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Abstract: Very recently, a different generalization of real-valued neural networks (RVNNSs) to mul-
tidimensional domains beside the complex-valued neural networks (CVNNSs), quaternion-valued
neural networks (QVNNSs), and Clifford-valued neural networks (CIVNNSs) has appeared, namely
octonion-valued neural networks (OVNNSs), which are not a subset of CIVNNs. They are defined on
the octonion algebra, which is an 8D algebra over the reals, and is also the only other normed division
algebra that can be defined over the reals beside the complex and quaternion algebras. On the other
hand, fractional-order neural networks (FONNSs) have also been very intensively researched in the
recent past. Thus, the present work combines FONNs and OVNNSs and puts forward a fractional-
order octonion-valued neural network (FOOVNN) with neutral-type, time-varying, and distributed
delays, a very general model not yet discussed in the literature, to our awareness. Sufficient criteria
expressed as linear matrix inequalities (LMIs) and algebraic inequalities are deduced, which ensure
the asymptotic and Mittag—Leffler synchronization properties of the proposed model by decompos-
ing the OVNN system of equations into a real-valued one, in order to avoid the non-associativity
problem of the octonion algebra. To accomplish synchronization, we use two different state feedback
controllers, two different types of Lyapunov-like functionals in conjunction with two Halanay-type
lemmas for FONNS, the free-weighting matrix method, a classical lemma, and Young’s inequality.
The four theorems presented in the paper are each illustrated by a numerical example.

Keywords: fractional-order neural networks (FONNSs); Mittag-Leffler function; synchronization
analysis; octonion-valued neural networks (OVNNS); time delays

1. Introduction

In the last few years, there has been an increasing interest in neural networks with
values in multidimensional domains. Thus, the first type of such neural networks that have
appeared are CVNNSs, which are the 2D generalization of the classical RVNNSs, defined on
the complex number algebra. Afterwards, QVNNSs appeared, which are defined on the 4D
algebra of quaternions. Both types of networks are a part of the larger family of CIVNNSs,
which can be defined on any Clifford algebra of dimension 2", where n > 1.

Recently, a different type of generalization of CVNNs and QVNNs was proposed,
namely OVNNSs, which are defined on the 8D algebra of octonions. It is easy to see that the
algebra of octonions is not a particular case of Clifford algebra because all of the Clifford
algebras are associative and the algebra of octonions is not associative. Nonetheless, the oc-
tonion algebra possesses the property of being a normed division algebra, which, together
with the complex and quaternion algebras, are the only ones that can be defined over the
reals. It is this interesting property that gave rise to the idea of defining OVNNE, first in
their feed forward variant, in [1]. Additionally, octonions have interesting applications
in signal processing [2—4], salient object detection [5,6], and hyperspectral fluorescence
data fusion [7], but also in physics, for example, in electrodynamics [8], fluid dynamics
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[9], and gravitational field equations [10]. Taking these applications into account, it was
natural to extend neural networks to the octonion domain in order to increase the expres-
siveness of the networks and their representational power. The dynamics of recurrent
neural networks defined on the algebra of octonions was firstly studied in [11,12]. More
recently, other papers have appeared that discuss dynamic properties of OVNNS, for ex-
ample, [13-16]. We can observe an increasing interest in studying OVNNSs in the last two
years, which means that the domain of OVNN:Ss is captivating the attention of the research
community and that more papers will appear in the very near future.

On the other hand, fractional calculus discusses different ways to define real or
complex orders in the context of differential and integral operators. Even though it appeared
long time ago, fractional calculus did not have any important applications until recently,
when it was proved that some natural phenomena can be better expressed using fractional
derivatives or integrals [17,18]. Thus, fractional calculus has proved more effective in
describing systems in fields such as physics, electromagnetics, acoustics, mechanics, heat
transfer, biology, chemistry, economy, and finance.

It was also proved that fractional-order systems have the interesting property of
infinite memory. This means that the use of a fractional derivative or integral could also
provide an enhancement for neural networks. Thus, FONNs were defined for the first time
in [19]. Over the years, many papers studying different dynamic properties of FONNSs have
appeared. Recently, the asymptotic stability and synchronization properties of FONNs
were discussed, for example, in [20-27]. Then, the equivalent of the exponential stability
and synchronization from integer-order neural networks, namely Mittag—Leffler stability
and synchronization, were discussed in [28-33]. Finite-time stability and synchronization
have been the focus of the papers [34-39]. Other dynamic properties were also studied,
for example, dissipativity, in [40-45], etc. As such, it can be said that FONNs constitute a
domain of research in their own right, with recently gained popularity.

Combining the two directions discussed above, the current paper aims to study
the synchronization property of FONNs with values in the octonion algebra, namely
FOOVNN:S. To the best of our knowledge, this type of model has not been studied before
in the existing literature. There exist, however, papers discussing fractional-order CVNNs
(FOCVNN ), for example, [32,37,46—49], and also papers dealing with different dynamic
properties of fractional-order QVNNs (FOQVNN:Ss), for example, [29,35,42-44,50]. As such,
the current research presents a model that generalizes the models proposed in these papers.

When defining the recurrent neural network model to be studied, it is essential to
also add different types of delays to the model, because delays appear naturally when
implementing neural networks in practice. The most classical types of delays are the time-
varying delays. Then, distribution delays exist, which are determined by the dispersion
of conduction velocities along the neural network’s paths. When they appear together with
time-varying delays, distributed delays are called mixed delays. FONNs with this type of
delays have been discussed in the recent literature, for example, in [21,26,31,39,47,51-56].

A different and equally interesting family of delays are the neutral-type delays, which
actually dramatically change the dynamics of the system, giving rise to neutral-type systems.
In these systems, it is assumed that past derivative information affects the current state. It is
natural that this type of delay was also added to neural network models, because they have
been seen to appear when VLSI circuits are used for implementing neural networks. FONNs
with neutral-type delays were the focus of the following recent papers: [20,21,26,57-59].

Taking into account all the above considerations, the most important highlights of the
paper are as follows:

1. For the first time in the literature, to our knowledge, an FOOVNN with time-varying,
distributed, and neutral-type delays is put forward, combining fractional calculus
with octonion algebra.

2. The asymptotic and Mittag-Leffler synchronization properties are studied for the
proposed model, and sufficient criteria are given both in terms of LMIs and of algebraic
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inequalities by decomposing the OVNN system of equations into a real-valued one,
in order to avoid the non-associativity problem of octonion algebra.

3. To accomplish synchronization, we use two different types of state feedback con-
trollers, two different types of Lyapunov-type functionals in conjunction with two
Halanay-type lemmas specific to FONNS, as well as the free weighting matrix method,
a classical lemma, and Young’s inequality.

4. Each of the four theorems formulated in the paper is illustrated by one numerical example.

5. The model is general, and can be particularized for fractional-order CVINNs (FOCVNNSs)
and fractional-order QVNNs (FOQVNNS), for which the corresponding results do not
exist in the literature, to our knowledge, for such general models.

Thus, the rest of the paper is organized as follows: Section 2 is dedicated to presenting
the algebra of octonions, the definitions related to fractional calculus, the proposed model,
its decomposition into a real-valued system, and the assumption and lemmas that are used
in the proofs of the paper. Then, Section 3 contains the main results of the research: four
theorems expressed in the form of LMIs and algebraic inequalities for the asymptotic and
Mittag-Leffler synchronization of the proposed FOOVNN model using two types of state
feedback controllers and two types of Lyapunov-like functions. Each of the four theorems
is illustrated by a numerical simulation in Section 4. Finally, the conclusions of the paper
are drawn in Section 5.

Notations: R—real numbers, ]R*—positive real numbers, O—octonion numbers,
|| - ||—Lz norm, | - |—L; norm, RN (ON)—real-valued (octonion-valued) N-dimensional
vectors, RN*N (ON*N)_real-valued (octonion-valued) matrices of dimensions N x N,
A < 0—matrix A is negative definite, AT—transpose of matrix A, and Apn (A)—smallest
eigenvalue of matrix A.

