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Abstract: Due to the short duration and high amplitude characteristics of impulsive noise, these
parameter estimation methods based on Gaussian assumptions are ineffective in the presence of
impulsive noise. To address this issue, a LFM signal parameter estimation method is proposed
based on FOTD and CFRFT. Firstly, the mathematical expression of FOTD is presented and its
tracking performance is verified. Secondly, the tracked signal is subjected to discrete time CFRFT,
and a mathematical optimization model for LFM signal parameter estimation is established on the
fractional spectrum characteristic. Finally, a correction method for non-standard SxS distributed noise
is proposed, and the performance of parameter estimation under both standard and non-standard
SaS distributions are analyzed. The simulation results show that this method not only effectively
suppresses the impact of impulsive noise on the fractional spectrum of LFM signal, but also has better
parameter estimation accuracy and stability in the low GSNR. The proposed method is particularly
effective under the measured noise environment, as it successfully suppresses the impact of impulsive
noise and achieves high-precision parameter estimation.

Keywords: linear frequency modulation signal; impulsive noise; fractional-order tracking differentiator;
concise fractional Fourier transform; parameter estimation

1. Introduction

Linear frequency modulation (LFM) signal is a typical non-stationary signal, whose
instantaneous frequency varies linearly with time. Compared with single frequency signal
and narrow-band signal, LFM signal has stronger anti-interference ability; thus, it is widely
used in radar, sonar, communication, seismic survey and other fields [1,2]. Due to the
inevitable introduction of noise during signal acquisition and transmission, the parameter
estimation of LFM signal under noisy environments is a common and fundamental issue
in these fields. Most existing parameter estimation methods assume that the noise obeys
a Gaussian distribution, but the noise caused by sudden interference in the actual envi-
ronment generally does not obey the Gaussian distribution. Impulsive noise is a typical
non-Gaussian noise, which has the characteristics of short duration and high amplitude.
The performance of traditional methods degrades significantly under impulsive noise, and
even cannot accurately estimate parameter. Therefore, it is necessary to explore the LFM
signal parameter estimation method in the presence of impulsive noise.

To address the parameter estimation under impulsive noise environment, scholars
have proposed many methods, such as, fractional lower-order statistics [3-5], nonlinear
transform [6-8], tracking differentiator [9,10], convolutional neural networks [11,12]. In [3],
an improved fractional lower order LVD (FLO-LVD) for the impulsive noise is proposed,
which can overcome the influence of cross-terms and achieve higher estimation accuracy.
In [5], FLO-SST with adaptive order and adaptive window is proposed, which utilizes
FLO to suppress impulsive noise and obtain the instantaneous frequency of LEM signal by
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SST. However, these two methods require prior information of impulsive noise and lack
theoretical support for selecting the order. In [7], the Sigmoid-FPSD method is proposed to
effectively suppress impulsive noise, which has certain adaptability to changes in impulsive
noise parameter. In [8], a piecewise nonlinear amplitude transformation (PNAT) function
was designed to suppress impulsive noise, and combined with LVD to form a new LFM
signal parameter estimation method, named PANT-LVD. However, these methods based
on nonlinear transform also present certain drawbacks including poor stability under low
GSNR and extensive computational requirements. In [9], fastest tracking differentiator
(FTD) and fractional Fourier transform (FRFT) are proposed to estimate the parameter of
LFM signal under impulsive noise. It effectively eliminates high-amplitude impulsive noise,
but suffers a significant performance degradation under low GSNR and strong impulsive
noise environments. In [12], a deep learning-based parameter estimation method of LFM
signal is proposed, which uses deep neural networks and convolutional neural networks to
eliminate the impact of impulsive noise on LFM signal parameter estimation. However,
this method requires a considerable amount of time to train the model. It is necessary to
point out that all these methods can only estimate parameter if the impulsive noise obeys
a standard symmetric a-stable (SaS) distribution, the performance sharply decreases and
even be unable to estimate parameter when impulsive noise does not obey the standard
SaS distribution.

