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Abstract: This research aims to investigate the Noether symmetry and conserved quantity for the
fractional Lagrange system with nonholonomic constraints, which are based on the Herglotz princi-
ple. Firstly, the fractional-order Herglotz principle is given, and the Herglotz-type fractional-order
differential equations of motion for the fractional Lagrange system with nonholonomic constraints are
derived. Secondly, by introducing infinitesimal generating functions of space and time, the Noether
symmetry of the Herglotz type is defined, along with its criteria, and the conserved quantity of the
Herglotz type is given. Finally, to demonstrate how to use this method, two examples are provided.

Keywords: fractional Lagrange system; nonholonomic constraint; fractional Noether’s theorem;
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1. Introduction

Since fractional calculus enables a more accurate and straightforward description
of physical and mechanical systems with the ability to remember the past and spatially
nonlocal correlations, it is an effective mathematical tool for solving several issues in a
variety of engineering and scientific domains. Fractional calculus is frequently utilized in
physics, mechanics, viscoelastic materials, biomedicine, control theory, robotics, and signal
processing [1-4]. The use of fractional calculus in modeling nonconservative mechanics
began with Riewe’s work [5,6]. Agrawal [7,8] introduced the fractional Lagrange variational
issue and the most basic fractional variational problem, and the Euler-Lagrange equations
that arise have the structure resembling that of the equations produced for classical integer-
order variational problem. Atanackovic et al. [9] derived the fractional Noether theorem
under the classical definition of conserved quantity, which reveals the inherent connection
between Noether symmetry transformations and fractional-order conserved quantities. In
recent years, the study of conserved quantities and symmetries in fractional mechanics
using variational methods has made some headway [10-18].

The classical variational principle does not apply to nonconservative mechanics be-
cause it can no longer be expressed as the extremum of some functional being equal to zero.
Herglotz introduced a generalized variational principle, where the functional is described
through a differential equation [19], and it is applicable in nonconservative mechanics.
Unlike the classical Hamilton’s principle, the Herglotz principle can solve the problem
of both conservative and nonconservative systems. Georgieva and Gueuther et al. [20]
obtained Noether’s theorem on the basis of the Herglotz principle. Santos et al. [21,22]
derived the Noether theorems of the Herglotz type for the Lagrangians with higher order
derivatives and time delay. Almeida et al. [23] proposed the fractional Herglotz principle
by extending the Herglotz principle to fractional models. Zhang et al. [24-26] extended
the Herglotz principle and its Noether theorems to Birkhoffian systems, nonconservative
nonholonomic systems, etc. However, as far as we know, no research has been conducted
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on the Herglotz principle and its conserved quantities for nonholonomic systems based on
fractional models.

A nonholonomic system is one that has at least one nonholonomic constraint, which is
a nonintegrable differential constraint [27,28]. Almost all ice skate, roller, and general chain
systems have nonholonomic constraints. Consequently, a substantial amount of work has
been performed on the basis of nonholonomic mechanics in the domains of bicycle, motor-
cycle and other wheel systems [29-31], motor systems [32,33], robot dynamics [34-36], and
other fields. In recent years, the research on nonholonomic mechanics has been extended to
fractional-order models [37-39]. The main topic of this article is to investigate Herglotz’s
Noether symmetry for nonholonomic systems, as well as the corresponding conserved
quantity under fractional models. We provide a criterion for Herglotz fractional Noether
symmetry with nonholonomic constraints and prove the fractional Noether theorem of the
Herglotz type.

The article structure is as follows: In Section 2, we will briefly introduce fractional
derivatives and their basic properties. In Section 3, we present the fractional-order Herglotz
principle and derive the equations of motion. In Section 4, we investigate the Herglotz-
type Noether symmetry. In Section 5, we derive the Herglotz-type Noether theorem. In
Section 6, we provide two examples of how to apply the results. Finally, Section 7 gives
our conclusions.

2. Fractional Derivative

The fractional derivative is briefly introduced in this section. Specific proofs and
discussions can be found in the literature [1,3].