2. Preliminaries

We start by giving details about the algebra of octonions, mainly based on [11,12]. The
set of octonions is defined as:

7
O=<0= o"eq
q=0

where e; represent the unit octonions, V0 < g < 7. On this set, we define the octonion

o"ER,VO§q§7},

addition by o + p := ZZ,ZO(oq + p7)es and the scalar multiplication by ao := Zgzo(ocoq )eg-
The multiplication of octonions is defined by the multiplication table of the octonion units:

X €o eq e e3 ey4 €5 €e ey
€o € €1 €2 €3 €4 €5 €6 ez
€1 €1 —€0 €3 —e €5 —€4 —ez €6
€2 €2 —e3 —€Q €1 €6 €7 —€4 —65
€3 €3 €2 —€1 —€0 €7 —€6 5 —€4
€4 €4 —€5 —€6 —e7 —€p €1 €2 €3
es €5 €4 —e7 €6 —€ —€p —€3 €2
€6 €6 ez €4 —€5 —e €3 —€0 —e1
ez 54 —€ €5 €4 —e3 —€ €1 —€0

For each octonion o € O), its conjugate is defined as 0 := 0% — Zgzl oe;. Then, we

define the norm of octonion o as |o| := v/00 = 4/ Zgzo(oq)z and its inverse as 0! := #
With all these operations, it can be proved that O is a normed division algebra. Actually,
there exists a famous result by Hurwitz, who showed that the real, complex, quaternion,
and octonion number sets with their respective operations are the only normed division
algebras over the real numbers.
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As can be seen from the multiplication table, we have that e;e; = —eje; # ejeg if g # 1,
g # 0,1 # 0, which means that, like the algebra of quaternions, the above-defined algebra
of octonions is not commutative. Moreover, we can observe that (ege;)e, = —eg(ejem) #
eq(elem) if g,1, m are non-zero, different, and e;e; # e;,. This tells us that, unlike the
algebra of quaternions and other Clifford algebras in general, the algebra of octonions is
also not associative.

On the other hand, we introduce the basics of the calculus with fractional order.

Definition 1 ([60]). The fractional integral of order w for an integrable function x : [ty,00) — R
is defined as:

1t
I*x(t) = —/ t— ) x(s)ds,
to ( ) I‘(“) to( ) ( )
where t > to, « > 0, and T(-) is the gamma function, defined by:
I'(t) = / t e tdt,
0
for Re(t) > 0, where Re(-) represents the real part.

Definition 2 ([60]). The fractional Caputo derivative of order « for a function x € C"([ty, o), R)
is defined by:

1 toox(m(s)
Da t - / d 7
tox( ) F(n . 0{) to (t _ s)a—n-H s
where t > to and n is a positive integer, with n — 1 < a < n. Moreover, when 0 < a0 < 1, we

have that:
1 x(s)

t
b0 = Fr— /to s

Definition 3 ([60]). The Mittag—Leffler function is defined by:

00 P
E (Z) = ’
‘ p;o T'(pa+1)
where « > 0 and z € C. When a = 1, we have that Eq(z) = é*.

Now, we are ready to introduce the model that will represent the drive system. Assume
we have the following OVNN with neutral-type, time-varying, and distributed delays:

N N N
Djo;(t) = —cjoi(t) + Z;ﬂijfj((?j(f)) + Zi bijfi(oj(t — m(t))) + Z‘igij /t;fj(Oj(S))dS +hDEoi(t—y)+ L, (1)
j= j= j=

Vie {1,...,N},Vt € [0,+00), where o(t) = (01(t),...,on(t))T € ON represents the vector
of states at t € [0, +00), C = diag(cy,...,cN) € RN*N represents the self-feedback weight
matrix, A = (a;j)1<ij<N € ONXN is the weight matrix without delay, B = (bij)1<ij<N €
ON*N is the weight matrix with delay, G = ( Sij)1<ij<N € ON*N is the distributed de-
lay weight matrix, H = diag(hy,...,hy) € ON*N is the neutral-type weight matrix,
fj : O — O represent the activation functions, Vj € {1,...,N},and I = (I,..., Iy)T € ON
is the external input vector. The time-varying delays are 77 : R" — R™, and we assume
the existence of 77 > 0 with 77(t) < 7, Vt € [0, +0c0); the distributed delay is ¢ > 0, and the
neutral-type delay is y > 0. We denote ¢ := max{, ¢, y}. Additionally, suppose that the
functions f; can be written in the form f;(0) = Z;:() f]q(o)eq, Vo € O, where f]@ 0 - R,
Vie{l,..,N}LY0<g<7.
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For System (1), the initial condition is given as:
0i(t) = vi(t), Vte[—c,0],

where v; € C([—¢,0],0),Vi € {1,...,N}, and the norm on C([—g, 0], O") has the definition

vl := Ty supy_g o) [vi(8)]-
On the other hand, in order to study synchronization, we will correspondingly define
the response system as:

N t
Dypi(t) = —cipi(t) + Zaz]f] pi(t)) + sz]f] pj(t—m(t))) + Zgij/t fi(pj(s))ds + ;D% pi(t — ) + I — u;(t), (2)
j=1 JtE

Vie{l,...,N}, Vi €[0,400),and p(t) = (p1(¢),-. ,pN( ))T € ON represents the vector
of states at t € [0, +o0), and u(t) = (uy(t),...,un(t))T € ON represents the control input
vector at t € [0, +00).

For System (2), the initial condition is given by:

pi(t) = vi(t), Vte[-g0],

where v; € C([—¢,0],0),Vie {1,...,N}.
Now, by denoting v;(t) = p;(t) —o;(t), Vi € {1,...,N}, Vt € [0,4+00) and also
considering Relations (1) and (2), the expression of the error system is given as:

N N
Dgvi(t) = —civi(t) + Eaijfj(tj(t)) + gbijfj(tj(t - )+ Zgz] / fi(xi(s))ds + hiD* v (t — ) —u;(t),  (3)
j= j=

Vi € {1,...,N} and Vt € [0, +o0), where ﬁ(tj(t)) = fi(xrj(t) +0;(t)) — fi(oj(t)), Vt €
[0,+0),Vje{1,...,N}.
The initial conditions of System (3) now have the following form:

( ) wz( ) - Uz( >_Vi(t)' Vi e [—Q,O],
where ¢; € C([—¢,0],0),Vie {1,...,N}.

At this point, we will transform the System of Equations (3) into 8 real-valued systems.
In order to do this, each equation in (3) can be written as the following 8 equations:

() = —ol +2Dfm +22bfmt— +ZZg/fﬂf

j=11=0 j=11=0 j=11=0

+thl *71 - )_u?(t)/

V0<g<7Vie{l,...,N} and 07,0 < g,1 < 7 represents an element of matrix mat(o),

defined by:

(00 —ol —02 —03 —o* —05 —0b —07]
ol o0 —0® 02 —0° ot o -0
02 03 o0 —ob —0® —0o7 o* O
0> —0%2 ol o0 —0o7 o0® —0° —o*

mat(o) = ot 0 0 o o —o! —0* -0
0° —o* o7 —0® ol o0 03 —o?
0® —o7 —o* 0 o —0® o0 ol
o7 0% —0® —o* o0® 02 —ol o
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If we now denote vec(o) := (00,0 P ,07)T, System (3) will have the following ex-
pression:

N N
vec(Dgri(t)) = —cjvec(vi(t)) + ;mat(aij)vec(fj(tj(t))) + Z;mat(bi]-)vec(fj(tj(t —7t(£))))

j=1 j=

N t 5
+ gmat(gij) /t_s vec(fj(vj(s)))ds + mat(h;)vec(D™ v;(t — 7)) — vec(u;(t)),
j=

Vt € [0,+o0)and Vi € {1,...,N}.

