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Abstract: Due to the short duration and high amplitude characteristics of impulsive noise, these
parameter estimation methods based on Gaussian assumptions are ineffective in the presence of
impulsive noise. To address this issue, a LFM signal parameter estimation method is proposed
based on FOTD and CFRFT. Firstly, the mathematical expression of FOTD is presented and its
tracking performance is verified. Secondly, the tracked signal is subjected to discrete time CFRFT,
and a mathematical optimization model for LFM signal parameter estimation is established on the
fractional spectrum characteristic. Finally, a correction method for non-standard SαS distributed noise
is proposed, and the performance of parameter estimation under both standard and non-standard
SαS distributions are analyzed. The simulation results show that this method not only effectively
suppresses the impact of impulsive noise on the fractional spectrum of LFM signal, but also has better
parameter estimation accuracy and stability in the low GSNR. The proposed method is particularly
effective under the measured noise environment, as it successfully suppresses the impact of impulsive
noise and achieves high-precision parameter estimation.

Keywords: linear frequency modulation signal; impulsive noise; fractional-order tracking differentiator;
concise fractional Fourier transform; parameter estimation

1. Introduction

Linear frequency modulation (LFM) signal is a typical non-stationary signal, whose
instantaneous frequency varies linearly with time. Compared with single frequency signal
and narrow-band signal, LFM signal has stronger anti-interference ability; thus, it is widely
used in radar, sonar, communication, seismic survey and other fields [1,2]. Due to the
inevitable introduction of noise during signal acquisition and transmission, the parameter
estimation of LFM signal under noisy environments is a common and fundamental issue
in these fields. Most existing parameter estimation methods assume that the noise obeys
a Gaussian distribution, but the noise caused by sudden interference in the actual envi-
ronment generally does not obey the Gaussian distribution. Impulsive noise is a typical
non-Gaussian noise, which has the characteristics of short duration and high amplitude.
The performance of traditional methods degrades significantly under impulsive noise, and
even cannot accurately estimate parameter. Therefore, it is necessary to explore the LFM
signal parameter estimation method in the presence of impulsive noise.

To address the parameter estimation under impulsive noise environment, scholars
have proposed many methods, such as, fractional lower-order statistics [3–5], nonlinear
transform [6–8], tracking differentiator [9,10], convolutional neural networks [11,12]. In [3],
an improved fractional lower order LVD (FLO-LVD) for the impulsive noise is proposed,
which can overcome the influence of cross-terms and achieve higher estimation accuracy.
In [5], FLO-SST with adaptive order and adaptive window is proposed, which utilizes
FLO to suppress impulsive noise and obtain the instantaneous frequency of LFM signal by

Fractal Fract. 2023, 7, 822. https://doi.org/10.3390/fractalfract7110822 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7110822
https://doi.org/10.3390/fractalfract7110822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract7110822
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7110822?type=check_update&version=1


Fractal Fract. 2023, 7, 822 2 of 21

SST. However, these two methods require prior information of impulsive noise and lack
theoretical support for selecting the order. In [7], the Sigmoid-FPSD method is proposed to
effectively suppress impulsive noise, which has certain adaptability to changes in impulsive
noise parameter. In [8], a piecewise nonlinear amplitude transformation (PNAT) function
was designed to suppress impulsive noise, and combined with LVD to form a new LFM
signal parameter estimation method, named PANT-LVD. However, these methods based
on nonlinear transform also present certain drawbacks including poor stability under low
GSNR and extensive computational requirements. In [9], fastest tracking differentiator
(FTD) and fractional Fourier transform (FRFT) are proposed to estimate the parameter of
LFM signal under impulsive noise. It effectively eliminates high-amplitude impulsive noise,
but suffers a significant performance degradation under low GSNR and strong impulsive
noise environments. In [12], a deep learning-based parameter estimation method of LFM
signal is proposed, which uses deep neural networks and convolutional neural networks to
eliminate the impact of impulsive noise on LFM signal parameter estimation. However,
this method requires a considerable amount of time to train the model. It is necessary to
point out that all these methods can only estimate parameter if the impulsive noise obeys
a standard symmetric α-stable (SαS) distribution, the performance sharply decreases and
even be unable to estimate parameter when impulsive noise does not obey the standard
SαS distribution.

