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Abstract: A bearing fault is one of the major causes of rotating machinery faults. However, in real
industrial scenarios, the harsh and complex environment makes it very difficult to collect sufficient
fault data. Due to this limitation, most of the current methods cannot accurately identify the fault
type in cases with limited data, so timely maintenance cannot be conducted. In order to solve this
problem, a bearing fault diagnosis method based on the fractional order Siamese deep residual
shrinkage network (FO-SDRSN) is proposed in this paper. After data collection, all kinds of vibration
data are first converted into two-dimensional time series feature maps, and these feature maps are
divided into the same or different types of fault sample pairs. Then, a Siamese network based on
the deep residual shrinkage network (DRSN) is used to extract the features of the fault sample pairs,
and the fault type is determined according to the features. After that, the contrastive loss function
and diagnostic loss function of the sample pairs are combined, and the network parameters are
continuously optimized using the fractional order momentum gradient descent method to reduce
the loss function. This improves the accuracy of fault diagnosis with a small sample training dataset.
Finally, four small sample datasets are used to verify the effectiveness of the proposed method. The
results show that the FO-SDRSN method is superior to other advanced methods in terms of training
accuracy and stability under small sample conditions.

Keywords: bearing fault; fault diagnosis; limited data; fractional order; Siamese deep residual
shrinkage network

1. Introduction

In all fields of modern industry, rotating machinery plays an important role. If these
machines fail, the productivity of relevant industries will be seriously affected. In addition,
if such faults are not resolved in time, the reliability and security of the entire system will be
reduced, bringing huge economic losses. It can be seen that the health monitoring of rotating
machinery is essential. In rotating machinery, rolling bearings are the core component
and are used to support the operation of rotating machinery; therefore, the fault diagnosis
of rolling bearings is of great significance to ensure the normal and smooth operation of
rotating machinery and the safe and efficient production of modern industry [1].

There are two main methods for bearing fault diagnosis: signal-based processing
and a data-driven approach. Data-driven methods have made significant strides in fault

Fractal Fract. 2024, 8, 134. https://doi.org/10.3390/fractalfract8030134 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8030134
https://doi.org/10.3390/fractalfract8030134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-6679-3969
https://doi.org/10.3390/fractalfract8030134
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8030134?type=check_update&version=2


Fractal Fract. 2024, 8, 134 2 of 19

diagnosis due to their powerful nonlinear self-learning [2,3] and intelligent fault diagnosis
capabilities [4–16]. For example, convolutional neural networks (CNNs) [4–7], generative
adversarial networks (GANs) [8–11], long short-term memory networks [12–14], and deep
residual shrinkage networks (DRSNs) [15,16] have been widely adopted. Ren et al. [8]
proposed a dynamically balanced domain adversarial network embedded with a physically
interpretable novel frequency band attention module for feature extraction to mitigate
noise interference. Fu et al. [9] proposed a method based on feature augmentation GANs
and auxiliary classifiers to enhance its ability to capture features. Zhao et al. [16] proposed
a DRSN, which can detect important features via an attention mechanism. Although these
methods improve the accuracy of fault diagnosis to some extent by improving the ability
to capture network features, they all require a large amount of training data to achieve
accurate fault diagnosis. In the actual industrial operation and maintenance environment,
many devices have stringent production requirements, resulting in slow fault occurrence.
However, once the fault occurs, the consequences are extremely serious, so it is difficult to
collect the most effective fault information. In this case, the main challenges facing bearing
fault diagnosis in industrial operation and maintenance environments are as follows:
Firstly, there are not enough existing training samples to accurately predict the bearing
fault type. Secondly, limited training samples make the model become unstable and prone
to overfitting.