Finally, by denoting:
(1) == (vec(ry ()T, ..., vec(etn()T)T € REN, F(¥(t)) := (vec(fi(t1(1)T, ..., vec(fn(en(t)) )T € REN,
C := diag(ciIs, c21g, . .., cnlg) € REN*SN 4 .= (mat(aiJ'))lgi,jgN € RENX8N,
B:= (mat(bif))lgi,jgN e RENXEN .= (mat(gif))lgi,jgN € RENX8N,

H := diag(mat(ly),...,mat(hy)) € RN () := (vec(ui ()T, ..., vec(un(t))T)T € RV,

System (3) becomes:

DA¥(t) = —C¥(t) + Af(¥(t)) + Bf (¥(t — (1)) + G t f(¥(s))ds + HD* ¥(t —y) —1i, Vt€ [0,+00). 4)

t—e

The following assumption regarding the activation functions has to be made:

Assumption 1. The activation functions f; satisfy, Vo, o’ € Q, the following Lipschitz conditions:
1£7(0) = £1(o")]| < 7]]o — |,

V0 < g <7andVj e {1,...,N}, where l? > 0 represent the Lipschitz constants. We denote
L:=diag(1y,...,17,...,1%,...,1%) € RSN>8N,

In order to conduct our proofs, the following lemmas will also be needed:
Lemma 1 ([61]). Ifx € C!([tg,00),RN) and P € RN*N is q positive definite matrix, then
Dy (xT()Px(t)) < xT(t)PDf x(t) + DE x(t) T Px(t), Yt > to,
where 0 < o < 1.

Lemma 2 ([53]). Let V : [tg — p,00) — R™ be bounded on [ty — p, to] and continuous on [ty, 00).
If there exist ¢, vy, Yh = 1,...,m such that

m
EV(E) < —¢V(H)+ Y vy sup V(t+w),
h=1 —pp<w<0

where 0 < o < 1,0, >0,¢ > Y vy, p=max{py,...,om}, thenlim; o V(t) = 0.

Lemma 3 ([62]). For any vectors X,Y € RN and any positive definite matrix Q € RN*N,
the following inequality holds:

XTY +YTx < XTQxX+YTQ7'y.
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Lemma 4 ([36]). If x € C'([ty,o0),R) and p > 1, then
Diyx(8)|P < plx(D)[P~ sign(x(£)) Diyx(t), Vt > to,
where 0 < o < 1.

Lemma 5 (Young’s Inequality). Let u > 0, v > 0, r > 1,5 > 1 and % + % = 1, then the
inequality
1, 1,
uo < —u' 4+ —-v°,
r S

holds, with equality if u" = v°.
Lemma 6 ([63]). Let V € C([tp, o), R), which satisfies

V() < —V(t), Vt > ty,

to

where 0 < &« < 1and ¢ > 0. Then,
V(t) < V(to) Ea(—=¢(t —to)"), Vt = to.

3. Main Results

The assumption that 0 < & < 1 will be made in the remaining part of the paper.

The state feedback control technique will be used to study the synchronization between
Drive System (1) and Response System (2). The control input is given, in this case, by the
following expression:

t
ui(t) = kivi(t) + kiovi (t — 7 (t)) + kiz - ti(s)ds + kiy D2 vi(t — ), @)

and kjy, ki, ki3, ki € RT,Vi € {1,..., N} represent the control gain parameters. We can
now write System (3) as:

N
—(ci +kin)vi(t) — kppri(t — () — ki3 t; vi(s)ds + le aij fi(xi(t))
f

N N o

+ Z% biifj(v;(t — (1)) + Zigij /t_sfj(tj(s))ds + (hi —kig) DL v (t — ), (6)
j= j=

Vie{l,...,N}.

In matrix form, we can write System (6) as:

= (C 4 R)E(E) — Kot(t— (1)) — Ks /t ¥(s)ds + AF((E)

t—e

+Bf(¥(t— () +G t f(¥(s))ds + (H — K4) D" ¥(t — ), (7)

t—e

where K := diag(ki11s, ko1ls, ..., kn1Ig) € RON*8N K, = diag(kiolg, knols, - - ., knolg) €
R8N><8NI

oN Ig?\[:: diag(klg,lg,kzg,lg,...,kN318) € RSNXSN, K4 = diag(k14lg,k24lg,...,kN418) €
RN XEN,

Theorem 1. System (1) and System (2) are asymptotically synchronized under Controller (5) if
the subsequent LMI is true:

O:= (Qi'j)lﬁi,jgl[) <0, (8)
where Ql'lv: (2 + (P)P + ETR1L/ - Pgé + Kl) — (C + Kl)P, ngz = —(C + Kl)NlT, 01’3 =
—PKy — (C+Ky)NJ, 016 = PA+ (C+Ky)NS, Q17 = PB+ (C+K1)NJ, O3 = —PK;3 —
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(C+ KNS, Qg = (C+ KNS, Qo = (CH+K)NJ, Qop = —Ni = N, (3 =
—NiK = NI, Qg = NJA+ NI, Q7 = NiB+ NJ, (Ops = —N1K3 — NI, (py9 =

IN A

Nlé + N6T, 02,10 = N; (H — K4) + N7T, 033 = —v1P + iTRzi — Nng, — KgNZT, 36 =
NoA+ KoNT, Q37 = NoB + KoNJ, Qa8 = —NoKs — KoNT, Q39 = NoG + KoNE, Q319 =
NQ(I:I - K4) + K2N7T, 04,4 = —vP, 05,5 = —v3P, O = —Rq — N3A — ATN:,T, 06,7 =
~N3B — ATN], Qgs = N3K3 + ATNT, Qg9 = —N3G — ATN}, Q10 = —N3(H — Ky) —
ATN;, Q77 =—Ry — N4B — BTNZ, Qyg = N4K3 + ETN5T, Q79 = —N4é — BTN6T, Q710 =
—N4(H — K4) — BTN7T, Ogg = —N5K3 — K3N5T, Ogg = N5é + IZ3N6T, Og10 = N5(H —
k4) + IZgN;, Qoo = GTPG — N6G — CV;TN6T, Q910 = —N6(H — IZ4) — GTN;, O1010 =
(H—Kq)TP(H — Ky) — N7(H — Kq) — (H — Kg)TNT, and P € R3N*8N s g positive definite
matrix, Ry, Ry € R8N*8N gpp diagonal positive definite matrices, Ny,..., N7 € RBNX8N grp any
matrices, and ¢, v1, vy, v3 are positive real numbers.

Proof. Define the following Lyapunov-like functional:
V(t) = ¢(t)TP(t).

Using Lemma 1 and taking the fractional-order derivative of the function defined
above, along the trajectories of System (7), we obtain:

m
DV (t)+ ¢V (t) — 2 v, sup V(t+g)
h=1 —01,<6<0

DEV(t) + ¢V (t) —v1V(t —7(t)) — 0V (t —€) —v3V(t— 1)
¥(H)TPDE¥(t) + DA¥(t)TPE(t) 4 (1) TPE(t) — v ¥(t — (t)) T PE(t — 71(t))

—0p¥(t — &) TPE(t — &) — v3¥(t — ) TP¥(t — )

= E(t)TP[—( 8

T
() +G t f(¥(s))ds + (H — K@D”ﬁﬁ(t — 'y)} P¥(t)

t—e

¥(t) — or¥(t — 7(8))TPE(t — 7 (t)) — vp¥(t — &) TPE(t — &) — v3t(t — )T PE¥(t — )

t

TP(C + Ky)¥(t) — ¥(t)TPRy¥(t — 7 (t)) — ¥(t) T PK3 /t ¥(s)ds + ¥(t) TPAF(¥(t))

—&

+¥()TPBF(¥(t — m (1)) +¥(t)TPG t;f(f(s))ds +¥(t)TP(H — Ky) D ¥(t — )

(C + Kq)PE(t) — &(t — (1) TKo PE(H) — ( /t

t T
f(s)ds) KsP¥(t) + f(¥(t))TATP¥(t)

—&

' T
+fE(t— (1) TBTPE(t) + ( F(&(s) )ds) GTP¥(t) + D* ¥(t — )T (H — Ky) P¥(t)

t—e

+¥ () TPE(t) — v1¥(t — w(t)) T PE(t — 7(t)) — vp¥(t — &) TPE(t — ) — v3¥(t — ) T PE(t — 7). )

