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Abstract: Fractional calculus extends traditional, integer-based calculus to include non-integer orders,
offering a powerful tool for a range of engineering applications, including image processing. This
work delves into the utility of fractional calculus in two crucial aspects of image processing: image
enhancement and denoising. We explore the foundational theories of fractional calculus together with
its amplitude–frequency characteristics. Our focus is on the effectiveness of fractional differential
operators in enhancing image features and reducing noise. Experimental results reveal that fractional
calculus offers unique benefits for image enhancement and denoising. Specifically, fractional-order
differential operators outperform their integer-order counterparts in accentuating details such as
weak edges and strong textures in images. Moreover, fractional integral operators excel in denoising
images, not only improving the signal-to-noise ratio but also better preserving essential features such
as edges and textures when compared to traditional denoising techniques. Our empirical results
affirm the effectiveness of the fractional-order calculus-based image-processing approach in yielding
optimal results for low-level image processing.

Keywords: fractional-order differential operator; fractional-order integral operator; image enhance-
ment; image denoising; partial differential equation theory

1. Introduction

Fractional calculus, with its three-century history, was long confined to the realm
of pure mathematical analysis and largely ignored by engineers [1–5]. It was not until
Mandelbrot introduced fractal theory, linking Riemann–Liouville fractional calculus to
Brownian motion in fractal media [6–8], that the field captured the attention of engineering
technologists. Consequently, fractional calculus has evolved from an esoteric mathematical
theory into a practical tool for modeling complex systems in various engineering disciplines.
Recent research has demonstrated that fractional calculus operators exhibit memory and
nonlocality—features that are particularly useful for describing materials with inherent
memory and unique properties. Now, the theory is making inroads not only in foundational
sciences but also in applied engineering fields, proving its practical utility [9]. Over the
past decade, researchers have uncovered the broad applicability of fractional calculus in
signal analysis and processing. Studies have introduced fractional calculus to traditional
memristor elements and formulated various natural forms of fractional impedance [10–12].
Additionally, recent works have combined fractional calculus with classic swarm intelli-
gence algorithms, spawning new methods such as fractional neural networks and fractional
ant colony algorithms based on the fractional steepest descent approach; these algorithms
have shown promising results [13–17]. In the realm of image processing, pioneering work
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by Pu et al. laid the groundwork for applying fractional calculus. They identified unique
features such as “nonlocality” and “weak derivatives,” leading to its application in low-
level digital image processing. Their research introduced six basic fractional differential
operators and set the stage for a novel methodology based on fractional calculations [18,19].

Significant strides have also been made in image processing through fractional calcu-
lus. Hacini, for example, developed a bidirectional fractional-order derivative mask for
edge detection and denoising in both real and synthetic images [20]. Zhang combined
rough set theory with fractional-order differentiators to enhance image details through a
2D Fourier transform and adaptive fractional-order differential operators [21]. Li intro-
duced an active contour method for noisy image segmentation, which employs adaptively
defined fractional orders [22]. This method incorporates fractional differentiation with
adaptively defined orders into the fitting term to manage noise during curve evolution.
Moreover, Bai proposed a new variational model for image denoising and decomposition
using fractional-order bounded variation space to emphasize cartoon-like patterns [23].
Researchers have successfully integrated fractional calculus with partial differential equa-
tions to devise innovative image-processing techniques [24–26]. Notable among them is
Abirami’s variable-order fractional diffusion model for medical image denoising, based
on the Caputo finite-difference scheme [27]. Building on Pu’s foundational work, numer-
ous scholars have introduced novel image-processing models incorporating fractional
calculus [28–32], such as methods based on fractional contrast-limited adaptive histogram
equalization and denoising techniques using fractional-order NLM and BM3D.

This study investigates the application of fractional calculus theory to digital image
processing. The remainder of the article is organized as follows: Section 2 delves into
the mathematical and physical underpinnings of fractional calculus theory. Section 3
introduces the construction of fractional-order differential operators and assesses their
effectiveness in image enhancement through simulations and comparative experiments.
Section 4 is devoted to the development of fractional-order integral operators and evaluates
their utility in image denoising via simulation experiments. Finally, Section 5 provides
concluding remarks.

2. Basic Theory

This section offers a succinct overview of three central topics: (1) the core definitions
of fractional calculus theory and their practical applications; (2) the amplitude–frequency
characteristics of fractional-order differential and integral operators; and (3) the amplitude–
frequency characteristics of typical signals when subjected to fractional calculus operations.

2.1. Fractional Calculus Theory

Although a unified time-domain expression for fractional calculus remains exclu-
sive, several approaches have led to distinct definitions. Three classical definitions are
particularly noteworthy: those of Grünwald–Letnikov, Riemann–Liouville, and Caputo,
corresponding to Equations (1)–(3), respectively [1,2].