In recent years, with the development of fractional calculus theory, fractional calcu-
lus has expanded into the fields of science and engineering, particularly finding wide
applications in control systems. Due to the limited performance of integer-order adaptive
controllers, a fractional-order adaptive controller is designed to improve the performance
and stability of the system by using a fractional-order tracking differentiator (FOTD). There-
fore, research on FOTD is continuously being conducted in various fields. In [13], the design
and analysis of FOTD are introduced, a fractional order self-disturbance rejection controller
is designed by FOTD. In [14], the fractional order adaptive controller is designed by FOTD
to obtain the differential signal, and the stability of the adaptive system is analyzed. In [15],
a fractional order nonlinear disturbance observer based on FOTD is designed to improve
the control performance of UAV in the disturbance environment.

Inspired by tracking differentiator, this paper presents a new application of FOTD in
the LFM signal parameter estimation under impulsive noise environment. This method
utilizes FOTD to track noisy signals and achieve a significant reduction of high-amplitude
impulsive noise. Moreover, the fractional spectrum of the tracked signal is established
by concise fractional Fourier transform (CFRFT), and a mathematical optimization model
of parameter estimation is built on the fractional spectrum characteristic of LFM signal.
Finally, a correction method for non-standard SαS distribution noise is proposed by using
the properties of α-stable distribution, which effectively solves the LFM signal parameter
estimation under non-standard SαS distribution noise. The main contributions of this paper
include: (1) FOTD based on G-L fractional derivative is constructed and its discrete form
is given; (2) FOTD is employed to suppress impulsive noise, and a FOTD-CFRFT based
method is proposed to estimate LFM signal parameter in the presence of impulsive noise;
(3) a correction method is proposed to effectively address the parameter estimation under
non-standard SαS distribution noise.

The rest of this paper is arranged as follows: Section 2 briefly introduces the impulsive
noise model, Section 3 proposes the LFM signal parameter estimation method, Section 4
conducts simulation experiments analysis and comparison for the simulated and measured
impulsive noise, and Section 5 gives a brief summary.

2. Impulsive Noise Model

The impulsive noise typically exhibits characteristics of short duration and high
amplitude, which can be fitted by the α-stable distribution model. The α-stable distribution
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does not have a closed-form probability density function, and is commonly represented by
the following characteristic function [16,17]

ϕ(t) = exp[jat− γ|t|α(1 + jβsgn(t)g(t, α))] (1)

with

g(t, α) =

{ 2
π lg
∣∣t∣∣ α = 1

tan απ
2 α 6= 1

(2)

where sgn(t) represents the sign function. α ∈ (0, 2) denotes the characteristic exponent
of impulsive noise, higher α indicates weaker impulsive intensity. Similar to the variance
in Gaussian distribution, γ ∈ (0,+∞) denotes the dispersion coefficient, which reflects
the deviation of samples from the mean. β ∈ [−1, 1] denotes the skewness parameter,
describing the skewness of the distribution. a represents the location parameter with the
range of (−∞,+∞). When β = 0, the distribution is called as SαS distribution. When
a = 0, β= 0, the distribution is called as standard SαS distribution. Since the variance of
α-stable distribution noise is undefined, GSNR is used to replace SNR, defined as

GSNR = 10lg(σ2
s /γ) (3)

where σ2
s represents the variance of the signal, and γ represents the dispersion coefficient

of the impulsive noise.
Below, three common properties of α-stable distribution are briefly listed as [18]

(1) If X ∼ S(α, β, γ, a), b is a real number, then

X + b ∼ S(α, β, γ, a + b) (4)

(2) If X ∼ S(α, β, γ, a), m is a non-zero real number, then

mX ∼
{

S(α, sgn(m)β, γ, ma) α 6= 1
S(1, sgn(m)β,

∣∣m∣∣γ, ma− 2
πm(ln

∣∣m∣∣)βγ) α = 1
(5)

(3) Let X1 ∼ S(α, β1, γ1, a1) and X2 ∼ S(α, β2, γ2, a2) be mutually independent α-stable
distribution, then

X1 + X2 ∼ S(α, β, γ, a) (6)

where

β =
β1γα

1 + β2γα
2

γα
1 + γα

2
, γ= (γα

1 + γα
2

)1/α

, a = a1 + a2 (7)

3. Parameter Estimation Method
3.1. Fractional-Order Tracking Differentiator

The expression of FOTD can be obtained by using fractional-order optimal control
theory and the design approach of integer-order tracker differentiator. The FOTD is
defined as {

Dθ x1(t) = x2(t)
Dθ x2(t) = f han

(8)

where x1(t) is the tracked signal, x2(t) is the fractional derivative of x1(t), f han is the
fastest control synthesis function. By passing the input signal to f han function, FOTD
can quickly respond to the changes in input signal, and accurately compute its fractional
derivative [19,20].

