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Abstract: A sinuous antenna is a frequency-independent antenna known for its wide bandwidth
and consistent gain, which makes it valuable in broadband applications such as ultrawideband
(UWB) radar and ground-penetrating radar (GPR). However, sinuous antennas tend to be rather
large. Consequently, numerous studies have explored miniaturization methods, with the gap-loading
method emerging as a prominent approach. Unfortunately, it is still difficult to achieve broad
bandwidths for conventional miniaturized sinuous antennas. In this paper, we use a novel approach
incorporating a meander shape into the sinuous curve and employing gap loading with meandering.
This innovative technique results in the development of a fractal-structured two-arm sinuous antenna
characterized by an ultra-compact size and significantly expanded bandwidth. Adding a meander
line in the outermost part maximizes the capacitance, thereby enhancing the gap-loading effect and
minimizing the overall size of the sinuous antenna. In addition, the introduction of an inner meander
line increases the inductance, contributing to a further expansion of the antenna’s bandwidth. For
example, the electrical length of the antenna without the meander line is 0.552 × 0.552 × 0.052 λg

3,
while the electrical length of the antenna with the meander line is only 0.445 × 0.445 × 0.036 λg

3,
i.e., 19.4% smaller. The antenna lacking the outermost meander line exhibits a 10 dB impedance
bandwidth, spanning from 0.74 to 10.53 GHz. In contrast, the antenna featuring the outermost
meander line has a 10 dB impedance bandwidth, extending from 0.51 to 10.72 GHz, which results
in a remarkable enhancement in the fractional bandwidth (by 8.1%). Hence, the proposed antenna
design is a good candidate for broadband applications that require miniaturization.

Keywords: sinuous antenna; meandering; fractal structure; frequency-independent antenna; gap loading

1. Introduction

Today, we rely on numerous wireless communication services, including mobile com-
munication, wireless local area networks (WLANs), Bluetooth, near-field communication
(NFC), and others. The usage of wireless communication devices continues to experience
significant growth. Moreover, research is underway for new wireless communication
technologies, such as Wi-Fi 7 and 6G, which are expected to further drive the growth of
the wireless communication market. Wireless communication requires antennas, and the
performance of antennas can vary significantly based on their type, frequency band, size,
and construction. Consequently, extensive research is being conducted on various antenna
types to cater to diverse applications [1–10].

More recently, as electronic devices such as smartphones, laptops, and tablets have
become more compact, the need for miniaturized antennas that can fit into these devices
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has also increased [11,12]. In addition, the array of wireless communication technologies
employed in electronic devices such as GPS, Bluetooth, and radar are continually diversify-
ing. To efficiently utilize these wireless communication technologies, there is a growing
demand for wideband antennas capable of covering a broad frequency spectrum with a
single antenna. Therefore, the need for miniaturized antennas that provide broadband
coverage continues to grow. For miniaturized antennas, mainly microstrip patch anten-
nas have been studied [13–19]. However, the narrow band of patch antennas limits their
broadband applicability. To bypass this limitation, either fractal antennas with multiband
characteristics or broadband antennas, such as Vivaldi antennas and printed monopole
antennas, can be used. Fractal antennas may be suitable for narrowband communica-
tion applications, but they are impractical for applications that require broadband, such
as direction-finding systems, ground-penetrating radar (GPR), and ultrawideband radar
(UWB). Fractal antennas can also be designed to be broadband, having the same broad-
band characteristics as Vivaldi antennas or printed monopole antennas. However, typical
broadband antennas have the disadvantage that their radiation pattern is not constant with
respect to frequency, which can cause other problems. This challenge can be effectively
addressed by employing frequency-independent antennas that maintain consistent antenna
characteristics, including input impedance, gain, polarization, and radiation pattern, across
a wide frequency band.

