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Abstract: Orthogonal generalized Laguerre moments of fractional orders (FrGLMs) are signal and
image descriptors. The utilization of the FrGLMs in the analysis of big-size signals encounters three
challenges. First, calculating the high-order moments is a time-consuming process. Second, accumu-
lating numerical errors leads to numerical instability and degrades the reconstructed signals’ quality.
Third, the QR decomposition technique is needed to preserve the orthogonality of the higher-order
moments. In this paper, the authors derived a new recurrence formula for calculating the FrGLMs,
significantly reducing the computational CPU times. We used the Schwarz–Rutishauser algorithm as
an alternative to the QR decomposition technique. The proposed method for computing FrGLMs
for big-size signals is accurate, simple, and fast. The proposed algorithm has been tested using the
MIT-BIH arrhythmia benchmark dataset. The results show the proposed method’s superiority over
existing methods in terms of processing time and reconstruction capability. Concerning the recon-
structed capability, it has achieved superiority with average values of 25.3233 and 15.6507 with the
two metrics PSNR and MSE, respectively. Concerning the elapsed reconstruction time, it also achieved
high superiority with an efficiency gain of 0.8. The proposed method is suitable for utilization in the
Internet of Healthcare Things.

Keywords: bio-medical signals; signal reconstruction; fractional Laguerre moments; Schwarz–Rutishauser;
internet of healthcare things; EEG; ECG; EMG

1. Introduction

The study of moments as a mathematical tool for describing 1-D, 2-D, and 3-D objects
has become the focus of attention of many researchers since the middle of the previous
century. Mathematically, the moments represent the projection of the object function onto
certain functions called basis functions. This projection results in some statistical quantities
representing significant features of the object [1]. One important type of moment is the
Orthogonal Moments (OMs) set, where the basis functions are orthogonal. According to
the object’s coordinate space type, OMs exist in Continuous Orthogonal Moments (COMs)
and Discrete Orthogonal Moments (DOMs) moments.

The first set of DOMs was discrete Tchebichef moments, which were introduced
in 2001 by Mukundan et al. [2]. Later, many sets of DOMs were introduced, such as
Krawtchouk moments, Hahn moments, Dual Hahn moments, Charlier moments, and
Racah moments [3–7]. The different sets of DOMs are widely used in many signal and
image processing applications, such as image reconstruction [8], image retrieval [9,10],
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image compression [11,12], image steganography [13], and image watermarking [14].
DOMs reveal high-efficiency concerns representing different bio-medical signals: ECG,
EEG, and EMG. Hosny et al. [15] suggested an efficient Algorithm for the compression
of different types of bio-medical signals based on discrete Tchebichef moments and the
Artificial Bee Colony (ABC). Fathi et al. [16–18] introduced different algorithms based
on different types of DOMs for the efficient energy compression of bio-medical signals:
ECG and FPCG. Such algorithms reveal high superiority concerning remote healthcare
monitoring systems. In Cardiovascular Diseases (CVDs), continuous patient monitoring is
very important for better diagnosis; healthcare systems that use ECG signals need long-
term monitoring. As such, the size of the ECG signal collected by sensors to use in heart
diagnosis is large. Concerning large-size bio-signals, Daoui et al. [19,20] suggested different
approaches for reconstructing and compressing such signals. The presented approaches
are based on Tchebichef moments and Meixner moments, respectively.

The successful utilization of DOMs with 2-D objects (i.e., images) motivates researchers
to use these DOMs with 1-D objects (i.e., signals). Many studies used the DOMs as a
feature descriptor for signals such as signal reconstruction and compression [15–17,21] and
signal watermarking [22,23]. Other sets of moments are called complex moments. It is
used basically in solving eigenvalue problems and has been used in image reconstruction
applications. In the image reconstruction application, a formulation is shown to obtain an
estimated original image from the degraded image moments and the blur parameter [24,25].
Complex Moments (CMs) were initially proposed as a straightforward and uncomplicated
approach to reconstruction images. Still, the kernel functions of CMs lack orthogonality,
which complicates reconstructing an image from its CMs.

Previous studies show that orthogonal moments of fractional orders outperformed
their corresponding integer orthogonal moments of integer orders [26,27]. Orthogonal
Moments of fractional orders are used to analyze medical signals, especially those char-
acterized by their large size [19,20,28,29]. Despite the superiority of fractional versions of
DOMs in many applications, some common problems occur when deriving the polynomial
values: first, numerical instability results from the large increase (i.e., fluctuation) of the
basis function values that occurs while increasing the moments’ order. Secondly, a high
computational time is required when calculating the polynomial values with the classical
form of the polynomial equation. Thirdly, there is the propagation and accumulation of
numerical errors, especially at higher orders, with large signals. These drawbacks cause
the loss of the polynomial’s orthogonality.

