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Abstract: In this paper, a numerical approach employing radial basis functions has been applied to
solve time-fractional FitzHugh–Nagumo equation. Spatial approximation is achieved by combining
radial basis functions with the collocation method, while temporal discretization is accomplished
using a finite difference scheme. To evaluate the effectiveness of this method, we first conduct an
eigenvalue stability analysis and then validate the results with numerical examples, varying the shape
parameter c of the radial basis functions. Notably, this method offers the advantage of being mesh-
free, which reduces computational overhead and eliminates the need for complex mesh generation
processes. To assess the method’s performance, we subject it to examples. The simulated results
demonstrate a high level of agreement with exact solutions and previous research. The accuracy and
efficiency of this method are evaluated using discrete error norms, including L2, L∞, and Lrms.

Keywords: fractional differential equation; meshless method; radial basis functions; FitzHugh–Nagumo
equation; stability

1. Introduction

In recent years, the FitzHugh–Nagumo equation has garnered significant attention
among physicists and mathematicians due to its critical role in mathematical physics. This
equation finds applications in diverse fields, such as flame propagation, logistic population
growth, neurophysiology, branching Brownian motion processes, autocatalytic chemical
reactions, and nuclear reactor theory [1]. The FitzHugh–Nagumo equation is a nonlinear
reaction–diffusion equation given by

ut = uxx + u(u− β)(1− u), t > 0, x ∈ Ω. (1)

In the context of modeling nerve-impulse propagation [2,3], u represents the electri-
cal potential transmission across the cell membrane. This equation elegantly combines
diffusion and nonlinearity, with the behavior governed by the term u(u− β)(1− u).

Many researchers have extensively investigated FitzHugh–Nagumo Equation (1). No-
tably, Shih et al. [4] explored this equation, revealing its applications in the domains of
population dynamics and circuit theory. Kawahara and Tanaka [5] obtained solutions
for the FitzHugh–Nagumo equation through the Hirota method. Nucci and Clarkson [6]
derived solutions employing Jacobi elliptic functions. Li and Guo [7] conducted an exami-
nation and discovered a novel series of exact solutions using the first integral technique.
Furthermore, Abbasbandy [8] determined soliton solutions through the homotopy anal-
ysis scheme. The FitzHugh–Nagumo equation attracted the attention of Kakiuchi and
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Tchizawa [9], who obtained an explicit duck solution and delay. Schonbek [10] delved into
FitzHugh–Nagumo equation in the context of boundary value problems. Yanagida [11]
studied the equation’s stability concerning traveling front solutions. Jackson [12] ex-
plored semidiscrete estimates for the FitzHugh–Nagumo equation. Additionally, Gao
and Wang [13] discussed the existence of wavefronts and impulses in FitzHugh–Nagumo
models. Employing the pseudo-spectral technique, Olmos and Shizgal [14] examined the
FitzHugh–Nagumo equation. Dehghan et al. [15] investigated the FitzHugh–Nagumo
equation using semianalytical techniques. The trajectory of arbitrary (real or complex)
ordered derivatives exhibits nonlocal behavior when interpreted as fractional derivatives
with memory indices [16,17]. This finding implies that when modeling real-world prob-
lems using fractional-order derivatives and integrals, there is a memory effect. In other
words, the future state of a system not solely is determined by its current state but also
takes into account its past states [18,19]. Consequently, FitzHugh–Nagumo Equation (1),
which deals with arbitrary-order derivatives, can be seen as an extension of the traditional
FitzHugh–Nagumo Equation (1).

Numerous authors have highlighted the practicality and significance of fractional-
order derivatives and integrals in mathematical modeling within various scientific and
engineering domains [20–23]. Given the ongoing research in this field and its importance
in scientific applications, we now consider the fractional extension of Equation (1). The
fractional version of the FitzHugh–Nagumo equation is derived from the well-known
equation by replacing the first-order time derivative with an arbitrary-order derivative
in the Caputo sense. This fractional model of FitzHugh–Nagumo Equation (1) can be
expressed as follows:

uα
t = uxx + u(u− β)(1− u), t > 0, x ∈ Ω, (2)

with initial conditions (ICs) and boundary conditions (BCs){
u(0, x) = u0(x), x ∈ Ω,

u(t, a) = u1(t), and u(t, b) = u2(t), x ∈ ∂Ω, t > 0,
(3)

where u is a function of both t and x, i.e., u = u(t, x); β is an arbitrary constant; Ω represents
the domain; and ∂Ω denotes the boundary of the domain. The time domain is defined as
t ∈ [0, tmax], where tmax is a finite real number representing the final time. The functions
u0(x), u1(t), and u2(t) are known continuous functions. From Equation (2), it is important
to observe that

1. When β = −1, then Equation (2) converts into the well-known Newell–Whitehead
equation

uα
t = uxx + u(u + 1)(1− u), t > 0, x ∈ Ω. (4)

2. When β = 1, then Equation (2) converts into the nonlinear FitzHugh–Nagumo equation

uα
t = uxx + u(u− 1)(1− u), t > 0, x ∈ Ω. (5)

3. When β = 0, then Equation (2) converts into Fisher’s equation

uα
t = uxx + u2(1− u), t > 0, x ∈ Ω. (6)

Recent scientific research has involved a comprehensive exploration of the FitzHugh–
Nagumo equation, employing a variety of analytical, numerical, and semianalytical meth-
ods to obtain both exact and approximate solutions. For instance, Kumar et al. [24] con-
ducted a numerical investigation of the FitzHugh–Nagumo equation, utilizing a combina-
tion of the q-homotopy analysis approach and the Laplace transform method. Patel and
Patel [25] examined the FitzHugh–Nagumo equation by applying the fractional reduced
differential transform method (FRDTM). Abdel-Aty et al. [26] studied the time-fractional
FitzHugh–Nagumo equation, both computationally and numerically, employing the im-
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proved Riccati expansion method and the B-spline method with a focus on the Atangana–
Baleanu derivative. Additionally, Prakash and Kaur [27] explored the fractional model of
the FitzHugh–Nagumo equation, which is relevant to the transmission of nerve impulses.
They developed a reliable and computationally effective numerical scheme that combines
the homotopy perturbation method with the Laplace transform approach. Lastly, Deniz [28]
investigated the modified fractional version of the FitzHugh–Nagumo equation using the
optimal perturbation iteration method.

Over the past decade, mesh-free methods using radial basis functions (RBFs) have
gained significant prominence. This surge in interest is attributed to the challenges associ-
ated with classical numerical methods, such as the finite difference method, finite element
method, and finite volume method, especially when dealing with two- or three-dimensional
problems that require mesh generation. In 1990, Kansa introduced a technique for solving
PDEs through the collocation method employing RBFs [29]. This approach involves ap-
proximating the solution using RBFs, and the collocation method is used to compute the
unknown coefficients. The RBFs commonly used in the literature for solving PDEs include
Hardy’s multiquadric (MQ), Duchon’s thin plate splines (TPSs), Gaussians (GS), inverse
multiquadric (IMQ), and inverse quadric (IQ). The existence, uniqueness, and convergence
of the RBF-based technique have been discussed by Franke and Schaback [30], Madych and
Nelson [31], and Micchelli [32]. Kansa presented the initial concept of using RBFs to solve
PDEs, and Golberg et al. [33] later refined it. In the context of solving PDEs, these RBFs
have a shape parameter that can be adjusted to produce the best accurate results.

One of the main challenges associated with the RBF collocation method, as reported
in the literature, is the dense and ill-conditioned nature of the system matrix that arises
during the collocation process. This ill conditioning typically arises from a large number of
nodes or an inappropriate choice of the shape parameter. However, various remedies for
this issue have been proposed, including the contour-Padé algorithm, RBF-QR algorithm,
extended precision arithmetic, and Hilbert–Schmidt decomposition, among others [34–36].

The main objective of this study is to compute a numerical solution for FitzHugh–
Nagumo Equations (2) and (3) using the RBF collocation method. The structure of the
paper is as follows: The methodology and stability analysis for Equations (2) and (3) are
described in Section 2. Section 3 presents a number of examples and related discussions
in order to validate the suggested methodology. Finally, in Section 4, a brief conclusion
summarizes the study’s important findings and contributions.

2. Methodology

The suggested meshless technique for solving FitzHugh–Nagumo Equations (2) and (3)
will be discussed in this part along with its methodology. We present the notation to
streamline our conversation: un = u(tn, x), where tn = nδt|Mn=0. Here, δt = tmax/M
represents the time-step size, and h = 1/N is the space-step size, where N and M are the
number of points in the intervals [a, b] and [0, tmax], respectively.

The time-fractional derivative in Equation (2) uses the Caputo fractional partial deriva-
tive of order α ∈ (0, 1), defined as [16]

∂αu
∂tα =

1
Γ(1− α)

∫ t

0

∂u
∂s

(t− s)−αds.

2.1. Time-Fractional Derivative Approximation

In Equation (2), the temporal part is discretized using the method described in [37]
as follows:
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∂αun+1

∂tα =
(δt)−α

Γ(2− α)

n

∑
k=0

(
un+1−k − un−k

)(
(k + 1)1−α − (k)1−α

)
+O(δt2−α)

=`∗α

(
un+1 − un

)
+Bn +O(δt2−α),

where

Bn = `∗α
n

∑
k=1

`∗∗α (k)
(

un+1−k − un−k
)

and

`∗α =
(δt)−α

Γ(2− α)
, `∗∗α (k) = (k + 1)1−α − (k)1−α.

It is important to observe that Bn = 0 whenever n = 0. With this consideration, the
discretization formula can be expressed as follows:

∂αun+1

∂tα =


`∗α

(
un+1 − un

)
+Bn +O(δt2−α), α ∈ (0, 1),

un+1 − un

δt
+O(δt), α = 1.

(7)

2.2. The θ-Weighted Scheme

Utilizing Equation (7) in conjunction with the θ-weighted scheme and neglecting the
error term, we can express Equation (2) in their time-discretized form as follows:

`∗αun+1 − θ

(
un+1

xx −
(

un+1
)3

+ (1 + β)
(

un+1
)2
− βun+1

)
= `∗αun − (θ − 1)

(
un

xx − (un)3 + (1 + β)(un)2 − βun
)
−Bn. (8)

The nonlinear terms in Equation (8) can be linearized using the following approach:
(

un+1
)3

= 3(un)2un+1 − 2(un)3,(
un+1

)2
= 2unun+1 − (un)2.

(9)

By substituting the values from Equation (9) into Equation (8), the following expres-
sions can be obtained after simplification:

νn
1 un+1 − θun+1

xx = νn
2 un + (1− θ)un

xx −Bn, (10)

where

νn
1 = `∗α + θ

(
β− 2(1 + β)un + 3(un)2

)
and νn

2 = `∗α + β(θ − 1) + (3θ − 1)(un)2 + (1 + β− 2θ(1 + β))un.