The fractional calculus used in this paper is the Grünwald–Letnikov definition, i.e.,

Dθ =
1
hθ

[(t−t0)/h]

∑
j=0

wjx(t− jh) (9)
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with

wj =

{
1 j= 1
(1− 1+θ

j )wj−1 j= 2, 3, 4 · · · (10)

where θ denotes fractional derivative order, h denotes the differential step. The discrete
form of FOTD is given by

x1(n + 1) = hθ · x2(n) +
j=n
∑

j=1
wjx1(n− j)

x2(n + 1) = hθ · f han +
j=n
∑

j=1
wjx2(n− j)

(11)

with

f han [x1(n), x2(n), v(n), r, h0] = −
{

r · sign(c) |c|> d
r c

d

∣∣c∣∣≤ d
(12)

c =

 x2(n) +
(c0−d)

2 sign(y(n))
∣∣∣y(n)∣∣∣> d0

x2(n) +
y(n)
h0

∣∣∣y(n)∣∣∣≤ d0
(13)

where
d = rh0
d0 = h0d
y(n) = x1(n)− v(n) + h0x2(n)
c0 =

√
d2 + 8r|y(n)|

(14)

v(n) is the discrete input signal, where n ∈ [1, N], and N is the sampling points
number. x1(n) and x2(n) are the discrete forms of x1(t) and x2(t). r denotes the tracking
factor; the larger r is, the faster x1(n) can track the signal v(n). h0 denotes the filtering
factor; the smaller h0 can give a better suppression on high-amplitude impulsive noise.

Figure 1a shows a pure LFM signal and its tracked signal x1(n); it can be observed
that x1(n) has a certain phase delay and amplitude reduction. Compared with the original
signal, amplitude reduction does not affect the parameter estimation, but the phase delay
will directly affect the accuracy of parameter estimation. Therefore, the phase delay must
be reduced as much as possible. Inspired by the displacement formula in physics, the
tracked signal is corrected with the differential signal to approximate the original signal.
The approximated signal x3(n) is given by x3(n) = x1(n) + r2 · x2(n), where r2 controls
the approximation degree. From Figure 1b, the peak point locations show that x3(n) has
a smaller delay compared to x1(n), achieving the effect of reducing the phase delay.
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3.2. Parameter Estimation Model

The expression of the LFM signal is

x(t) = A exp(j2π f0t + jπkt2) (15)

where A is the amplitude, f0 is the center frequency, and k is the chirp rate. The definition
of CFRFT for signal x(t) is [21]

Lϕ(u) = Lϕ[x(t)](u) =
∫ +∞

−∞
x(t) · exp(jπ cot ϕt2 − 2jπtu)dt (16)

where ϕ ∈ [0,π] represents the rotation angle and Lϕ(u) represents the CFRFT of x(t). The
discrete-time CFRFT is given by

Lϕ(u) =
N

∑
n=−N

x(n/∆x) · exp[(jπ cot ϕ(n/∆x)2)− 2πun/∆x] (17)

where ∆x =
√

T · fs. Further discretize the variable u, the discrete CFRFT is given by

Lϕ(m) =
N

∑
n=−N

x(n/∆x) · exp[(jπ cot ϕ(n/∆x)2)− 2πmn/∆x] (18)

For CFRFT, the relationship between WVD (t, µ) and WVDLϕ(u, v) can be expressed as

WVDLϕ(u, v) = WVD
[

1
sin ϕ

(t cos ϕ + µ sin ϕ)− t
]

(19)

It means that the time axis t is rotated by ϕ and stretched by 1/sin ϕ, while the
frequency axis µ is rotated by π/2 to obtain the new coordinate system (see Figure 2). LFM
signal exhibits a linear change in frequency with respect to time in the time-frequency
plane, where the slope of the line and its center are k = − tan φ and f0, respectively. When
the u axis is orthogonal to the IF of LFM signal (ϕ = π/2− φ), the projection of the IF on
u axis is a point f0. Therefore, it can be concluded that when cot ϕ = −k, the fractional
spectrum of LFM signal is energy concentration.
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In addition, according to Equations (15) and (16), the fractional spectrum of LFM
signal is given by