• The Grünwald–Letnikov approach to fractional calculus is defined as follows:

G
a Dv

t f (x) = lim
h→0

hv
t−a

h

∑
j=0

Γ(v + j)
j!Γ(v)

f (x − jh) v ∈ R (1)

• The Riemann–Liouville definitions for fractional-order integration and differentiation
are as follows: 

R
a D−v

t f (x) = − 1
Γ(v)

∫ t
a

f (y)
(x−y)1−v dy

R
a Dv

t f (x) = − 1
Γ(n−v)

dn

dtn

∫ t
a

f (y)
(x−y)1+v−n dy

(2)



Fractal Fract. 2024, 8, 37 3 of 19

• Caputo’s definition of fractional calculus is outlined as follows:

C
a Dv

t f (x) = R
a Dv

t f (x)−
m−1

∑
j=0

f (j)(a)
Γ(j − v + 1)

(t − a)k−v (3)

These three definitions of fractional calculus are closely related and can be trans-
formed under certain conditions. The Riemann–Liouville and Caputo definitions serve
as refinements of the original Grünwald–Letnikov definition. Specifically, the Grünwald–
Letnikov approach is especially useful in signal processing applications because it can
be converted into a convolution operation for numerical implementation. However, the
Riemann–Liouville definition is mainly used to find analytical solutions for relatively
straightforward functions. The Caputo definition proves particularly useful in engineering
for analyzing initial boundary value problems in fractional-order differential equations.

2.2. Amplitude–Frequency Characteristics of Fractional Calculus Operators
2.2.1. Fractional-Order Differential Operator

Consider f (x) ∈ L2(R) as the square-integrable energy signal f (x) ∈ L2(R), with its

Fourier transform represented by
∧

f (ω) =
∫

R f (x)e−iωxdx. The n-th derivative of the signal
f (x) is f n(x) (n ∈ Z+). Leveraging the properties of the Fourier transform, we can arrive
at Equation (4).

Dn f (x) FT⇔ (
∧

D f )
n
(ω) = (iω)n ·

∧
f (ω) =

∧
dn(ω)

∧
f (ω) (4)

When we extend the positive integer n to a positive real number v (v ∈ R+), the
fractional-order derivative of the signal f (x) can be expressed as f v(x). Utilizing the
properties of the fractional-order Fourier transform [33,34], we can formulate Equation (5),

while
∧

dv(ω) can be further expanded to obtain Equation (6).

Dv f (x) FT⇔ (
∧

D f )
v
(ω) = (iω)v ·

∧
f (ω) =

∧
dv(ω) ·

∧
f (ω) (5)

∧
dv(ω) = (iω)v =

∧
αv(w)·eiθv(ω)

∧
αv(w) = |ω|v,

∧
θv(ω) = vπ

2 sgn(ω)
(6)

According to Equations (5) and (6), the amplitude–frequency characteristic curve for
the fractional-order differential operator of a one-dimensional signal can be plotted, as
demonstrated in Figure 1a.

Based on Equations (5) and (6), Figure 1a delineates the amplitude–frequency char-
acteristics of the fractional-order differential operator for one-dimensional signals. The
curve reveals that the operator considerably boosts medium- and high-frequency signals.
Specifically, this amplification rises nonlinearly and dramatically as both frequency and
differential order increase.

In the extremely low-frequency range, the fractional-order differential operator mod-
estly enhances the signal’s amplitude. Interestingly, this augmentation is marginally greater
than what is achieved by first- and second-order differential operators.

In the medium-to-high-frequency range, the fractional-order differential operator
amplifies the signal less than the first- and second-order operators do. This behavior
highlights its “weak derivative” characteristics, allowing it not only to boost high-frequency
components but also to nonlinearly maintain the very low-frequency elements.

From a signal processing viewpoint, this operator functions as a generalized form of
amplitude and phase modulation. Its amplitude undergoes fractional-order exponential
changes with frequency, while its phase aligns with a generalized Hilbert frequency shift.
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order differential; (b) Fractional-order integral.

As illustrated in Figure 1a and based on Equations (5) and (6), the amplitude–frequency
characteristics of this fractional-order differential operator for one-dimensional signals
reveal several key traits. First, the operator amplifies medium- and high-frequency signals,
with this enhancement increasing nonlinearly and sharply as both frequency and differential
orders rise. Second, at a specific fractional-order differential order v ∈ [0, 1], the operator
amplifies the amplitude in the very low-frequency region (ω < 1) to a certain extent,
achieving an increase moderately greater than that of the first- and second-order operators.
Lastly, in the mid-to-high-frequency region (ω > 1) with v ∈ [0, 1], the operator does
elevate the signal amplitude, but this increase is notably less than that offered by the first-
and second-order operators.