If we take Q = P~! in Lemma 3, we obtain:

~ t N t ¥ Tv
¢{(t)TPG f(f(s))ds—i—( f(f(s))ds) GTPy(t)

t—e

<¥t)TPPlpP¥(t) + ( f(f(s))ds> TGTPG (/t;f(f(s))ds>, (10)
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¥(t)"P(H — K4)D" ¥(t — ) + D" ¥(t — )" (H — K4) P¥(t)
< ¥(t)"PPIP¥(t) + D ¥(t — )T (H — K4)"P(H — K4) D ¥(t — 7). (11)

Now, Inequality (9) becomes:

oV (t) +¢V(t) th sup V(t+¢)
h=1 —0op<6<0

IN
|
<
—~
——
~—
ﬂ
~
—~
(@X
+
e
A
S~—
<
—~
—
~—
|
<
—~
—
S~—
H
—~
(@X
+
A
—_
S~—
e
<
—~
[
S~—
|
i
—
-
~—
H
=
N
(=3
—~
[
|
S
—~
—
~—
N—
|
(=3
—~
—
|
S
—~
—
~—
N—
H
S
e
[xd
—~
[
S~—

+¥(1)TPE(t) + < . f(¥(s))ds )| GTPG - f(f(s))ds)
+¥(t)TPE(t) + D ¥(t — )T (H — Ky)"P(H — K4)D* . ¥(t — 7)
+ ¥ () TP¥(t) — v1¥(t — 7w (8)) T PE(t — 7 (t)) — vp¥(t — &) TPE(t — ) — v3t(t — ) T PE(t — ) (12)

Assumption 1 allows us to ascertain the existence of positive definite diagonal matrices
Ry and R; for which the following inequalities are valid Vt € [0, +-0):

0 < ¥(H)TLTR LE(t) — f(¥()TR1f (¥(1)), (13)

0 < ¥(t— (1) LT RoLe(t — (1)) — f(2(t — (1)) Rof (= 7(1))).  (14)
On the other hand, there exist any matrices N, Np, N3, Ni, N5, Ng, N7 such that the
subsequent identity is true:

T

0 = |DBR(O N + 5t = ()N = F(E()Ns — F(e = () N+ ([ w(o)ds) s

¢ T
—( t_sf(f(s))ds> N6—D"‘7E(t—'y)TN7] x [—D§¥(t) — (C + Ky)¥(t)

—Kp¥(t — mt(t)) — K3 /t ¥(s)ds + Af(¥(t)) + Bf(¥(t — (1)) + G /tt f(¥(s))ds

t—e

+(F — Ry)D*¥(t = 7)) (15)

By taking the transpose of Identity (15) and adding them both, as well as Inequalities
(13)-(14) to (12), we have that:

DGV(t) +¢V(t) — ) o SliP<OV t+¢) < T (HOL(H),
h=1  —pp<¢<

where () is given in (8), and
¢t = [f(f)T Die()T ¥t —n())T w(t—e)T #t-nT FEH)T
Fa—me® (S x ds) (i Fe( ds) D ¥(t—7)7

T

Condition (8) tells us that (2 < 0, so we can conclude that:

m

DEV(t)+¢V(t)— Y vy sup V(t+¢) <
h=1 —0p<6<0
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IN

IN

IN

The conclusion lim;_, V() = 0is drawn after applying Lemma 2. From Amin (P)|[¥(#)]|?
< ¥(t)TP¥(t) = V(t), we deduce that Systems (1) and (2) are asymptotically synchronized

using Control Scheme (5), which is what we needed to prove. O

For the next theorem, no neutral-type delay will be considered for Systems (1) and (2),
meaning that they will only possess mixed delays. Consequently, the neutral-type term
will also not be present in the expression of the controller.

Theorem 2. System (1) and System (2) are asymptotically synchronized under Controller (5) if
the following algebraic inequalities are true, Vi € {1,...,8N}:

8N 8N
—wip (¢ + ki) + wi(p — Dkip + w;(p — Dkize + wi(p — 1) Z |dtij|1; + 1; Z |dji|w;
+wi(p Zlbwllwl Zlgqlleww, <0
j=1

a)ilvciz + lvl' Z |lv7]‘i|(u]' —nw; < 0
=1

8N
wikize + 1Y) |gjilwie — v <0, (16)
=1

where p, w;, Vi € {1,...,8N}, ¢, v1, vy are positive real numbers with p > 1.

Proof. Define the following Lyapunov-like functional:

8N
=Y wlt(t)]P
i

Using Lemma 4 and Assumption 1, and taking the fractional-order derivative of the
function defined above, along the trajectories of System (7), we obtain:

DoV (t) +¢V(t) th sup V(t+¢)
h=1 —pp<¢<0

8N
Y- (wiples(e) P sign(&5(1) D§E (1) + gl (1) P — vrcoifi(t — (0) P — vacofa(t — ) )

8N

Y. (wiplfi(t)lplsign(fi(t))

[y

. . . t 8N .
— (& + k)T (t) — kit (t — 7 (t)) — ki3 t sfi(S)dS + Y af(¥(1)
, =

—_

SN 8N .
+ Y bijfi(¥(t — m(t)) + Zgij/t fj(fj(s))dS]
j=1 j=1 ¢

Fowilt (1) P — vrwilE(t — 70(8)) | — vpw;  sup Ifi(t+9)|p>

—e<¢<0
8N . .
Z(—wipwi(tmmkﬂ)+wipw)w1ki2|fi<t— (1)) + wipl&(1) P~y / 5)|ds
i=1
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IN

8N o—
+wip ) |bill; {
=

8N 8N
+awiple ()P Y 111 (8)] + wipl& (4P Y 1Byl (¢ — (1))
j=1 j=1
+wiplti(t) Z 11T} / [¥j(s)lds + pewi[¥i(£)|° — o100t (t — 7(t)) 1P — vow;  sup Iff(f+§)|">
—e<6<0
8N 5 5 5
Z(—Wip(éJrkﬂ)fi(t)l”+Wipkiz|fi(f)lp_1lfi(f—ﬂ(t))l+Wipki3€|fi(t)lp_1 sup %t +¢)
i=1 —£<¢<0
8N . 8N .
+wip ) laylGIE ) PTHE )]+ wip Y by |G[E (8P (= (1))
j=1 j=1
8N )
+wip ) 1&illel(H)F T sup [g(t+6)If
i=1 —£<¢<0
+owilti(1)[P — vrwifti(t — 7(8)) P — vaw;  sup Ifi(f+€)P>- (17)
—e<¢<0
The application of Lemma 5 yields that:
(P Pl e 4 L p
[ (1) [P (%t — 7(8))] < 5 [€:(t)] +E|ti(t_7f(t))‘ ,
E ()1 ¥ Al MYPNTING ¥ p
GO sup [G(t+¢) < GO +— sup [E(t+¢)If,
—e<¢<0 —e<6<0
()P E “Leoe+ Lroe
& (0)FE (1)) < E()] +E|tj(t)|/
O PV e 4 L P
[ (8P % (t — 7 (8))] < 5 % (t)] +E|tj(t_7f(t))| ,
()01 ¥ [ SN ¥ p
G0 sup [§(t+¢)] < [EG(8)F + — sup [&(t+¢)[",
—e<¢<0 p P —e<¢<0
Vi, j e {1,...,8N},Vt € [0,+0).
With these inequalities, (17) has the following form:
DoV (t) +¢V(t) th sup V(t+¢)
h=1 —pp<¢<0
8N 5 . . ,0_1 1
(—ewptes+ Rl +wipka | P20 + (e = ()P |
i=1
A p o1 P —Lmie s Liepe
+wipkige G (0] + = sup [&(t+¢)] +w1PZ|az]|l () + ~[5(1)]
—e<¢<0 j= p