In recent years, with the development of fractional calculus theory, fractional calcu-
lus has expanded into the fields of science and engineering, particularly finding wide
applications in control systems. Due to the limited performance of integer-order adaptive
controllers, a fractional-order adaptive controller is designed to improve the performance
and stability of the system by using a fractional-order tracking differentiator (FOTD). There-
fore, research on FOTD is continuously being conducted in various fields. In [13], the design
and analysis of FOTD are introduced, a fractional order self-disturbance rejection controller
is designed by FOTD. In [14], the fractional order adaptive controller is designed by FOTD
to obtain the differential signal, and the stability of the adaptive system is analyzed. In [15],
a fractional order nonlinear disturbance observer based on FOTD is designed to improve
the control performance of UAV in the disturbance environment.

Inspired by tracking differentiator, this paper presents a new application of FOTD in
the LFM signal parameter estimation under impulsive noise environment. This method
utilizes FOTD to track noisy signals and achieve a significant reduction of high-amplitude
impulsive noise. Moreover, the fractional spectrum of the tracked signal is established
by concise fractional Fourier transform (CFRFT), and a mathematical optimization model
of parameter estimation is built on the fractional spectrum characteristic of LFM signal.
Finally, a correction method for non-standard S«S distribution noise is proposed by using
the properties of «-stable distribution, which effectively solves the LFM signal parameter
estimation under non-standard S«S distribution noise. The main contributions of this paper
include: (1) FOTD based on G-L fractional derivative is constructed and its discrete form
is given; (2) FOTD is employed to suppress impulsive noise, and a FOTD-CFRFT based
method is proposed to estimate LEM signal parameter in the presence of impulsive noise;
(3) a correction method is proposed to effectively address the parameter estimation under
non-standard S«S distribution noise.

The rest of this paper is arranged as follows: Section 2 briefly introduces the impulsive
noise model, Section 3 proposes the LFM signal parameter estimation method, Section 4
conducts simulation experiments analysis and comparison for the simulated and measured
impulsive noise, and Section 5 gives a brief summary.

2. Impulsive Noise Model

The impulsive noise typically exhibits characteristics of short duration and high
amplitude, which can be fitted by the o-stable distribution model. The a-stable distribution
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does not have a closed-form probability density function, and is commonly represented by
the following characteristic function [16,17]

¢(t) = expljat — y|t|o(1 +jBsgn(t)g(t, a))] 1)

with ) "
Zlgit| a=1
— 7T
g(t’w)_{tarﬂ’a7T a#1

where sgn(t) represents the sign function. « € (0,2) denotes the characteristic exponent
of impulsive noise, higher « indicates weaker impulsive intensity. Similar to the variance
in Gaussian distribution, ¢ € (0, +c0) denotes the dispersion coefficient, which reflects
the deviation of samples from the mean. p € [—1,1] denotes the skewness parameter,
describing the skewness of the distribution. 2 represents the location parameter with the
range of (—oo, +c0). When B = 0, the distribution is called as SS distribution. When
a =0, =0, the distribution is called as standard SxS distribution. Since the variance of
a-stable distribution noise is undefined, GSNR is used to replace SNR, defined as

@)

GSNR = 101g(o? /) (3)

where 0?2 represents the variance of the signal, and 7y represents the dispersion coefficient
of the impulsive noise.
Below, three common properties of x-stable distribution are briefly listed as [18]

(1) If X ~ S(«,B,7,a),bis areal number, then
X+b~S(aB,ya+Dh) 4)

(2) If X ~ S(a,B,,a), mis anon-zero real number, then

S(a, sgn(m)p, v, ma) a#1
mx o~ { S(1, sgn(m)B, |m|y, ma— Zm(In|m|)py) w=1 ®)

(3) Let X3 ~ S(«,B1,71,41) and Xp ~ S(a, B2, 72, a2) be mutually independent «-stable
distribution, then
X1 + XQ_ ~ S(ﬂé, :B’ Y, H) (6)

where
_ Biri +ham;
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3. Parameter Estimation Method
3.1. Fractional-Order Tracking Differentiator

The expression of FOTD can be obtained by using fractional-order optimal control
theory and the design approach of integer-order tracker differentiator. The FOTD is

defined as
{ Dgxl(t) = x2(t) (8)
Dy (t) = fhan

where xq(t) is the tracked signal, x,(t) is the fractional derivative of xi(t), fhan is the
fastest control synthesis function. By passing the input signal to fhan function, FOTD
can quickly respond to the changes in input signal, and accurately compute its fractional
derivative [19,20].