To overcome the previous problems, researchers used the weighted form of the frac-
tional Chebychev polynomials, resulting in more numerical stability during calculations
of polynomial values. Also, to overcome the highly time-consuming problem, they used
a recurrence formula based on a normalization factor. The third problem vanished us-
ing the most common QR decomposition algorithms: the Gram–Schmidt Method (GSM),
Householder Method (HM), and Given Rotations Method (GRM) [18].

In the current study, we introduced an efficient algorithm for large-size bio-signal
signal reconstruction and analysis. The importance of this proposed algorithm lies in its
high ability to compress the electrocardiogram (ECG) biomedical signals and transmit them
over long distances in a short time. Also, due to this compression, the IoHT can transmit
the ECG signals through a small bandwidth; hence, there is low energy consumption. The
proposed algorithm depends on the set fractional-order generalized Laguerre moments
(FrGLMs) and the Schwarz–Rutishauser approach. Through the current study, we derived
three three-term second-order recurrence formulas for the normalized form of the FrGLMs.
An important term when computing the normalized form of FrGLMs is the squared norm
h(∝,λ)

k . By using the simple recursive formula of the gamma function, we deduced a recur-

sive formula for evaluating the squared norm h(∝,λ)
k . The derived three-term recurrence

formula with the recursive formula of the squared norm h(∝,λ)
k has great benefits in saving

computation time.
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The utilization of the Schwarz–Rutishauser algorithm [30,31] is another contribution of
this study, where the Schwarz–Rutishauser algorithm is used to preserve the orthogonality
property when analyzing the large-sized bio-signals using high-order moments. The re-
searchers are accustomed to using classical QR decomposition methods: the Gram–Schmidt
Method (GSM), Householder Method (HM), and Given Rotations Method (GRM), but the
empirical experiments reveal that the use of these leads to a significant increase in signal
processing time, which leads to a lack of efficiency in both IoHT devices and real-time
applications with the use of Schwarz–Rutishauser, which is an adaptation of the classical
Gram–Schmidt. The complexity of the Schwarz–Rutishauser algorithm is (mn2), which is
(n)-times less than the complexity of the classical QR decomposition methods: GSM, HM,
and GRM, which motivated us to use it in the proposed algorithm, which obtains better
results concerning complexity and numerical stability. Uwe et al. [32] proved the efficiency
of the Schwarz–Rutishauser algorithm concerning real-time fetal ECG monitoring systems,
and it helped in raising the efficiency of the proposed system in terms of improving the sys-
tem performance and energy consumption rate. To confirm the robustness of the FrGLMs
with Schwarz–Rutishauser, samples of ECG bio-medical signal are used. These samples
have been obtained from a benchmark dataset called MIT-BIH arrhythmia. An empirical
experiment was carried out with the ECG bio-medical signals and revealed high superiority.

The contributions of this study are:

• A three-term second-order recurrence formula for the normalized form of FrGLMs
has been derived.

• A recursive formula for the squared norm h(∝,λ)
k has been derived.

• A novel QR-decomposition approach called Schwarz–Rutishauser gives more numeri-
cal stability and less processing time than the classical approaches.

The rest of this paper is: Section 2 briefly reviews the FrGLMs. Section 3 presents
the proposed computations of the fractional generalized Laguerre polynomial (FrGLP). In
Section 4, we introduce the proposed Schwarz–Rutishauser. The proposed algorithm of
the FrGLMs based on the three-term second-order recurrence formula of the normalized
FrGLP and the Schwarz–Rutishauser is discussed in detail in Section 5. The results are
figured out and discussed in Sections 6 and 7, Respectively. The conclusions of this study
are presented in Section 8.

2. Fractional-Order Generalized Laguerre Orthogonal Moments

The one-dimensional (1D) fractional-order generalized Laguerre orthogonal moments.
ˆFrLMi with the order, i can be defined by the fractional-order generalized Laguerre polyno-

mials
∼

FrL
(∝,λ)

i as follows:

ˆFrLMi =
N−1

∑
x=0

∼
FrL

(∝,λ)

i s(x), i = 0, 1, 2, . . . , N − 1. (1)

where s(x) is a (1× N ) signal.
From the inverse transformation of fractional Laguerre moments, the original signal

S(x) is reconstructed as follows:

S(x) =
imax

∑
i=0

ˆFrLMi
∼

FrL
(∝,λ)

i , x = 0, 1, 2, . . . , N − 1. (2)

where ˆFrLMi and
∼

FrL
(∝,λ)

i are the fractional-order Laguerre moments and polynomials,
respectively.