The sinuous antenna, categorized as a frequency-independent antenna, combines
spiral and log-periodic characteristics. It was initially introduced by Duhamel in 1987 [20].
Using frequency-independent characteristics, sinuous antennas were found to be suitable
for various applications such as UWB radar [21–23], GPR [24,25], electromagnetic pulse
(EMP) [26], electronic support measures (ESMs) [27], and direction-finding systems [28,29].
However, the antennas studied were designed to meet the performance requirements of
the application, and the sizes of the antennas were not considered.

Because the size of a sinuous antenna is determined by its lowest operating frequency,
designing an antenna for a lower frequency inevitably results in a larger antenna. While
it offers the advantage of being a frequency-independent antenna, its size surpasses that
of other antennas, such as microstrip patch antennas, printed antennas, and monopole
antennas. Consequently, its application to various scenarios can be challenging due to its
larger size. To address this challenge, researchers have attempted to apply the gap-loading
technique to conventional sinuous antenna designs [27,30] or modify sinuous curve designs
to enable miniaturization [23].

However, antennas that have been the subject of study with an emphasis on minia-
turization often encounter the drawback of narrow bandwidths or still have substantial
electrical lengths. Therefore, it is desirable to study antennas with ultrawideband charac-
teristics while minimizing their electrical length.

In this paper, we propose a fractal-structured two-arm sinuous antenna designed to
achieve both miniaturization and enhanced bandwidth. The structure of the proposed
antenna is based on a geometric fractal design created by incorporating a meander shape
into the sinuous curve. This innovative approach addresses the challenge of miniaturizing
the antenna while simultaneously enhancing its bandwidth. Specifically, the proposed
antenna employs two techniques to enhance the original sinuous antenna design. First, a
meander shape is applied to the original sinuous curve to create inductance and improve
the bandwidth. Second, the gap-loading technique was newly applied to the meander
shape to maximize capacitance loading and reduce the electrical length of the antenna
significantly. The so-designed antenna was fabricated using a printed circuit board (PCB)
process and compared with the simulation results following measurements. The proposed
antenna is well-suited for applications demanding both broadband frequency characteris-
tics and miniaturization.
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2. Antenna Principle

Figure 1 shows the geometry and design parameters of a two-arm sinuous antenna,
which represents the basic structure of the proposed antenna. The sinuous antenna can be
designed using the sinuous curve equation proposed by Duhamel, which can be described
as [20]:

ϕ = (−1)p·ap·sin

π·
ln
(

r
Rp

)
ln τ

 ± δ, Rp+1 ≤ r ≤ Rp (1)

where r and ϕ are the radius and angle in the polar coordinate system, respectively; and
Rp and Rp+1 are the outer radius of the pth and p + 1st cells, respectively. Furthermore, τ
denotes the reduction factor, which is determined as the ratio of the outer radius of the pth
cell to the p + 1st cell. ap is the angular width of the pth cell. δ signifies the rotation angle of
each cell about the origin.
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The lowest and highest operating frequencies of the sinuous antenna are given by the
following equations [20,31]:

λL/4 = R1(α1 + δ) (2)

λH/8 = Rn(αn + δ) (3)

where λL is the wavelength corresponding to the lowest operating frequency, λH is the
wavelength corresponding to the highest operating frequency, and Rn is the radius of the
last cell. As the operating frequency of the antenna decreases, the outermost cell of the
antenna, R1, becomes larger. Therefore, the lowest operating frequency of a sinuous antenna
is determined by R1, the outer radius of the outermost cell, which also determines the size
of the antenna. Designing a sinuous antenna as a self-complementary structure ensures
that the input impedance of the antenna has a constant characteristic that is independent of
frequency. This condition is expressed as:

δ =
π

2N
(4)

where N denotes the number of arms of the sinuous antenna. Since the number of arms N
of the designed sinuous antenna is two, δ is fixed at 45◦. The mode impedance of a sinuous
antenna with a self-complementary structure can be defined as [31]:

Zm =
30π

sin
(

πm
N
) (5)

where Zm is the impedance of each arm with respect to ground, and m is the operating
mode of the sinuous antenna. A sinuous antenna with N arms has N−1 modes, and the
input impedance changes depending on the mode. Since the sinuous antenna in this paper
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has two arms, the impedance of each arm, which operates in mode−1, is 94.2 Ω, and the
input impedance is 188.4 Ω according to Equation (5).