The fractional calculus used in this paper is the Griinwald-Letnikov definition, i.e.,

1 L=t0) /1]

Dezﬁ 20 wix(t — jh) )
i
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with
_ )1 = 10
Y= -, 2 10

where 6 denotes fractional derivative order, i denotes the differential step. The discrete
form of FOTD is given by

j=n

X wjxy(n—j)

Fis (11)
xo(n+1) =h?- fhan + 21 wixa(n — )

x1(n+1) =h-x(n) +

with |
fhan [x1(n), xo(n),0(n),r, hol _{ :;lgn(d ||2|Ei1 12
xa(n) + 5 Usign(y(n)) y(n)|> do
‘- (13)
xa(n) + 1) y(n)|< do
where
d = Th()
dy = hod
y(n) = x1(n) — v(n) + hoxa(n) (14)
d? + 8r|y(n)|

v(n) is the discrete input signal, where n € [1,N], and N is the sampling points
number. xq (1) and x;(n) are the discrete forms of x;(f) and x;(t). r denotes the tracking
factor; the larger r is, the faster xq(n) can track the signal v(n). hy denotes the filtering
factor; the smaller kg can give a better suppression on high-amplitude impulsive noise.

Figure 1a shows a pure LFM signal and its tracked signal x; (n); it can be observed
that x1(n) has a certain phase delay and amplitude reduction. Compared with the original
signal, amplitude reduction does not affect the parameter estimation, but the phase delay
will directly affect the accuracy of parameter estimation. Therefore, the phase delay must
be reduced as much as possible. Inspired by the displacement formula in physics, the
tracked signal is corrected with the differential signal to approximate the original signal.
The approximated signal x3(n) is given by x3(n) = x1(n) + r2 - x2(n), where r;, controls
the approximation degree. From Figure 1b, the peak point locations show that x3() has
a smaller delay compared to x1 (1), achieving the effect of reducing the phase delay.
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Figure 1. The tracked signal of FOTD and improved FOTD: (a) FOTD; (b) improved FOTD.
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3.2. Parameter Estimation Model

The expression of the LFM signal is
x(t) = Aexp(j2mfot + jmkt?) (15)

where A is the amplitude, f is the center frequency, and k is the chirp rate. The definition
of CFRFT for signal x(t) is [21]

+00
L(u) = LY [x(t)](u) = /700 x(t) - exp(jmcot pt? — 2jmtu)dt (16)

where ¢ € [0, 1] represents the rotation angle and L?(u) represents the CFRFT of x(t). The
discrete-time CFRFT is given by

L?(u) = % x(n/Ax) -exp[(jncoup(n/Ax)z) — 27mtun/ Ax| (17)
n=—N

where Ax = /T - fs. Further discretize the variable u, the discrete CFRFT is given by

L?(m) = i x(n/Ax) - exp|(jm cot @(n/Ax)?) — 2mmn / Ax] (18)
n=—N

For CFRFT, the relationship between WVD (¢, #) and WVDy¢ (1, v) can be expressed as

WVDy(u,v) = WVD sir11go(tcos ¢+ using) —t (19)

It means that the time axis ¢ is rotated by ¢ and stretched by 1/sin ¢, while the
frequency axis y is rotated by 7t/2 to obtain the new coordinate system (see Figure 2). LFM
signal exhibits a linear change in frequency with respect to time in the time-frequency
plane, where the slope of the line and its center are k = — tan ¢ and fj, respectively. When
the u axis is orthogonal to the IF of LFM signal (¢ = 71/2 — ¢), the projection of the IF on
u axis is a point fy. Therefore, it can be concluded that when cot ¢ = —k, the fractional
spectrum of LFM signal is energy concentration.

Figure 2. The principle of CFRFT for LFM signal.
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In addition, according to Equations (15) and (16), the fractional spectrum of LFM
signal is given by

L?(u) = [72 Aexp(j2mfot +jrkt?) exp (jmcot of? — j2rtu)dt

0o 2
= [ Aexplizn(fo — u)] exp[jn(k—i—cotq)) t2]dt (20)
Specifically, when cot ¢ = —k, then
T/2 , Asin[nT(fo — u)]
L?(u :/ Aexpli2r(fo — u)]dt = 21
= [ Aexplizn(fo—w)] T @
According to the Parseval’s theorem, i.e.,
—+oo 2 —+o0 5
[ e Pau= [ e Pat (22)

It can be followed that the fractional spectrum of LFM signal reaches a global maximum
atu = fo when cotp = —k.