2.3. Radial Basis Function Approximation Scheme

Now, we move on to approximating the spatial component using RBFs and the
collocation method. To do this, the collocation points are taken as {xi}N

i=1. Consequently,
we can represent the solution at interior points by employing RBFs denoted as φij =
φ(‖xi − xj‖) in the following manner:

un+1 =
N

∑
j=1

λn+1
j φij = Φkn+1, i = 2, . . . , N− 1, (11)
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where kn+1 = [λn+1
1 , . . . , λn+1

N ]T represents a vector of unknown coefficients at the (n+ 1)th

time level. Φ = [φij]16i,j6N is the matrix of RBFs, and ‖ · ‖ denotes the Euclidean norm.
The boundary conditions (3) are approximated as follows:

N

∑
j=1

λn+1
j φ1j = un+1

1 and
N

∑
j=1

λn+1
j φNj = un+1

2 . (12)

Furthermore, the spatial derivative at the interior points x ∈ Ω are given as follows:

un+1
xx = Φxxkn+1. (13)

By substituting Equations (11)–(13) into Equation (10) and performing simplifications,
we arrive at the following equation:

Akn+1 = Bkn + Zn+1, (14)

where

A =

{
νn

1 [Φ]ij − θ[Φxx]ij, xi ∈ Ω,

[Φ]ij, xi ∈ ∂Ω,

B =

{
νn

2 [Φ]ij + (1− θ)[Φxx]ij, xi ∈ Ω,

0, xi ∈ ∂Ω,

Z =

{
−Bn, xi ∈ Ω,
Cn+1, xi ∈ ∂Ω,

where Cn+1 = [un+1
1 , 0, · · · , 0, un+1

2 ]T . Now Equation (14) implies that

kn+1 = A−1Bkn + A−1Zn+1. (15)

From Equations (11) and (15), it follows that

un+1 = ΦA−1BΦ−1un + ΦA−1Zn+1. (16)

The numerical solution at any given time level n using scheme (16) can be obtained.
We initialize the initial value u0 by incorporating the initial condition u(0, x) = u0(x). In
the subsequent section, stability analysis of scheme (16) will be discussed.

2.4. Stability

To examine stability, we employ an approach outlined in [38]. For the error vector E
defined as

E = uexact − uapprox,

the relation in (16) can be expressed as

En+1 = ℘En,

where ℘ = ΦA−1BΦ−1 represents the amplification matrix. According to the Lax–Richtmyer
criterion of stability, the present method can be considered stable if

‖℘‖ 6 1.

It is important to note that the inequality

ρ(℘) 6 ‖℘‖
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always holds, where ρ(℘) represents the spectral radius of the matrix ℘.

3. Computational Results and Discussion

In this section, the implementation of the method for solving FitzHugh–Nagumo
Equations (2) and (3) has been presented. Computer simulations have been carried out
via MATLAB R2020a on a PC with the following configuration: processor: Intel (R) Core
(TM) i7-4790 CPU @ 3.60 GHz 3.60 GHz, RAM 8.00 GB, and system type: 64-bit operating
system, x64-based processor. The accuracy and efficiency of the method are assessed using
the following error norms:

L2 =

[
h

N

∑
i=1

(
uexact − uapprox

)2
]1/2

, L∞ = max
i

∣∣uexact − uapprox
∣∣,

Lrms =

[
1
N

N

∑
i=1

(
uexact − uapprox

)2
]1/2

, Absolute error =
∣∣uexact − uapprox

∣∣.
For the solution of FitzHugh–Nagumo Equations (2) and (3), the following RBFs have

been used:

• MQ : φij =
√

r2
ij + c2;

• IMQ : φij =
(

r2
ij + c2

)−1/2
;

• IQ : φij =
(

r2
ij + c2

)−1
;

• GS : φij = exp(−c2r2
ij),

where c > 0 represents the shape parameter and rij = |xi − xj|16i,j6N.

Selection of Shape Parameter

Determining the optimal value for the shape parameter c can be a challenging task. The
random selection of c can be a limitation since many researchers choose c using suboptimal
criteria. Therefore, in this study, we employ the extended Rippa algorithm to select the
optimal shape parameter. Rippa’s algorithm, as described by Rippa [39], estimates the cost
function based on the norm of the error vector, which can be either the L2 or L∞ norm.
The parameter c that minimizes this cost function is deemed satisfactory, as it results in an
approximation quality comparable to that achieved with the optimal c. We also provide
plots illustrating the best-suited values of c obtained using this algorithm.

Example 1. Let us consider FitzHugh–Nagumo Equations (2) and (3) with β = 1. The exact
solution is given by [25]

u(t, x) =
1
2
+

1
2

tanh

(√
2x− t

4

)
.

The ICs and BCs are derived from the exact solution within the domain x ∈ [0, 1]. The
approximate solution is obtained using various RBFs, such as MQ, IMQ, IQ, and GS, with
parameters N = 10 and δt = 0.1 for different values of α (0.25, 0.5, 0.75, and 1). The present method
is examined, and the results are recorded in Tables 1 and 2 for various nodal points (xi, tn). The
results are then compared with FRDTM. The comparison reveals that the present method produces
good accuracy, specially for fractional order with the best results obtained using GS, MQ, IMQ, and
IQ. Additionally, error norms at various time levels using the mentioned RBFs are dispatched in
Tables 3 and 4.

Furthermore, stability and error norm plots are displayed in Figure 1 for MQ, IMQ, IQ, and
GS RBFs against the shape parameter. These plots clearly demonstrate that the present method fully
satisfies the Lax–Richtmyer stability criterion. Surface plots in Figure 2 illustrate that the computed
solutions using these RBFs closely match the exact solution. Absolute errors at various time levels
for α = 1 are shown in Figure 3, indicating reasonable accuracy. A comparison between the exact
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and computed solutions at the final time level is presented in Figure 4, confirming the high accuracy
of the present method. Finally, in Figures 5–8, absolute errors for different values of α’s at various
time levels are shown using MQ, IMQ, IQ, and GS, respectively.

Table 1. Comparison of computed values of the present method solution with FRDTM using MQ,
IMQ, IQ, and GS RBFs for α = 0.25, 0.5, β = 1, N = 10, θ = 0.5, and δt = 0.1 corresponds to
Example 1.

α = 0.25 α = 0.5

(x, t) Exact
[25]

MQ IMQ IQ GS
[25]

MQ IMQ IQ GS

c = 6.824741 c = 8.12967 c = 5.34901 c = 0.251637 c = 5.8659 c = 6.88885 c = 5.18412 c = 0.25937

(0.1, 0.2) 0.492678 0.427418 0.492029 0.492126 0.492364 0.492466 0.454935 0.492344 0.492386 0.492489 0.492564
(0.1, 0.4) 0.467723 0.411555 0.467129 0.467083 0.467582 0.467632 0.429688 0.467279 0.467401 0.467571 0.467645
(0.1, 0.6) 0.442927 0.401291 0.443115 0.442313 0.442917 0.442952 0.410894 0.442364 0.442535 0.442858 0.442910
(0.1, 0.8) 0.418414 0.393583 0.418856 0.418114 0.418463 0.418448 0.395550 0.418125 0.418259 0.418442 0.418426
(0.3, 0.2) 0.528004 0.461640 0.526474 0.526698 0.527298 0.527493 0.489905 0.527223 0.527325 0.527585 0.527735
(0.3, 0.4) 0.503033 0.445267 0.501595 0.501492 0.502762 0.502797 0.464133 0.501982 0.502252 0.502729 0.502842
(0.3, 0.6) 0.478047 0.434619 0.478461 0.476553 0.478071 0.478089 0.444777 0.476697 0.477079 0.477948 0.477992
(0.3, 0.8) 0.453171 0.426595 0.454236 0.452429 0.453300 0.453249 0.428860 0.452424 0.452737 0.453293 0.453186
(0.5, 0.2) 0.563051 0.496159 0.561223 0.561488 0.562257 0.562434 0.524966 0.562128 0.562253 0.562589 0.562736
(0.5, 0.4) 0.538313 0.479367 0.536561 0.536435 0.538071 0.538014 0.498899 0.537055 0.537363 0.538023 0.538083
(0.5, 0.6) 0.513385 0.468375 0.513874 0.511551 0.513484 0.513427 0.479131 0.511752 0.512181 0.513354 0.513312
(0.5, 0.8) 0.488390 0.460051 0.489708 0.487477 0.488573 0.488485 0.462744 0.487455 0.487818 0.488617 0.488400
(0.7, 0.2) 0.597480 0.530655 0.595947 0.596167 0.596862 0.596963 0.559780 0.596717 0.596823 0.597129 0.597225
(0.7, 0.4) 0.573214 0.513551 0.571727 0.571609 0.573089 0.572956 0.533657 0.572160 0.572409 0.573040 0.573026
(0.7, 0.6) 0.548590 0.502269 0.549021 0.547016 0.548741 0.548627 0.513645 0.547210 0.547543 0.548648 0.548530
(0.7, 0.8) 0.523726 0.493674 0.524882 0.522951 0.523912 0.523812 0.496910 0.522935 0.523224 0.523996 0.523734
(0.9, 0.2) 0.630974 0.564813 0.630322 0.630415 0.630735 0.630756 0.594013 0.630655 0.630700 0.630843 0.630870
(0.9, 0.4) 0.607400 0.547522 0.606766 0.606706 0.607385 0.607291 0.568079 0.606954 0.607057 0.607361 0.607325
(0.9, 0.6) 0.583315 0.536019 0.583518 0.582633 0.583413 0.583335 0.548003 0.582725 0.582855 0.583381 0.583293
(0.9, 0.8) 0.558825 0.527198 0.559346 0.558498 0.558922 0.558867 0.531062 0.558499 0.558612 0.558979 0.558831

Table 2. Comparison of computed values of the present method solution with FRDTM using MQ,
IMQ, IQ, and GS RBFs for α = 0.75, 1, β = 1, N = 10, θ = 0.5, and δt = 0.1 corresponds to Example 1.