3. The Proposed Antenna Design
3.1. Applying the Meander Shape to a Basic Sinuous Antenna

The proposed antenna can be designed by combining the sinuous curve equation in
Equation (1) with the meander function. The meander function is given by

r(ϕ) = r(t) + Am·
t − ts

te − ts
· sin(M· ϕ) (6)

where t is a parameter, ts denotes the starting point of the meander, and te represents
the endpoint of the meander. Am signifies the amplitude proportionality constant of the
meander, and M is the angular frequency. By adjusting the parameters in the equation, we
can determine the start and end points of the meander line applied to a cell and adjust its
amplitude. The meander shape, combined with the sinuous curve, increases the inductance,
which enhances the bandwidth. Figure 2 illustrates the iterative process of progressively
incorporating meandering into a basic sinuous antenna, ultimately resulting in the final
proposed fractal sinuous antenna structure. In the outermost part of the proposed antenna,
a meander-shaped ring is added using the gap-loading technique [32]. The ring increases
the capacitance between the inner cell and the ring, maximizing the gap-loading effect and
reducing the electrical size of the antenna while reducing impedance fluctuations at low
frequencies. Figure 3 provides a visual representation of the parameters of the proposed
antenna in addition to those of existing sinuous antennas.
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antenna configuration.
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The input impedance of the two-arm sinuous antenna is about 188.4 Ω, which is higher
than the impedance used in common antennas (50 Ω) such as patch antennas and monopole
antennas. Therefore, it is necessary to match the antenna to a characteristic impedance of
50 Ω. In this paper, a broadband balun, which is often used to match broadband antennas, is
employed to match the antenna’s impedance. Figure 4a shows the structure of the proposed
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antenna coupled with the balun. Many types of taper can be used in baluns for impedance
matching. We used the Klopfenstein taper. The Klopfenstein taper features good return loss
characteristics in the passband [33] and has been used in several studies [34–36]. Figure 4b,
c show the top and bottom views of the Klopfenstein tapered balun, respectively.
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Figure 4. (a) Structure of the antenna combined with the balun; (b) top view of the balun; and
(c) bottom view of the balun.

In this study, a basic sinuous antenna with a lowest operating frequency of 800 MHz
was designed to determine the performance of the proposed antenna. Its compatibility with
wireless communications is maintained using various frequencies such as mobile commu-
nications, WLAN, and GPS. A meander shape was used for the designed antenna, and the
gap-loading technique was employed to design the final antenna structure. The dielectric
of the antenna was a 1.6 mm thick TLX-9 (dielectric constant = 2.5, loss tangent = 0.0019)
substrate from Taconic (Petersburgh, NY, USA). The antenna design and simulation were
performed using Ansys HFSS software (Canonsburg, PA, USA). Table 1 shows the proposed
antenna and balun dimensions.

Table 1. Proposed antenna and balun dimensions.

Parameter Dimension Parameter Dimension
(mm) Parameter Dimension

(mm)

R1 70.8722 mm S01 2.168 G01 4.57
τ 0.707 S02 2.069 G02 3.625
ap 90◦ S03 1.972 G03 2.998
δ 45◦ S04 1.874 G04 2.596
N 2 S05 1.776 G05 2.222

Cell 8 S06 1.678 G06 1.939
Am 3.5 mm S07 1.581 G07 1.704
Wm 1 mm S08 1.483 G08 1.467
M 30 S09 1.385 G09 1.287
d 4 mm S10 1.287 G10 1.123
ts 12.5218 mm S11 1.189 G11 1.004
te 70.0931 mm S12 1.091 G12 0.891
W 7 mm S13 0.993 G13 0.81