Based on this characteristic, a mathematical model for LFM signal parameter estima-
tion is established as

Lo[5(8)] (u)

{@o, o} = argmax
QU

. (23)

k = — cot ¢g

Jo=1uo
where §(t) represents the tracked signal. ¢ and 1y denote the optimal value points, k and
fo represent the estimated chirp rate and center frequency, respectively. LFM signal exhibits
energy concentration at a certain CFRFT domain, and the position of the peak is related
to the parameter of LFM signal. Figure 3 shows the fractional spectrum of LFM signal
in the CFRFT domain, a prominent peak can be observed. By performing peak search,
the coordinates [, uo](¢o = po7t/2) of the peak can be substituted into Equation (23) to
estimate the center frequency and chirp rate.

15 .
X 20.0952
Y 1.062
Zi1

-200
p 0.5 i

Figure 3. The fractional spectrum of LFM signal established by CFRFT.

In this paper, the water cycle algorithm (WCA) is utilized to search for the global
optimum. WCA is a metaheuristic algorithm inspired by the natural water cycle process,
which combines the search for the optimum solution with the water cycle process in
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nature [22]. The algorithm flow of the proposed method is illustrated in Figure 4 and the
specific steps are as follows:

LFM signal
1 T T
0.5
o 150 ¢
05 | 100 + | 0.2‘”‘*” o Ny M|
[ il | ‘
Tos 0 0.5 50 ‘
vs Lottt P \ 0] —
rfl}l 0 ppbaepfidpr M :>
150 50 l
-0.2
100
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50 | -0.5 J) 0.5 05 0 0.5
of “ T s tls
-50 Noisy signal Tracked signal
-100
05 0 05
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Fractional spectrum Outlier detection

p 05

Figure 4. Flow chart of FOTD-CFRFT algorithm.

Step 1: The pure LFM signal x(t) is generated by using Equation (15).

Step 2: A random impulsive noise is generated and added to x(t), i.e., s(t) = x(t) + n(t),
where n(t) obeys the x-stable distribution, s(t) denotes the noisy signal.

Step 3: FOTD is applied to track the noisy signal, and the tracked signal is denoted as §(t).

Step 4: The fractional spectrum of the tracked signal §(t) is established by using
DTCEFRFT, and LFM parameters are estimated by using Equation (23).

Step 5: 100 Monte Carlo experiments are performed, and an outlier detection algorithm
is used to eliminate outliers.

4. Simulation Experiment

The simulation experiment is arranged as follows: The proposed FOTD-CFRFT
method is initially analyzed, followed by a comparison with three other recently proposed
methods under simulated impulsive noise. Lastly, the parameter estimation performance is
tested in the presence of measured impulsive noise. The parameters of LFM signal in the
simulation experiment are set by

{A, fo.k, fs,T,N} = {1, 20.5 Hz, 50.5 Hz /s, 512 Hz, 1, 512} (24)
where f; denotes sampling rate, T denotes sampling duration, N denotes the sampling number.

4.1. FOTD Analysis

In this subsection, the tracking performance of FOTD is demonstrated, and the impact
of each parameter on estimation accuracy is analyzed from an experimental perspective.
Figure 5a shows the time-domain waveform of the noisy signal, which clearly shows the
presence of numerous high-amplitude impulsive noises. Figure 5b shows the time-domain
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waveform of the tracked signal by FOTD. It can be observed that the high-amplitude
impulsive noise has been suppressed, which provides favorable conditions for the accurate
estimation of LFM signal parameter. Moreover, in order to clearly demonstrate the tracking
effect of FOTD, the fractional spectrum of the noisy signal and tracked signal are shown
in Figure 5c,d, respectively, where p denotes the rotational order, and NA denotes the
normalized amplitude. It can be observed from Figure 5c that the true peak is obscured
by the impulsive noise, resulting in inaccurate parameter estimation. However, the clear
peak can be seen in Figure 5d, and the positions of the peak closely match the true values

{fo,p} = {20.5,1.0626}.