α = 0.75 α = 1

(x, t) Exact
[25]

MQ IMQ IQ GS
[25]

MQ IMQ IQ GS

c = 5.80145 c = 4.48635 c = 5.38471 c = 0.26237 c = 6.78326 c = 7.23608 c = 7.88039 c = 0.16625

(0.1, 0.2) 0.492678 0.477029 0.492540 0.492594 0.492594 0.492630 0.492678 0.492674 0.492676 0.492674 0.492666
(0.1, 0.4) 0.467723 0.449555 0.467487 0.467619 0.467623 0.467672 0.467722 0.467706 0.467716 0.467707 0.467642
(0.1, 0.6) 0.442927 0.425857 0.442690 0.442835 0.442856 0.442912 0.442927 0.442909 0.442918 0.442905 0.442841
(0.1, 0.8) 0.418414 0.404564 0.418328 0.418368 0.418407 0.418433 0.418416 0.418407 0.418406 0.418399 0.418391
(0.3, 0.2) 0.528004 0.512307 0.527682 0.527809 0.527819 0.527892 0.528003 0.527996 0.528000 0.527994 0.527975
(0.3, 0.4) 0.503033 0.484582 0.502475 0.502807 0.502828 0.502912 0.503030 0.502996 0.503019 0.502999 0.502881
(0.3, 0.6) 0.478047 0.460446 0.477457 0.477869 0.477926 0.478004 0.478035 0.478003 0.478026 0.477996 0.477887
(0.3, 0.8) 0.453171 0.438573 0.452937 0.453093 0.453193 0.453211 0.453136 0.453156 0.453153 0.453136 0.453114
(0.5, 0.2) 0.563051 0.547464 0.562671 0.562826 0.562848 0.562922 0.563051 0.563043 0.563047 0.563041 0.563015
(0.5, 0.4) 0.538313 0.519760 0.537643 0.538070 0.53811 0.538172 0.538308 0.53827 0.538298 0.538274 0.538165
(0.5, 0.6) 0.513385 0.495415 0.512658 0.513228 0.513305 0.513335 0.513362 0.513331 0.513361 0.513326 0.513249
(0.5, 0.8) 0.488390 0.473159 0.488089 0.488345 0.488474 0.488438 0.488322 0.488375 0.488370 0.488348 0.488328
(0.7, 0.2) 0.597480 0.582153 0.597165 0.597300 0.597326 0.597377 0.597479 0.597474 0.597477 0.597471 0.597446
(0.7, 0.4) 0.573214 0.554743 0.572650 0.573038 0.573084 0.573102 0.573207 0.573178 0.573202 0.573181 0.573113
(0.7, 0.6) 0.548590 0.530429 0.547972 0.548512 0.548585 0.548554 0.548558 0.548544 0.548571 0.548541 0.548522
(0.7, 0.8) 0.523726 0.508002 0.523469 0.523735 0.523852 0.523770 0.523629 0.523715 0.523709 0.523691 0.523680
(0.9, 0.2) 0.630974 0.616050 0.630841 0.630902 0.630917 0.630933 0.630973 0.630971 0.630972 0.630970 0.630957
(0.9, 0.4) 0.607400 0.589194 0.607160 0.607341 0.607365 0.607357 0.607392 0.607384 0.607395 0.607386 0.607368
(0.9, 0.6) 0.583315 0.565149 0.583053 0.583308 0.583343 0.583305 0.583277 0.583296 0.583307 0.583294 0.583305
(0.9, 0.8) 0.558825 0.542773 0.558721 0.558852 0.558906 0.558848 0.558707 0.558822 0.558818 0.558811 0.558809
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Table 3. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for α = 0.25, 0.5, β = 1,
N = 10, θ = 0.5, and δt = 0.1 corresponds to Example 1.

RBFs t
α = 0.25 α = 0.5

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 6.824741 c = 5.8659

0.2 1.331 × 10−3 1.828 × 10−3 1.270 × 10−3 6.715 × 10−4 9.231 × 10−4 6.402 × 10−4

0.4 1.272 × 10−3 1.752 × 10−3 1.213 × 10−3 9.153 × 10−4 1.259 × 10−3 8.727 × 10−4

0.6 3.663 × 10−4 4.893 × 10−4 3.493 × 10−4 1.187 × 10−3 1.633 × 10−3 1.132 × 10−3

0.8 9.663 × 10−4 1.318 × 10−3 9.214 × 10−4 6.701 × 10−4 9.350 × 10−4 6.389 × 10−4

1 4.238 × 10−6 7.006 × 10−6 4.041 × 10−6 7.414 × 10−6 1.297 × 10−5 7.069 × 10−6

IMQ

c = 8.12967 c = 6.88885

0.2 1.138 × 10−3 1.563 × 10−3 1.085 × 10−3 5.811 × 10−4 7.983 × 10−4 5.541 × 10−4

0.4 1.368 × 10−3 1.879 × 10−3 1.304 × 10−3 6.897 × 10−4 9.504 × 10−4 6.576 × 10−4

0.6 1.334 × 10−3 1.835 × 10−3 1.272 × 10−3 8.769 × 10−4 1.204 × 10−3 8.360 × 10−4

0.8 6.601 × 10−4 9.134 × 10−4 6.294 × 10−4 4.089 × 10−4 5.721 × 10−4 3.899 × 10−4

1 1.199 × 10−6 1.851 × 10−6 1.143 × 10−6 5.718 × 10−6 9.971 × 10−6 5.452 × 10−6

IQ

c = 5.34901 c = 5.18412

0.2 5.766 × 10−4 7.940 × 10−4 5.498 × 10−4 3.359 × 10−4 4.623 × 10−4 3.202 × 10−4

0.4 1.825 × 10−4 2.724 × 10−4 1.740 × 10−4 2.147 × 10−4 3.145 × 10−4 2.047 × 10−4

0.6 9.193 × 10−5 1.510 × 10−4 8.765 × 10−5 6.746 × 10−5 1.006 × 10−4 6.432 × 10−5

0.8 1.387 × 10−4 1.929 × 10−4 1.322 × 10−4 1.804 × 10−4 2.700 × 10−4 1.720 × 10−4

1 5.465 × 10−6 8.804 × 10−6 5.211 × 10−6 3.988 × 10−6 6.707 × 10−6 3.803 × 10−6

GS

c = 0.251637 c = 0.25937

0.2 4.473 × 10−4 6.166 × 10−4 4.265 × 10−4 2.279 × 10−4 3.146 × 10−4 2.173 × 10−4

0.4 2.152 × 10−4 2.992 × 10−4 2.052 × 10−4 1.651 × 10−4 2.302 × 10−4 1.574 × 10−4

0.6 3.447 × 10−5 4.323 × 10−5 3.286 × 10−5 5.054 × 10−5 7.298 × 10−5 4.819 × 10−5

0.8 7.107 × 10−5 9.455 × 10−5 6.776 × 10−5 1.058 × 10−5 1.617 × 10−5 1.009 × 10−5

1 4.706 × 10−6 7.906 × 10−6 4.487 × 10−6 4.625 × 10−6 8.048 × 10−6 4.410 × 10−6

Table 4. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for α = 0.75, 1, β = 1,
N = 10, θ = 0.5, and δt = 0.1 corresponds to Example 1.

RBFs t
α = 0.75 α = 1

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 5.80145 c = 6.78326

0.2 2.769 × 10−4 3.802 × 10−4 2.640 × 10−4 5.932 × 10−6 8.084 × 10−6 5.656 × 10−6

0.4 4.878 × 10−4 6.702 × 10−4 4.651 × 10−4 3.153 × 10−5 4.263 × 10−5 3.006 × 10−5

0.6 5.258 × 10−4 7.275 × 10−4 5.013 × 10−4 3.904 × 10−5 5.393 × 10−5 3.722 × 10−5

0.8 2.143 × 10−4 3.014 × 10−4 2.044 × 10−4 1.143 × 10−5 1.609 × 10−5 1.090 × 10−5

1 4.401 × 10−6 6.944 × 10−6 4.196 × 10−6 7.107 × 10−7 1.410 × 10−6 6.776 × 10−7

IMQ

c = 4.48635 c = 7.23608

0.2 1.630 × 10−4 2.249 × 10−4 1.554 × 10−4 2.886 × 10−6 3.898 × 10−6 2.751 × 10−6

0.4 1.759 × 10−4 2.466 × 10−4 1.678 × 10−4 1.103 × 10−5 1.490 × 10−5 1.052 × 10−5

0.6 1.191 × 10−4 1.785 × 10−4 1.135 × 10−4 1.739 × 10−5 2.373 × 10−5 1.658 × 10−5

0.8 4.659 × 10−5 7.766 × 10−5 4.442 × 10−5 1.510 × 10−5 2.085 × 10−5 1.440 × 10−5

1 4.166 × 10−6 6.616 × 10−6 3.972 × 10−6 4.264 × 10−7 6.996 × 10−7 4.065 × 10−7
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Table 4. Cont.

RBFs t
α = 0.75 α = 1

L2 L∞ Lrms L2 L∞ Lrms

IQ

c = 5.38471 c = 7.88039

0.2 1.476 × 10−4 2.032 × 10−4 1.407 × 10−4 7.689 × 10−6 1.021 × 10−5 7.331 × 10−6

0.4 1.489 × 10−4 2.155 × 10−4 1.420 × 10−4 2.877 × 10−5 3.894 × 10−5 2.743 × 10−5

0.6 7.313 × 10−5 1.212 × 10−4 6.972 × 10−5 4.352 × 10−5 5.947 × 10−5 4.149 × 10−5

0.8 7.707 × 10−5 1.263 × 10−4 7.349 × 10−5 3.045 × 10−5 4.238 × 10−5 2.903 × 10−5

1 1.266 × 10−6 2.428 × 10−6 1.207 × 10−6 5.121 × 10−7 8.217 × 10−7 4.883 × 10−7

GS

c = 0.26237 c = 0.16625

0.2 9.327 × 10−5 1.287 × 10−4 8.893 × 10−5 2.726 × 10−5 3.641 × 10−5 2.599 × 10−5

0.4 1.016 × 10−4 1.413 × 10−4 9.682 × 10−5 1.115 × 10−4 1.571 × 10−4 1.063 × 10−4

0.6 3.468 × 10−5 5.034 × 10−5 3.306 × 10−5 1.060 × 10−4 1.599 × 10−4 1.011 × 10−4

0.8 3.649 × 10−5 4.743 × 10−5 3.479 × 10−5 4.430 × 10−5 6.206 × 10−5 4.224 × 10−5

1 2.129 × 10−6 2.664 × 10−6 2.030 × 10−6 5.164 × 10−6 6.820 × 10−6 4.924 × 10−6

(a) Error norms and spectral radius using MQ (b) Error norms and spectral radius using IMQ

(c) Error norms and spectral radius against IQ (d) Error norms and spectral radius using GS

Figure 1. Error norms and spectral radius correspond to Example 1 when N = M = 10, θ = 0.5 using
MQ, IMQ, IQ, and GS RBFs.
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(a) Exact solution (b) Computed solution using MQ

(c) Computed solution using IMQ (d) Computed solution against IQ

(e) Computed solution using GS

Figure 2. Exact vs. computed solution corresponds to Example 1 when N = M = 10, α = 1 using
MQ, IMQ, IQ, and GS RBFs.
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(a) Absolute error using MQ (b) Absolute error using IMQ

(c) Absolute error against IQ (d) Absolute error using GS

Figure 3. Absolute error of MQ, IMQ, IQ, and GS at t = 1 corresponds to Example 1.