S14 0.896 G14 0.758
S15 0.798 G15 0.714
S16 0.7 G16 0.676

3.2. Proposed Antenna Simulation

Figure 5 shows the simulated reflection coefficient of the interation1 structure, the
interation2 structure, and the proposed antenna, and the results are compared. The lowest
operating frequencies of the three antennas were 0.74, 0.62, and 0.52 GHz, respectively,
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while the highest operating frequency was 10.53 GHz. The reason why all three antennas
showed the same peak operating frequency is that neither the interation2 structure nor the
new antenna structure uses a meander shape on the inside of the cell.
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Figure 6 shows the reflection coefficient results for the proposed antenna structure
simulated by varying the amplitude proportionality constant Am, the angular frequency
M, the gap-loading distance d, and the gap-loading width Wm. From Figure 6a, it can
be seen that the lowest resonant frequency decreases with increasing Am until 3.5 mm.
However, starting from 4 mm, the reflection coefficient value decreases to −10 dB or less
after the lowest operating frequency. Figure 6b shows that the lowest operating frequency
decreases as each frequency M increases, especially when M changes from 10 to 30, and
the change in operating frequency is small when M changes from 30 to 50. Figure 6c
shows that the operating frequency decreases sharply from 0.62 GHz to 0.52 GHz when
gap loading is used, albeit the change in gap d is insignificant. Figure 6d shows that
when the linewidth of the gap-loading ring is 0.5 mm, only the 0.6–0.64 GHz band of the
0.5–0.7 GHz band satisfies the reflection coefficient value (−10 dB). In addition, when the
linewidth is 1 mm or more, the reflection coefficient of −10 dB is satisfied from 0.52 GHz.
Figure 7a–f show the simulated current distribution results at 0.6, 0.8, 2, 5, 8, and 10 GHz.
At 0.6 GHz, the current distribution shows that there is a strong current flowing outside the
antenna arm and in the gap-loading ring. The current distribution at a frequency of 0.8 GHz
shows a weakening of the current distribution formed on the outside of the antenna arm
and the gap-loading ring compared to the 0.6 GHz current distribution. At 2 GHz, the
current distribution exhibits a diminished outward current distribution in comparison to
the current distribution observed at 0.8 GHz. Looking at the current distribution at 5, 8,
and 10 GHz, we can see that the current distribution becomes progressively weaker from
the outer cells. The outer of the proposed antenna arm and the gap-loading ring contribute
to the lowest operating frequency radiation, while the cells inside the antenna contribute to
the higher frequency radiation.
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4. Experiment and Discussion

Figure 8a,b show the top and side views of the fabricated antenna, respectively. To fix
the antenna combined with the balun, plastic bars and plastic screws were connected at 30◦,
120◦, 210◦, and 330◦ from the antenna plane, respectively, and a square FR4 substrate (with
no metal pattern underneath) was used to complete the installation of the plastic bars. The
reflection coefficient and radiation patterns of the fabricated antenna were measured. A
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Keysight FieldFox N9951A network analyzer (Santa Rosa, CA, USA) was used to measure
the reflection coefficient of the antenna. Figure 8c shows the far-field radiation-pattern
measurement environment.
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Figure 8. Fabricated prototype antenna: (a) top view; (b) side view; and (c) far-field-radiation pattern
measurement setup.