Lϕ(u) =
∫ +∞
−∞ A exp(j2π f0t + jπkt2) exp(jπ cot ϕt2 − j2πtu)dt

=
∫ +∞
−∞ A exp[j2π( f0 − u)] exp[jπ(k + cot ϕ

)
t2]dt

(20)

Specifically, when cot ϕ = −k, then

Lϕ(u) =
∫ T/2

−T/2
A exp[j2π( f0 − u)]dt =

A sin[πT( f0 − u)]
π( f0 − u)

(21)

According to the Parseval’s theorem, i.e.,∫ +∞

−∞
|Lϕ(u)|2du =

∫ +∞

−∞
|x(t)|2dt (22)

It can be followed that the fractional spectrum of LFM signal reaches a global maximum
at u = f0 when cot ϕ = −k.

Based on this characteristic, a mathematical model for LFM signal parameter estima-
tion is established as 

{ϕ0, u0}= argmax
ϕ,u

∣∣∣∣∣Lϕ[ŝ(t)](u)

∣∣∣∣∣
k̂ = − cot ϕ0
f̂0 = u0

(23)

where ŝ(t) represents the tracked signal. ϕ0 and u0 denote the optimal value points, k̂ and
f̂0 represent the estimated chirp rate and center frequency, respectively. LFM signal exhibits
energy concentration at a certain CFRFT domain, and the position of the peak is related
to the parameter of LFM signal. Figure 3 shows the fractional spectrum of LFM signal
in the CFRFT domain, a prominent peak can be observed. By performing peak search,
the coordinates [ϕ0, u0](ϕ0 = p0π/2) of the peak can be substituted into Equation (23) to
estimate the center frequency and chirp rate.
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In this paper, the water cycle algorithm (WCA) is utilized to search for the global
optimum. WCA is a metaheuristic algorithm inspired by the natural water cycle process,
which combines the search for the optimum solution with the water cycle process in
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nature [22]. The algorithm flow of the proposed method is illustrated in Figure 4 and the
specific steps are as follows:
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Step 1: The pure LFM signal x(t) is generated by using Equation (15).
Step 2: A random impulsive noise is generated and added to x(t), i.e., s(t) = x(t) + n(t),

where n(t) obeys the α-stable distribution, s(t) denotes the noisy signal.
Step 3: FOTD is applied to track the noisy signal, and the tracked signal is denoted as ŝ(t).
Step 4: The fractional spectrum of the tracked signal ŝ(t) is established by using

DTCFRFT, and LFM parameters are estimated by using Equation (23).
Step 5: 100 Monte Carlo experiments are performed, and an outlier detection algorithm

is used to eliminate outliers.

4. Simulation Experiment

The simulation experiment is arranged as follows: The proposed FOTD-CFRFT
method is initially analyzed, followed by a comparison with three other recently proposed
methods under simulated impulsive noise. Lastly, the parameter estimation performance is
tested in the presence of measured impulsive noise. The parameters of LFM signal in the
simulation experiment are set by

{A, f0, k, fs, T, N} = {1, 20.5 Hz, 50.5 Hz/s, 512 Hz, 1 s, 512} (24)

where fs denotes sampling rate, T denotes sampling duration, N denotes the sampling number.

4.1. FOTD Analysis

In this subsection, the tracking performance of FOTD is demonstrated, and the impact
of each parameter on estimation accuracy is analyzed from an experimental perspective.
Figure 5a shows the time-domain waveform of the noisy signal, which clearly shows the
presence of numerous high-amplitude impulsive noises. Figure 5b shows the time-domain
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waveform of the tracked signal by FOTD. It can be observed that the high-amplitude
impulsive noise has been suppressed, which provides favorable conditions for the accurate
estimation of LFM signal parameter. Moreover, in order to clearly demonstrate the tracking
effect of FOTD, the fractional spectrum of the noisy signal and tracked signal are shown
in Figure 5c,d, respectively, where p denotes the rotational order, and NA denotes the
normalized amplitude. It can be observed from Figure 5c that the true peak is obscured
by the impulsive noise, resulting in inaccurate parameter estimation. However, the clear
peak can be seen in Figure 5d, and the positions of the peak closely match the true values
{ f0, p} = {20.5, 1.0626}.
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domain waveform of the tracked signal; (c) fractional spectrum of the noisy signal; (d) fractional
spectrum of the tracked signal.