(a) Exact vs. numerical using MQ (b) Exact vs. numerical using IMQ

Figure 4. Cont.
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(c) Exact vs. numerical against IQ (d) Exact vs. numerical using GS

Figure 4. Comparison of exact and computed solution corresponds to Example 1 at t = 1 and α = 1
using MQ, IMQ, IQ, and GS RBFs.

(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 5. Absolute errors for Example 1 with different values of α’s using MQ RBF.



Fractal Fract. 2023, 7, 882 13 of 41

(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 6. Absolute errors for Example 1 with different values of α’s using IMQ RBF.

(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 7. Absolute errors for Example 1 with different values of α’s using IQ RBF.
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(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 8. Absolute errors for Example 1 with different values of α’s using GS RBF.

Example 2. Let us consider FitzHugh–Nagumo Equations (2) and (3) with β = −1. The exact
solution is given by [25]

u(t, x) =
1
2
+

1
2

tanh

(√
2x + 3t

4

)
.

The ICs and BCs are derived from the exact solution. The approximate solution is computed
using various RBFs such as MQ, IMQ, IQ, and GS with parameters N = 10, δt = 0.1, θ = 0.5,
and α = 0.25, 0.5, 0.75, 1. The present method is evaluated, and the results are recorded in
Tables 5 and 6 at various node points. These results are then compared with FRDTM. It can be seen
that the computed solutions are more accurate than the cited method. All the RBFs exhibit good
accuracy even for a small value of α.

Furthermore, for x ∈ [0, 1], error norms at various time levels are recorded in Tables 7 and 8
using MQ, IMQ, IQ, and GS RBFs with parameters N = 10, δt = 0.1, and θ = 0.5 and for
different values of α (0.25, 0.5, 0.75, and 1). Stability and error norm plots are displayed for MQ,
IMQ, IQ, and GS RBFs against the shape parameter in Figure 9, which clearly show that the
present method fully satisfies the Lax–Richtmyer stability criterion. Surface plots are presented
in Figure 10, illustrating that the computed solutions using these RBFs closely match the exact
solution. Absolute errors for α = 1 at various time levels are shown in Figure 11, indicating
reasonable accuracy. Additionally, in Figure 12, a comparison between the exact and computed
solutions at the final time is displayed, demonstrating the good accuracy of the present method.
Finally, Figures 13–16 present the absolute errors for different RBFs when considering fractional
order, highlighting their performance.
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Table 5. Comparison of computed values of the present method solution with FRDTM using MQ,
IMQ, IQ, and GS RBFs for α = 0.25, 0.5, β = −1, N = 10, θ = 0.5, and δt = 0.1 corresponds to
Example 2.

α = 0.25 α = 0.5

(x, t) Exact
[25]

MQ IMQ IQ GS
[25]

MQ IMQ IQ GS

c = 4.4666 c = 6.03186 c = 6.4267 c = 0.35958 c = 3.92393 c = 5.70391 c = 5.55183 c = 0.19219

(0.1, 0.2) 0.591631 0.712693 0.593101 0.592493 0.592342 0.590743 0.685107 0.592535 0.592192 0.592074 0.591955
(0.1, 0.4) 0.661662 0.712224 0.663565 0.662685 0.662345 0.659307 0.727258 0.662760 0.662288 0.662272 0.661768
(0.1, 0.6) 0.725261 0.701487 0.727501 0.726615 0.726035 0.723119 0.741707 0.726324 0.725878 0.725984 0.725129
(0.1, 0.8) 0.780864 0.686791 0.782618 0.782556 0.781355 0.780438 0.739056 0.781578 0.781381 0.781398 0.780881
(0.3, 0.2) 0.625306 0.733926 0.628485 0.627149 0.626822 0.623410 0.712225 0.627311 0.626542 0.626279 0.626011
(0.3, 0.4) 0.692564 0.730566 0.696581 0.694651 0.693921 0.687425 0.748766 0.694919 0.693883 0.693797 0.692771
(0.3, 0.6) 0.752526 0.718291 0.757243 0.755312 0.754041 0.747581 0.758657 0.754761 0.753778 0.753975 0.752209
(0.3, 0.8) 0.804102 0.702703 0.807793 0.807757 0.805025 0.802687 0.752244 0.805574 0.805128 0.805201 0.804145
(0.5, 0.2) 0.657811 0.756506 0.661302 0.659809 0.659448 0.655772 0.738240 0.660064 0.659191 0.658895 0.658579
(0.5, 0.4) 0.721829 0.752516 0.726144 0.723992 0.723195 0.716165 0.770276 0.724394 0.723242 0.723087 0.722032
(0.5, 0.6) 0.777914 0.740736 0.782982 0.780841 0.779420 0.772144 0.777298 0.780297 0.779205 0.779384 0.777545
(0.5, 0.8) 0.825426 0.726144 0.829396 0.829500 0.826306 0.823317 0.769236 0.826965 0.826464 0.826587 0.825521
(0.7, 0.2) 0.688899 0.780077 0.691594 0.690419 0.690140 0.687381 0.763050 0.690677 0.689980 0.689747 0.689481
(0.7, 0.4) 0.749317 0.777418 0.752584 0.750893 0.750280 0.744958 0.791672 0.751279 0.750382 0.750211 0.749455
(0.7, 0.6) 0.801385 0.767864 0.805234 0.803562 0.802439 0.796670 0.797388 0.803170 0.802322 0.802430 0.801100
(0.7, 0.8) 0.844877 0.755857 0.847904 0.848125 0.845470 0.842806 0.789575 0.846004 0.845618 0.845751 0.845024
(0.9, 0.2) 0.718371 0.804119 0.719430 0.718959 0.718850 0.717810 0.786549 0.719084 0.718802 0.718709 0.718593
(0.9, 0.4) 0.774936 0.804312 0.776199 0.775521 0.775281 0.773242 0.812740 0.775698 0.775344 0.775256 0.774984
(0.9, 0.6) 0.822940 0.798295 0.824438 0.823772 0.823318 0.820985 0.818467 0.823620 0.823287 0.823318 0.822838
(0.9, 0.8) 0.862522 0.790062 0.863707 0.863865 0.862729 0.861527 0.812450 0.862941 0.862794 0.862864 0.862627

Table 6. Comparison of computed values of the present method solution with FRDTM using MQ,
IMQ, IQ, and GS RBFs for α = 0.75, 1, β = −1, N = 10, θ = 0.5, and δt = 0.1 corresponds to
Example 2.

α = 0.75 α = 1

(x, t) Exact
[25]

MQ IMQ IQ GS
[25]

MQ IMQ IQ GS

c = 4.80554 c = 5.17758 c = 5.90952 c = 0.20069 c = 6.47961 c = 5.51787 c = 6.45128 c = 0.19927

(0.1, 0.2) 0.591631 0.634779 0.591992 0.591864 0.591837 0.591767 0.591631 0.591628 0.591633 0.591632 0.591620
(0.1, 0.4) 0.661662 0.702543 0.662181 0.661959 0.661901 0.661733 0.661672 0.661649 0.661667 0.661662 0.661628
(0.1, 0.6) 0.725261 0.747913 0.725872 0.725535 0.725459 0.725237 0.725403 0.725246 0.725272 0.725258 0.725197
(0.1, 0.8) 0.780864 0.774078 0.781331 0.781026 0.781074 0.780806 0.781773 0.780862 0.780876 0.780859 0.780768
(0.3, 0.2) 0.625306 0.666335 0.626111 0.625833 0.625768 0.625606 0.625306 0.625302 0.625314 0.625312 0.625284
(0.3, 0.4) 0.692564 0.729310 0.693682 0.693228 0.693080 0.692711 0.692582 0.692538 0.692581 0.692572 0.692491
(0.3, 0.6) 0.752526 0.769312 0.753809 0.753125 0.752937 0.752464 0.752748 0.752494 0.752557 0.752531 0.752396
(0.3, 0.8) 0.804102 0.789838 0.805115 0.804456 0.804526 0.803957 0.805411 0.804095 0.804133 0.804104 0.803895
(0.5, 0.2) 0.657811 0.696497 0.658719 0.658414 0.658337 0.658141 0.657811 0.657808 0.657823 0.657821 0.657786
(0.5, 0.4) 0.721829 0.754683 0.723053 0.722590 0.722397 0.721980 0.721853 0.721803 0.721858 0.721849 0.721749
(0.5, 0.6) 0.777914 0.789950 0.779284 0.778586 0.778350 0.777837 0.778188 0.777881 0.777959 0.777936 0.777778
(0.5, 0.8) 0.825426 0.806094 0.826535 0.825827 0.825872 0.825257 0.826971 0.825416 0.825467 0.825446 0.825201
(0.7, 0.2) 0.688899 0.725094 0.689618 0.689385 0.689319 0.689149 0.688899 0.688896 0.688911 0.688910 0.688877
(0.7, 0.4) 0.749317 0.778610 0.750257 0.749934 0.749755 0.749423 0.749343 0.749298 0.749349 0.749342 0.749253
(0.7, 0.6) 0.801385 0.809841 0.802413 0.801920 0.801715 0.801324 0.801677 0.801361 0.801430 0.801416 0.801284
(0.7, 0.8) 0.844877 0.822859 0.845727 0.845204 0.845215 0.844750 0.846479 0.844868 0.844914 0.844909 0.844705
(0.9, 0.2) 0.718371 0.751995 0.718660 0.718571 0.718542 0.718465 0.718372 0.718370 0.718378 0.718377 0.718361
(0.9, 0.4) 0.774936 0.801046 0.775302 0.775193 0.775108 0.774973 0.774962 0.774928 0.774953 0.774950 0.774909
(0.9, 0.6) 0.822940 0.828936 0.823333 0.823160 0.823070 0.822918 0.823220 0.822932 0.822962 0.822959 0.822902
(0.9, 0.8) 0.862522 0.839976 0.862853 0.862662 0.862657 0.862479 0.864017 0.862518 0.862539 0.862542 0.862455
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(a) Error norms and spectral radius using MQ (b) Error norms and spectral radius using IMQ

(c) Error norms and spectral radius against IQ (d) Error norms and spectral radius using GS

Figure 9. Error norms and spectral radius correspond to Example 2 when N = M = 10, θ = 0.5 using
MQ, IMQ, IQ, and GS RBFs.

Table 7. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for α = 0.25, 0.5, β = −1,
N = 10, θ = 0.5, and δt = 0.1 correspond to Example 2.