3. Proposed Computation of Fractional Laguerre Orthogonal Polynomials

The fractional-order generalized Laguerre polynomials (FGLPs) can be generated
rapidly according to the following three-term recurrence formula [31]:
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FrL(∝,λ)
i+1 (x) =

1
i + 1

[(
2i+ ∝ +1− xλ

)
FrL(∝,λ)

i (x)− (i+ ∝)FrL(∝,λ)
i−1 (x)

]
, i = 1, 2, . . . , N (3)

with the two initial conditions:

FrL(∝,λ)
0 (x) = 1 and FrL(∝,λ)

1 (x) = 1+ ∝ −xλ.

Also, the analytical form of FrL(∝,λ)
i (x) of the fractional degree iλ can be obtained as:

FrL(∝,λ)
i (x) =

i

∑
k=0

(−1)k Γ(i+ ∝ +1)
Γ(k+ ∝ +1)(i− k)!k!

xλk, i = 0, 1, . . .

The orthogonality property for FGLPs is also satisfied according to the following:∫ ∞

0
FrL(∝,λ)

j (x)FrL(∝,λ)
k (x)w(∝,λ)(x)dx = hk,

where w(∝,λ)(x) is the weight function, defined as follows:

w(∝,λ)(x) = λx(∝+1)λ−1e−xλ
,

Also, the squared norm hk is defined as follows:

h(∝,λ)
k =

{
Γ(i+∝+1)

k! j = k,
0, j 6= k.

(4)

The normalized form of fractional-order generalized Laguerre polynomials (FGLPs)
can obtained in terms of the weight and squared norm functions as follows:

∼
FrL

(∝,λ)

i (x) =

√
w(∝,λ)(x)

hk
FrL(∝,λ)

i (x), (5)

Figure 1a,b illustrate the values of polynomials for normalized fractional Laguerre and
the values of polynomials for fractional Laguerre for N = 100 and n = 0, 1, 2, 3, 4, and 5.

α = 1, λ = 1.1.

The three-term recurrence relation of the normalized FGLPs (
∼

FrL
(∝,λ)

i (x)) can be de-
duced as follows.

At first, the two initial conditions can be obtained as the follows.
From Equations (3) and (5), one can deduce the following:

∼
FrL

(∝,λ)

0 (x) =

√
w(∝,λ)(x)

h0
FrL(∝,λ)

0 (x) =

√
w(∝,λ)(x)0!

Γ(0+ ∝ +1)
FrL(∝,λ)

0 (x) =

√
w(∝,λ)(x)
Γ(∝ +1)

, (6)

and

∼
FrL

(∝,λ)

1 (x) =

√
w(∝,λ)(x)

h1
FrL(∝,λ)

1 (x) =

√
w(∝,λ)(x)1!

Γ(1+ ∝ +1)
FrL(∝,λ)

1 (x) =
(

1+ ∝ −xλ
)√w(∝,λ)(x)

Γ(∝ +2)
. (7)
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At first, the two initial conditions can be obtained as the follows. 

Figure 1. Plots of (a)
∼

FrL
(∝,λ)

i (x) and (b) FrL(∝,λ)
i+1 (x) for the first even orders with parameter values.

Secondly, the recurrence formula can be obtained as follows.
Based on the three-term recurrence relation of Equations (5) and (6), we can deduce

the following:

√
hi+1

w(∝,λ)(x)

∼
FrL

(∝,λ)

i+1 (x) = 1
i+1

[(
2i+ ∝ +1− xλ

)√ h1
w(∝,λ)(x)

∼
FrL

(∝,λ)

i (x)− (i+ ∝)
√

hi−1
w(∝,λ)(x)

∼
FrL

(∝,λ)

i−1 (x)

]
, i = 1, 2, . . .

√
hi+1

∼
FrL

(∝,λ)

i+1 (x) = 1
i+1

[(
2i+ ∝ +1− xλ

)√
hi
∼

FrL
(∝,λ)

i (x)− (i+ ∝)
√

hi−1
∼

FrL
(∝,λ)

i−1 (x)

]
.