150 0.8
100 - 06+
50 041 M\ \‘l“ \ﬂ
L |
J |y i ‘LV " J j NJ‘ 02 .H \ “ W“ “ M\ ‘ H W\
o e A 1 MM ww »w !
50¢ \ \
50 . 02) ‘ \ 1 \
-100 | 04, \C
-150 - -0.6 -
05 0 05 05 0 0.5
t/s t/s

(c) (d)

Figure 5. The tracking performance of FOTD: (a) time-domain waveform of the noisy signal; (b) time-

domain waveform of the tracked signal; (c) fractional spectrum of the noisy signal; (d) fractional
spectrum of the tracked signal.

Since FOTD contains three parameters r, h, 0, it is necessary to analyze the impact of
each parameter on the parameter estimation accuracy. By selecting different parameters,
100 Monte Carlo experiments were conducted under a standard S«S noise environment
with « = 1.2, GSNR = —3dB. The RMSE of estimated results corresponding to each
parameter are shown in Figure 6. From Figure 6, it can be seen that r has almost no impact
on the parameter estimation, whereas the other two parameters directly affect the accuracy
of parameter estimation. For the superior performance of FOTD, hy should be within the
range of 0 < hy < 1, and 6 should be within the range of 1.2 < 6 < 1.8. Therefore, the
parameters of FOTD are set as v = 1, hp= 0.3,6 = 1.5 in the following sections.
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4.2. Comparisons
4.2.1. Standard S«S Distribution Noise

In order to better demonstrate the performance of parameter estimation under the
impulsive noise, the proposed method is compared with the three newly proposed param-
eter estimation methods, i.e., Sigmoid-FPSD [7], PANT-LVD [8] and FTD-FRFT [9]. For
« = 1.2 and GSNR = 0 dB, the fractional spectrums of the noisy signal are built and shown
in Figure 7, the search step size for parameter p is 0.002. From Figure 7, all four methods
can suppress the impulsive noise and achieve accurate parameter estimation. However, the
FTD-FRFT method shows significant noise amplitude in the fractional spectrum, which
indicates poor suppression performance for impulsive noise.

To further compare the performance of four methods under low GSNR, the fractional
spectrum of the noisy signal and its projection are constructed at GSNR = —3dB, where
the red lines represent the accurate positions of peak point. When GSNR = —3dB, it can be
observed from Figure 8 that the FTD-FRFT method fails to suppress the impulsive noise,
and the peaks are submerged by the impulsive noise, resulting in inaccurate parameter
estimation. However, Sigmoid-FPSD, PANT-LVD and FOTD-CFRFT methods can suppress
the impulsive noise and achieve accurate parameter estimation.

20

RMSE

——center frequency
- * - chirp rate

ooy 0 ek

40

50

——center frequency ¥
- * - chirp rate 0 N
30 x |

—=—center frequency
- * - chirp rate

30

*.
RMSE

U
x

P A

6 8 10 0 05 1 15 2 25 3 35 4 O T TR 1 19 2
h
0 1
(b) (c)
Figure 6. The parameter analysis of FOTD: (a) tracking factor r; (b) filtering factor hy; (c) fractional
derivative order 6.
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Figure 7. Cont.
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Figure 7. The fractional spectrogram of the noisy signal (GSNR = 0 dB): (a) FTD-FRFT; (b) Sigmoid-

FPSD; (c) PANT-LVD; (d) FOTD-CFRFT.
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Figure 8. The fractional spectrogram of the noisy signal (GSNR = — 3 dB) and its projection: (a) FTD-
FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFREFT.