RBFs t
α = 0.25 α = 0.5

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 4.4666 c = 3.92393

0.2 2.56 × 10−3 3.49 × 10−3 2.44 × 10−3 1.65 × 10−3 2.25 × 10−3 1.57 × 10−3

0.4 3.18 × 10−3 4.36 × 10−3 3.03 × 10−3 1.88 × 10−3 2.58 × 10−3 1.80 × 10−3

0.6 3.74 × 10−3 5.12 × 10−3 3.56 × 10−3 1.76 × 10−3 2.42 × 10−3 1.67 × 10−3

0.8 2.93 × 10−3 4.01 × 10−3 2.79 × 10−3 1.14 × 10−3 1.58 × 10−3 1.09 × 10−3

1 3.66 × 10−5 5.14 × 10−5 3.49 × 10−5 3.49 × 10−6 5.48 × 10−6 3.32 × 10−6

IMQ

c = 6.03186 c = 5.70391

0.2 1.47 × 10−3 2.01 × 10−3 1.40 × 10−3 1.01 × 10−3 1.38 × 10−3 9.63 × 10−4

0.4 1.61 × 10−3 2.23 × 10−3 1.53 × 10−3 1.04 × 10−3 1.43 × 10−3 9.93 × 10−4

0.6 2.17 × 10−3 2.99 × 10−3 2.07 × 10−3 9.59 × 10−4 1.33 × 10−3 9.14 × 10−4

0.8 3.00 × 10−3 4.07 × 10−3 2.86 × 10−3 7.76 × 10−4 1.08 × 10−3 7.40 × 10−4

1 1.08 × 10−5 1.83 × 10−5 1.03 × 10−5 5.36 × 10−6 8.29 × 10−6 5.11 × 10−6
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Table 7. Cont.

RBFs t
α = 0.25 α = 0.5

L2 L∞ Lrms L2 L∞ Lrms

IQ

c = 6.4267 c = 5.55183

0.2 1.20 × 10−3 1.65 × 10−3 1.15 × 10−3 7.93 × 10−4 1.08 × 10−3 7.56 × 10−4

0.4 1.02 × 10−3 1.43 × 10−3 9.73 × 10−4 9.34 × 10−4 1.31 × 10−3 8.91 × 10−4

0.6 1.13 × 10−3 1.58 × 10−3 1.08 × 10−3 1.10 × 10−3 1.53 × 10−3 1.04 × 10−3

0.8 6.71 × 10−4 9.45 × 10−4 6.40 × 10−4 8.61 × 10−4 1.18 × 10−3 8.21 × 10−4

1 1.45 × 10−5 2.48 × 10−5 1.38 × 10−5 6.97 × 10−6 1.10 × 10−5 6.64 × 10−6

GS

c = 0.35958 c = 0.19219

0.2 1.49 × 10−3 2.06 × 10−3 1.42 × 10−3 5.62 × 10−4 7.72 × 10−4 5.36 × 10−4

0.4 4.14 × 10−3 5.66 × 10−3 3.95 × 10−3 1.53 × 10−4 2.16 × 10−4 1.45 × 10−4

0.6 4.20 × 10−3 5.77 × 10−3 4.01 × 10−3 2.63 × 10−4 3.69 × 10−4 2.51 × 10−4

0.8 1.54 × 10−3 2.20 × 10−3 1.47 × 10−3 9.23 × 10−5 1.46 × 10−4 8.80 × 10−5

1 3.07 × 10−5 5.19 × 10−5 2.93 × 10−5 1.25 × 10−5 2.32 × 10−5 1.19 × 10−5

Table 8. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for α = 0.75, 1, β = −1,
N = 10, θ = 0.5, and δt = 0.1 correspond to Example 2.

RBFs t
α = 0.75 α = 1

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 4.80554 c = 6.47961

0.2 6.64 × 10−4 9.08 × 10−4 6.33 × 10−4 2.74 × 10−6 3.70 × 10−6 2.61 × 10−6

0.4 8.97 × 10−4 1.23 × 10−3 8.56 × 10−4 2.01 × 10−5 2.76 × 10−5 1.91 × 10−5

0.6 1.01 × 10−3 1.39 × 10−3 9.63 × 10−4 2.46 × 10−5 3.44 × 10−5 2.35 × 10−5

0.8 8.12 × 10−4 1.11 × 10−3 7.74 × 10−4 7.31 × 10−6 1.02 × 10−5 6.97 × 10−6

1 4.55 × 10−6 7.31 × 10−6 4.34 × 10−6 5.95 × 10−7 8.99 × 10−7 5.67 × 10−7

IMQ

c = 5.17758 c = 5.51787

0.2 4.41 × 10−4 6.04 × 10−4 4.20 × 10−4 8.95 × 10−6 1.28 × 10−5 8.54 × 10−6

0.4 5.57 × 10−4 7.60 × 10−4 5.31 × 10−4 2.21 × 10−5 3.19 × 10−5 2.10 × 10−5

0.6 4.93 × 10−4 6.71 × 10−4 4.70 × 10−4 3.31 × 10−5 4.66 × 10−5 3.16 × 10−5

0.8 2.96 × 10−4 4.01 × 10−4 2.82 × 10−4 2.96 × 10−5 4.07 × 10−5 2.82 × 10−5

1 1.30 × 10−6 2.26 × 10−6 1.24 × 10−6 5.23 × 10−7 8.30 × 10−7 4.99 × 10−7

IQ

c = 5.90952 c = 6.45128

0.2 3.84 × 10−4 5.26 × 10−4 3.66 × 10−4 7.91 × 10−6 1.14 × 10−5 7.54 × 10−6

0.4 4.16 × 10−4 5.68 × 10−4 3.97 × 10−4 1.58 × 10−5 2.46 × 10−5 1.51 × 10−5

0.6 3.23 × 10−4 4.43 × 10−4 3.08 × 10−4 1.87 × 10−5 3.05 × 10−5 1.78 × 10−5

0.8 3.33 × 10−4 4.54 × 10−4 3.17 × 10−4 1.88 × 10−5 3.13 × 10−5 1.80 × 10−5

1 1.29 × 10−6 1.89 × 10−6 1.23 × 10−6 1.05 × 10−6 1.81 × 10−6 1.00 × 10−6

GS

c = 0.20069 c = 0.19927

0.2 2.40 × 10−4 3.31 × 10−4 2.29 × 10−4 1.90 × 10−5 2.50 × 10−5 1.81 × 10−5

0.4 1.11 × 10−4 1.57 × 10−4 1.06 × 10−4 5.96 × 10−5 8.05 × 10−5 5.69 × 10−5

0.6 5.43 × 10−5 7.71 × 10−5 5.18 × 10−5 1.02 × 10−4 1.40 × 10−4 9.67 × 10−5

0.8 1.19 × 10−4 1.69 × 10−4 1.14 × 10−4 1.65 × 10−4 2.26 × 10−4 1.58 × 10−4

1 9.36 × 10−6 1.59 × 10−5 8.93 × 10−6 5.69 × 10−6 8.86 × 10−6 5.43 × 10−6
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(a) Exact solution (b) Computed solution using MQ

(c) Computed solution using IMQ (d) Computed solution against IQ

(e) Computed solution using GS

Figure 10. Exact vs. computed solution corresponds to Example 2 when N = M = 10, α = 1 using
MQ, IMQ, IQ, and GS RBFs.



Fractal Fract. 2023, 7, 882 19 of 41

(a) Absolute error using MQ (b) Absolute error using IMQ

(c) Absolute error against IQ (d) Absolute error using GS

Figure 11. Absolute error of MQ, IMQ, IQ, and GS at tmax = 1 corresponds to Example 2.

(a) Exact vs. numerical using MQ (b) Exact vs. numerical using IMQ

Figure 12. Cont.
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(c) Exact vs. numerical against IQ (d) Exact vs. numerical using GS

Figure 12. Comparison of exact and computed solution corresponds to Example 2 at tmax = 1 and
α = 1 using MQ, IMQ, IQ, and GS RBFs.

(a) Absolute error (b) Absolute error

(c) Absolute error
Figure 13. Absolute errors for Example 3 with different values of α’s using MQ RBF.
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(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 14. Absolute errors for Example 3 with different values of α’s using IMQ RBF.

(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 15. Absolute errors for Example 3 with different values of α’s using IQ RBF.
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(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 16. Absolute errors for Example 3 with different values of α’s using GS RBF.

Example 3. Let us consider FitzHugh–Nagumo Equations (2) and (3) with β = 0. The exact
solution is given by [25]

u(t, x) =
1
2
+

1
2

tanh

(√
2x + t

4

)
.

We employ the ICs and BCs from this exact solution. Using this solution, we apply the present
method to approximate the exact solution within the domain x ∈ [0, 1]. RBFs such as MQ, IMQ, IQ,
and GS are employed for the numerical approximation. We choose N = 10, δt = 0.1, and θ = 0.5.
The obtained results are presented in Tables 9 and 10 for different values of α (0.25, 0.5, 0.75, 1).

The tables clearly indicate that the accuracy of the method is better than the FRDTM. Ad-
ditionally, it can be seen that the accuracy improves as α approaches 1. Additionally, the chosen
RBFs demonstrate comparable performance. Furthermore, the error norms at various time levels are
recorded in Tables 11 and 12 for α values of 0.25, 0.5, 0.75, and 1, using the MQ, IMQ, IQ, and GS
RBFs. The stability and error norm plots are presented in Figure 17, demonstrating that the present
method consistently satisfies the Lax–Richtmyer stability criterion.

Additionally, surface plots in Figure 18 show that the computed solution using the selected
RBFs closely matches the exact solution. The absolute errors for α = 1 at various time levels
are depicted in Figure 19, indicating reasonable accuracy. Figure 20 compares the exact and
computed solutions at the final time, demonstrating the good accuracy of the present method. Finally,
Figures 21–24 display the absolute errors for different fractional orders using different RBFs.
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Table 9. Comparison of computed values of the present method solution with FRDTM using MQ,
IMQ, IQ, and GS RBFs for α = 0.25, 0.5, β = 0, N = 10, θ = 0.5, and δt = 0.1 corresponds to
Example 3.