Overall, these characteristics show that the fractional-order differential operator pos-
sesses “weak derivative” properties. It not only emphasizes the high-frequency components
but also nonlinearly preserves the very low-frequency elements of the signal. Additionally,
in signal processing terms, this operator acts as a generalized form of amplitude and phase
modulation. The amplitude changes exponentially with frequency in a fractional way, and
its phase corresponds to a generalized Hilbert frequency shift [18].

2.2.2. Fractional-Order Integral Operator

Let us consider a square-integrable energy signal represented by f (t) ∈ L2(R), whose

Fourier transform is
∧

f (ω) =
∫

R f (t)e−iωtdt. When v ∈ R−, I = D−1 and v′ = −v can be
assumed to obtain the Fourier transform form of the fractional-order integral operator
based on the G-L definition, they can be expressed as in Equation (7). This expression
(iω)v′ can be further expanded to yield Equation (8).

Iv′ f (t) FT⇔ (
∧
I f )

v′

(ω) = (iω)v′ ·
∧

f (ω) =
∧

iv′(ω) ·
∧

f (ω) (7)
∧

iv′(ω) =
∧

αv′(w)·eiθv′(ω)

∧
αv′(w) = |ω|−v′ ,

∧
θv‘

(ω) = −v′π
2 sgn(ω)

(8)
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Based on Equations (7) and (8), Figure 1b illustrates the amplitude–frequency char-
acteristics of the fractional-order integral operator for one-dimensional signals. Several
observations emerge from a direct analysis. First, fractional-order integral operators at-
tenuate medium- and high-frequency signals, an effect that intensifies nonlinearly as both
frequency and the integration order rise. For a specific frequency range v′ ∈ [0, 1] and
order v′ ∈ [0, 1], the fractional-order integral operator modestly amplifies the signal am-
plitude. However, this amplification is significantly less than that achieved by first- and
second-order integral operators. Within another v′ ∈ [0, 1] frequency range and a partic-
ular order v′ ∈ [0, 1], the fractional-order integral operator lessens the signal amplitude,
but this decrease is far less substantial than that generated by the first- and second-order
integral operators. These attributes indicate that the fractional-order integral operator
not only suppresses the high-frequency components of the signal but also maintains its
highest-frequency components in a nonlinear way. Furthermore, while the amplitude of
low-frequency elements is reduced, those at the very lowest frequencies are preserved.

2.3. Fractional-Order Calculus Processing and Analysis of Common Signals

Figure 2a–d display the amplitude–frequency characteristic curves for fractional cal-
culus applied to various types of signals: a square wave (Equation (9)), a triangular wave
(Equation (10)), a sinusoidal signal (sin(t)), and a Gaussian signal (Equation (11)). Analysis
shows that as the order increases from 0 to 1 for the square wave, there is a significant
enhancement in the fractional calculus output at points of abrupt change. Similarly, the
results for the triangular wave evolve into a shape resembling a square wave. When the
fractional derivative order is set at v = 1, the curves represent the first derivatives of
both the sinusoidal and Gaussian signals, indicating their maximum rate of change. For
fractional-order differential values within v ∈ [0, 1], both the sinusoidal and Gaussian
signals show a fractional-order continuous interpolation, linking the actual signal value
with its most rapidly changing direction.

Square(t) =

{
1 0 ≤ t ≤ T
−1 T < t ≤ 2T

(9)

Triangular(t) =
∞

∑
n=1

4E
nπ2 sin2

(nπ

2

)
cos(nωt) (10)

Gauss(t) =
1√
2π

e−
t2
2 (11)

These findings highlight that the integer-order differential of a stationary point is
zero, but its fractional-order differential is not. For signals that change linearly over
time, the integer-order differential remains constant, while the fractional-order differential
experiences nonlinear shifts. The unique characteristics of the fractional calculus operator
enable it to emphasize details such as high-frequency edges and textures in images, while
also preserving some low-frequency nuances to a degree. Therefore, image-processing
techniques grounded in fractional calculus offer advantages over traditional methods
based on integer orders. Specifically, this approach is more efficient in extracting intricate
details such as edges and textures, while also maintaining the overall contour and texture
information of the image.
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3. Application of Fractional-Order Differential in Image Enhancement

In this section, we discuss two primary topics: (1) An examination of the characteristics
of the fractional-order differential operator for image signals, which includes an image
enhancement experiment rooted in fractional-order. This inquiry explores the relationship
between the differential order of the fractional operator and the high-pass strength of a
two-dimensional signal. (2) An image enhancement experiment using the fractional-order
differential operator, which highlights the advantages of a fractional-order-based image
enhancement algorithm over its integral-order counterpart.