Next, 100 Monte Carlo experiments are conducted at each GSNR level to calculate
RMSE with « = 1.2, = 0,a = 0, the average values of estimation results at different GSNR
are presented in Table 1. It is evident from Table 1 that the FOTD-CFRFT method exhibits
superior accuracy at high GSNR compared to the other three methods, whereas it remains
effective when the other three methods fail to accurately estimate the parameters at low
GSNR. To visually compare the performance of four methods at different GSNR levels,
the RMSE of the estimated parameters for four methods are shown in Figure 9. From
Figure 9a,b, it can be seen that the FTD-FRFT method can accurately estimate the LFM
signal parameter when GSNR > 1 dB, whereas other three methods can accurately estimate
the LFM signal parameter when GSNR > —3 dB. The FOTD-CFRFT method has a much
smaller RMSE over the other three methods, which indicates that the FOTD-CFRFT method
has stronger noise robustness. However, when GSNR decreases to —6dB, the estimation
accurate of the FOTD-CFRFT method also drops sharply. The estimated parameters of
100 Monte Carlo experiments are shown as a scatter diagram in Figure 10, where the blue
line represents the true IF of LFM signal. It can be observed that the FOTD-CFRFT method
only has a small number of outliers occur in 100 Monte Carlo experiments, which means
that the FOTD-CFRFT method has higher stability compared with the other three methods
at low GSNR. Therefore, an outlier detection algorithm is applied to detect and remove
these outliers for improving accuracy. Figure 9¢,d show that the FOTD-CFRFT method
combined with the outlier detection algorithm can effectively improve the accuracy of
parameter estimation under low GSNR.
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Table 1. The estimate values of the center frequency and chirp rate at different GSNR.

~6dB  —5dB  —4dB  -3dB  -2dB  -1dB  0dB 1dB 2dB 3dB
FTD-FRFT 12102 22815 55838  7.6531 134799 185058  20.0341  20.0968  20.0952  20.0950
f, Sigmoid-FPSD  —47484 117004 102649 202852 202182 201562 201863 201862 201058 201158
®  PANTLVD 160201 184695  19.6947 209199 209199 209199 209199 209199 209199 209199
FOTD-CFRFT ~ 202796 202574 202608 202617 202639 ~ 202652 202605 202603 202649  20.2646
FTD-FRFT ~35260 09849 13671 81601 259438  40.8245  49.4254  50.1678  50.0054  49.9729
. Sigmoid-FPSD 454743 546101 501517 501191 501191 501678 501840  50.1677 501516  50.1353
PANT-LVD 37.9866 439949  47.0189 501228  50.0730  50.1320  50.2327 502826 503425  50.3924
FOTD-CFRFT ~ 50.0982  50.1338  50.0889 ~ 50.1279 ~ 50.1832  50.1652  50.1783  50.1738 502006  50.1938
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Figure 9. RMSE of estimated parameter for four methods: (a) center frequency; (b) chirp rate. (c) center

frequency (with the outlier detection algorithm); (d) chirp rate (with the outlier detection algorithm).

The influence of parameter 7y on the parameter estimation accuracy is discussed above,
then the parameter « is analyzed below, where « is varied in [0.2, 2] at GSNR = 0 dB. From
Figure 11, it can be seen that the FTD-FRFT method can only estimate the parameter in
a weak impulsive noise environment; its performance sharply declines under a strong
impulsive noise environment. Different from FTD-FRFT, the other three methods can
estimate the parameter under a strong impulsive noise environment, and RMSE is basically
unaffected by the impulsive intensity. In summary, the proposed FOTD-CFRFT method is
superior to Sigmoid-FPSD, PANT-LVD and FTD-FRFT methods in terms of noise robustness
and stability.
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Figure 10. The scatter diagram of estimated parameters in 100 Monte Carlo experiments
(GSNR = — 6 dB): (a) FTD-FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFRFT.

ole] o@mw o 00 0
-100 -
-200 1
-300 ' ' ' ! !
-0.15 -0.1 -0.05 0 0.05 0.1
t
()
25 . . . :
——FTD-FRFT
- ~* - Sigmoid-FPSD
20 —e—PANT-LVD 1
-~ FOTD-CFRFT
w 15+
(93]
=
10
5 -
0 - - - - - . - -
0 02 04 06 08 1 12 14 16 18 2
(24
(a)

60 ‘ " . :
——FTD-FRFT
50| -~ - Sigmoid-FPSD| |
—6—PANT-LVD
—~¢—FOTD-CFRFT
40 ¢ 1
o
= 30
o
20 1
10+
0 PO S S SIS e -

0 02 04 06 08 1
(23

(b)

12 14 16 18 2

Figure 11. RMSE of estimated parameter for different a: (a) center frequency; (b) chirp rate.