α = 0.25 α = 0.5

(x, t) Exact
[25]

MQ IMQ IQ GS
[25]

MQ IMQ IQ GS

c = 3.68162 c = 6.61203 c = 8.81199 c = 0.36854 c = 6.48549 c = 7.63322 c = 6.9269 c = 0.33014

(0.1, 0.2) 0.542574 0.607541 0.543147 0.543015 0.542936 0.542301 0.579728 0.542826 0.542838 0.542813 0.542595
(0.1, 0.4) 0.567267 0.624171 0.567777 0.567728 0.567539 0.566309 0.604611 0.567451 0.567615 0.567554 0.567328
(0.1, 0.6) 0.591631 0.635373 0.592090 0.592066 0.591836 0.590916 0.623334 0.591672 0.591984 0.591826 0.591753
(0.1, 0.8) 0.615552 0.644106 0.615894 0.615880 0.615667 0.615606 0.638889 0.615523 0.615760 0.615571 0.615607
(0.3, 0.2) 0.577406 0.639862 0.578702 0.578408 0.578231 0.576967 0.613492 0.577980 0.578005 0.577953 0.577472
(0.3, 0.4) 0.601599 0.655466 0.602729 0.602641 0.602231 0.599800 0.637390 0.602020 0.602392 0.602265 0.601792
(0.3, 0.6) 0.625306 0.665857 0.626309 0.626280 0.625790 0.623770 0.655204 0.625410 0.626117 0.625769 0.625657
(0.3, 0.8) 0.648427 0.673883 0.649148 0.649157 0.648699 0.648556 0.669886 0.648373 0.648923 0.648480 0.648661
(0.5, 0.2) 0.611484 0.670946 0.612968 0.612638 0.612435 0.611202 0.646202 0.612144 0.612174 0.612119 0.611584
(0.5, 0.4) 0.634960 0.685416 0.636223 0.636155 0.635702 0.633346 0.668940 0.635440 0.635874 0.635739 0.635255
(0.5, 0.6) 0.657811 0.694923 0.658913 0.658914 0.658388 0.656165 0.685729 0.657930 0.658750 0.658358 0.658312
(0.5, 0.8) 0.679952 0.702183 0.680713 0.680772 0.680279 0.680129 0.699451 0.679896 0.680535 0.680019 0.680357
(0.7, 0.2) 0.644506 0.700614 0.645694 0.645439 0.645271 0.644477 0.677605 0.645032 0.645063 0.645023 0.644609
(0.7, 0.4) 0.667073 0.713905 0.668059 0.668036 0.667684 0.666161 0.699052 0.667449 0.667813 0.667710 0.667379
(0.7, 0.6) 0.688899 0.722509 0.689742 0.689775 0.689383 0.687690 0.714740 0.688986 0.689660 0.689347 0.689393
(0.7, 0.8) 0.709916 0.728997 0.710468 0.710559 0.710191 0.710100 0.727453 0.709870 0.710385 0.709969 0.710363
(0.9, 0.2) 0.676207 0.728724 0.676688 0.676590 0.676519 0.676287 0.707489 0.676418 0.676435 0.676422 0.676262
(0.9, 0.4) 0.697706 0.740845 0.698094 0.698100 0.697961 0.697504 0.727556 0.697851 0.698010 0.697969 0.697863
(0.9, 0.6) 0.718371 0.748576 0.718695 0.718725 0.718578 0.717935 0.742105 0.718399 0.718684 0.718556 0.718617
(0.9, 0.8) 0.738154 0.754327 0.738351 0.738410 0.738273 0.738255 0.753800 0.738134 0.738342 0.738175 0.738393

Table 10. Comparison of computed values of the present method solution with FRDTM using MQ,
IMQ, IQ, and GS RBFs for α = 0.75, 1, β = 0, N = 10, θ = 0.5, and δt = 0.1 corresponds to Example 3.

α = 0.75 α = 1

(x, t) Exact
[25]

MQ IMQ IQ GS
[25]

MQ IMQ IQ GS

c = 6.20135 c = 7.82578 c = 6.73987 c = 0.333513 c = 5.79129 c = 6.46003 c = 8.05516 c = 0.22009

(0.1, 0.2) 0.542574 0.558029 0.542671 0.542661 0.542670 0.542575 0.542574 0.542576 0.542575 0.542570 0.542596
(0.1, 0.4) 0.567267 0.585031 0.567267 0.567359 0.567431 0.567193 0.567267 0.567272 0.567265 0.567252 0.567332
(0.1, 0.6) 0.591631 0.608198 0.591550 0.591683 0.591797 0.591527 0.591626 0.591638 0.591632 0.591658 0.591702
(0.1, 0.8) 0.615552 0.628969 0.615483 0.615541 0.615611 0.615522 0.615532 0.615559 0.615549 0.615646 0.615591
(0.3, 0.2) 0.577406 0.592512 0.577628 0.577605 0.577625 0.577403 0.577406 0.577409 0.577407 0.577397 0.577451
(0.3, 0.4) 0.601599 0.618758 0.601608 0.601811 0.601981 0.601363 0.601598 0.601610 0.601598 0.601567 0.601745
(0.3, 0.6) 0.625306 0.641090 0.625128 0.625431 0.625694 0.624963 0.625302 0.625322 0.625313 0.625358 0.625473
(0.3, 0.8) 0.648427 0.660973 0.648272 0.648398 0.648570 0.648301 0.648409 0.648443 0.648426 0.648650 0.648523
(0.5, 0.2) 0.611484 0.626109 0.611740 0.611714 0.611741 0.611473 0.611484 0.611487 0.611487 0.611475 0.611535
(0.5, 0.4) 0.634960 0.651378 0.634968 0.635204 0.635411 0.634600 0.634959 0.634972 0.634963 0.634927 0.635130
(0.5, 0.6) 0.657811 0.672710 0.657602 0.657954 0.658267 0.657287 0.657807 0.657830 0.657824 0.657873 0.658009
(0.5, 0.8) 0.679952 0.691573 0.679774 0.679907 0.680117 0.679745 0.679938 0.679971 0.679957 0.680214 0.680069
(0.7, 0.2) 0.644506 0.658533 0.644709 0.644690 0.644717 0.644489 0.644506 0.644509 0.644509 0.644499 0.644550
(0.7, 0.4) 0.667073 0.682643 0.667064 0.667266 0.667449 0.666697 0.667072 0.667083 0.667079 0.667048 0.667216
(0.7, 0.6) 0.688899 0.702841 0.688718 0.689008 0.689272 0.688366 0.688896 0.688914 0.688914 0.688963 0.689063
(0.7, 0.8) 0.709916 0.720587 0.709770 0.709863 0.710039 0.709701 0.709906 0.709931 0.709924 0.710127 0.710012
(0.9, 0.2) 0.676207 0.689541 0.676288 0.676281 0.676296 0.676195 0.676207 0.676209 0.676209 0.676204 0.676228
(0.9, 0.4) 0.697706 0.712345 0.697691 0.697781 0.697866 0.697510 0.697705 0.697710 0.697710 0.697697 0.697768
(0.9, 0.6) 0.718371 0.731313 0.718289 0.718410 0.718525 0.718106 0.718370 0.718378 0.718380 0.718410 0.718440
(0.9, 0.8) 0.738154 0.747877 0.738093 0.738123 0.738198 0.738049 0.738149 0.738160 0.738160 0.738238 0.738194
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Table 11. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for α = 0.25, 0.5, β = 0,
N = 10, θ = 0.5, and δt = 0.1 correspond to Example 3.

RBFs t
α = 0.25 α = 0.5

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 3.68162 c = 6.48549

0.2 1.081 × 10−3 1.484 × 10−3 1.031 × 10−3 4.795 × 10−4 6.599 × 10−4 4.572 × 10−4

0.4 9.220 × 10−4 1.264 × 10−3 8.791 × 10−4 3.476 × 10−4 4.805 × 10−4 3.314 × 10−4

0.6 8.053 × 10−4 1.103 × 10−3 7.678 × 10−4 8.368 × 10−5 1.193 × 10−4 7.978 × 10−5

0.8 5.578 × 10−4 7.776 × 10−4 5.319 × 10−4 4.336 × 10−5 5.738 × 10−5 4.134 × 10−5

1 2.992 × 10−6 4.995 × 10−6 2.853 × 10−6 2.723 × 10−6 3.734 × 10−6 2.597 × 10−6

IMQ

c = 6.61203 c = 7.63322

0.2 8.418 × 10−4 1.154 × 10−3 8.027 × 10−4 5.035 × 10−4 6.907 × 10−4 4.801 × 10−4

0.4 8.722 × 10−4 1.195 × 10−3 8.316 × 10−4 6.669 × 10−4 9.148 × 10−4 6.358 × 10−4

0.6 8.053 × 10−4 1.103 × 10−3 7.679 × 10−4 6.838 × 10−4 9.390 × 10−4 6.519 × 10−4

0.8 5.980 × 10−4 8.194 × 10−4 5.702 × 10−4 4.202 × 10−4 5.823 × 10−4 4.007 × 10−4

1 1.530 × 10−6 2.163 × 10−6 1.458 × 10−6 3.049 × 10−6 5.391 × 10−6 2.907 × 10−6

IQ

c = 8.81199 c = 6.9269

0.2 6.924 × 10−4 9.508 × 10−4 6.602 × 10−4 4.630 × 10−4 6.348 × 10−4 4.414 × 10−4

0.4 5.406 × 10−4 7.424 × 10−4 5.154 × 10−4 5.671 × 10−4 7.799 × 10−4 5.407 × 10−4

0.6 4.209 × 10−4 5.776 × 10−4 4.013 × 10−4 3.965 × 10−4 5.470 × 10−4 3.780 × 10−4

0.8 2.383 × 10−4 3.268 × 10−4 2.272 × 10−4 4.684 × 10−5 6.663 × 10−5 4.466 × 10−5

1 7.249 × 10−7 1.173 × 10−6 6.912 × 10−7 2.578 × 10−6 3.610 × 10−6 2.458 × 10−6

GS

c = 0.36854 c = 0.33014

0.2 2.642 × 10−4 4.388 × 10−4 2.519 × 10−4 7.528 × 10−5 1.068 × 10−4 7.178 × 10−5

0.4 1.233 × 10−3 1.803 × 10−3 1.175 × 10−3 2.218 × 10−4 3.161 × 10−4 2.115 × 10−4

0.6 1.202 × 10−3 1.671 × 10−3 1.146 × 10−3 3.722 × 10−4 5.227 × 10−4 3.549 × 10−4

0.8 1.376 × 10−4 1.881 × 10−4 1.312 × 10−4 3.090 × 10−4 4.497 × 10−4 2.946 × 10−4

1 9.904 × 10−6 1.513 × 10−5 9.443 × 10−6 6.429 × 10−6 1.094 × 10−5 6.130 × 10−6

Table 12. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for α = 0.75, 1, β = 0,
N = 10, θ = 0.5, and δt = 0.1 correspond to Example 3.