3.1. Amplitude–Frequency Characteristics of Fractional-Order Differential Image
Enhancement Operators

We can define the fractional-order v derivative of the two-dimensional energy function
as f (x, y) be f v(x, y) (v ∈ R+). Owing to the separability of the fractional Fourier trans-
form, it follows that the fractional-order differential filter for this two-dimensional energy
function f v(x, y) is also separable. Therefore, based on Equation (5), we can derive the
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fractional-order differential filter function of the two-dimensional energy function f (x, y),
as presented in Equation (12).

(
∧

D f )
v
(ωx, ωy) =

(
|ωx|vei vπ

2 sgn(ωx)
)
∗
(∣∣ωy

∣∣vei vπ
2 sgn(ωy)

)
(12)

The amplitude–frequency characteristic surface for two-dimensional signals, when ap-
plying differential operators of varying fractional orders, can be inferred from Equation (12)
and is depicted in Figure 3. This figure delineates the amplitude–frequency characteristic
surfaces of the fractional-order differential operator for orders v ∈ {0, 0.1, 0.5, 1.0}. A close
look at this figure reveals that the fractional-order differential operator serves as a high-pass
filter. Notably, its cutoff frequency correlates with the fractional order of differentiation. As
this order rises, the operator’s ability to filter high-frequency signals intensifies, effectively
attenuating low-frequency elements in the image. The degree of this attenuation also
escalates with the differential order.
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3.2. Image Enhancement Experiment and Analysis of Fractional-Order Differential Operator

Under certain conditions, the fractional-order differentiation of two-dimensional im-
age signals I(x, y) in both the X and Y directions can be considered separable [33,34].
Consequently, a normalized eight-direction fractional-order differentiation image enhance-
ment operator can be obtained. The image signal’s duration [a, t] of the image signal I(x, y)

is divided equally by step size h = 1, expressed as, n =
[ t−a

h
] h=1
= [t − a], and the numerical

formulations for the fractional-order differential operator along the X- and Y-axes can be
found in Equations (13) and (14), where Rv

x(x, y) and Rv
y(x, y) represent the fractional-order

differential remainders in the horizontal and vertical directions, respectively.

G
a Dv

t I(x, y)x
∆
= I(x, y) + (−v)I(x − 1, y) +

(−v)(−v + 1)
2

I(x − 2, y) +
(−v)(−v + 1)(−v + 2)

6
I(x − 3, y) + Rv

x(x, y) (13)

G
a Dv

t I(x, y)y
∆
= I(x, y) + (−v)I(x, y − 1) +

(−v)(−v + 1)
2

I(x, y − 2) +
(−v)(−v + 1)(−v + 2)

6
I(x, y − 3) + Rv

y(x, y) (14)

Figure 4 presents the fractional-order differential image-enhancement mask operator,
denoted as WD. This operator is derived from Equations (13) and (14) to cover all eight
directions in the image. While the fractional-order ladder degree is inherently a linear
operator, its modulus becomes nonlinear due to the inclusion of square root calculations.
As a result, the fractional-order ladder degree vector lacks rotationally invariant isotropy.
However, as elaborated in Reference [35], the modulus of the fractional-order gradient
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vector is isotropic. This study’s fractional calculus operator demonstrated notable sym-
metry; specifically, the weights of the fractional calculus mask operator remain consistent
across all eight directions in the digital image. The fractional-order gradient modulus
value quantifies the outcomes in image processing. Thus, this fractional calculus operator
possesses the feature of “anisotropic rotational variance.” The filtering coefficient for the
fractional-order differential enhancement operator is provided in Equation (15).

{
WD0 = 1, WD1 = −v, WD2 =

−v(−v + 1)
2

, WD3 =
−v(−v + 1)(−v + 2)

6
, . . . , WDm =

−v(−v + 1)(−v + 2) . . . (−v + m − 1)
m!

}
(15)
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To facilitate visual observation, Figure 5b–f display the inverted images processed by 
differential operators of varying orders ( { }0.2,0.1,8.0,5.0,1.0∈v ) on the Barbara images, to 
make visual observation more straightforward. Direct observation reveals that the image 
filtered by a fractional-order differential operator of order v = 0.1 enhances the image’s 
high-frequency details to some extent, while preserving a significant amount of low-fre-
quency information. As the differential order increases, the fractional-order filtering op-
erator progressively reduces the low-frequency content in the image, while nonlinearly 
amplifying the high-frequency details. When the image is filtered by a fractional-order 
differential operator with an order of v = 2.0, a substantial amount of low-frequency infor-
mation is removed, leading to a nonlinear enhancement of the high-frequency elements 
in the image. 

