. (a) A 3D propagation of Q14,2(s, t) at fractional-order α = 0.1. (b) Contour propagation of
Q14,2(s, t) at fractional-order α = 0.1. (c) A 2D propagation of Q14,2(s, t) at fractional-order α = 0.1.

(a) (b) (c)

Figure 14. (a) A 3D propagation of Q14,2(s, t) at fractional-order α = 0.5. (b) Contour propagation of
Q14,2(s, t) at fractional-order α = 0.5. (c) A 2D propagation of Q14,2(s, t) at fractional-order α = 0.5.
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(a) (b) (c)

Figure 15. (a) A 3D propagation of Q14,2(s, t) at fractional-order α = 0.9. (b) Contour propagation of
Q14,2(s, t) at fractional-order α = 0.9. (c) A 2D propagation of Q14,2(s, t) at fractional-order α = 0.9.

(a) (b) (c)

Figure 16. (a) A 3D propagation of V14,2(s, t) at fractional-order α = 0.1. (b) Contour propagation of
V14,2(s, t) at fractional-order α = 0.1. (c) A 2D propagation of V14,2(s, t) at fractional-order α = 0.1.

(a) (b) (c)

Figure 17. (a) A 3D propagation of V14,2(s, t) at fractional-order α = 0.5. (b) Contour propagation of
V14,2(s, t) at fractional-order α = 0.5. (c) A 2D propagation of V14,2(s, t) at fractional-order α = 0.5.

(a) (b) (c)

Figure 18. (a) A 3D propagation of V14,2(s, t) at fractional-order α = 0.9. (b) Contour propagation of
V14,2(s, t) at fractional-order α = 0.9. (c) A 2D propagation of V14,2(s, t) at fractional-order α = 0.9.
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3. Dynamical Analysis

In this section, we delve into the dynamics of the newly-emerged coupled nonlinear
volatility and option pricing model. To achieve this objective, we employ a sensitivity
analysis and construct a Hamiltonian function. Furthermore, to obtain a dynamical system,
we apply the Galilean transformation to Equation (18).{

dL
dϕ = P ,
dP
dϕ = −(4βL3 + 4βκL2 + (2βκ2 − 2)L).

(113)

The planer dynamical system (113) is a planer Hamiltonian system, which needs to be
mentioned. One can ensure that a dynamical system’s Hamiltonian function exists by
integrating (113).

H(L,P) = P
2

2
+ βL4 +

4
3

βκL3 + (βκ2 − 1)L2 = h. (114)

One can verify from (114),

dL
dϕ

=
∂H

∂P and
dP
dϕ

= −∂H

∂L
. (115)

The set of equations in Equation (113), as indicated by Equation (115), constitutes a
Hamiltonian system. This observation leads us to conclude that the system, as described
by (113), possesses conservative properties. Consequently, the phase trajectories generated
by the vector field of this system will encompass all of the traveling-wave solutions to
Equation (18).

Sensitive Analysis

The ordinary differential equation is transformed into a first-order dynamical system
through the Galilean transformation. This transformation aims to assess the model’s sensitivity.

As depicted in the aforementioned graphs, the system’s behavior exhibits notable
variations, even in cases where initial conditions remain relatively stable. This observation
highlights the model under investigation’s high sensitivity to initial conditions, especially
when parameters β = 0.9 and κ = 1 are employed. In Figure 19, curve 1 corresponds to
(0.8, 0.03) and curve 2 to (0.9, 0.02) while in Figure 20, curve 1 corresponds to (1.08, 0.03)
and curve 2 to (0.1, 0.02), in Figure 21 curve 1 corresponds to (1.08, 0.03) and curve 2
to (0.1, 0.02) and finally Figure 22 is the representation of various initial conditions for
sensitivity analysis.

Figure 19. Graph of sensitivity: Curve 1 corresponds to (0.8, 0.03) and curve 2 to (0.9, 0.02).
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Figure 20. Graph of sensitivity: Curve 1 corresponds to (0.08, 0.03) and curve 2 to (0.1, 0.02).

Figure 21. Graph of sensitivity: Curve 1 corresponds to (1.08, 0.03) and curve 2 to (0.1, 0.02).

Figure 22. Various initial conditions for sensitivity analysis.
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4. Conclusions

In conclusion, this study successfully developed numerous novel solitons within the
context of the nonlinear fractional coupled option pricing and volatility governing system,
employing a generalized expansion strategy, specifically the Φ6-expansion algorithm. This
algorithm has yielded a rich array of fourteen distinct families of soliton structures, resulting
in a total of twenty-eight solutions. These solutions exhibit solitary wave patterns based
on Jacobi elliptic functions, transitioning into hyperbolic solutions as the limit approaches
n → 1, and trigonometric solutions as the limit approaches n → 0. The inclusion of
constraints with each result ensures the validity of these solutions. To visualize the dynamic
propagation properties of these acquired solutions, in Fig we presented 2D, 3D, and contour
graphics alongside the relevant parametric values, which were carefully chosen to meet
the established criteria. These parametric values, assigned to the linked free parameters,
facilitate the description of the graphical behavior of optical pulses. This work provides
a deeper understanding of the physical perspective of the nonlinear model through the
admissible solutions presented. The Φ6-model process emerges as a potent and effective
mathematical technique that can be readily applied to furnish analytical solutions for a
wide range of challenging mathematical problems.
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