RBFs t
α = 0.75 α = 1

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 6.20135 c = 5.79129

0.2 1.854 × 10−4 2.561 × 10−4 1.768 × 10−4 2.754 × 10−6 3.671 × 10−6 2.626 × 10−6

0.4 9.181 × 10−6 1.560 × 10−5 8.754 × 10−6 9.160 × 10−6 1.245 × 10−5 8.734 × 10−6

0.6 1.553 × 10−4 2.091 × 10−4 1.481 × 10−4 1.392 × 10−5 1.900 × 10−5 1.327 × 10−5

0.8 1.306 × 10−4 1.781 × 10−4 1.245 × 10−4 1.335 × 10−5 1.841 × 10−5 1.273 × 10−5

1 1.342 × 10−6 2.211 × 10−6 1.280 × 10−6 4.507 × 10−7 7.729 × 10−7 4.298 × 10−7

IMQ

c = 7.82578 c = 6.46003

0.2 1.672 × 10−4 2.305 × 10−4 1.594 × 10−4 2.380 × 10−6 3.590 × 10−6 2.269 × 10−6

0.4 1.765 × 10−4 2.442 × 10−4 1.683 × 10−4 3.844 × 10−6 6.398 × 10−6 3.665 × 10−6

0.6 1.025 × 10−4 1.434 × 10−4 9.769 × 10−5 1.029 × 10−5 1.545 × 10−5 9.806 × 10−6

0.8 3.666 × 10−5 5.292 × 10−5 3.495 × 10−5 5.069 × 10−6 8.448 × 10−6 4.833 × 10−6

1 8.111 × 10−7 1.714 × 10−6 7.733 × 10−7 5.708 × 10−7 7.934 × 10−7 5.443 × 10−7
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Table 12. Cont.

RBFs t
α = 0.75 α = 1

L2 L∞ Lrms L2 L∞ Lrms

IQ

c = 6.73987 c = 8.05516

0.2 1.874 × 10−4 2.569 × 10−4 1.787 × 10−4 6.647 × 10−6 8.712 × 10−6 6.337 × 10−6

0.4 3.295 × 10−4 4.515 × 10−4 3.141 × 10−4 2.459 × 10−5 3.395 × 10−5 2.344 × 10−5

0.6 3.312 × 10−4 4.562 × 10−4 3.157 × 10−4 5.053 × 10−5 6.511 × 10−5 4.817 × 10−5

0.8 1.167 × 10−4 1.641 × 10−4 1.112 × 10−4 1.887 × 10−4 2.612 × 10−4 1.799 × 10−4

1 3.197 × 10−6 4.250 × 10−6 3.048 × 10−6 1.895 × 10−6 3.064 × 10−6 1.806 × 10−6

GS

c = 0.333513 c = 0.22009

0.2 1.039 × 10−5 1.683 × 10−5 9.904 × 10−6 3.868 × 10−5 5.120 × 10−5 3.688 × 10−5

0.4 2.716 × 10−4 3.860 × 10−4 2.589 × 10−4 1.255 × 10−4 1.707 × 10−4 1.197 × 10−4

0.6 3.887 × 10−4 5.566 × 10−4 3.706 × 10−4 1.440 × 10−4 1.978 × 10−4 1.373 × 10−4

0.8 1.526 × 10−4 2.234 × 10−4 1.455 × 10−4 8.383 × 10−5 1.163 × 10−4 7.993 × 10−5

1 5.527 × 10−6 1.015 × 10−5 5.270 × 10−6 6.293 × 10−6 9.884 × 10−6 6.000 × 10−6

(a) Error norms and spectral radius using MQ (b) Error norms and spectral radius using IMQ

(c) Error norms and spectral radius against IQ (d) Error norms and spectral radius using GS

Figure 17. Error norms and spectral radius correspond to Example 3 when N = M = 10, α = 1 using
MQ, IMQ, IQ, and GS RBFs.
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(a) Exact solution (b) Computed solution using MQ

(c) Computed solution using IMQ (d) Computed solution against IQ

(e) Computed solution using GS

Figure 18. Exact vs. computed solution corresponds to Example 3 when N = M = 10, α = 1 using
MQ, IMQ, IQ, and GS RBFs.
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(a) Absolute error using MQ (b) Absolute error using IMQ

(c) Absolute error against IQ (d) Absolute error using GS

Figure 19. Absolute error of MQ, IMQ, IQ, and GS at t = 1 × 10−4 corresponds to Example 3.

(a) Exact vs. numerical using MQ (b) Exact vs. numerical using IMQ

Figure 20. Cont.
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(c) Exact vs. numerical against IQ (d) Exact vs. numerical using GS

Figure 20. Comparison of exact and computed solution corresponds to Example 3 at t = 1 × 10−4

and α = 1 using MQ, IMQ, IQ, and GS RBFs.

(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 21. Absolute errors for Example 3 with different values of α’s using MQ RBF.



Fractal Fract. 2023, 7, 882 29 of 41

(a) Absolute error (b) Absolute error

(c) Absolute error
Figure 22. Absolute errors for Example 3 with different values of α’s using IMQ RBF.

(a) Absolute error (b) Absolute error

(c) Absolute error

Figure 23. Absolute errors for Example 3 with different values of α’s using IQ RBF.
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(a) Absolute error (b) Absolute error

(c) Absolute error
Figure 24. Absolute errors for Example 3 with different values of α’s using GS RBF.

Example 4. Let us consider FitzHugh–Nagumo Equations (2) and (3). For α = 1, the exact
solution, as given in [27], is described by the following expression:

u(t, x) =
1

1 + e
(
−x√

2
+yt

) , where y =
1√
2
−
√

2β,

where β represents an arbitrary constant. We employ the ICs and BCs from this exact solution.
Using this solution, we apply the present method to approximate the exact solution within the domain
x ∈ [0, 1]. RBFs such as MQ, IMQ, IQ, and GS are employed for the numerical approximation. We
choose N = 10, δt = 0.001, θ = 0.5, and β = −1. The obtained results, in terms of absolute errors,
are presented in Table 13 for α = 1. The table clearly indicates that the accuracy of the present
method is better than that of the homotopy perturbation transform technique (HPTT). Additionally,
the comparison of the present method with HPTT is presented in Table 14 for β = 0.45 and α = 0.5
while keeping the other parameters the same. The comparison shows that the results of the present
method using different RBFs are more accurate than those of HPTT. Furthermore, the error norms
at various time levels are recorded in Tables 15 and 16 for α values of 0.5 and 1 using the MQ, IMQ,
IQ, and GS RBFs.

The stability and error norm plots are presented in Figures 25 and 26 for α = 1 and 0.5 and
β = −1 and β = 0.45, respectively, for N = 10, θ = 0.5, and δt = 0.001, demonstrating that the
present method consistently satisfies the Lax–Richtmyer stability criterion. Additionally, the surface
plots in Figures 27 and 28 show that the computed solution using the selected RBFs closely matches
the exact solution. The absolute errors for α = 1 and 0.5 at various time levels are depicted in
Figures 29 and 30, respectively, indicating reasonable accuracy. Finally, Figures 31 and 32 com-
pare the exact and computed solutions at the final time, demonstrating the good accuracy of the
present method.
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(a) Error norms and spectral radius using MQ (b) Error norms and spectral radius using IMQ

(c) Error norms and spectral radius against IQ (d) Error norms and spectral radius using GS

Figure 25. Error norms and spectral radius correspond to Example 4 when N = M = 10, α = 1 using
MQ, IMQ, IQ, and GS RBFs.

Table 13. Comparison of absolute errors of the present method solution with HPTT using MQ, IMQ,
IQ, and GS RBFs for α = 1, β = −1, N = 10, θ = 0.5, and δt = 0.001 corresponds to Example 4.

x t [27]
MQ IMQ IQ GS

c = 18.6452 c = 15.3437 c = 19.0984 c = 0.3839

0.001 0.001 1.5 × 10−3 2.604 × 10−9 1.507 × 10−9 1.243 × 10−9 1.019 × 10−9

0.002 0.002 3.0 × 10−3 1.287 × 10−8 3.875 × 10−9 4.379 × 10−9 8.782 × 10−11

0.003 0.003 4.5 × 10−3 1.573 × 10−8 1.229 × 10−8 9.328 × 10−9 1.306 × 10−9

0.004 0.004 6.0 × 10−3 9.833 × 10−9 6.037 × 10−9 9.718 × 10−9 3.324 × 10−9

0.005 0.005 7.5 × 10−3 1.269 × 10−8 7.529 × 10−9 2.312 × 10−8 4.515 × 10−9

0.006 0.006 9.1 × 10−3 9.864 × 10−9 6.832 × 10−9 3.217 × 10−9 5.898 × 10−9

0.007 0.007 1.0 × 10−2 2.049 × 10−9 5.261 × 10−9 6.513 × 10−9 1.112 × 10−8

0.008 0.008 1.2 × 10−2 4.631 × 10−10 5.446 × 10−9 4.356 × 10−10 1.287 × 10−8

0.009 0.009 1.3 × 10−2 3.879 × 10−9 5.513 × 10−11 1.102 × 10−9 6.502 × 10−9

0.010 0.010 1.5 × 10−2 9.973 × 10−10 8.579 × 10−10 1.403 × 10−10 1.438 × 10−9
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Table 14. Comparison of absolute errors of the present method solution with HPTT using MQ, IMQ,
IQ, and GS RBFs for α = 0.5, β = 0.45, N = 10, θ = 0.5, and δt = 0.001 corresponds to Example 4.

x t [27]
MQ IMQ IQ GS

c = 5.8849 c = 46.8122 c = 21.9648 c = 0.01313

0.001 0.001 2.8 × 10−2 5.428 × 10−10 2.256 × 10−9 8.790 × 10−11 8.717 × 10−10

0.002 0.002 4.1 × 10−2 3.680 × 10−10 2.810 × 10−9 3.522 × 10−10 4.335 × 10−10

0.003 0.003 5.3 × 10−2 6.547 × 10−10 2.313 × 10−9 2.294 × 10−12 1.436 × 10−8

0.004 0.004 6.2 × 10−2 3.745 × 10−10 4.687 × 10−9 1.209 × 10−9 6.656 × 10−9

0.005 0.005 6.9 × 10−2 2.766 × 10−10 1.804 × 10−9 5.891 × 10−10 1.806 × 10−9

0.006 0.006 8.0 × 10−2 5.124 × 10−11 4.929 × 10−9 1.687 × 10−9 4.174 × 10−9

0.007 0.007 8.7 × 10−2 2.419 × 10−11 5.098 × 10−10 1.065 × 10−9 2.086 × 10−9

0.008 0.008 9.4 × 10−2 3.764 × 10−11 8.220 × 10−10 2.522 × 10−10 3.540 × 10−10

0.009 0.009 1.0 × 10−2 2.451 × 10−11 3.408 × 10−10 1.441 × 10−9 7.412 × 10−10

0.010 0.010 1.1 × 10−2 1.957 × 10−11 4.644 × 10−10 9.778 × 10−11 1.064 × 10−9

Table 15. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for β = −1, N = 10,
θ = 0.5, and δt = 0.001 corresponds to Example 4.