(8)

By using the recursive formula of the gamma function, one can deduce the following:

Γ(k+ ∝ +1) = (k+ ∝)Γ(k+ ∝), (9)

by substituting from Equation (9) into Equation (4):

h(∝,λ)
k = Γ(∝+k+1)

k! = (k+∝)Γ(k+∝)
k(k−1)! = (k+∝)

k
Γ(k+∝)
(k−1)! = (k+∝)

k h(∝,λ)
k−1 ,

h(∝,λ)
k = (k+∝)

k h(∝,λ)
k−1 .

(10)
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Equation (10) represents a recursive formula for evaluating the squared norm h(∝,λ)
k .

This formula has great benefits in saving computation time.
From Equation (10), we can deduce the following:

h(∝,λ)
k =

(k+ ∝)
k

h(∝,λ)
k−1 =

(k+ ∝)
k

(k+ ∝ −1)
k− 1

h(∝,λ)
k−2 , (11)

h(∝,λ)
k+1 =

(k+ ∝ +1)
k + 1

h(∝,λ)
k =

(k+ ∝ +1)
k + 1

(k+ ∝)
k

(k+ ∝ −1)
k− 1

h(∝,λ)
k−2 , (12)

h(∝,λ)
k−1 =

(k+ ∝ −1)
k− 1

h(∝,λ)
k−2 . (13)

Equation (8) can be rewritten as follows:

∼
FrL

(∝,λ)

i+1 (x) =
1

i + 1

[(
2i+ ∝ +1− xλ

) √hi√
hi+1

∼
FrL

(∝,λ)

i (x)− (i+ ∝)

√
hi−1√
hi+1

∼
FrL

(∝,λ)

i−1 (x)

]
, (14)

from Equations (11)–(13):
√

hk√
hk+1

=

√
(k + 1)

(∝ +k + 1)
, (15)

√
hk−1√
hk+1

=

√
k(k + 1)

(∝ +k + 1)(∝ +k)
. (16)

By substituting from Equations (15) and (16) into Equation (14):

∼
FrL

(∝,λ)

i+1 (x) =
(
2i+ ∝ +1− xλ

)
(i + 1)

√
(i + 1)

(∝ +i + 1)

∼
FrL

(∝,λ)

i (x)− (i+ ∝)
(i + 1)

√
i(i + 1)

(∝ +i + 1)(∝ +i)

∼
FrL

(∝,λ)

i−1 (x), (17)

4. Schwarz–Rutishauser Algorithm

The Schwarz–Rutishauser algorithm adapts the classical Gram–Schmidt methods [30,33–35].
The Gram–Schmidt is a decomposition of matrix A as:

A = QR (18)

where Q is an orthogonal matrix and R is an upper triangular matrix. The orthogonal
matrix Q is produced based on the orthogonal projection. An orthogonal projection of
a onto q is:

proj⇀
q
⇀
a=

〈
⇀
q ,

⇀
a
〉

〈
⇀
q ,

⇀
q
〉 ×⇀

q=

〈
⇀
q ,

⇀
a
〉

∥∥∥⇀q ∥∥∥2 ×
⇀
q (19)

Each orthogonal vector q ∈ Q is determined by calculating the sum of projections
and subtracting it from the corresponding vector a ∈ A. The entire Gram–Schmidt process
yields an orthogonal matrix Q and can be expressed as:

⇀
q k =

⇀
a k −

k−1

∑
i=1

proj⇀
qi

⇀
ak, (20)

⇀
q k =

⇀
q k∥∥∥⇀q k

∥∥∥ . (21)

The Gram–Schmidt method exhibits several drawbacks, including numerical instabil-
ity and a significant increase in computational complexity for orthogonalizing matrices of a
considerable size. The motivation behind the development of the Schwarz–Rutishauser
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algorithm stemmed from the objective of minimizing the computational complexity associ-
ated with the prevailing Gram–Schmidt projection-based approaches and improving their
numerical stability.