In view of the above situation, conducting research on small sample fault diagnosis
methods can not only achieve a more accurate identification of equipment fault states
under limited training data, thus improving the industrial production efficiency, but also
has great significance in alleviating the difficulty of acquiring fault signals and reducing
the input of manpower and material resources. To address these challenges, various
researchers have devised methods to improve the accuracy of diagnosis by learning fault
features with limited training data. Specifically, these methods can be summarized as
transfer learning [17–19], data enhancement [20–22], meta learning [23–25], and metric
learning [26–29]. Some studies on small sample fault diagnosis have been published in
the field of mechanical fault diagnosis. Zhang et al. [17] applied an intra-domain transfer
learning strategy to fault diagnosis. Based on transfer learning, Dong et al. [19] applied
the diagnostic knowledge learned from simulation data to real scenarios. Zhang et al. [20]
proposed a self-supervised meta learning GAN, which determines the optimal initialization
parameters of the model by training various data generation tasks so that new data can
be generated using a small amount of training data. Lei et al. [23] proposed a new modal
fault diagnosis method based on meta learning (ML) and neural architecture search (NAS).
One meta learning intelligent fault diagnosis method was proposed by Ma based on the
multi-scale dilated convolution and relation module [24]. Su et al. [25] proposed a new
method, called data reconstruction hierarchical recurrent meta-learning (DRHRML), for
bearing fault diagnosis using small samples under different working conditions. Cheng
et al. [26] proposed the MAML-Triplet fault classification learning framework based on the
combination of MAML and the triplet neural network, and the fault type of the unknown
signal was judged by comparing the Euclidean distance of the feature vectors between
different signals. Zhao et al. [27] proposed a small sample bearing fault diagnosis method
based on an improved Siamese neural network (ISNN); this method added a classification
branch to the standard Siamese network and replaced the common Euclidean distance
measurement with the network measurement. Xing et al. [28] used a CNN as a subnetwork
of the Siamese network to use the maximum average difference instead of the commonly
used Euclidean distance to achieve data enhancement. Liu et al. [29] proposed a fault
diagnosis method based on a multi-scale fusion attention CNN (MSFACNN) to improve
the fault diagnostic accuracy of aero engine bearings using small samples. In addition,
other studies [30,31] combined attention mechanisms to extract richer depth features under
small sample conditions. The authors in [32] combined five different neural network
structures for experiments, while those in [33] combined multiple regression and fuzzy
neural networks for small sample prediction.
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Although the above methods have improved the performance of small sample fault
diagnosis to a certain extent, there are still many problems. For example, transfer learning
methods are highly dependent on source domain data and cannot ensure that the distri-
bution of the source domain data and target domain data is completely similar. Some
operations of the data enhancement method may change the detailed characteristics of
the fault samples, leading to performance degradation in the real data. In addition, the
meta learning method is highly complex, and the related technology is not mature, so the
application of this method is limited. The combination of multiple models causes the model
to become too complex, and it is easy to overfit during training. Metric learning only uses a
simple distance measurement as a training guide and can be used in the case of a small
number of training samples by means of comparison. It is simple to calculate and easy to
operate, but the accuracy is low.

The fractional order is a generalization of the concept of integral calculus to fractions,
whose exponents can be any real number, including decimals or fractions. Fractional order
calculus is an extension of integral order calculus, which can more accurately describe real
systems and obtain more accurate results [34]. The introduction of fractional derivatives
and integrals can better describe nonlinear changes and increase the freedom degree of
mathematical models. This provides greater flexibility and adaptability, which improves
its application in real problems. Therefore, fractional order systems based on fractional
order calculus have been proven to have excellent performance in various industries, for
example, in the fields of speech recognition [35], image processing [36,37], and automatic
control [38–40].

Since metric learning is suitable for small sample data and is easy to implement, DRSN
has good feature extraction capability, and fractional optimization can seek better solutions.
Therefore, aiming to resolve the problem of the low accuracy and poor stability of bearing
fault diagnosis under small sample training data conditions, this paper combines metric
learning, DRSN, and fractional order and proposes the FO-SDRSN method to solve this
problem, verifying it with a small sample of training data. The contributions of this paper
are summarized as follows:

(1) The one-dimensional vibration signals are converted into two-dimensional time series
feature maps, which is convenient for the neural network model to extract the feature
of the signal. The combination of the DRSN and Siamese network is conducive to
improving the feature extraction ability of fault signals under small sample conditions.

(2) In the parameter updating process of neural network backpropagation, momentum
and fractional order calculus are applied to the gradient descent optimizer to make it
converge to the optimal solution, thus improving the accuracy of fault diagnosis in
the case of limited training data.

(3) In order to simulate the limited data conditions in engineering applications, four sets
of small sample training data were selected from the CWRU dataset to analyze and
verify the FO-SDRSN method, which provides a possibility for its further application
in bearing fault diagnosis with small sample data.

The rest of this paper is organized as follows: Section 2 presents the proposed method,
FO-SDRSN, in detail. Section 3 describes the experiments and evaluations, including
data acquisition. In Section 4, the performance of the FO-SDRSN methods under various
fractional orders is discussed. Finally, according to the above experiments, the study is
summarized, and conclusions are drawn.

2. Proposed Method

The framework of the FO-SDRSN method for bearing fault diagnosis under limited
data conditions is shown in Figure 1. This method consists of three stages. In the first
stage, the vibration data are collected using the field acquisition unit of the vibration state
monitoring system. After the sampling length is standardized in the sliding window, the
one-dimensional vibration signal is converted into a two-dimensional time series feature
map, which is then combined into fault sample pairs of the same or different types.
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  Figure 1. FO-SDRSN method framework for fault diagnosis under small sample conditions.