1. 1. c v le=1, 1 y
|ti(t)|p+p|tj(t_n(t))|p} +wiPZ|gij|lj8lpp [&(0)P +— sup [§(t+¢)[f
=

—e<¢<0

+wilt (1) [P — vywilt(t — 70(8)) | — vaw;  sup Ifi(t+9)|p>

—e<6<0
8N 5 5 5 8N
) ( [—Wip(éi +kit) + wi(p — Dk + wip — Dkige + wi(p — 1) Y [ + 1 Z || w;
i=1 j=1
8N
+wi(p — Z‘bq‘l + w;i(p Z|g1]|ls+¢wz % ()P
j=1 j=
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. . 8N . . 8N
+ |wikp + 1Y |bjilw; — viw; | [§(t = (1) [P + |wikize + 1 Y |ilwje — vaw; | sup [§(t+¢)]P .
=1 j=1 —£<¢<0
Conditions (16) allow us to conclude that:
m
DV (t)+¢V(t)— Y v, sup V(t+¢) <O0.
h=1 —pp<c<0
The conclusion lim;_,« V(t) = 0 is drawn by applying Lemma 2. From (min; w;)

IN

YON G ()P < E wjlt(t)[P = V(t), we deduce that Systems (1) and (2) are asymp-
totically synchronized on the basis of Control Scheme (5), which is what we needed to
prove. [J

Remark 1. Theorems 1 and 2 give sufficient conditions expressed in terms of LMIs and algebraic
inequalities, respectively, for the asymptotic synchronization of FOOVNNs with neutral-type,
time-varying, and distributed delays. The asymptotic synchronization of FOCVNNs with different
types of delays was discussed in the literature, for example, in [37,46,47,49,64,65]. The same
property was studied for FOQVNNs with different types of delays, for example, in [44,50,66].
The asymptotic synchronization of delayed FOOVNNs was never before discussed in the existing
literature, to the best of our knowledge. As such, our model is more general than the ones presented
in the existing research, and thus, the results obtained are not directly comparable with the available
results. However, our obtained results can be particularized for delayed FOCVNNs or FOQVNNE.
Theorem 3. Systems (1) and (2) are Mittag—Leffler synchronized under Control Scheme (5) if the
subsequent LMI is true:

Q= (Qi'f)lgi,jgs <0, (18)

wher6011 = (2+¢)P+iTR1L P(C+K1) (C+K1)P le = (C+K1)N1,Ql3 =
—PK, — (C+K1)N2T,Ql4 = PA+(C+K1)N3,015 = PB+(C+K1)N4,Q16 = —PK; —
(C+K1)N5 Ay = (e +K1)N6 5= (C +K1)N7/ Myp = —Ni = N[, O3 = —NiK; —
NZ’ 024 = N1A+N3, o5 = NlB+N4, e = —N1K3—N5, 027 = N1G+N ,
ng = N1 (H K4) + N7, 033 = —U1P + LTRzL N2K3 — K3N2 , Q34 = NzA + K2N3 ,
035 = NzB +K2 036 = —N2K3 —K2N5, O3y = NQG +K2N6, Mg = Nz(H—
Ky) + KN, Q4 = —R1 N3A — ATNT, Qqs5 = —N3B — ATN], Qu = N3K3 + ATNT,
Quy = —N3é ATNT, Qug = —Ng(H Ky) — ATN7,Q55 = —RZ—N4B BT N4,Q56 =
N4K3—|—B N5, 057 = —N4G BT N6, Os8 = —N4(H Ky) — BT N7, 066 = —Ns5K3 —
K3NT, Qg7 = N5G + K3NJ, Q¢ = Ns(H — Ky) + K3NT, Q77 = GTPG — NG — GTN/,
Q75 = —Ng(H—Ky) — GTNJ, Qg5 = (H—Ky)TP(H — Ky) — N7 (H — Ky) — (H—Ky) TN/,
and P € R8N>8N s g positive definite matrix, Ry, Ry € R8N*8N are diggonal positive definite
matrices, Ny, ..., Ny € R8N*8N gpp any matrices, and ¢ is a positive real number.

Proof. Define the following Lyapunov-like functional:

Using Lemma 1 and taking the fractional-order derivative of the function defined
above, along the trajectories of System (7), we obtain:

DoV (t) +¢V(t)
t(1)TPDE¥(t) + DE¥(t) T PE(t) 4 ¢t (t) T PE(t)
¥(H)'P [—(C + Kp)¥(t) — Koi(t — 7(t)) — K3 /t; ¥(s)ds + Af(¥(1))

+BfE(t— (1) +C t f(¥(s))ds + (H — K4) D" ¥(t — ’y)]

t—e
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= —¥(0)TP(C+Ky)¥(t) — ¥(t)TPKyE(t — 7 (t)) — ¥(t) T PK3 /ti ¥(s)ds + ¥(t) TPAF(¥(t))

+¥()TPBF(¥(t — m (b)) +¥(t)TPG t F(¥(s))ds +¥(t)"P(H — K4) D ¥(t — )

v

v t T ~ v
—¥(t)T(C + Ky) Pe(t) — ¥(t — 7 (t)) TRo PE(t) — (/t E(s)ds) K3P¥(t) + f((t))TATPe(t)

. —&
+F (¥t — (1) TBTPE(t) + ( t f(f(s))ds) GTP(t) + D ¥(t — )" (H — Ky) P(t)
+¢¥(t)TPE(t). (19)

If we take Q = P! in Lemma 3, we obtain that:

T
{07P¢ [ f(f(s))ds—i—( /ti f(f(s»ds) STPy(1)

t—e

<¥t)TPPIP¥(t) + < t f(f(s))ds) TGTPC; < /t ; f(f(s))ds>, (20)

t—e

~. v

¥(t)TP(H — Ky)D*. ¥(t — v) + D™ ¥(t — ) (H — Ky4) P¥(t)

< ¥(t)"PPIP¥(t) + D ¥(t — )T (H — K4)"P(H — K4) D ¥(t — 7). (21)

Now, Inequality (19) becomes:

DoV (t) + ¢V (t)

< —¥B)TP(C+K¥(t) —¥(t)T(C + Ky)PE(t) — ¥(1) TPR¥(t — 7 (t)) — ¥(t — 7(t)) T Ko PE(t)
()T PRy /tisi(s)ds _ ( /t;f(s)ds> "RaPE(t) + (1) TPAF(E() + F(E(0)TATPH(H)
+E()TPBF(¥(t — m(t))) + f(¥(t — 7(t))) T BT P(t)
DT PE(E) + ( t; Fe(s))ds ) &TPE ( / i (¥(s))ds
+¥(8)TPE(t) + D™ ¥(t — )T (H — Ky)TP(H — K4) D" ¥(t — )
+¢¥(t)TPE(). (22)

Assumption 1 allows us to ascertain the existence of positive definite diagonal matrices
R; and R; for which the following inequalities are valid Vt € [0, 400):

0 <¥(H)TLTR L¥(t) — F(¥()) TR (¥(1)), (23)

0 < ¥(t — 7r(t)) 'L RoLE(t — 72(t)) — F(¥(t — (1)) T Raf (¥(t — 72(t))). (24)

On the other hand, there exist any matrices N, N2, N3, Ni, N5, Ng, N7 such that the
subsequent identity is true:
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+(H — Ry)D*¥(t — fy)] : (25)

By taking the transpose of Identity (25) and adding them both, as well as Inequalities
(23)-(24) to (22), we have that:

D§V (1) + ¢V (1) < T (HQ (1),
where () is given in (18), and
o) = [ ¥H)T DREn)T ¥t —w(t)T fE)T fE(E ()T
T 5 T T
(fce@ds) (Sl fes)ds)  DE et =)

Condition (18) tells us that () < 0, from which we obtain that:
DgV(t)+ ¢V (t) <O0.

From Lemma 6 we obtain that:
V(t) < V(0)Ex(—¢t%),

or, equivalently,

Amin(P)[[E(H)[[> < #(HTPE()
< H(0)TPE(0) Ea(—9t")
< Amax(P)[[E(0) | PEa(—9t%)
< Amax(P)|IPIPEa(—9t%),
and, finally,
011 < [ 2111 () .