Equation (21) can be simplified by removing the division by the squared norm from
the sum of projections as follows:

⇀
q k =

⇀
a k −

k−1

∑
i=1

〈
⇀
q

T
i ,

⇀
a k

〉
×⇀

q i (22)

We can easily find the i-th element of each column vector r by using the formula:

⇀
e kri,k =

〈
⇀
q

T
i ,

⇀
a k

〉
⇀
e k (23)

By substituting the Equation (23) in (22):

⇀
q k =

⇀
a k −

k−1

∑
i=1

rk−1,k ×
⇀
q k−1 (24)

Based on Equations (23) and (24) above, this can be done recursively:

ri,k =

〈
⇀
q

T
i ,

⇀
q k

〉
(25)

⇀
q k =

⇀
a k − rk−1,k ×

⇀
q k−1 (26)

We subtract the product of the vector qi ∈ (k) and ri from the vector q, which is the
vector rejection of a. That is why the sum operator can be removed from Equation (24).

Besides the q, we compute the r kth diagonal element in R, as the norm |q|:

rk,k=

∥∥∥⇀q k

∥∥∥ (27)

5. Proposed Computation of Fractional Laguerre Orthogonal Moments Based on the
Schwarz–Rutishauser Algorithm

Generally, the proposed signal analysis algorithm has two main methods: FrGLMs and
Schwarz–Rutishauser. FrGLMs extract features from the signals and Schwarz–Rutishauser
to preserve numerical stability with less complexity. The proposed algorithm is described
as six steps. In step 1, set the maximum value (L) and (Lmax) as the order of polynomials.

Step 2 illustrates calculating the two initial conditions,
∼

FrL
(∝,λ)

0 (x) and
∼

FrL
(∝,λ)

1 (x), using
the following equations:

∼
FrL

(∝,λ)

0 (x) =
√

w(∝,λ)(x)
Γ(∝+1) ,

∼
FrL

(∝,λ)

1 (x) =
(
1+ ∝ −xλ

)√w(∝,λ)(x)
Γ(∝+2)

In step 3, calculate the polynomials of order i depending on the initial conditions by
the below equation:

∼
FrL

(∝,λ)

i+1 (x) =
(
2i+ ∝ +1− xλ

)
(i + 1)

√
(i + 1)

(∝ +i + 1)

∼
FrL

(∝,λ)

i (x)− (i+ ∝)
(i + 1)

√
i(i + 1)

(∝ +i + 1)(∝ +i)

∼
FrL

(∝,λ)

i−1 (x)
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After computing Laguerre polynomials of orders i, in step 4, we use the Schwarz–
Rutishauser to obtain the orthogonal matrix Q and normalize Q by dividing it by its norm
using the following equations:

rn,m =

〈
⇀
Q

T

1:L,n,
⇀
Q1:L,m

〉
,

Q1:L,m = Q1:L,m − rn,m ×Q1:L,n,
Q1:L,m = Q1:L,m/‖Q1:L,m‖.

In step 5, the fractional-order generalized Laguerre moments are applied on matrix Q
to get the features from the signal using the following equation:

ˆFrLMi =
N−1

∑
x=0

∼
FrL

(∝,λ)

i s(x), i = 0, 1, 2, . . . , N− 1

Then, apply the inverse of the fractional Laguerre moments to get the reconstructed
signal S(x) based on the below equation:

S(x) =
imax

∑
i=0

ˆFrLMi
∼

FrL
(∝,λ)

i , x = 0, 1, 2, . . . , N− 1.

An Algorithm of the Proposed Method

The algorithm’s pseudo code is presented in Algorithm 1.

Algorithm 1. The algorithm’s pseudo-code

{—— Step 1: Determine the value L and Lmax——}
Input the original signal s(x)
Set the highest value (L) of variable x.
Set a polynomial’s order (Lmax).
{——Step 2: Calculate the initial conditions of the polynomials——}
for x←0 to L-1 do

Calculate
∼

FrL
(∝,λ)

0 (x) using Equation (6).

Calculate
∼

FrL
(∝,λ)

1 (x) using Equation (7).
{—— Step 3: Calculate the polynomials of order i ——}
for i← 2 to Lmax − 1 do

Calculate
∼

FrL
(∝,λ)

i (x) using Equation (17).
end for
{—— Step 4: Obtain the orthogonal matrix Q using the Schwarz-Rutishauser ——}

FL =
∼

FrL
(∝,λ)

i (x)
For n← 1 to L do
Q1:N,n = FL1:N,n
for m← 0 to n− 1 do

rn,m =

〈
⇀
Q

T

1:L,n,
⇀
Q1:L,m

〉
Q1:L,m = Q1:L,m − rn,m ×Q1:L,n
end for
Q1:L,m = Q1:L,m/

∥∥Q1:L,m
∥∥

end for
end for
{— —Step 5: Get the features of the input signal using Fractional Laguerre moments ——}
Apply fractional Laguerre moments ˆ(FrLM i) using Equation (1).
{—— Step 6: return the reconstructed signal ——}
Apply the inverse of fractional Laguerre moments to get the reconstructed signal S(x) using
Equation (2).
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6. Experiments and Discussion

We utilized some ECG signals from the MIT-BIH Arrhythmia Dataset in the experi-
ments. The Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are utilized
to evaluate the efficacy of the introduced algorithm [36].