Figure 4. Fractional-order differential enhancement operator.

To facilitate visual observation, Figure 5b–f display the inverted images processed by
differential operators of varying orders (v ∈ {0.1, 0.5, 0.8, 1.0, 2.0}) on the Barbara images,
to make visual observation more straightforward. Direct observation reveals that the image
filtered by a fractional-order differential operator of order v = 0.1 enhances the image’s high-
frequency details to some extent, while preserving a significant amount of low-frequency
information. As the differential order increases, the fractional-order filtering operator
progressively reduces the low-frequency content in the image, while nonlinearly amplifying
the high-frequency details. When the image is filtered by a fractional-order differential
operator with an order of v = 2.0, a substantial amount of low-frequency information is
removed, leading to a nonlinear enhancement of the high-frequency elements in the image.

Figure 5 offers a visual comparison through a series of images. Figure 5b–f display
Barbara images that have been processed using differential operators of varying orders
v ∈ {0.1, 0.5, 0.8, 1.0, 2.0}. Direct observations show that a fractional-order differential
operator with an order of v = 0.1 modestly amplifies the high-frequency details in the image
while retaining a substantial amount of its low-frequency content. As the differential order
increases, the fractional-order filtering operator progressively diminishes the low-frequency
elements in the image and nonlinearly amplifies the high-frequency details. When the
image undergoes processing with a differential order of v = 2.0, it loses a considerable
amount of low-frequency content, while the high-frequency regions are significantly and
nonlinearly enhanced.

Figure 6 displays the contrast variations in the Barbara image when processed by
differential operators of different orders, specifically v ∈ {0.1, 0.5, 0.8, 1.0, 2.0}. Upon closer
inspection, it is clear that when the image is enhanced using a fractional-order differen-
tial operator of order v = 0.1, the result is noticeably brighter, verging on overexposure.
This outcome is due to the low-order differential filter’s capacity to preserve significant
low-frequency contours and subtle textural nuances. Concurrently, the edge and texture
details of the image receive moderate enhancement. In contrast, when the image is pro-
cessed with a fractional-order differential operator of order v = 2.0, the resulting image
does not show a dramatic increase in contrast. This can be attributed to the higher-order
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differential operator’s tendency to eliminate most of the low-frequency content while sig-
nificantly accentuating the high-frequency edges and pronounced textural details, resulting
in observable edge jitter.
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Figure 6. Enhanced images processed by fractional-order differential operators of different order.
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Figure 7 presents a sequence of enhanced images. Specifically, Figure 7b,c feature
images enhanced by fractional-order differential operators with orders v = 0.5 and v = 0.8,
respectively. Figure 7d–f showcase images processed using classic integer-order differential
enhancement operators: Sobel, Prewitt, and Laplacian. Figure 8 complements these by
providing histograms corresponding to each image displayed in Figure 7.
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Upon direct evaluation, fractional-order differential operators with v = 0.5 and v = 0.8
demonstrate significant capabilities. They effectively enhance subtle textural features in
the smoother regions of the image, while nonlinearly amplifying stronger textural details,
especially in areas with minor changes in gray value amplitude and frequency. Furthermore,
these operators also significantly boost the high-frequency edge details, particularly in
regions of the image characterized by substantial variations in gray value amplitude.

A side-by-side look at the histogram contrasts in Figure 8 yields an important insight:
images processed using fractional-order differential enhancement operators tend to exhibit
a more balanced gray level distribution. This leads to a superior overall image contrast
compared to those processed with integer-order differential operators.
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Table 1 provides a comparative analysis of experimental data from various image
enhancement models. Direct analysis reveals that the fractional-order image enhancement
model introduced in this study yields significant improvements in metrics such as average
gradient, contrast, and image entropy. These improvements become particularly evident
when contrasted with conventional integer-order image enhancement methods.

Table 1. Comparison of experimental data using different enhancement methods.