This means that Systems (1) and (2) are Mittag—Leffler synchronized on the basis of
Control Scheme (5), which is what we needed to prove. O

We will now employ a different state feedback controller to obtain another condition
for the Mittag—Leffler synchronization between Drive System (1) and Response System (2),
for which the controller will be given by:

(1) = K1)+ Kisign(e () et — ()] + Kissign(ei(6) [ [e(5)|ds + Kusign(as(6)| D%t =), (29)

where kj1, ki, ki3, kiy € RT,Vi € {1,..., N}, represent the control gain parameters. In this
case, System (3) will have the form:
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t
Dgri(t) = —(ci+kin)vi(t) — kipsign(v;(£))[v;(t — 7 (t))| — kigsign(vi(t)) /t_ [ti(s)|ds
N N
—kigsign(v;(t)) ‘D‘f«yti(f - ’Y)‘ + Y aifi(xi(t) + Y biifi(xi(t — (1))
j=1 j=1
N t
+) gij/ fi(xj(s))ds + h;D% v (t — ), (27)
j=1 t—e
Vie{l,...,N}.
In matrix form, we can write System (27) as:
D§¥(t) = —(C+Kyp)¥(t) — Kosign(¥(t)) @ [¥(t — 7(t))| — Kzsign(¥(t)) ® t; [¥(s)]|ds
~Rysign(¥(t)) © [DY¥(t — )| + AF () + BF(:(¢ — (1))
+G ti f(¥(s))ds + HD" ¥(t — ), (28)

DV (t)

IN

where Kl = diag(k11lg, k2118, cee ,kNllg) € RSNXBN, Kz = diag(k1213, kzz[g, vee ,szlg) S
RSNXSN/

Kg, = diag(k13lg, k2318, cee ,kNglg) S RSNXSN, K4 = diag(k14lg, k2418, cee /kN4I8) S
R8NX8N and © represents the elementwise vector product.

Theorem 4. Systems (1) and (2) are Mittag—Leffler synchronized under Control Scheme (27) if the
subsequent LMIs are true:

C+Ky—|A|L >0, Ky —|B|L >0, K3 — |G|L >0, Ky — |H| > 0. (29)
Proof. Define the following Lyapunov-like functional:

V(t) = %E(t)Tf(t).

Using Lemma 1 and taking the fractional-order derivative of the function defined
above, along the trajectories of System (28), we obtain:

—[¥(t)|"Ky

DX (t = )| + ¥ TAF () + (O BF(E( — (1) +607C [ F(e(s))ds
+¥(t)THD" ¥(t — v)

—[E(0)IT(C + Kn)[e(t)] = [¢(O)|TRKale(t — ()] = [¢(1)TKs | [¥(s)lds
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HEOITICIL [ [e()lds + e[ I D, et~ )
=[0I (~(C+Ky) + L))+ #(0) [ (Ko + BIL)fe(t = m(1))]
HEWT(=Ka+ |CIL) [ [e(s)lds + [8(0)]" (~Ka + | HD|D% 8 = 7). (30)

Using Conditions (29), Inequality (30) becomes:

DV (t) —[¢(t)[T(C + Ky — [AIL)[¥(t))]

<

< —AV(),

where A = 2A 0 (C 4 Kq — |A|L). From Lemma 6, we obtain:
V(t) < V(0)Ey(—AtY), Yt € ]0,+00),

which is equivalent with:

SN < SI0)PE(-Ae%)

IN

IN

1.
SIIPIPE(=AL), ¥t € [0, +0),

yielding
- v 1
[FOI] < [[9[[[E«(=A)]2, Vit € [0, +00).

This means that Systems (1) and (2) are Mittag—Leffler synchronized using Control
Scheme (27), which is what we needed to prove. O

Remark 2. Theorems 3 and 4 give sufficient conditions expressed in terms of LMIs using two types
of state feedback controllers for the Mittag—Leffler synchronization of FOOVNNs with neutral-type,
time-varying, and distributed delays. The Mittag—Leffler synchronization of delayed FOCVNNs was
discussed in the literature, for example, in [32,67]. The same property was studied for FOQVNNs
with different types of delays, for example, in [29,35,68]. The Mittag—Leffler synchronization of
delayed FOOVNNSs has never been presented in the literature, to our knowledge. Again, our model
is more general than the ones discussed in the existing research, and thus, the results obtained are
not directly comparable with the available results, but they can be particularized for FOCVNNs or
FOQVNNSs with neutral-type, time-varying, and/or distributed delays.

4. Numerical Examples

In all of the experiments, we take & = 0.75.

Example 1. Define the following two-neuron FOOVNN with neutral-type, time-varying, and dis-
tributed delays:

2 2 2 t
Djo;(t) = —cjo;(t) + Z;aijfj(oj(t)) + Z;bijfj(oj(t — (1)) + Z;gij /tisfj(oj(s))ds + ;D% 0i(t =) + I (31)
j= j= j=

Vi e {1,2} and Vt € [0, +o0).
System (31) will be taken as the drive system, and the response system will be the following
system:

2 2 2 t
Dypi(t) = —cipi(t) + g’lijfj(ﬁ’j(t)) + gbijfj(pj(t —7t(t))) + ggij /t_gfj(Pj(S))ds + D% pi(t =) + I — u;(t), (32)
j= j= j=

Vi € {1,2} and ¥t € [0, +c0). If we denote v;(t) = p;(t) — 0;(t), taking (31) and (32) into
account, the expression of the error system is given as:
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2 2 2
Dyri(t) = —civi(t) + ;aijfj(tj(f)) + Zi biifj(x;(t — 7(t))) + Zigij /t;fj(tj(s))ds + DSyt — ) —u(t),  (33)
j= j= j=

Vi € {1,2} and Vt € [0,4-c0), where f;(v;(t)) = fj(xj(t) +0;(t)) — fi(0j(t)), Vt € [0, +00) and
Vi e {1,2}.

In order to realize synchronization between Systems (31) and (32), we will use the following
state feedback controller:

t
ui(t) = kipvi(t) +kpri(t — 7(t)) +kiz | vi(s)ds + kigD% vi(t — ), (34)

t—e

and ki1, kip, kiz, kis € RY, Vi € {1,2} represent the control gain parameters.
With this controller, System (33) can be written in matrix form as:

Di¥(t) = —(C+Ky)¥(t) — Kpi(t — (t)) — Ks /t i ¥(s)ds + Af((t))
+BfE(t— (1) +C ;f(ff(s))ds + (H — Ky)D™ ¥ (t — ). (35)

The choice of parameters is the following:

a11 = —0.7eg + 0.9¢7 — 0.2ep + 0.4e3 + 0.2e4 + 0.8e5 + 0.3e¢ + 0.9¢7,
a1p = 0.3eg + 0.9¢7 — 0.2e5 — 0.2e3 4 0.5e4 + 0.8e5 + 0.8eg — 0.9¢7,

ap1 = —0.2eg — 0.4e1 + 0.2ep — 0.2e3 4 0.3e4 + 0.2e5 — 0.5e¢ + 0.2¢7,
ayy = 0.4ep + 0.3e7 + 0.1ep + 0.4e3 — 0.2¢e4 — 0.8e5 + 0.8e¢ + 0.9¢7,

bi bin ]

by by |

b1 = —0.4eg + 0.7e1 + 0.2e5 4+ 0.5e3 — 0.9¢4 + 0.9¢5 — 0.8¢4 + 0.9¢7,

B =

b1p = 0.8eg + 0.5¢1 + 0.3e; — 0.5e3 + 0.8e4 + 0.9e5 — 0.9¢4 + 0.8e7,
by1 = 0.3eg + 0.2e7 — 0.2e5 + 0.1e3 + 0.8e4 + 0.9e5 + 0.7¢4 + 0.9¢7,
byy = —0.5¢y + 0.5¢1 + 0.2e5 + 0.4e3 + 0.8¢4 — 0.9e5 — 0.8¢¢ + 0.7¢7,