• Relative error (RelErr (%))

The relative error is calculated by dividing the absolute error of the measurement by
the value of the measurement itself:

RelErr =
(

stdev( f (x)− F(x))
| f (x)|

)
× 100% (28)

• Mean Squared Error (MSE)

The Mean Squared Error (MSE) measures the average of the squares of the errors, that
is, the average squared difference between the reconstructed signal F(x) and the original
signal f(x):

MSE =
1
N

N−1

∑
x=0

(
f(x)− F(x))2 (29)

• Peak Signal-to-Noise Ratio (PSNR)

PSNR is a metric that quantifies the relationship between the maximum achievable
signal power and the power of the noise that distorts it:

SNR = 20× log10
max| f (x)|√

MSE
(30)

where f (x) is the original signal, and F(x) is a reconstructed signal.

Results

In this section, an experimental examination of the proposed algorithm is carried out
to investigate and assess its performance in reconstructing the signals utilizing various
scenarios. Table 1 presents the proposed algorithm’s and FrGLMs’ comparative results on
some signals from the MIT-BIH Arrhythmia Dataset. The results illustrate the superiority
of the proposed algorithm in reconstruction metrics (PSNR = 143.21, MSE = 0.01096, and
RelErr (%) = 0.027) over using FrGLMs; this can also be seen in Figure 2.
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Table 1. Empirical results of the introduced algorithm compared with FrGLMs.

Signal FrGLMs Proposed Algorithm

PSNR MSE RelErr (%) PSNR MSE RelErr (%)

Rec. 101 84.61 0.23005 0.57 141.05 0.00992 0.025
Rec. 108 70.06 0.967 2.398 119.92 0.01496 0.037
Rec. 115 110.88 0.037 0.092 155.46 0.00328 0.008
Rec. 209 66.65 0.83865 2.079 135.82 0.00728 0.018
Rec. 214 80.83 0.60155 1.492 139.8 0.0304 0.075
Rec. 219 112.49 0.05465 0.136 163.2 0.00808 0.02
Rec. 230 78.05 0.722 1.79 151.41 0.00456 0.011
Rec. 234 74.11 0.49475 1.227 139.05 0.00936 0.023
Average 89.21 0.4932 1.223 143.21 0.01096 0.027

Table 2 shows the numerical results of the proposed algorithm against the algorithms
that use GSM, HM, and GRM. The results in Table 1 demonstrate the advantage of the
proposed algorithm over the other methods (GSM, HM, and GRM). The proposed algorithm
achieves the best PSNR (143.21), MSE (0.01096), and RelErr (0.027%). Figure 3 depicts the
average PSNR and RelErr of the proposed algorithm and other signal reconstruction
algorithms employing GSM, HM, and GRM. It demonstrates that the introduced algorithm
is superior in the reconstructed signal quality.
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Table 2. Comparative results of the introduced algorithm with FrGLMs—GSM, FrGLMs—HM, and
FrGLMs—GRM.

Signal FrGLMs—GSM FrGLMs—HM FrGLMs—GRM Proposed Algorithm

PSNR MSE RelErr
(%) PSNR MSE RelErr

(%) PSNR MSE RelErr
(%) PSNR MSE RelErr

(%)

Rec. 101 109.60 0.0359 0.089 128.22 0.01743 0.043 111.91 0.02548 0.063 141.05 0.00992 0.025

Rec. 108 93.022 0.2066 0.512 108.39 0.1064 0.264 88.38 0.2723 0.675 119.92 0.01496 0.037

Rec. 115 124.20 0.0203 0.050 139.72 0.01358 0.034 118.55 0.029792 0.074 155.46 0.00328 0.008
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Table 2. Cont.