In the second stage, feature extraction is carried out. The fault sample pairs obtained in
the first stage are successively input into FO-SDRSN for feature extraction, and the output
feature vector pairs are obtained. Then, the Euclidean distance between each pair of output
vectors is calculated to obtain the contrastive loss. In the third stage, fault diagnosis is
carried out according to the output characteristics, and the fault diagnosis loss is calculated
according to the diagnosis result and the real fault type. The contrastive loss and fault
diagnosis loss are combined, and the momentum fractional order is used to optimize the
network parameters, leading to a continual reduction in the loss function. On this basis, the
optimal model is obtained by repeated iteration and is tested on the testing set. According
to the features extracted from the model, the most likely category is predicted as the fault
diagnosis result. The modeling steps are shown in Figure 1.

2.1. Data Processing and Feature Extraction

For the sample vibration data, a sliding window technique is used to sample a series
of data samples, and the obtained samples are converted into two-dimensional time series
feature maps. Then, the sample pairs of the same and different fault categories are obtained
after pair processing. This pairing strategy can obtain richer information with a small
amount of data, which lays a foundation for feature comparisons between samples of
different categories and between samples of the same category during the feature extraction.
Two feature vectors obtained from feature extraction are measured using Euclidean distance,
with samples of the same category being labeled as similar and samples of different
categories labeled as dissimilar. The samples are paired and labeled in data processing
as follows:

(xi, xj, Y) = P(xi, xj) (1)

The total number of training samples is N, each sample is represented by x, i and j
both represent the index of the sample, and two samples are paired in turn. After pairing,
there are C2

N pairs of samples, and each sample pair can be represented by (xi, xj), where
i, j = 1, 2. . ., N and i ̸= j. If xi and xj are fault sample pairs of the same type, Y = 1 is assigned;
otherwise, Y = 0 is assigned, and p(·) denotes the labeling process for the sample pairs.

After the sample pairing is complete, all sample pairs are successively input into the
FO-SDRSN for feature extraction. This process can be denoted as

F1 = [BN(Relu(Conv(x, w)))]n (2)
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where x refers to the input sample, w refers to the weight parameter of the FO-SDRSN, and
Conv refers to the convolution operation. Relu refers to the activation function, which is
used for the nonlinear transformation of neuronal output in the neural network. BN refers
to Batch Normalization, which refers to the normalization of the input of each layer; ‘n’
denotes the repetition of the same operation ‘n’ times.

Sample xi is brought into F1 for feature extraction as follows:

xi1 = F1(xi, w)2 (3)

In the above formula, ‘2’ represents the execution of two F1 operations.
Following the feature extraction, the threshold value is determined through a con-

traction operation to minimize noise interference. The threshold determination process is
outlined below:

F2 = FC(Relu(BN(FC(x, w)))) (4)

Here, FC refers to the fully connected layer in a neural network.

αi =
1

1 + e−F2(average|xi1|)
(5)

Here, αi is the output after passing through the sigmoid.

τi = αi ∗ average|xi1| (6)

The above is the threshold calculation formula, and τi is the calculated threshold value.
In this network, the output of the residual module is shrunken using a shrinking operation
to reduce the effect of noise. Here, the shrinking function is a soft-thresholding function.
The shrinking operation can be expressed by

yi =


xi1 − τi xi > τi

0 −τi ≤ xL ≤ τi
xi1 + τi xi < −τi

(7)

Here, yi is the output after the threshold calculation.
After the feature extraction of sample xi using FO-SDRSN, it is expressed as follows:

H(xi) = xi + yi (8)

where H(xi) is the output feature of xi after feature extraction from one side of the Siamese
deep residual shrinkage network. Similarly, the output feature of xj after feature extraction
from the other side of the Siamese Network can be defined as

H(xj) = xj + yj (9)

The result of associating Equations (2)–(8) is as follows:

H(xi) =



xi + F1(xi, w)− 1
1+e−F2(average|xi1 |)

∗ average|F1(xi, w)| F1(xi, w) > 1
1+e−F2(average|xi1 |)

∗ average|F1(xi, w)|

xi

− 1

1+e
−X

L′
∗ average|F1(xi, w)| ≤ F1(xi, w)

F1(xi, w) ≤ 1
1+e−F2(average|xi1 |)

∗ average|F1(xi, w)|
xi + F1(xi, w) + 1

1+e−F2(average|xi1 |)
∗ average|F1(xi, w)| F1(xi, w) < − 1

1+e−F2(average|xi1 |)
∗ average|F1(xi, w)|

(10)