Since FOTD contains three parameters r, h0, θ, it is necessary to analyze the impact of
each parameter on the parameter estimation accuracy. By selecting different parameters,
100 Monte Carlo experiments were conducted under a standard SαS noise environment
with α = 1.2, GSNR = −3dB. The RMSE of estimated results corresponding to each
parameter are shown in Figure 6. From Figure 6, it can be seen that r has almost no impact
on the parameter estimation, whereas the other two parameters directly affect the accuracy
of parameter estimation. For the superior performance of FOTD, h0 should be within the
range of 0 < h0 ≤ 1, and θ should be within the range of 1.2 ≤ θ ≤ 1.8. Therefore, the
parameters of FOTD are set as r = 1, h0= 0.3,θ = 1.5 in the following sections.
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4.2. Comparisons
4.2.1. Standard SαS Distribution Noise

In order to better demonstrate the performance of parameter estimation under the
impulsive noise, the proposed method is compared with the three newly proposed param-
eter estimation methods, i.e., Sigmoid-FPSD [7], PANT-LVD [8] and FTD-FRFT [9]. For
α = 1.2 and GSNR = 0 dB, the fractional spectrums of the noisy signal are built and shown
in Figure 7, the search step size for parameter p is 0.002. From Figure 7, all four methods
can suppress the impulsive noise and achieve accurate parameter estimation. However, the
FTD-FRFT method shows significant noise amplitude in the fractional spectrum, which
indicates poor suppression performance for impulsive noise.

To further compare the performance of four methods under low GSNR, the fractional
spectrum of the noisy signal and its projection are constructed at GSNR = −3dB, where
the red lines represent the accurate positions of peak point. When GSNR = −3dB, it can be
observed from Figure 8 that the FTD-FRFT method fails to suppress the impulsive noise,
and the peaks are submerged by the impulsive noise, resulting in inaccurate parameter
estimation. However, Sigmoid-FPSD, PANT-LVD and FOTD-CFRFT methods can suppress
the impulsive noise and achieve accurate parameter estimation.
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Next, 100 Monte Carlo experiments are conducted at each GSNR level to calculate
RMSE with α = 1.2, β= 0, a = 0, the average values of estimation results at different GSNR
are presented in Table 1. It is evident from Table 1 that the FOTD-CFRFT method exhibits
superior accuracy at high GSNR compared to the other three methods, whereas it remains
effective when the other three methods fail to accurately estimate the parameters at low
GSNR. To visually compare the performance of four methods at different GSNR levels,
the RMSE of the estimated parameters for four methods are shown in Figure 9. From
Figure 9a,b, it can be seen that the FTD-FRFT method can accurately estimate the LFM
signal parameter when GSNR ≥ 1 dB, whereas other three methods can accurately estimate
the LFM signal parameter when GSNR ≥ −3 dB. The FOTD-CFRFT method has a much
smaller RMSE over the other three methods, which indicates that the FOTD-CFRFT method
has stronger noise robustness. However, when GSNR decreases to −6dB, the estimation
accurate of the FOTD-CFRFT method also drops sharply. The estimated parameters of
100 Monte Carlo experiments are shown as a scatter diagram in Figure 10, where the blue
line represents the true IF of LFM signal. It can be observed that the FOTD-CFRFT method
only has a small number of outliers occur in 100 Monte Carlo experiments, which means
that the FOTD-CFRFT method has higher stability compared with the other three methods
at low GSNR. Therefore, an outlier detection algorithm is applied to detect and remove
these outliers for improving accuracy. Figure 9c,d show that the FOTD-CFRFT method
combined with the outlier detection algorithm can effectively improve the accuracy of
parameter estimation under low GSNR.
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Table 1. The estimate values of the center frequency and chirp rate at different GSNR.

−6 dB −5 dB −4 dB −3 dB −2 dB −1 dB 0 dB 1 dB 2 dB 3 dB

f 0

FTD-FRFT 1.2102 2.2815 5.5838 7.6531 13.4799 18.5058 20.0341 20.0968 20.0952 20.0950
Sigmoid-FPSD −4.7484 11.7004 10.2649 20.2852 20.2182 20.1562 20.1863 20.1862 20.1058 20.1158
PANT-LVD 16.0291 18.4695 19.6947 20.9199 20.9199 20.9199 20.9199 20.9199 20.9199 20.9199
FOTD-CFRFT 20.2796 20.2574 20.2608 20.2617 20.2639 20.2652 20.2605 20.2603 20.2649 20.2646

k

FTD-FRFT −3.5269 0.9849 1.3671 8.1601 25.9438 40.8245 49.4254 50.1678 50.0054 49.9729
Sigmoid-FPSD 45.4743 54.6101 50.1517 50.1191 50.1191 50.1678 50.1840 50.1677 50.1516 50.1353
PANT-LVD 37.9866 43.9949 47.0189 50.1228 50.0730 50.1329 50.2327 50.2826 50.3425 50.3924
FOTD-CFRFT 50.0982 50.1338 50.0889 50.1279 50.1832 50.1652 50.1783 50.1738 50.2006 50.1938
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Figure 9. RMSE of estimated parameter for four methods: (a) center frequency; (b) chirp rate. (c) center
frequency (with the outlier detection algorithm); (d) chirp rate (with the outlier detection algorithm).