Fractal Fract. 2023, 7, 822 14 of 21

4.2.2. Non-Standard S«S Distribution Noise

When the parameters f # 0 or a # 0, the noise no longer obeys a standard S«S
distribution, it is necessary to explore the parameter estimation performance under non-
standard SaS distribution noise. Based on the properties of x-stable distribution listed
in Equations (4)—(7), the non-standard S«S distribution can be corrected to a standard
SasS distribution if a-stable distribution parameters are known. Therefore, the «-stable
distribution noise parameters need to be estimated first. Assume the noise obeys o-stable
distribution, denoted as X ~ S(«, B, 7, a), the specific correction methods are given by:

(1) Whena # 0, p= 0, the correction formula is
X —a ~5S(a,0,7,0) (25)
(20 Whena=0,8+#0,let X' ~ S(a,—B,7,0), the correction formula is
X+ X' ~ S(x,0,21%,0) (26)
(3) Whena #0,8#0,let X' ~ S(a, —B,7,0), the correction formula is
X+ X' —a ~ S(«,0,21%,0) 27)

The other parameters of noise are fixed as « = 1.2, 2 = 0, GSNR = 0 dB, the sym-
metric parameter f3 is varied in [—1,1]. With different 8, the RMSE of center frequency
and chirp rate for four methods are shown in Figure 12. It can be seen that the FTD-FRFT
method can accurately estimate the parameter for g = 0, the Sigmoid-FPSD method can
accurately estimate the parameter when —0.4 < 8 < 0.4, the PANT-LVD method can accu-
rately estimate the parameter when —0.2 < B < 0.2. The Sigmoid-FPSD and PANT-LVD
methods have some adaptability to §, but they fail to accurately estimate the parameter
when B changes significantly. Figure 12 indicated that the FOTD-CFRFT method com-
bined with the correction method can effectively solve the parameter estimation under the
non-standard S«S distribution noise. To visually demonstrate the impact of , Figure 13
shows the fractional spectrum of tracked signal when p = 0.8. It can be seen that the
FTD-FRFT, Sigmoid-FPSD and PANT-LVD methods cannot extract the fractional spectrum
characteristic of LEM signal, and thus cannot accurately estimate the parameter. However,
the proposed method combining FOTD-CFRFT and noise correction can accurately estimate
the parameters of the LFM signal, indicating the effectiveness of the correction method.

35 T T T T T T T 80 T T T T T T
—+— FTD-FRFT —+—FTD-FRFT

a0l - % - Sigmoid-FPSD| | 70 | - - - Sigmoid-FPSD |
—e— PANT-LVD —e—PANT-LVD
-=¢~- FOTD-CFRFT 60 | -6~ FOTD-CFRFT |

__--gy"' N R o
-1 -08 06 -04 02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1
o Vg

(a) (b)

Figure 12. RMSE of center frequency and chirp rate for four methods at different B: (a) center
frequency; (b) chirp rate.
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Figure 13. The fractional spectrum of the noisy signal when g = 0.8. (a) FTD-FRFT; (b) Sigmoid-FPSD;
(c) PANT-LVD; (d) FOTD-CFRFT.

In addition, the other parameters of noise are fixed as « = 1.2, 8 = 0, GSNR = 0 dB,
Figure 14 shows the RMSE of parameter estimation when the parameter a varies in [—5, 5].
From Figure 14, the FTD-FRFT and PANT-LVD methods can accurately estimate the param-
eter only if a= 0. The Sigmoid-FRFT method can estimate the parameter when —1 <a <2,
which shows some adaptability to the variation in 2. However, with the increase in 4, the
Sigmoid-FRFT method does not give an accurate estimation value. Combined with the
noise correction method, the proposed FOTD-CFRFT achieves accurate parameter estima-
tion for a € [—5,5]. With « = 1.2, = 0,a= 3, GSNR = 0dB, the fractional spectrums of
the tracked signal are shown in Figure 15. When a= 3, the noise is no longer a standard
SaS distribution noise; therefore, the other three methods fail to extract the fractional
spectrum characteristic of the LFM signal. Due to the combination of noise correction, the
FOTD-CFRFT method can still accurately extract the fractional spectrum characteristic of
LFM signal, so as to achieve high precision parameter estimation under the non-standard
SaS distribution noise.
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Figure 14. RMSE of center frequency and modulation frequency for four methods at different a:
(a) center frequency; (b) chirp rate.
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Figure 15. The fractional spectrum of the noisy signal when a = 3. (a) FTD-FRFT; (b) Sigmoid-FPSD;
(c) PANT-LVD; (d) FOTD-CFRFT.
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4.3. Measured Noise Experiment