Signal FrGLMs—GSM FrGLMs—HM FrGLMs—GRM Proposed Algorithm

PSNR MSE RelErr
(%) PSNR MSE RelErr

(%) PSNR MSE RelErr
(%) PSNR MSE RelErr

(%)

Rec. 209 109.06 0.0210 0.052 120.78 0.01967 0.049 104.73 0.029792 0.074 135.82 0.00728 0.018

Rec. 214 112.64 0.0508 0.126 124.86 0.04214 0.104 109.09 0.05985 0.148 139.80 0.0304 0.075

Rec. 219 129.54 0.0195 0.048 144.22 0.01491 0.037 128.10 0.02044 0.051 163.20 0.0080 0.020

Rec. 230 123.72 0.0142 0.035 135.56 0.01351 0.033 120.46 0.01631 0.040 151.41 0.00456 0.011

Rec. 234 112.09 0.0219 0.054 125.26 0.01652 0.041 107.287 0.02947 0.073 139.05 0.00936 0.023

Average 114.23 0.0487 0.121 128.37 0.03052 0.076 111.06 0.06041 0.150 143.21 0.01096 0.027

To confirm the superiority of the proposed algorithm in reconstruction quality, Figure 3
presents a set of reconstructed “Rec. 101” signal in terms of PSNR and RelErr for the
introduced algorithm and FrGLMs—GSM, FrGLMs—HM, and FrGLMs—GRM. The results
in Table 2 and Figures 3 and 4 demonstrate that the proposed algorithm has the best PSNR,
MSE, and RelErr corresponding to all the used signals and the total average of PSNR, MSE,
and RelErr.
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A comparison is conducted between the proposed algorithm and FrGLMs—HM in
reconstruction with orders from 50 and 500 to make the results more accurate. Table 3
presents the comparative results of the proposed algorithm and FrGLMs—HM in PSNR,
MSE, and RelErr (%). The PSNR and MSE curves for the reconstructed signals (Rec. 101
and Rec. 219) at various orders from 50 to 500 are shown in Figures 5 and 6, respectively. As
shown in Table 3 and Figure 5, the PSNR values increase proportionally as the number of
moment orders increases, indicating an enhancement in the reconstructed signal quality. As
shown in Table 3 and Figure 6, the best value of MSE is likewise obtained as the number of
moment orders increases. The results also outperform the introduced algorithm compared
to FrGLMs—HM at each order in terms of PSNR and MSE.

Table 3. Performance of introduced algorithm compared to FrGLMs—HM in various orders.

Signal Order
FrGLMs—HM Proposed Algorithm

PSNR MSE PSNR MSE

Rec. 101

50 85.104 0.8541 88.104 0.3479
100 90.658 0.3140 93.487 0.2011
200 110.847 0.0220 119.639 0.0194
300 116.014 0.0200 132.541 0.0148
400 121.583 0.1984 137.965 0.0117
500 128.22 0.01743 141.05 0.0099

Rec. 219

50 89.417 0.3851 105.487 0.1961
100 101.541 0.2604 116.541 0.1358
200 114.981 0.0833 129.574 0.0504
300 125.635 0.0293 145.654 0.0117
400 136.992 0.0199 157.541 0.0098
500 144.22 0.0149 163.20 0.0080
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A comparative investigation of other existing algorithms [8,18,20,36] in reconstruction
quality is summarized in Table 4. Figures 7 and 8 display a graphic comparison of the intro-
duced algorithm and other existing algorithms concerning PSNR and MSE, respectively.
As shown in Table 4 and Figures 7 and 8, the proposed algorithm outperforms the existing
algorithms, which have very high PSNR and the lowest MSE values.

Table 4. Comparative results of the introduced algorithm with other existing algorithms.

Techniques MSE PSNR

Charlier Moment—GSOP [8] 0.883 95.741
Krawtchouk—Householder [18] 0.0771 105.015
Meixner- MGS [20] 0.0948 85.654
Tchebichef–Householder [18] 0.0436 107.085
Hahn Moment Invariants (HMIs) [36] 0.0805 97.548
Proposed algorithm 0.0109 143.21
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A comparative analysis is performed between the proposed algorithm and other
existing algorithms in the context of reconstruction to ensure the accuracy of the proposed
method. The analysis includes orders ranging from 50 to 500. Table 5 illustrates the
comparison outcomes of the introduced and existing algorithms in terms of PSNR and MSE.
Figures 9 and 10 display the PSNR and MSE curves corresponding to the reconstructed
signal “Rec. 101” over different orders ranging from 50 to 500. The obtained results
demonstrate the superior performance of the proposed method over the existing algorithms
at every order, determined by PSNR and MSE.

Table 5. Performance of introduced algorithm compared to other existing algorithms in various orders.