The output feature vector of the FO-SDRSN method on both sides is measured using
Euclidean distance, which is defined as

d(xi, xj) =

√
n

∑
i=1

(
H(xi)− H(xj)

)2 (11)
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Here, H(xi) and H(xj) represent the fault features extracted from xi and xj, respectively,
after applying the FO-SDRSN method. The value d is used to determine whether the input
pair is of the same fault type: a smaller value of d indicates that the sample pair is similar,
whereas larger values of d suggest that the sample pair is dissimilar. The contrastive loss
function L1 is expressed as follows:

L1 =
1

2N

N

∑
n=1

Yd2 + (1 − Y)max(margin − d, 0)2 (12)

Here, N represents the number of samples, and Y indicates whether the input pair has the
same type of fault. The expression Y = 1 signifies that the input pairs are similar, while
Y = 0 indicates dissimilarity. The margin represents the threshold, with the default value
set to 2.

2.2. Fault Diagnosis and Parameter Update

In order to achieve fault diagnosis, the extracted features H(xi) and H(xj) were fed to a
SoftMax classifier. The output yn of the SoftMax classifier is defined by

yn =
eHn(xi)

Nclass
∑

n=1
eHn(xi)

(13)

Here, n indicates the n-th class, yn is the predicted probability that the sample belongs to the
n-th class, and Nclass is the number of categories, such that ∑ yn = 1. In the above formula,
Nclass = 10. After the probability of the sample belonging to 10 categories is predicted,
respectively, the category with the largest prediction probability value is selected as the
result of this fault diagnosis. The cross-entropy loss function is usually used as the objective
function of multi-classification problems. In this paper, this function is the loss function of
the fault diagnosis, which is expressed as

L2 = −
Nclass

∑
n=1

tn log(yn) (14)

Here, tn indicates the actual fault type. When the sample belongs to the n-th class, tn = 1;
otherwise, tn = 0. L1 and L2 are combined as total losses as follows:

L = L1 + L2 =
1

2N

N

∑
n=1

Yd2 + (1 − Y)max(margin − d, 0)2 +−
Nclass

∑
n=1

tn log(yn) (15)

Then, when the loss function L is minimized, the momentum fractional step reduction
algorithm is used to update and optimize the network parameters. Here, the Caputo
fractional order method is adopted [41], which is denoted as

CDv
t L(t) =

1
Γ(m − v)

∫ t

t0

f (m)(τ)

(t − τ)v−m+1 dτ (16)

where v is the order of the fractional order, t is the parameter to be updated, m is the smallest

integer greater than v, m − 1 < v < m, t0 is the initial value, and Γ(α) =
∞∫
0

xα−1e−xdx is the

Gamma function. The above formula can be derived as follows:

CDv
t L(t) =

∞

∑
i=m

f (i)(t0)

Γ(i + 1 − v)
(t − t0)

i−v (17)
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In order to ensure that the neural network converges to the real extreme point, the
fault diagnostic accuracy fractional order is used in the parameter updating process of the
neural network. In addition, to accelerate the convergence rate, a momentum term is added
during the parameter updating process. The parameter updates are shown by

Ak+1 = Ak − µmk+1 (18)

where K is the number of iterations, A is the parameter to be updated, µ is the learning rate,
and m is the momentum term. In order to accelerate the convergence rate, the momentum
term is added when the parameter is updated. The momentum update rules are as follows:

mk+1 = mk · β + (1 − β) ·C Dv
t L(Ak) (19)

β is the attenuation factor of momentum. When 0 < v < 1, m = 1, and substituting it
into (17) yields the following:

CDv
AK

L(AK) =
∞

∑
i=1

f (i)(AK−1)

Γ(i + 1 − v)
(AK − AK−1)

i−v (20)

When 1 < v < 2, m = 2, and substituting it into (17) yields the following:

CDv
AK

L(AK) =
∞

∑
i=2

f (i)(AK−1)

Γ(i + 1 − v)
(AK − AK−1)

i−v (21)

The expression for 0 < v < 2 can be obtained by combining (20) and (21). The details
are as follows:

CDv
AK

L(AK) =
∞

∑
i=0

f (i+1)(AK−1)

Γ(i + 2 − v)
(AK − AK−1)

i+1−v (22)

On that basis, the first term is kept, the absolute value is introduced, and the loss is
calculated as follows:

CDv
AK

L(AK) =
f (1)(AK−1)

Γ(2 − v)
|AK − AK−1 + σ|1−v (23)

where δ is a small positive number to avoid the situation where the denominator is zero, so
δ = 1 × 10−8.