To verify the effectiveness of the proposed method in a natural noisy environment,
a measured impulsive noise was obtained from killer whale echolocation clicks recorded in
the Glacier Bay National Preserve (see Figure 16) [23]. A segment of the noise was extracted
and added to the LFM signal. GSNR is varied by adjusting the noise amplitude.

-1 : - : : :
0 2 - 6 8 10 12 14

x10°
Figure 16. Measured impulsive noise.

To analyze the performance of four methods under weak impulsive noise, a segment
of noise was extracted from the 352,000th point to the 352,512th point, and further added to
LFM signal. At this time, the GSNR is approximately —1dB. Since most measured noises
do not typically obey a standard SxS distribution, correction is required before parameter
estimation. The noise parameters are estimated by using noisy signal, and the obtained
parameters are {«a, B, v,a} = {1.97,—1,1.22, — 1.27}. Then, the noisy signal is corrected
using Equation (27). Based on four methods, Figure 17 shows the fractional spectrum of
LFM signal and its projections under the weak measured impulsive noise. From Figure 17,
it can be observed that the FTD-FRFT and PANT-LVD methods fail to accurately estimate
the parameter, while the Sigmoid-FPSD and FOTD-CFRFT methods can accurately estimate
parameter. In terms of accuracy, the estimated center frequency and chirp rate by the
Sigmoid-FPSD method are 21.10 Hz and 50.02 Hz/s. The corresponding results obtained
by the FOTD-CFRFT method are 20.33 Hz and 50.12 Hz /s, which have better accuracy than
that of Sigmoid-FPSD.

To compare the performance of four methods under a strong measured impulsive noise
environment, a segment of 1,125,000 points to 1,125,512th point is extracted and added
to LEM signal. As shown in Figure 18, the FTD-FRFT, Sigmoid-FPSD and PANT-LVD
methods are unable to accurately estimate the parameters. Similar to weak impulsive noise
case, the estimated noise parameters are {«, 8,,a} = {1.53,0.43,1.18,6.18}. The proposed
FOTD-CFRFT combined with noise correction can accurately estimate the parameter, the
estimated center frequency and chirp rate are 20.39 Hz and 49.94 Hz/s, respectively. In
summary, compared with the other three methods, the FOTD-CFRFT method combined
with the noise correction method also has a much better performance under the measured
impulsive noise environment.
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Figure 17. The fractional spectrum of LFM signal and its projections under the weak measured
impulsive noise: (a) FTD-FRFT; (b) Sigmoid-FPSD; (c) PANT-LVD; (d) FOTD-CFRFT.
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Figure 18. The fractional spectrum of noisy signal and its projections under the strong measured
impulsive noise: (a) FTD-FRFT; (b) Sigmoid-FPSD; (¢) PANT-LVD; (d) FOTD-CFRFT.
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5. Conclusions

In this paper, a fractional-order tracking differentiator (FOTD) based on G-L fractional
derivative and its discrete form is constructed. Additionally, FOTD is utilized to suppress
large impulsive noise, and an LFM signal parameter estimation method under impulsive
noise is proposed using FOTD-CFRFT, which effectively addresses the issue that traditional
parameter estimation methods perform poorly in the presence of impulsive noise. The
experimental results show that the proposed method can effectively suppress high impul-
sive noise through FOTD, and overcome the disadvantage that the performance of the
similar FTD-FRFT method sharply decreases under strong impulsive noise and low GSNR
environment. In addition, the proposed method exhibits higher stability and accuracy than
the Sigmoid-FPSD and PANT-LVD methods under low GSNR. Finally, since most actual en-
vironmental impulsive noise typically obeys a non-standard SxS distribution, a correction
method for non-standard S«S distribution noises is proposed, which successfully achieves
accurate estimation of LFM signal parameters under measured impulsive noise.
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