The influence of parameter γ on the parameter estimation accuracy is discussed above,
then the parameter α is analyzed below, where α is varied in [0.2, 2] at GSNR = 0 dB. From
Figure 11, it can be seen that the FTD-FRFT method can only estimate the parameter in
a weak impulsive noise environment; its performance sharply declines under a strong
impulsive noise environment. Different from FTD-FRFT, the other three methods can
estimate the parameter under a strong impulsive noise environment, and RMSE is basically
unaffected by the impulsive intensity. In summary, the proposed FOTD-CFRFT method is
superior to Sigmoid-FPSD, PANT-LVD and FTD-FRFT methods in terms of noise robustness
and stability.
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4.2.2. Non-Standard SαS Distribution Noise

When the parameters β 6= 0 or a 6= 0, the noise no longer obeys a standard SαS
distribution, it is necessary to explore the parameter estimation performance under non-
standard SαS distribution noise. Based on the properties of α-stable distribution listed
in Equations (4)–(7), the non-standard SαS distribution can be corrected to a standard
SαS distribution if α-stable distribution parameters are known. Therefore, the α-stable
distribution noise parameters need to be estimated first. Assume the noise obeys α-stable
distribution, denoted as X ∼ S(α, β, γ, a), the specific correction methods are given by:

(1) When a 6= 0, β= 0, the correction formula is

X− a ∼ S(α, 0, γ, 0) (25)

(2) When a = 0, β 6= 0, let X′ ∼ S(α,−β, γ, 0), the correction formula is

X + X′ ∼ S(α, 0, 21/αγ, 0) (26)

(3) When a 6= 0, β 6= 0, let X′ ∼ S(α,−β, γ, 0), the correction formula is

X + X′ − a ∼ S(α, 0, 21/αγ, 0) (27)

The other parameters of noise are fixed as α = 1.2, a = 0, GSNR = 0 dB, the sym-
metric parameter β is varied in [−1, 1]. With different β, the RMSE of center frequency
and chirp rate for four methods are shown in Figure 12. It can be seen that the FTD-FRFT
method can accurately estimate the parameter for β = 0, the Sigmoid-FPSD method can
accurately estimate the parameter when −0.4 ≤ β ≤ 0.4, the PANT-LVD method can accu-
rately estimate the parameter when −0.2 ≤ β ≤ 0.2. The Sigmoid-FPSD and PANT-LVD
methods have some adaptability to β, but they fail to accurately estimate the parameter
when β changes significantly. Figure 12 indicated that the FOTD-CFRFT method com-
bined with the correction method can effectively solve the parameter estimation under the
non-standard SαS distribution noise. To visually demonstrate the impact of β, Figure 13
shows the fractional spectrum of tracked signal when β = 0.8. It can be seen that the
FTD-FRFT, Sigmoid-FPSD and PANT-LVD methods cannot extract the fractional spectrum
characteristic of LFM signal, and thus cannot accurately estimate the parameter. However,
the proposed method combining FOTD-CFRFT and noise correction can accurately estimate
the parameters of the LFM signal, indicating the effectiveness of the correction method.
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In addition, the other parameters of noise are fixed as α = 1.2, β = 0, GSNR = 0 dB,
Figure 14 shows the RMSE of parameter estimation when the parameter a varies in [−5, 5].
From Figure 14, the FTD-FRFT and PANT-LVD methods can accurately estimate the param-
eter only if a= 0. The Sigmoid-FRFT method can estimate the parameter when−1 ≤ a ≤ 2,
which shows some adaptability to the variation in a. However, with the increase in a, the
Sigmoid-FRFT method does not give an accurate estimation value. Combined with the
noise correction method, the proposed FOTD-CFRFT achieves accurate parameter estima-
tion for a ∈ [−5, 5]. With α = 1.2, β = 0, a= 3, GSNR = 0dB, the fractional spectrums of
the tracked signal are shown in Figure 15. When a= 3, the noise is no longer a standard
SαS distribution noise; therefore, the other three methods fail to extract the fractional
spectrum characteristic of the LFM signal. Due to the combination of noise correction, the
FOTD-CFRFT method can still accurately extract the fractional spectrum characteristic of
LFM signal, so as to achieve high precision parameter estimation under the non-standard
SαS distribution noise.
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4.3. Measured Noise Experiment