By combining (19) and (23), the momentum update rule is obtained as follows:

mk+1 = mk · β + (1 − β) · f (1)(AK−1)

Γ(2 − v)
|AK − AK−1 + σ|1−v (24)

By combining (18) and (24), the final update formula of the parameters in the FO-
SDRSN method can be obtained as follows:

Ak+1 = Ak − µ(mk · β + (1 − β) · f (1)(AK−1)

Γ(2 − v)
(|AK − AK−1|+ δ)1−v) (25)

In a nutshell, (1)–(13) among the above formulae represent the process of fault diagno-
sis by using the forward propagation of the FO-SDRSN method; (14) and (15) represent
the process of calculating the loss according to the diagnosis results and the real fault type;
and (18)–(25) represent the process of using the momentum fractional order part of the
FO-SDRSN method to update the parameters so as to reduce losses and improve fault
diagnostic accuracy. After the parameter update in (25) is completed, the above process is
iterated to continuously reduce losses and improve the bearing fault diagnostic accuracy
using small samples.
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3. Experiments and Evaluations
3.1. Data Acquisition

The steps for vibration data acquisition for bearing faults include selecting the vibra-
tion sensor, connecting and calibrating the sensor and mounting it on the bearings, and
then selecting the sampling rate and connecting the sensor to the data acquisition device to
record the vibration data under various fault and health conditions.

This study validates the proposed methodology using a bearings dataset sourced
from Case Western Reserve University [42]. The bearings under consideration are of the
SKF6205 type, and the fault states encompass roller fault, inner race fault, outer race fault,
and health state. Each fault state comprises three crack diameters: 0.007 inch, 0.014 inch,
and 0.021 inch. Consequently, the experiment encompasses nine types of fault data and
one type of health status data, totaling ten different types of data.

Vibration signals from the bearings were captured using an acceleration sensor at
a sampling frequency of 12 kHz. Following data acquisition, a sliding window with a
length(s) of 784 and a step size of 1210 was applied for sampling. After this process,
300 samples were obtained for each fault state. In order to create small sample conditions,
10, 15, 20, and 30 of each type of signal were randomly selected and combined to form four
small sample training sets. In addition, 20% of the samples from each fault type and health
status were selected to build a testing set. Specific information regarding the experimental
dataset is shown in Table 1. Figure 2a–j present the time-domain waveform graphs of
signals corresponding to labels 0 to 9.

Table 1. Experimental dataset.

Label Fault Size (Inch) Fault Location Number of Training Samples in Four
Small Sample Datasets

0 0.007 Roller 10, 15, 20, 30
1 0.014 Roller 10, 15, 20, 30
2 0.021 Roller 10, 15, 20, 30
3 0.007 Inner race 10, 15, 20, 30
4 0.014 Inner race 10, 15, 20, 30
5 0.021 Inner race 10, 15, 20, 30
6 0.007 Outer race 10, 15, 20, 30
7 0.014 Outer race 10, 15, 20, 30
8 0.021 Outer race 10, 15, 20, 30
9 - Health 10, 15, 20, 30

Converting the vibration signal into two-dimensional time series feature maps (as
shown in Figure 3) can better retain the timing information of the original signal, and this
conversion process is conducive to subsequent operations such as the convolution of the
neural network model.

3.2. Experiments

In this section, the accuracy of the proposed method is evaluated using the four small
sample datasets combined above and compared with other learning models, including
the MSFACNN, CNN, DRSN, and Siamese–DRSN models. Each set of experiments was
repeated five times to minimize unexpected errors.

During the training process, the training samples are randomly paired and input into
the model. To evaluate the performance of various fault diagnosis methods under the
conditions of limited training samples, box plots were employed to represent the accuracy
and stability of the diagnosis results across five iterations for each model. Figure 4 illustrates
the box plots for the fault diagnosis outcomes of five models across four datasets with small
sample sizes. Figure 4a–d correspond to scenarios with 10, 15, 20, and 30 training samples
for each fault type, respectively.
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0–9 respectively.

As seen in Figure 4a–d, under the four small sample datasets, the five test results under
the FO-SDRSN method were distributed centrally, maintaining a high accuracy range. This
shows that it maintains good stability and accuracy. However, the fault diagnostic accuracy
of the CNN method is always lower than that of other improved methods. With the
increasing amount of training data, the accuracy of diagnosis is not significantly improved.
The average diagnostic accuracies of the FO-SDRSN method in the four small sample
datasets is shown in Table 2, which are 82.61%, 91.46%, 92.69%, and 96.2%, respectively, and
the standard deviations are 0.99, 0.6, 0.76, and 1.3, respectively. When there are 15 samples
for each fault, the average accuracy of the fault diagnosis is 2.27% higher compared to the
progressive Siamese–DRSN method. Compared with other advanced methods, it is further
shown that the FO-SDRSN method has higher fault diagnostic accuracy and good stability
under small sample conditions.
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Figure 3. Two-dimensional time characteristic sequence graphs of signals: (a–j) represent signal
corresponding to labels 0–9 respectively.