Methods AG Contrast Entropy

v = 0.5 0.0493 0.0149 0.9777

v = 0.8 0.0466 0.0142 0.9945

Sobel 0.0397 0.0088 0.9661

Prewitt 0.0349 0.0067 0.9629

Laplacian 0.0489 0.0139 0.9712

CS 0.0411 0.0091 0.9667

HE 0.0474 0.0130 0.9835

4. Application of Fractional-Order Integral in Image Denoising

This section delves into two key areas related to the application of fractional-order
integration operators on image signals. (1) It explores the relationship between the in-
tegration order of fractional-order integral operators and the low-pass filtering strength
in two-dimensional signals. (2) It underscores the advantages of fractional-order inte-
gral image-denoising operators over their integer-order counterparts. These advantages
manifest both in subjective visual comparisons and objective performance metrics.
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4.1. Amplitude–Frequency Characteristics of Fractional-Order Integral Operator Image
Denoising Operator

Let the fractional-order integral of the two-dimensional energy function be denoted as
f (x, y) be f v′(x, y) (v′ ∈ R−). Due to the separability of the fractional-order Fourier trans-
form, the fractional-order integral filter of the two-dimensional energy function f (x, y) is
also separable. Therefore, the fractional-order integral filter function of the two-dimensional
energy function f (x, y) can be derived by expanding based on Equation (7), as illustrated
in Equation (16).

(
∧
I f )

v′

(ωx, ωy) =

(
|ωx|−v′ ei −v′π

2 sgn(ωx)

)
∗
(∣∣ωy

∣∣−v′ ei −v′π
2 sgn(ωy)

)
(16)

Figure 9 displays the amplitude–frequency characteristic surfaces for fractional integra-
tion operators at different orders (v ∈ {0.1, 0.5, 0.8, 1.0, 2.0}), as derived from Equation (16).
Direct observation confirms that these fractional-order integration operators act as low-pass
filters. Moreover, their cutoff frequency is correlated with the fractional order of integra-
tion. As this order of integration increases, the low-pass performance of the operators
is enhanced. Specifically, these fractional-order integration operators attenuate the high-
frequency signals in images, and this attenuation effect grows nonlinearly as the integration
order rises.
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Figure 9. Amplitude–frequency characteristic surface of two-dimensional signal fractional-order
integration.

Figure 9 illustrates the amplitude–frequency characteristic surfaces for fractional inte-
gration operators at different orders v ∈ {0.1, 0.5, 0.8, 1.0, 2.0} as outlined in Equation (16).
Direct evaluation indicates that these fractional-order integration operators serve as low-
pass filters. Importantly, their cutoff frequency is directly related to the fractional integra-
tion order. As this order escalates, the effectiveness of low-pass filtering is amplified. In
particular, these fractional-order integration operators diminish high-frequency compo-
nents in the images, and this attenuation effect grows nonlinearly with an increase in the
integration order.

4.2. Experiment and Analysis of Fractional-Order Integral Operator for Image Denoising
4.2.1. Construction of Fractional-Order Integral Operators

As previously stated, the fractional-order integration of two-dimensional image signals
I(x, y) in both the X-axis and Y-axis directions is separable under specific conditions. For
this study, we employed a normalized eight-direction fractional-order integration operator
to denoise the images independently. The time span [a, t] of the image signal is I(x, y)
partitioned into equal intervals, denoted as h = 1.
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As previously discussed, the fractional-order integration of two-dimensional image
signals I(x, y) in the X- and Y-axes can be separated conditions. To denoise the images,
we utilize a normalized eight-direction fractional-order integration operator on each axis
independently. The duration of the image signal I(x, y) can be divided into equal intervals,

i.e., n =
[ t−a

h
] h=1

= [t − a]. The numerical expression for the fractional-order integration
operator along the X- and Y-axes, as defined by the G-L method, is detailed in Equations (17)

and (18). Here, Rv‘
x (x, y) and Rv

′

x (x, y) represent the residual terms of the fractional-order
integration in the horizontal and vertical directions, respectively.

G
a Iv′

t I(x, y)x
∆
= I(x, y) + v′ I(x − 1, y) +

v′(v′ + 1)
2

I(x − 2, y) +
v′(v′ + 1)(v′ + 2)

6
I(x − 3, y) + Rv

x(x, y) (17)

G
a Iv′

t I(x, y)y
∆
= I(x, y) + v′ I(x, y − 1) +

v′(v′ + 1)
2

I(x, y − 2) +
v′(v′ + 1)(v′ + 2)

6
I(x, y − 3) + Rv

y(x, y) (18)

Figure 10 presents the fractional-order integral denoising operator WI , which expands
upon Equations (19) and (20) to include the remaining six image directions, thereby creating
an eight-direction denoising operator. The construction methodology for both fractional-
order integral operators and fractional-order differential augmentation operators is analo-
gous. According to Reference [35], fractional-order integral operators exhibit anisotropic
rotation variance; the corresponding filtering coefficient is detailed in Equation (19).
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4.2.2. Evaluation Criterion 
1. Subjective Evaluation 

Subjective evaluation entails gauging enhanced image quality through direct human 
visual inspection, aiming to capture authentic human visual perceptions. This method 
proves particularly valuable as it involves firsthand interaction with the image using hu-
man vision [36] [37]. Leveraging the human eye’s keen sensitivity to details such as texture 
and edges, we prioritize examining the edges and textural nuances to assess the overall 
visual impact of the denoised image. 
2. Objective Evaluation 

 Objective evaluation, on the other hand, employs mathematical metrics tai-
lored to mirror specific image qualities that align with human perception. The 
subsequent results are derived from certain image attributes based on the eval-
uation function. This study makes use of key metrics such as average gradient, 
edge preservation coefficient, and signal-to-noise ratio to critically compare the 
performance of different image-denoising operators [38]. 
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Figure 10. Fractional-order integral denoising mask operator.