To verify the effectiveness of the proposed method in a natural noisy environment,
a measured impulsive noise was obtained from killer whale echolocation clicks recorded in
the Glacier Bay National Preserve (see Figure 16) [23]. A segment of the noise was extracted
and added to the LFM signal. GSNR is varied by adjusting the noise amplitude.
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Figure 16. Measured impulsive noise.

To analyze the performance of four methods under weak impulsive noise, a segment
of noise was extracted from the 352,000th point to the 352,512th point, and further added to
LFM signal. At this time, the GSNR is approximately −1dB. Since most measured noises
do not typically obey a standard SαS distribution, correction is required before parameter
estimation. The noise parameters are estimated by using noisy signal, and the obtained
parameters are {α, β, γ, a} = {1.97,−1, 1.22,− 1.27}. Then, the noisy signal is corrected
using Equation (27). Based on four methods, Figure 17 shows the fractional spectrum of
LFM signal and its projections under the weak measured impulsive noise. From Figure 17,
it can be observed that the FTD-FRFT and PANT-LVD methods fail to accurately estimate
the parameter, while the Sigmoid-FPSD and FOTD-CFRFT methods can accurately estimate
parameter. In terms of accuracy, the estimated center frequency and chirp rate by the
Sigmoid-FPSD method are 21.10 Hz and 50.02 Hz/s. The corresponding results obtained
by the FOTD-CFRFT method are 20.33 Hz and 50.12 Hz/s, which have better accuracy than
that of Sigmoid-FPSD.

To compare the performance of four methods under a strong measured impulsive noise
environment, a segment of 1,125,000 points to 1,125,512th point is extracted and added
to LFM signal. As shown in Figure 18, the FTD-FRFT, Sigmoid-FPSD and PANT-LVD
methods are unable to accurately estimate the parameters. Similar to weak impulsive noise
case, the estimated noise parameters are {α, β, γ, a} = {1.53, 0.43, 1.18, 6.18}. The proposed
FOTD-CFRFT combined with noise correction can accurately estimate the parameter, the
estimated center frequency and chirp rate are 20.39 Hz and 49.94 Hz/s, respectively. In
summary, compared with the other three methods, the FOTD-CFRFT method combined
with the noise correction method also has a much better performance under the measured
impulsive noise environment.



Fractal Fract. 2023, 7, 822 18 of 21

Fractal Fract. 2023, 6, x FOR PEER REVIEW 17 of 20 
 

 

Equation (27). Based on four methods, Figure 17 shows the fractional spectrum of LFM 
signal and its projections under the weak measured impulsive noise. From Figure 17, it 
can be observed that the FTD-FRFT and PANT-LVD methods fail to accurately estimate 
the parameter, while the Sigmoid-FPSD and FOTD-CFRFT methods can accurately esti-
mate parameter. In terms of accuracy, the estimated center frequency and chirp rate by 
the Sigmoid-FPSD method are 21.10 Hz and 50.02 Hz/s. The corresponding results ob-
tained by the FOTD-CFRFT method are 20.33 Hz and 50.12 Hz/s, which have better accu-
racy than that of Sigmoid-FPSD. 

  
(a) 

  
(b) 

  
(c) 

Fractal Fract. 2023, 6, x FOR PEER REVIEW 18 of 20 
 

 

  
(d) 

Figure 17. The fractional spectrum of LFM signal and its projections under the weak measured   
impulsive noise: (a) FTD-FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFRFT. 

To compare the performance of four methods under a strong measured impulsive 
noise environment, a segment of 1,125,000 points to 1,125,512th point is extracted and 
added to LFM signal. As shown in Figure 18, the FTD-FRFT, Sigmoid-FPSD and PANT-
LVD methods are unable to accurately estimate the parameters. Similar to weak impulsive 
noise case, the estimated noise parameters are { , , , } {1.53,0.43,1.18,6.18}aα β γ = . The pro-
posed FOTD-CFRFT combined with noise correction can accurately estimate the parame-
ter, the estimated center frequency and chirp rate are 20.39 Hz and 49.94 Hz/s, respectively. 
In summary, compared with the other three methods, the FOTD-CFRFT method com-
bined with the noise correction method also has a much better performance under the 
measured impulsive noise environment. 