Figure 5 shows the test accuracy curve of each model with epoch change under the
four small sample datasets. After conducting five experiments and excluding outliers, we
selected the accuracy curves corresponding to the minimum loss functions for plotting. In
Figure 5a–d, it can be observed that with an increase in the number of training samples,
the convergence speed of each model improves. Additionally, the CNN model demon-
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strates a faster convergence speed, but with the lowest fault diagnostic accuracy, while the
DRSN model exhibits the slowest convergence speed and the FO-SDRSN method shows a
moderate convergence speed.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 11 of 21 
 

 

range. This shows that it maintains good stability and accuracy. However, the fault diag-
nostic accuracy of the CNN method is always lower than that of other improved methods. 
With the increasing amount of training data, the accuracy of diagnosis is not significantly 
improved. The average diagnostic accuracies of the FO-SDRSN method in the four small 
sample datasets is shown in Table 2, which are 82.61%, 91.46%, 92.69%, and 96.2%, respec-
tively, and the standard deviations are 0.99, 0.6, 0.76, and 1.3, respectively. When there are 
15 samples for each fault, the average accuracy of the fault diagnosis is 2.27% higher com-
pared to the progressive Siamese–DRSN method. Compared with other advanced meth-
ods, it is further shown that the FO-SDRSN method has higher fault diagnostic accuracy 
and good stability under small sample conditions. 

FO-SDRSN MSFACNN CNN DRSN Siamese-DRSN
40

50

60

70

80

90

100

R
an

ge

 FO-SDRSN MSFACNN CNN DRSN Siamese-DRSN

60

70

80

90

100

R
an

ge

(a)  (b) 

FO-SDRSN MSFACNN CNN DRSN Siamese-DRSN
60

70

80

90

100

R
an

ge

 FO-SDRSN MSFACNN CNN DRSN Siamese-DRSN
70

80

90

100

R
an

ge

 
(c) (d) 

Figure 4. Box plot of fault diagnostic accuracy distribution of different models under the four types 
of small sample datasets: (a–d) represent small sample datasets with 10, 15, 20, and 30 training sam-
ples for each type of fault, respectively. 

Table 2. Experimental results using four small sample datasets. 

Model 

Number of Training Sam-
ples for Each Type of 

Fault Is 10 

Number of Training 
Samples for Each Type 

of Fault Is 15 

Number of Training 
Samples for Each Type 

of Fault Is 20 

Number of Training 
Samples for Each Type 

of Fault Is 30 

Average Ac-
curacy (%) 

Standard De-
viation 

Average Ac-
curacy (%) 

Standard 
Deviation 

Average 
Accuracy 

(%) 

Standard 
Deviation 

Average 
Accuracy 

(%) 

Standard 
Deviation 

Figure 4. Box plot of fault diagnostic accuracy distribution of different models under the four types of
small sample datasets: (a–d) represent small sample datasets with 10, 15, 20, and 30 training samples
for each type of fault, respectively.

Table 2. Experimental results using four small sample datasets.

Model

Number of Training
Samples for Each Type of

Fault Is 10

Number of Training
Samples for Each Type of

Fault Is 15

Number of Training
Samples for Each Type of

Fault Is 20

Number of Training
Samples for Each Type of

Fault Is 30

Average
Accuracy (%)

Standard
Deviation

Average
Accuracy (%)

Standard
Deviation

Average
Accuracy (%)

Standard
Deviation

Average
Accuracy (%)

Standard
Deviation

FO-SDRSN 82.6091 0.985746 91.46106 0.603937 92.6948 0.761442 96.20128 1.296661

MSFACNN 74.62782 5.53897 83.49514 1.033596 90.84142 0.952347 90.08976 0.724449

CNN 54.56308 3.814642 67.99352 2.788438 67.37864 2.33054 78.73786 3.899128

DRSN 61.51612 4.303248 81.70968 4.418985 91.93034 1.348297 95 1.145057

Siamese–DRSN 81.42856 2.994431 89.18832 2.465018 90.35718 1.108664 94.22076 0.392317
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In order to explore the diagnostic effects of various models on each kind of fault, when
the number of training samples for each type of fault was 15, a confusion matrix (Figure 6)
was used to describe them.