Figure 10 displays the fractional-order integral denoising operator, WI , which extends
Equations (19) and (20) to include six additional image directions, thereby yielding an eight-
direction denoising operator. The construction of these fractional-order integral operators
is similar to that of fractional-order differential augmentation operators. As highlighted
in Reference [35], these integral operators also possess anisotropic rotation variance; the
associated filtering coefficient is outlined in Equation (19).{

WI0 = 1, WI1 = v, WI2 =
v(v + 1)

2
, WI3 =

v(v + 1)(v + 2)
6

, . . . , WIm =
v(v + 1)(v + 2) . . . (v + m − 1)

m!

}
(19)

4.2.2. Evaluation Criterion

1. Subjective Evaluation Subjective evaluation entails gauging enhanced image quality
through direct human visual inspection, aiming to capture authentic human visual
perceptions. This method proves particularly valuable as it involves firsthand interac-
tion with the image using human vision [36,37]. Leveraging the human eye’s keen
sensitivity to details such as texture and edges, we prioritize examining the edges and
textural nuances to assess the overall visual impact of the denoised image.

2. Objective Evaluation

• Objective evaluation, on the other hand, employs mathematical metrics tailored
to mirror specific image qualities that align with human perception. The subse-
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quent results are derived from certain image attributes based on the evaluation
function. This study makes use of key metrics such as average gradient, edge
preservation coefficient, and signal-to-noise ratio to critically compare the perfor-
mance of different image-denoising operators [38].

• Average Gradient (AG) The average gradient (AG) in an image serves as an indi-
cator of contrast variations, reflecting the image’s textural and detail transitions.
This offers insights into the image’s overall sharpness. The formula to calculate
the AG value is provided in Equation (20).

AG =
1

M ∗ N

row

∑
i=1

col

∑
j=1

√
∆horizontal f (i, j)2 + ∆vertical f (i, j)2 (20)

• Edge Preservation Index (EPI) The edge preservation index gauges how effec-
tively a filtering operator maintains the image’s horizontal or vertical edges. A
higher EPI value signifies better edge preservation by the operator in question.
The formula to compute this coefficient is outlined in Equation (21).

EPI =

row
∑

i=1

col
∑

j=1

∣∣∣∆horizontal fa f ter(i, j) + ∆vertical fa f ter(i, j)
∣∣∣

row
∑

i=1

col
∑

j=1

∣∣∣∆horizontal fbe f or(i, j) + ∆vertical fbe f or(i, j)
∣∣∣ (21)

• Contrast (C) Image contrast refers to the relationship between the black and white
intensities within an image, serving as a gradient scale that transitions from black
to white. A higher contrast ratio suggests a broader spectrum of gradient levels,
enhancing the image’s textural details. The methodology for determining the
image’s contrast is encapsulated in Equation (22). Here, the parameter Number
represents the logarithm of the differences in grayscale values among the image’s
eight neighboring regions.

C =

∣∣∣∣∣row
∑

i=1

col
∑

j=1
∆ f (i, j)

∣∣∣∣∣
Number

(22)

• Signal-to-Noise Ratio (SNR) Lastly, the signal-to-noise ratio (SNR) acts as a vital
metric for assessing image quality. It quantifies the ratio between the magnitudes
of the image signal and the noise, giving a numerical value to the image’s clarity.
The expression for the SNR is elaborated upon in Equation (23).

SNR = 10 × lg


row
∑

i=1

col
∑

j=1
f (i, j)2

row
∑

i=1

col
∑

j=1
| f (i, j)− fdenoise(i, j)|2

 (23)