Signal Order
Tchebichef–Householder [18] Krawtchouk—Householder [18] Proposed Algorithm

PSNR MSE PSNR MSE PSNR MSE

Rec. 101

50 75.232 0.949 73.048 1.2201 88.104 0.3479
100 80.335 0.5273 77.213 0.7554 93.487 0.2011
200 106.854 0.0249 104.067 0.0343 119.639 0.0194
300 122.548 0.0201 118.474 0.03 132.541 0.0148
400 129.198 0.0197 125.985 0.0284 137.965 0.0117
500 132.017 0.0158 128.811 0.0203 141.05 0.0099
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To investigate the complexity of the introduced algorithm, we compare the elapsed
reconstruction time of the proposed algorithm and FrGLMs—GSM, FrGLMs—HM, and
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FrGLMs—GRM. As shown in Figure 11, the proposed algorithm outperforms other algo-
rithms in the elapsed reconstruction time at different orders. The visual inspection in Figure 11
shows that the introduced algorithm has less reconstruction time than FrGLMs—HM,
FrGLMs—GRM, and FrGLMs—GSM. Table 6 and Figure 12 compare the introduced al-
gorithm and the FrGLMs—HM algorithm in the elapsed reconstruction time and efficiency
gain. The numerical results in Table 6 show that the elapsed reconstruction time of the
proposed algorithm for the Rec. 101 signal is 0.7 s in contrast to 1.5 s for FrGLMs—HM.
Also, concerning the Rec. 219 signal, the proposed algorithm elapses 0.9 s compared to
1.7 for FrGLMs—HM.
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and FrGLMs—GRM at different orders.

Table 6. Elapsed reconstruction time of the proposed algorithm and FrGLMs—HM.

Elapsed Reconstruction Time (s)

Rec. 101 Rec. 219

FrGLMs—HM 1.5 1.7
Proposed algorithm 0.7 0.9

Efficiency Gain 0.8 0.8
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7. Discussion

This paper introduces a reconstruction algorithm based on FrGLMs and the Schwarz–
Rutishauser algorithm. As seen previously and from the results of the comparative experi-
ments, the proposed algorithm outperforms the algorithm that uses FrGLMs with GSM,
HM, and GRM methods. The proposed algorithm was evaluated by assessing the quality
of the reconstructed signal in terms of the elapsed time of reconstruction. The proposed
method excelled in both aspects. The good results in quality reconstruction and elapsed
reconstruction time go back to two main reasons. The first uses set fractional-order general-
ized Laguerre moments (FrGLMs), in which the term second-order recurrence formula is
derived for the normalized form of the FrGLMs. Also, using the simple recursive formula
of the gamma function, we deduced a recursive formula for evaluating the squared norm
h(∝,λ)

k . It has great benefits in saving computation time. The second reason is using the
Schwarz–Rutishauser algorithm to preserve the orthogonality property. The empirical
experiments reveal that using the Schwarz–Rutishauser algorithm with FrGLMs takes
less elapse time in reconstruction. In contrast to using the GSM, HM, and GRM methods
with FrGLMs, due to its complexity, the Schwarz–Rutishauser algorithm is (mn2), which is
(n)-times less than GSM.

8. Conclusions

In conclusion, we would like to point out that we have provided an ideal approach
for large-size bio-signals. The proposed approach is based on an ultramodern set of
DOMs called FrGLMs. For more fast and accurate calculations, we derived a term second-
order recurrence formula for the normalized form of FrGLMs. Also, we used a novel QR
decomposition method called Schwarz–Rutishauser, which gives more accurate and stable
calculations, especially at higher orders of FrGLMs. The MIT-BIH Arrhythmia Dataset
analyzed the proposed algorithm’s performance concerning MSE, PSNR, and elapsed
reconstruction time. The empirical results reveal superiority in favor of the proposed
algorithm (i.e., FrGLMs with the Schwarz–Rutishauser algorithm) when compared with
FrGLMs with the classical QR decomposition techniques (i.e., GSM, HM, and GRM).
Regarding the PSNR metric, the proposed algorithm gives average efficiency gain with
values of 28.98, 14.84, and 32.15 when compared with FrGLMs—MGSM, FrGLMs—HM,
and FrGLMs—GRM, respectively. The MSE metric gives average efficiency gain with
values of 0.03784, 14.84, and 32.15 when compared with FrGLMs—MGSM, FrGLMs—HM,
and FrGLMs—GRM, respectively. The proposed approach also achieves high superiority
concerning the elapsed reconstruction time.
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