Figure 9 compares the simulated and measured reflection coefficients of the proposed
synergistic antenna. The simulated and measured results are 0.52 GHz to 10.51 GHz and
0.51 GHz to 10.72 GHz, respectively. Expressed as fractional bandwidth, these numbers
correspond to 181.1% and 181.8%, respectively. The simulated and measured reflection
coefficient results are in good agreement. Figure 10 shows a comparison of the simulated
and measured radiation patterns. For both the E-plane and H-plane radiation patterns,
the beams formed in the broadside direction (relative to the plane where the antenna
was placed). The peak gains in the 0.8, 2, 5, 8, and 10 GHz frequency bands were 4, 5,
6.42, 5.38, and 4.44 dBi, respectively. Figure 11 shows the peak gains with frequency.
Within the operating frequency, the peak gain varied between −3.5 and 8.2 dBi, with an
average peak gain of 4.77 dBi. In Figures 10 and 11, discrepancies between the simulation
and measurement results and ripples from radiation patterns are observed especially at
high frequencies. They are due to fabrication and measurement errors. For instance, the
soldering between the feeding line and subminiature version A (SMA) connector may affect
the results. In addition, because a broadband standard gain antenna was used to measure
the radiation pattern, its beamwidth was not much narrower at higher frequencies. Thus,
the measurement error became larger especially at higher frequencies.
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Table 2 presents a comparative analysis between the proposed sinuous antenna and
prior research on sinuous antennas. Notably, previous studies have explored sinuous
antennas with wide bandwidth characteristics [22–24,27,28,37]. Other research groups have
used lenses to achieve high gain [38,39] or improved the cross-polarization isolation of
the antenna [40]. However, they all obtained narrower bandwidths than our proposed
antenna or still required large electrical lengths. The fractal-structured two-arm sinuous
antenna proposed in this paper has a 9.7% wider bandwidth and a 10.1% smaller size than
previously studied antennas.

Table 2. Comparison of the new fractal structure sinuous antenna with other sinuous antennas.

Ref. Antenna Type

Reflection Coefficient
Bandwidth

(GHz)/Fractional
Bandwidth (%)

Gain (dBi) Antenna
Width × Length (λg)

[22] 4-arm sinuous w/balun 1–10/163.6 −1~6 0.495 × 0.495
[24] 4-arm sinuous w/balun 0.8~10/170.4 N/A 0.79 × 0.79
[27] 4-arm sinuous w/balun 0.45~6/172.1 −1~5.5 0.64 × 0.64
[28] 4-arm sinuous w/balun 0.4~2/133.3 N/A 0.955 × 0.955
[38] 4-arm sinuous on dielectric lens 0.6~2.5/115 3.9~12 0.7 × 0.7
[40] 4-arm sinuous on dielectric lens 6~24/120 N/A 1.2 × 1.2
[23] 2-arm sinuous w/CPWG 0.46~4.5/162.9 2.9~5.7 0.67 × 0.63
[37] 2-arm sinuous w/balun 2~18/160 4.3~5.1 0.495 × 0.495

[39] 2-arm sinuous on dielectric lens
w/balun 1~10/163.6 6~12 0.554 × 0.554

This work 2-arm sinuous w/balun 0.74~10.53/173.7 (SIM.) 2.8~5.7 (SIM.) 0.552 × 0.552

This work 2-arm fractal-structured sinuous
w/balun 0.51~10.72/181.8 −3.5~8.2 0.443 × 0.443

5. Conclusions

In this paper, a novel miniaturized fractal-structured two-arm sinuous antenna with
enhanced bandwidth is proposed. The proposed antenna has a geometric fractal structure,
which is obtained by adding a meander shape to a sinuous curve. The gap-loading tech-
nique applied to the outermost part of the antenna and the meander-shaped sinuous shape
formed inside the antenna were successfully used to enable significant miniaturization
and bandwidth improvements. The measured bandwidth of the antenna ranged from 0.51
to 10.72 GHz, which is useful for various wireless communication services such as GPR,
UWB radar, and WLAN. The electrical length of this antenna is 0.443 λg, which is smaller
than that of previously studied sinuous antennas. The fractional bandwidth, both with
and without the proposed fractal structure, demonstrates a difference of 8.1%. Further-
more, the electrical length exhibits a difference of 19.4% between the two configurations.
The proposed fractal-structured two-arm sinuous antenna may be utilized in broadband
applications that require broad bandwidth and small size.
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