G:

811 812
821 822
11 = —0.2¢p + 0.4e1 + 0.5e2 + 0.3e3 — 0.6e4 4 0.2e5 — 0.4¢6 + 0.5¢7,

g12 = 0.3eg + 0.5e1 + 0.2e5 — 0.5e3 + 0.3e4 + 0.1e5 — 0.2¢ + 0.3e7,
921 = 0.1eg + 0.3e1 — 0.2e5 + 0.1e3 + 0.2¢4 + 0.1e5 + 0.3¢4 +- 0.4¢7,
g2 = —0.3¢p + 0.1e; + 0.2e2 + 0.5e3 + 0.4e4 — 0.2e5 — 0.1¢g + 0.5¢7,

om0l
0 hy
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hy = 0.1eg + 0.4e1 + 0.3ex — 0.5¢3 4 0.2e4 + 0.3e5 — 0.4e¢ + 0.5e7,
hy = —0.2eg + 0.1e7 + 0.2e5 + 0.3e3 + 0.5¢4 — 0.3e5 — 0.4¢¢ + 0.2¢7,

1 &
(0) = —— ) eqs, Voe O, Vje {1,2
Jio) 20\6,;)ff()‘7 20\f21+6><p o1) 1 je iz
from which we deduce that the activation functions satisfy Assumption 1, and L =
0.025Ig 0
0 0.025Ig

0.1 0 ],Kz_ [0.2 0 ],1@_ [0.3 0 ],1@1_ l0.4 0 1
0 02 0 03 0 02 0 03
Additionally, 7t(t) = 0.4|cost|, e = 0.3, v = 0.01, hence, 7 = 0.4, ¢ = max{m, ¢, v} = 04,
¢ =4,0v1 =2 vy =2, and v3 = 2. Based on the above parameters, we conclude that the
hypotheses of Theorem 1 are satisfied, and the LMI is solved to give Ry = diag(1.1961g,2.381613)
and Ry = ding(2.51541g,2.621313g) (in order not to clutter the paper, the values of the other matrices
are not provided). Thus, Systems (31) and (32) are asymptotically synchronized using Control
Scheme (34).

Figures 1 and 2 depict the trajectories of octonion states ¥, and ¥, of System (35), with
8 initial points.

] . The control gain matrices are the following:

Ky =

Example 2. In the second example, we realize the synchronization between Systems (31) and (32)
based on State Feedback Controller (34), but this time with the subsequent parameters:

C— 02 0 )
0 03

a1 a4 ]
7

a1 a

a11 = —0.7eg + 0.9¢; — 0.2e + 0.4e3 + 0.2e4 4 0.8e5 + 0.3e¢ + 0.9e7,

A=

a1y = 0.3¢g + 0.9¢1 — 0.2ep — 0.2e3 + 0.5¢4 + 0.8e5 + 0.8e¢ — 0.9¢7,
ay1 = —0.2eg — 0.4e1 + 0.2e5 — 0.2e3 4 0.3e4 + 0.2e5 — 0.5e¢ + 0.2¢e7,
ay = 0.4eq + 0.3e7 + 0.1ep + 0.4e3 — 0.2¢e4 — 0.8e5 + 0.8¢¢ + 0.9¢7,

B_ b1 bu]

by1 by

b1y = —0.4ey + 0.7e1 + 0.2e5 + 0.5e3 — 0.9¢4 + 0.9¢e5 — 0.8¢¢ + 0.9¢7,
b1 = 0.8eg + 0.5e1 4+ 0.3e; — 0.5e3 + 0.8e4 + 0.9e5 — 0.9¢4 + 0.8e7,
by = 0.3eg + 0.2e7 — 0.2e5 + 0.1e3 + 0.8e4 + 0.9¢5 + 0.7¢e¢ + 0.9¢7,

by, = —0.5eg + 0.5e1 4+ 0.2e5 + 0.4e3 + 0.8e4 — 0.9e5 — 0.8¢4 + 0.7¢7,

G =

811 812 ] )

821 822

911 = —0.4ep + 0.7¢7 + 0.2e2 4 0.5e3 — 0.9¢4 4 0.9e5 — 0.8¢g + 0.9¢7,
12 = 0.9¢g + 0.5¢1 + 0.3¢2 — 0.5e3 + 0.8¢4 + 0.9¢5 — 0.9¢4 + 0.7¢7,
o1 = 0.3eg + 0.2e7 — 0.2 + 0.1e3 + 0.8e4 + 0.9¢5 + 0.8e4 + 0.9¢7,

20 = —0.5¢p 4 0.5¢1 + 0.2e5 + 0.4e3 4 0.9e4 — 0.9e5 — 0.8e¢ +- 0.7e7,
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Figure 1. State trajectories of octonion components of ¥; in Example 1. Different colors are used for
the 8 initial points. The eight graphs depict the components f‘li, 0 < g <7, with respect to time.
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Figure 2. State trajectories of octonion components of ¥; in Example 1. Different colors are used for
the 8 initial points. The eight graphs depict the components ftg, 0 < g <7, with respect to time.
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h
= | ™ O
0 hy
hy = —0.4ey + 0.7e1 + 0.2e5 + 0.5¢3 — 0.9¢4 + 0.9e5 — 0.8¢¢ + 0.9¢7,

hy = —0.5¢p + 0.5¢1 + 0.2e5 + 0.4e3 + 0.9¢4 — 0.9¢5 — 0.8¢4 + 0.7¢7,

NN o [SPR I -
0 =503 1 = 53 B T exp o

eq, Yo € O, Vj € {1,2},

from which we deduce that the activation functions satisfy Assumption 1 and L =

0.251I 0
8 . The control gain matrices are the following:
0 0.25I3
1 2
K = 50,K2: 0 0 K= 0 0 '
0 6 0 01 0 02

Now, we take 7t(t) = 0.3| sint|, e = 0.05, v = 0 (no neutral-type delay), from which we have
m=03,¢=max{mev} =03, w;=1Vie{l,...,16},p=15>1,¢ =1.6,v; = 3.5
and vy = 4.5. All the hypotheses of Theorem 2 are now satisfied, thus allowing us to conclude
that Drive System (31) and Response System (32) are asymptotically synchronized using Control
Scheme (34).

Example 3. For the next example, we again study the synchronization between Systems (31) and
(32) based on State Feedback Controller (34) with the following parameters:

C:40,
05

a1 412
7
a1 a4y

a11 = —0.7eg + 0.9e; — 0.2ep + 0.4e3 + 0.2e4 + 0.8e5 + 0.3e6 + 0.9¢7,

A=

a1p = 0.3eg + 0.9¢1 — 0.2ep — 0.2e3 + 0.5¢4 + 0.8e5 + 0.8e¢ — 0.9¢7,
ar1 = —0.2eg — 0.4e1 + 0.2ep — 0.2e3 4 0.3e4 + 0.2e5 — 0.5e¢ + 0.2¢7,
ax = 0.4eg + 0.3e7 + 0.1ep + 0.4e3 — 0.2e4 — 0.8e5 + 0.8e¢ + 0.9¢7,
bi bin ]
by by |

b1 = —0.4eg + 0.7e1 + 0.2e5 + 0.5e3 — 0.9¢4 + 0.9¢5 — 0.8¢4 + 0.9¢7,

B =

b1p = 0.8eg + 0.5¢1 + 0.3e; — 0.5e3 + 0.8e4 + 0.9e5 — 0.9¢4 + 0.8e7,
by1 = 0.3eg + 0.2e7 — 0.2e5 + 0.1e3 + 0.8e4 + 0.9e5 + 0.7¢4 + 0.9¢7,
by = —0.5¢g + 0.5¢1 4+ 0.2e7 + 0.4e3 + 0.8¢4 — 0.9¢5 — 0.8¢¢ + 0.7¢7,

G:

811 812
821 822
g11 = —0.4¢p +0.7¢1 + 0.2e2 + 0.5e3 — 0.9¢4 +- 0.9¢5 — 0.8¢6 + 0.9¢7,

g12 = 0.9¢g + 0.5e1 + 0.3e; — 0.5e3 + 0.8e4 + 0.9e5 — 0.9¢6 + 0.7e7,
921 = 0.3eg + 0.2e1 — 0.2e5 + 0.1e3 + 0.8¢e4 + 0.9e5 + 0.8¢4 +- 0.9¢7,
g2 = —0.5¢p + 0.5¢1 + 0.2e2 + 0.4e3 + 0.9¢4 — 0.9e5 — 0.8¢g + 0.7¢7,



Fractal Fract. 2023, 7, 830 22 of 28

H:hlol
0 h

hy = —0.4ey + 0.7e1 + 0.2e5 + 0.5¢3 — 0.9¢4 + 0.9e5 — 0.8¢¢ + 0.9¢7,

hy = —0.5¢p + 0.5¢1 + 0.2e5 + 0.4e3 + 0.9¢4 — 0.9¢5 — 0.8¢4 + 0.7¢7,

@=L Y flo)eg= -ty !
filo) = 201/2 qzofj 77 202 = 14 exp(—o1)

eq, Yo € O, Vj € {1,2},

from which we deduce that the activation functions satisfy Assumption 1 and L =

0.0251 0
8 . The control gain matrices are the following:
0 0.0251g

02 0 ]’KZZ lo.z 0 ],KSZ lo.s 0 ],K4: lo.4 0 ]
0 01 0 03 0 0.1 0 03

The delays are taken as 7t(t) = 0.4|cost|, ¢ = 0.5, and v = 0.03, from which we have
=04, ¢ =max{m, ¢ v} =05 ¢ =45 v1 =2.7, v, = 2.2, and v = 2.3. All the hypotheses
of Theorem 3 are now satisfied, and the LMI is solved to give Ry = diag(1.50051g,1.68061g) and
Ry = diag(1.78191Ig,1.81291g) (in order not to clutter the paper, the values of the other matrices

are not provided), thus allowing us to conclude that Drive System (31) and Response System (32)
are Mittag—Leffler synchronized using Control Scheme (34).

Ky =

Example 4. For the last example, the same Systems (31) and (32) are considered as drive and
response systems, respectively, but this time, a different feedback controller will be used to achieve
synchronization:

(8) = v (6) + kasign( ()l = (1) |+ kssign(e(6) [ ()l +kiasign(ss(1) [Pt =], (36)

where ki1, ki, ki3, kiy € RT, Vi € {1,2} represent the control gain parameters. With this
controller, System (33) can be written in matrix form as:

DiE(t) = —(C+Ky)¥(t) — Kosign(¥(t)) © [¥(t — 71(t))| — Kasign(¥()) © t [(s) ds

t—e

—Kysign(¥(t)) © ’D”iyf(f — )| +AF(E() + B (¥(t — 7(1))

+G t f(¥(s))ds + HD* ¥(t — 7). (37)

t—e

The parameters will now be the following:

az1 a2

a11 = —0.7eg + 0.9e1 — 0.2ep + 0.4e3 4 0.2e4 + 0.8e5 + 0.3e¢ + 0.9¢e7,
a1y = 0.3eg +0.9¢7 — 0.2ep — 0.2e3 + 0.5¢4 + 0.8e5 + 0.8e¢ — 0.9¢7,

a1 = —0.2eg — 0.4e1 + 0.2ep — 0.2e3 4 0.3e4 + 0.2e5 — 0.5e¢ + 0.2¢e7,
ayy = 0.4eg + 0.3e1 + 0.1ep + 0.4e3 — 0.2¢4 — 0.8e5 + 0.8e¢ + 0.9¢7,
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B—
by by

bi1 bz ]

b1y = —0.4ey + 0.7e1 + 0.2e5 + 0.5e3 — 0.9¢4 + 0.9e5 — 0.8e¢ + 0.9¢7,
b1p = 0.8eg + 0.5e1 + 0.3e; — 0.5¢3 4 0.8¢4 + 0.9e5 — 0.9¢¢4 + 0.8e7,
by1 = 0.3eg + 0.2e7 — 0.2e5 + 0.1e3 + 0.8e4 + 0.9¢5 + 0.7¢4 + 0.9¢7,

byy = —0.5¢¢ 4 0.5¢1 + 0.2¢p + 0.4e3 + 0.8e4 — 0.9e5 — 0.8¢¢ + 0.7e7,

G:

311 812
821 822 ’

g11 = —0.4ep +0.7¢7 + 0.2e2 4 0.5e3 — 0.9¢4 +- 0.9¢5 — 0.8¢6 + 0.9¢7,
812 = 0.9¢g + 0.5¢1 + 0.3¢2 — 0.5e3 + 0.8¢4 + 0.9¢5 — 0.9¢4 + 0.7¢7,
921 = 0.3eg +0.2e; — 0.2e5 4 0.1e3 + 0.8e4 + 0.9e5 4 0.8e4 + 0.9¢7,

20 = —0.5¢p + 0.5¢1 + 0.2e5 + 0.4e3 + 0.9¢4 — 0.9e5 — 0.8¢¢ + 0.7e7,

gm0
0 h
hi = —0.4ey + 0.7e1 + 0.2ep + 0.5e3 — 0.9¢4 + 0.9¢5 — 0.8¢¢ + 0.9¢7,
hy = —0.5eg 4 0.5e1 + 0.2¢; + 0.4e3 + 0.9¢4 — 0.9e5 — 0.8¢¢ + 0.7¢7,

1 &4 1 ¢ 1
(0) = —— 0)e, = eqs, Yo e O, Vj € {1,2},
f]() zﬁqg()f]()q 2\/211;)1+exp(_0q)‘7 ) { }
from which we deduce that the activation functions satisfy Assumption 1 and [ =
025 0
0 0.25Ig

2 0 3 0 5 0 7 0
Ky = , Ko = , K3 = , Ky = )
01 0 4 0 2 0 5

The delays are 7t(t) = 0.3| sint|, e = 0.4, v = 0.02,s0 m = 0.3and ¢ = max{m, ¢, v} = 0.4
The LMI hypotheses of Theorem 4 are easily verified to be true; thus, we can conclude that Systems
(31) and (32) are Mittag—Leffler synchronized using Control Scheme (36).

Figures 3 and 4 depict the trajectories of octonion states ¥, and ¥ of System (37), with
8 initial points.

] . The control gain matrices are the following:
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Figure 3. State trajectories of octonion components of ¥; in Example 4. Different colors are used for
the 8 initial points. The eight graphs depict the components Eq, 0 < g <7, with respect to time.
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Figure 4. State trajectories of octonion components of ¥, in Example 4. Different colors are used for

the 8 initial points. The eight graphs depict the components {tg, 0 < g <7, with respect to time.



Fractal Fract. 2023, 7, 830 26 of 28

5. Conclusions

The very general FOOVNN model with neutral-type, time-varying, and distributed
delays was discussed in this paper, to our awareness, for the first time in the literature.
Sulfficient criteria expressed by LMIs and algebraic inequalities were deduced, guaranteeing
the asymptotic and Mittag—Leffler synchronization of these FOOVNNs by means of two
different state feedback control schemes. The octonion-valued system of equations was
transformed into a real-valued one, in order to avoid the non-associativity problem of the
octonion algebra. Two types of Lyapunov-like functions were used in conjunction with two
Halanay-type lemmas designed specifically for FONNs. Additionally, in order to reduce the
conservativeness of the obtained conditions, the free-weighting matrix method, a classical
lemma, and Young's inequality were employed. Each of the four theorems formulated in
the paper was illustrated using a numerical simulation.

The methods used in the present work are general enough that they can be applied to
study other types of dynamic properties for other types of FOOVNNSs, which constitute
promising future work directions. Additionally, the theorems put forward in the study can
be particularized for FOCVNNSs and FOQVNNS, for which the respective results do not
exist in the literature for models with so many types of delays.
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