4.2.3. Experimental Results and Comparative Analysis

Figure 11 displays the denoised Barbara image, processed using fractional-order
integral image-denoising operators of varying orders and subjected to Gaussian white
noise with a given mean µ = 0 and variance σ = 0.1. Upon close inspection, it is evident that
the operator with a fractional-order integration value of v = 0.1 exhibits limited denoising
efficacy but retains most of the image’s edge and texture details. On the contrary, the
operator with v = 1.0 shows strong denoising capabilities but significantly compromises
the image’s edge and texture, resulting in a less visually pleasing outcome. The findings
suggest that as the fractional order of the integration operator rises, its proficiency in
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noise reduction improves. However, this also leads to an increase in the attenuation of
high-frequency information, causing more pronounced image blurring.
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As illustrated in Figure 11, the Barbara image is denoised using fractional-order
integral image-denoising operators of different orders, subjected to Gaussian white noise
with a mean µ = 0 and variance σ = 0.1. A close examination reveals that the operator
with a fractional-order integration value of v = 0.1 has limited denoising capabilities but
excellently preserves edge and texture details. In contrast, the operator with v = 1.0
performs admirably in noise reduction but sacrifices much of the image’s edge and texture,
resulting in a visually disappointing outcome. These observations indicate that as the
fractional order escalates, the operator becomes more effective in noise removal. However,
this benefit is offset by an increase in the attenuation of high-frequency elements, causing
the image to blur.

Figure 12 showcases the results of denoising the Barbara image, which is contaminated
by Gaussian white noise with a particular mean µ = 0 and variance σ = 0.1, using an array
of denoising techniques. Specifically, Figure 12c features images processed through the
mean method, Figure 12d through the Gaussian method, Figure 12e through the Wiener
method, and Figure 12f using the fractional-order integration low-order iteration method.
Complementing this, Figure 13 displays the inverted residual images that highlight the
discrepancies between the processed and original images. Here, Figure 13a depicts the
residual from the mean method, Figure 13b from the Gaussian method, Figure 13c from the
Wiener method, and Figure 13d from the fractional-order integration low-order iteration
method. Upon initial visual inspection, it becomes clear that the technique introduced
in this study leverages a low-order fractional-order integral iterative denoising approach.
Because of the choice of a smaller integration order, each denoising iteration tends to
preserve the edge and texture details of the image more effectively than traditional integer-
order strategies. This results in a subtler “micro-denoising” effect on noisy images. Table 2
offers a comprehensive comparison of key metrics, including AG values, edge preservation
coefficients, and SNR values, following the application of various denoising methods.
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Visually, the low-order fractional-order integral iterative denoising technique put forth in
this study seems to excel in retaining complex features like edges and textures, while also
achieving an optimal SNR when compared with integer-order denoising strategies.
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Table 2. Comparison of experimental data of image-denoising algorithms using different methods.

Methods Average Gradient Edge Retention Coefficient Signal to Noise Ratio

Mean 0.0138 0.3547 18.2964

Gaussian 0.0186 0.5388 19.3706

Wiener 0.0165 0.4356 19.2437

Fractional 0.0208 0.7084 19.8679

Table 2 provides a comparative analysis of experimental data from various image-
denoising algorithms. When contrasted with traditional methods such as mean denoising,
Gaussian denoising, and Wiener filtering, the fractional-order integration image-denoising
approach shows marked improvements in key metrics (specifically, it enhances the AG, edge
retention coefficient and signal-to-noise ratio) of the processed image to varying extents.

5. Conclusions

This work delves into image enhancement and denoising methods rooted in the
principles of fractional calculus, bypassing the need to exploit an image’s self-similarity
and local features. Initially, the paper outlines three canonical definitions of fractional
calculus and explores the relevant applications of each. It then meticulously examines
the amplitude–frequency characteristics of fractional calculus operators, highlighting the
intricate relationship between high-pass and low-pass dynamics for both one-dimensional
and two-dimensional signals in relation to the order of calculus. Building on these insights,
we developed an image enhancement model using fractional-order differential operators
and an image-denoising model grounded in fractional calculus operators.

Our empirical results affirm the effectiveness of the fractional-order calculus-based
image processing approach presented in this paper. Specifically, we observed enhanced con-
trast and clarity when compared to traditional integer-order calculus methods, particularly
in the realms of image amplification, coupled with its enhanced edge retention and denois-
ing capabilities in image refinement. The endeavor to assimilate fractional-order calculus
theory into foundational image processing teems with potential. Current scholarly discus-
sions are geared toward developing innovative image-processing methods that integrate
fractional-order calculus theory with established intelligent algorithms. One promising
avenue for research is adaptive fractional-order image enhancement and denoising, where
the operator adaptively determines the order magnitude of the fractional-order template
based on local images features, as suggested by various scholars [39]. This approach is
envisaged to yield optimal results in low-level image processing.

Looking forward, future studies may investigate the potential of leveraging fractional-
order operators with distributed orders or nonsingular kernels to further improve results.
As advancements in computer hardware continue, traditional intelligent algorithms are
likely to evolve, paving the way for state-of-art fractional-order image-processing technolo-
gies to play a crucial role in practical applications.
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