  
(a) 

  
(b) 

Figure 17. The fractional spectrum of LFM signal and its projections under the weak measured
impulsive noise: (a) FTD-FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFRFT.



Fractal Fract. 2023, 7, 822 19 of 21

Fractal Fract. 2023, 6, x FOR PEER REVIEW 18 of 20 
 

 

  
(d) 

Figure 17. The fractional spectrum of LFM signal and its projections under the weak measured   
impulsive noise: (a) FTD-FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFRFT. 

To compare the performance of four methods under a strong measured impulsive 
noise environment, a segment of 1,125,000 points to 1,125,512th point is extracted and 
added to LFM signal. As shown in Figure 18, the FTD-FRFT, Sigmoid-FPSD and PANT-
LVD methods are unable to accurately estimate the parameters. Similar to weak impulsive 
noise case, the estimated noise parameters are { , , , } {1.53,0.43,1.18,6.18}aα β γ = . The pro-
posed FOTD-CFRFT combined with noise correction can accurately estimate the parame-
ter, the estimated center frequency and chirp rate are 20.39 Hz and 49.94 Hz/s, respectively. 
In summary, compared with the other three methods, the FOTD-CFRFT method com-
bined with the noise correction method also has a much better performance under the 
measured impulsive noise environment. 

  
(a) 

  
(b) 

Fractal Fract. 2023, 6, x FOR PEER REVIEW 19 of 20 
 

 

  
(c) 

  
(d) 

Figure 18. The fractional spectrum of noisy signal and its projections under the strong measured 
impulsive noise: (a) FTD-FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFRFT. 

5. Conclusions 
In this paper, a fractional-order tracking differentiator (FOTD) based on G-L frac-

tional derivative and its discrete form is constructed. Additionally, FOTD is utilized to 
suppress large impulsive noise, and an LFM signal parameter estimation method under 
impulsive noise is proposed using FOTD-CFRFT, which effectively addresses the issue 
that traditional parameter estimation methods perform poorly in the presence of impul-
sive noise. The experimental results show that the proposed method can effectively sup-
press high impulsive noise through FOTD, and overcome the disadvantage that the per-
formance of the similar FTD-FRFT method sharply decreases under strong impulsive 
noise and low GSNR environment. In addition, the proposed method exhibits higher sta-
bility and accuracy than the Sigmoid-FPSD and PANT-LVD methods under low GSNR. 
Finally, since most actual environmental impulsive noise typically obeys a non-standard 
SαS distribution, a correction method for non-standard SαS distribution noises is pro-
posed, which successfully achieves accurate estimation of LFM signal parameters under 
measured impulsive noise. 

Author Contributions: Conceptualization, H.W. and Y.G.; methodology, H.W. and Y.G.; validation, 
H.W. and Y.G.; formal analysis, Y.G. and L.Y.; investigation, Y.G. and L.Y.; writing—original draft 
preparation, H.W., Y.G. and L.Y.; writing—review and editing, H.W., Y.G. and L.Y.; funding acqui-
sition, Y.G. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China, no. 
62161040, 62201298, 12261067. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 18. The fractional spectrum of noisy signal and its projections under the strong measured
impulsive noise: (a) FTD-FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFRFT.
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5. Conclusions

In this paper, a fractional-order tracking differentiator (FOTD) based on G-L fractional
derivative and its discrete form is constructed. Additionally, FOTD is utilized to suppress
large impulsive noise, and an LFM signal parameter estimation method under impulsive
noise is proposed using FOTD-CFRFT, which effectively addresses the issue that traditional
parameter estimation methods perform poorly in the presence of impulsive noise. The
experimental results show that the proposed method can effectively suppress high impul-
sive noise through FOTD, and overcome the disadvantage that the performance of the
similar FTD-FRFT method sharply decreases under strong impulsive noise and low GSNR
environment. In addition, the proposed method exhibits higher stability and accuracy than
the Sigmoid-FPSD and PANT-LVD methods under low GSNR. Finally, since most actual en-
vironmental impulsive noise typically obeys a non-standard SαS distribution, a correction
method for non-standard SαS distribution noises is proposed, which successfully achieves
accurate estimation of LFM signal parameters under measured impulsive noise.
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