In this figure, the ordinate indicates the real label value, and the abscissa indicates the
predicted label value. The higher the coincidence between the predicted label value and
the real label value, the better the diagnostic effect of this type of fault. In Figure 6a–f, each
subfigure represents the confusion matrix under the SVM model, CNN model, MSFACNN
model, DRSN model, Siamese–DRSN model, and FO-SDRSN model, respectively, when
the number of training samples for each type of fault is 15. As can be seen in Figure 6a,
the diagnostic effect of the SVM model based on machine learning on 10 kinds of faults is
much lower than that of the other neural network models. Figure 6b–e reveal a substantial
number of fault diagnosis errors for faults labeled 0, 1, and 2 in the respective models,
indicating poor diagnostic efficacy. Compared with the other five methods, the FO-SDRSN
method illustrated in Figure 6f demonstrates greater effectiveness in diagnosing various
fault types (labeled 3–9). Notably, it performs better in diagnosing faults labeled 0, 1, and 2,
which pose challenges for the other five models. The correct diagnosis rates for these three
faults are 52/60, 42/60, and 47/60, respectively.

In order to more intuitively understand the excellent feature extraction capability of
FO-SDRSN, when the number of training samples for each fault type is 15, t-SNE technology
is used to visualize the feature extraction results in a two-dimensional space. Different
colors represent different fault types. As depicted in Figure 7, the higher the clustering
degree of the same color block distribution, the lower the clustering degree with other color
blocks, indicating that the model has a better feature extraction effect on such faults.
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Figure 7. Feature visualization using various models when the number of training samples of each
type of fault is 15. (a) Feature visualization of data distribution before fault diagnosis; (b) CNN model;
(c) MSFACNN model; (d) DRSN model; (e) Siamese–DRSN model; (f) FO-SDRSN model.

Figure 7a illustrates the distribution of various fault data before the experiment. It
can be observed that before the experiment, all fault types were mixed and difficult to
distinguish individually. Figure 7b–e show two-dimensional representations of feature
extraction results using the CNN, MSFACNN, DRSN, and Siamese–DRSN methods under
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small sample conditions. From the traditional CNN in Figure 7b to the FO-SDRSN method
in Figure 7f, we can clearly see that different types of fault features gradually show a better
clustering effect, indicating that the feature extraction capability of each model from CNN
to FO-SDRSN is gradually enhanced. The remarkable feature extraction capability of the
FO-SDRSN method facilitates the model in distinguishing between different fault types
during fault diagnosis.

4. Discussion

In order to further investigate the optimal characteristics of the FO-SDRSN method,
the diagnostic effectiveness of the FO-SDRSN method under different order conditions
was explored on the above four types of small sample datasets. Figure 8a–d, respectively,
show the average fault diagnostic accuracy of different fractional orders on four small
sample datasets with 10, 15, 20, and 30 training samples for each type of fault. The abscissa
indicates the change in the gradient update order v from 0.1 to 1.9, where v increases in
steps of 0.1. The ordinate indicates the average diagnostic accuracy of the testing data.
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small sample datasets with 10, 15, 20, and 30 training samples for each type of fault, respectively.

As shown in Figure 8a, when the number of training samples for each type of fault
is 10, the average fault diagnostic accuracy is higher for the fractional orders equal to 1.1
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and 1.8 in the testing set. Similarly, Figure 8b reveals that with 15 training samples for
each fault, the fractional orders equal to 1.1 and 1.5 exhibit higher average fault diagnostic
accuracy. In Figure 8c, for 20 training samples per fault type, the fractional orders equal to
1.2, 1.6, and 1.7 demonstrate higher average fault diagnostic accuracy. Finally, as illustrated
in Figure 8d, when there are 30 training samples for each fault, the fractional orders equal
to 0.4, 1.2, and 1.6 can yield relatively higher average fault diagnostic accuracy.

Overall, under these four types of small sample datasets, the fault diagnosis perfor-
mance of each fractional order less than 1.0 is inferior to that between orders of 1.1 and 1.9.
However, when the fractional order is greater than or equal to 1.1, no significant change
is observed in the diagnostic performance. When the sample number of various faults is
small and the fractional order is equal to 1.1, the fault diagnostic effect is better. With the
increase in the sample size of each type of fault, the fault diagnostic effect is better when
the fractional orders are equal to 1.2 and 1.6.