RBFs t
α = 0.5 α = 1

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 2.2759 c = 18.6452

0.002 1.826 × 10−9 2.695 × 10−8 1.741 × 10−8 1.506 × 10−9 2.005 × 10−8 1.436 × 10−8

0.004 3.987 × 10−10 7.487 × 10−9 3.801 × 10−9 8.064 × 10−10 1.239 × 10−8 7.688 × 10−9

0.006 3.952 × 10−10 6.265 × 10−9 3.768 × 10−9 7.224 × 10−10 9.868 × 10−9 6.888 × 10−9

0.008 1.206 × 10−10 2.755 × 10−9 1.150 × 10−9 1.338 × 10−10 2.402 × 10−9 1.276 × 10−9

0.01 8.903 × 10−11 1.567 × 10−9 8.488 × 10−10 8.692 × 10−11 1.269 × 10−9 8.287 × 10−10

IMQ

c = 35.2365 c = 15.3437

0.002 1.410 × 10−9 2.428 × 10−8 1.344 × 10−8 5.814 × 10−10 9.810 × 10−9 5.543 × 10−9

0.004 9.698 × 10−10 1.670 × 10−8 9.247 × 10−9 3.875 × 10−10 7.351 × 10−9 3.695 × 10−9

0.006 2.074 × 10−9 3.516 × 10−8 1.977 × 10−8 5.499 × 10−10 7.665 × 10−9 5.243 × 10−9

0.008 1.188 × 10−9 1.630 × 10−8 1.133 × 10−8 5.216 × 10−10 7.340 × 10−9 4.973 × 10−9

0.01 7.080 × 10−10 1.068 × 10−8 6.751 × 10−9 1.326 × 10−10 2.486 × 10−9 1.264 × 10−9

IQ

c = 22.2965 c = 19.0984

0.002 4.624 × 10−9 6.265 × 10−8 4.409 × 10−8 4.838 × 10−10 6.599 × 10−9 4.613 × 10−9

0.004 9.319 × 10−9 1.256 × 10−7 8.885 × 10−8 7.086 × 10−10 1.217 × 10−8 6.757 × 10−9

0.006 2.882 × 10−9 5.671 × 10−8 2.748 × 10−8 6.541 × 10−10 1.277 × 10−8 6.237 × 10−9

0.008 5.201 × 10−9 7.886 × 10−8 4.959 × 10−8 1.535 × 10−10 3.069 × 10−9 1.463 × 10−9

0.01 1.441 × 10−9 2.486 × 10−8 1.374 × 10−8 7.404 × 10−11 1.420 × 10−9 7.059 × 10−10

GS

c = 0.2654 c = 0.3839

0.002 2.842 × 10−9 3.915 × 10−8 2.710 × 10−8 1.096 × 10−10 1.716 × 10−9 1.045 × 10−9

0.004 5.743 × 10−9 7.859 × 10−8 5.476 × 10−8 2.960 × 10−10 4.213 × 10−9 2.822 × 10−9

0.006 4.834 × 10−9 7.845 × 10−8 4.609 × 10−8 4.196 × 10−10 5.898 × 10−9 4.001 × 10−9

0.008 5.551 × 10−9 1.224 × 10−7 5.292 × 10−8 1.245 × 10−9 1.639 × 10−8 1.187 × 10−8

0.01 1.994 × 10−9 3.734 × 10−8 1.901 × 10−8 1.991 × 10−10 2.787 × 10−9 1.898 × 10−9
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Table 16. Error norms at various time levels using MQ, IMQ, IQ, and GS RBFs for β = 0.45, N = 10,
θ = 0.5, and δt = 0.001 correspond to Example 4.

RBFs t
α = 0.5 α = 1

L2 L∞ Lrms L2 L∞ Lrms

MQ

c = 5.8849 c = 4.46

0.002 3.997 × 10−11 6.588 × 10−10 3.811 × 10−10 3.832 × 10−11 5.612 × 10−10 3.654 × 10−10

0.004 2.543 × 10−11 4.185 × 10−10 2.425 × 10−10 4.074 × 10−11 6.447 × 10−10 3.885 × 10−10

0.006 2.687 × 10−11 4.331 × 10−10 2.562 × 10−10 3.552 × 10−11 5.081 × 10−10 3.387 × 10−10

0.008 2.878 × 10−11 5.097 × 10−10 2.744 × 10−10 1.383 × 10−11 1.986 × 10−10 1.318 × 10−10

0.01 1.573 × 10−11 2.450 × 10−10 1.500 × 10−10 9.560 × 10−12 1.679 × 10−10 9.115 × 10−11

IMQ

c = 46.8122 c = 47.0019

0.002 1.732 × 10−10 2.901 × 10−9 1.652 × 10−9 4.734 × 10−11 7.761 × 10−10 4.513 × 10−10

0.004 3.925 × 10−10 5.261 × 10−9 3.742 × 10−9 4.022 × 10−11 7.685 × 10−10 3.835 × 10−10

0.006 3.585 × 10−10 5.686 × 10−9 3.418 × 10−9 6.586 × 10−11 1.284 × 10−9 6.280 × 10−10

0.008 2.187 × 10−10 3.579 × 10−9 2.085 × 10−9 7.760 × 10−11 1.417 × 10−9 7.399 × 10−10

0.01 4.236 × 10−11 6.657 × 10−10 4.038 × 10−10 2.589 × 10−11 3.952 × 10−10 2.468 × 10−10

IQ

c = 21.9648 c = 15.2317

0.002 2.981 × 10−11 4.302 × 10−10 2.842 × 10−10 6.390 × 10−11 1.053 × 10−9 6.092 × 10−10

0.004 7.874 × 10−11 1.499 × 10−9 7.508 × 10−10 4.657 × 10−11 9.039 × 10−10 4.441 × 10−10

0.006 1.340 × 10−10 1.833 × 10−9 1.278 × 10−9 4.018 × 10−11 7.631 × 10−10 3.831 × 10−10

0.008 3.544 × 10−11 6.846 × 10−10 3.379 × 10−10 1.035 × 10−10 1.417 × 10−9 9.868 × 10−10

0.01 4.529 × 10−11 8.046 × 10−10 4.318 × 10−10 2.827 × 10−11 4.326 × 10−10 2.695 × 10−10

GS

c = 0.01313 c = 0.17158

0.002 7.714 × 10−11 1.385 × 10−9 7.355 × 10−10 1.530 × 10−11 3.216 × 10−10 1.459 × 10−10

0.004 1.041 × 10−9 2.445 × 10−8 9.924 × 10−9 5.598 × 10−11 7.387 × 10−10 5.338 × 10−10

0.006 5.649 × 10−10 9.973 × 10−9 5.386 × 10−9 3.017 × 10−11 5.142 × 10−10 2.876 × 10−10

0.008 2.462 × 10−10 3.775 × 10−9 2.348 × 10−9 1.693 × 10−11 2.656 × 10−10 1.615 × 10−10

0.01 1.223 × 10−10 1.844 × 10−9 1.166 × 10−9 2.405 × 10−11 5.014 × 10−10 2.293 × 10−10

(a) Error norms and spectral radius using MQ (b) Error norms and spectral radius using IMQ

Figure 26. Cont.
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(c) Error norms and spectral radius against IQ (d) Error norms and spectral radius using GS

Figure 26. Error norms and spectral radius correspond to Example 4 when N = M = 10, α = 0.5
using MQ, IMQ, IQ, and GS RBFs.

(a) Exact solution (b) Computed solution using MQ

(c) Computed solution using IMQ (d) Computed solution against IQ

Figure 27. Cont.
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(e) Computed solution using GS

Figure 27. Exact vs. computed solution corresponds to Example 4 when N = M = 10, α = 1 using
MQ, IMQ, IQ, and GS RBFs.

(a) Exact solution (b) Computed solution using MQ

(c) Computed solution using IMQ (d) Computed solution against IQ

Figure 28. Cont.
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(e) Computed solution using GS

Figure 28. Exact vs. computed solution corresponds to Example 4 when N = M = 10, α = 0.5 using
MQ, IMQ, IQ, and GS RBFs.

(a) Absolute error using MQ (b) Absolute error using IMQ

(c) Absolute error against IQ (d) Absolute error using GS

Figure 29. Absolute error of MQ, IMQ, IQ, and GS at t = 0.01 corresponds to Example 4.
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(a) Absolute error using MQ (b) Absolute error using IMQ

(c) Absolute error against IQ (d) Absolute error using GS

Figure 30. Absolute error of MQ, IMQ, IQ, and GS at t = 0.01 corresponds to Example 4.

(a) Exact vs. numerical using MQ (b) Exact vs. numerical using IMQ

Figure 31. Cont.
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(c) Exact vs. numerical against IQ (d) Exact vs. numerical using GS

Figure 31. Comparison of exact and computed solution corresponds to Example 4 at t = 0.01 and
α = 1 using MQ, IMQ, IQ, and GS RBFs.

(a) Exact vs. numerical using MQ (b) Exact vs. numerical using IMQ

(c) Exact vs. numerical against IQ (d) Exact vs. numerical using GS

Figure 32. Comparison of exact and computed solution corresponds to Example 4 at t = 0.01 and
α = 0.5 using MQ, IMQ, IQ, and GS RBFs.
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4. Conclusions

The RBF collocation method has been employed to numerically solve a range of
FitzHugh–Nagumo Equations (2) and (3). The computed solutions exhibit excellent agree-
ment with exact solutions across various parameter values. The accuracy of this method
was rigorously assessed using different error norms. The results unequivocally establish
that the proposed approach is highly effective in handling fractional PDE. Furthermore,
the stability of the proposed algorithm was demonstrated through eigenvalue analysis,
particularly focusing on the MQ, IMQ, IQ, and GS RBFs’ shape parameter, denoted as c.
From a computational standpoint, it is evident that the present method offers significant
efficiency benefits, as it requires a minimal number of nodes and allows for fine-tuning of
the RBF shape parameter to achieve satisfactory accuracy. Building on these achievements,
several promising avenues for future research emerge.

• Investigate the use of locally supported RBFs to enhance adaptability to intricate
spatial structures, improving accuracy in localized phenomena.

• Extend the methodology to incorporate time–space fractional derivatives, deepening
understanding and expanding applicability to a broader range of real-world problems.

• The present study focuses on one-dimensional scenarios, and broadening its scope to handle
multidimensional systems would significantly enhance its utility in practical applications.

• Exploring parallelization methods tailored for distributed memory systems would aug-
ment the adaptability and practical relevance of the presented techniques. Addressing
these aspects not only demonstrates the methods’ capacity to handle resource-intensive
challenges but also enriches our understanding of their real-world applicability.
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