Figure 9a–d show the accuracy distribution box plot of five fault diagnoses on four
small sample datasets under various fractional orders. The abscissa indicates the change
in the gradient update order v from 0.1 to 1.9, where v increases in increments of 0.1. The
ordinate indicates the test accuracy.
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As can be seen from Figure 9a, when the number of training samples for each fault type
is 10, the fault diagnostic accuracy distribution is more concentrated and stable for fractional
orders equal to 0.3, 1.1, 1.4, and 1.6. In Figure 9b, when the number of training samples for
each fault type is 15, the fault diagnostic accuracy distribution is more concentrated and
stable for fractional orders equal to 0.3, 1.1, 1.5, and 1.8. In Figure 9c, when the number of
training samples for each fault type is 20, the fault diagnostic accuracy distribution is more
concentrated and stable for fractional orders equal to 1.2, 1.6, 1.7, and 1.8. In Figure 9d,
when the number of training samples for each fault type is 30, the fault diagnostic accuracy
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distribution is more concentrated and stable for fractional orders equal to 1.1, 1.2, 1.6, 1.7,
and 1.8.

In summary, the stability of fractional orders ranging from 0.1 to 0.9 is lower compared
to that of fractional orders ranging from 1.1 to 1.9. Moreover, when the number of samples
is small, the stability of order 1.1 is notably higher. As the number of samples increases, the
stability of the fractional orders equal to 1.2, 1.6, and 1.7 is better.

Figure 10a–d show the test accuracy curve of the FO-SDRSN method across four
small sample datasets, illustrating how they change with epochs under different fractional
orders. The above order with better accuracy and stability (1.1, 1.2, 1.6, 1.7) is selected
for comparison. In the figure, the abscissa indicates the epoch, and the ordinate indicates
the test accuracy. Different orders are represented by solid lines of different colors. By
comparing the performance distribution of the model on the four small sample datasets, it
can be concluded that with the increase in the training data, the convergence rate of each
fractional order of the FO-SDRSN method is gradually accelerated.
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As can be seen from Figure 10a, the fractional orders equal to 1.1 and 1.2 exhibit stable
convergence within 150 epochs of training on this small sample dataset. Figure 10b reveals
that all orders demonstrate stable convergence. From Figure 10c, it can be observed that
within the first 150 epochs of training on this small sample dataset, all orders converge
stably except for order 1.7. Figure 10d highlights that the fractional orders of 1.2 and 1.6
have stably converged within 150 epochs of training. These findings indicate that the
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fractional orders of 1.1 and 1.2 consistently achieve stable convergence under the four small
sample datasets.

Through a comprehensive analysis of the average prediction accuracy, stability in
multiple tests, and stability in single convergence, it is observed that, in scenarios with a
limited sample size—specifically when the number of training samples for each fault type
is below or equal to 15—the effect of the FO-SDRSN method is better when the fractional
orders are equal to 1.1. As the training sample size expands, when the number of training
samples for each fault type is between 15 and 30, the effect of the FO-SDRSN method is
better when the fractional orders are equal to 1.2. Thus, the fault diagnosis performance of
the FO-SDRSN method under different orders is related to the amount of small sample data.

5. Conclusions

In this paper, a small sample bearing fault diagnosis method based on FO-SDRSN was
proposed to solve the problem of bearing fault diagnosis under limited data constraints.
After obtaining the vibration data from the bearing faults, the input vibration data were
sampled with a sliding window. Then, these data were converted into two-dimensional
time series feature maps, which were divided into fault sample pairs of the same or
different types. Subsequently, the Siamese deep residual shrinkage network based on
momentum fractional order was used to diagnose the bearing fault. Finally, the effectiveness
of the proposed method was evaluated and verified using four small sample datasets with
different amounts of training data, and the effect of bearing fault diagnosis under different
fractional orders was discussed. The conclusions are as follows:

(1) The FO-SDRSN method can be used to diagnose bearing fault types under small
sample conditions. This method can further reduce the loss during the repeated
iterative updating of the network parameters, and the results are constantly close to
the optimal solution, thus improving the accuracy of bearing fault diagnosis under
small sample conditions.

(2) The experiments indicated that the FO-SDRSN method was more accurate and stable
than other progressive methods under the given four small sample datasets. When
the number of samples for each fault was 15, the average fault diagnostic accuracy
was 2.27% higher than that of the progressive Siamese–DRSN method. The Discussion
Section shows that the fault diagnosis performance of the FO-SDRSN method under
different orders was associated with the quantity of small sample data.

(3) In cases where there are limited data, the improvement in the accuracy of bearing
fault diagnosis is crucial for the subsequent rapid and targeted maintenance and
enhancement of the working efficiency of rotating machinery. The improvements
demonstrated in this study also provide a new approach for the fault diagnosis of bear-
ings equipment under actual industrial operation and maintenance conditions. This
study was validated with publicly available datasets, so the robustness and applicabil-
ity of the proposed method will be further verified in different engineering scenarios.
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