If function @(t) is both integrable and continuous at t € [A, B], then the Riemann—
Liouville fractional derivatives are specified as

bt = ot (&) [l atnan <1>
Dhe = it (- 2) [ - etnan ®
The Caputo fractional derivatives are specified as
1) = r [0 (&) et ®
Djal) = i [ -0 (- ) et @

wherej € N,j—1 < a < j,and I'(*) is the Gamma function, and « is the derivative’s order.
The definition above becomes an integer-order derivative if & is an integer, with

aDja(t) = §Dfa(t) = (&) ()

« (5)
Do) = fDja(t) = (—§) @)

Suppose «(t) and @(t) are smooth functions in the interval [A, B], then the fractional-
order integration-by-parts formulas under the Caputo derivative are [40,41]

/ABco(t) CDéx(t)dt = /AB B

-1
x(t) (Dy@(t)dt + Y DFx(t) : D% 1 *a(t)
k=0

A
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and
, B
B B -1 r
[, @) £Dgx(tat = [ x(t) aDf@(t)dt — Y (~D)'x(t) 4D Fa(t) ()
4 4 k=0 A
For0 < & < 1and «’(A) = 0, then there is
d
4 Co(t) = G (1) ®

3. Equations of Motion

The Herglotz principle can be elaborated as follows.

We assume a fractional Lagrange system, which is described by n generalized coor-
dinates gs(s = 1,2, -+ ,n). Determine the trajectory gs(t) € C?([A, B],R) such that z(B)
reaches an extremum, namely,

z(B) — extr. )

where z(t) is determined by the differential equation

2(t) = L(£as(5), 45(8), GDEas(1),2(1) ), o € (0,1) (10)

with boundary conditions

s(t)] t=a = qa,qs(t)| 1= = g5 (11)

and the initial condition
z2(t)] 1=a = 2(A) (12)
where L(t,qs(t),4,(t), GD¥qs(t),z(t)) is the Herglotz-type fractional Lagrangian, and

a € (0,1).
The functional z is known as the Hamilton-Herglotz action [24].
Let the system have g nonholonomic constraints

Goop = 0p(t00,), (B =12, 0 =12+ e =n—g) 13)
The virtual displacements satisfy the Appell-Chetaev condition [27,28]
o
Oerp = ﬁ%q(r (14)

g
For nonholonomic systems, variational and differential operations are generally not
commutative [28], and according to the Holder definition of commutativity [28,42,43],

we have
c_d Cpe, — Cpo 1.
0q, = dtéqs, 0 7Dfgs = ;D{égs, (s=1,2, ,n) (15)
Taking the simultaneous variation of Equation (10), we obtain
. d__ dL oL _. oL C a oL
0z = aéz = 87155% + aiqséqs + mé‘ ADt qs + E&Z (16)

Equation (16) has a solution

oz(¥) exp(— /AT gid{)) —06z(A) =

t T oL oL oL . oL
— [ Z=do )| =4 =5 ——  5CD% |dt 17
/A exp( A 0z > (E)qs 9s + a4, 95+ 0 ng‘qs A tqs) (17)
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where ¢(t) = exp( f;‘ 9L dG) According to Formula (12), z(A) = 0, Equation (17) is
written as

oL aL . oL
5z(D)(t :/ 8t Sae+ 2250 + 2= 5Cpug )dr 18
=801 <><qus &hqs+agDms,4t%> s)

Considering that z(B) — extr., we have
5z(B) =0 (19)

Equation (18) holds for any t € [A, B]. To be specific, take t = B, and we obtain

oL aL , oL
=005 + — 00, + —=——0 GDfqs | 9()dt =0 20
Let o
L = L(t/f]s/qg/ ngtqu/Z) = L(t/qS/éIg/ (P/S(t/%/qg)/ iD?‘qS/Z) (21)
be the expression obtained by eliminating g, p with the help of the constraint (13), and
we have

oL 9L  JL 9¢g
a o Tag,, ot 22

oL 9L 9L 0
oy 2 W (23)
s 99s  9qc, 5 s
oL 9L 9L 0
—_— =+ = ﬂ (24)
aqa aqa aqe+5 aqa

According to the Appell-Chetaev condition (14) and the commutative relation (15),

we can easily obtain

oL .. oL _. oL dafpﬁ
9, 7 g, 0gpdt aqg 7

g S

Substituting Equations (23)—(25) into (20) yields

B oL oL 9dg¢g
)| =—0gs — — —4
/A ()<3qs ds Py S ds

e+B
oL d 9¢p oL . L ¢
—20qe + ——0G, + —=——0 GDfqs |dt =0 (26)
B pdtag, g, "0 9GDg AT

Using Formula (6), and taking into account the boundary conditions (11) and commu-
tative relation (15), we have

fjﬂ(t)<aCDa 5CD?‘qS)dt
= ffaqs tD% |:l9( )aCD;v S:|dt+ DIX ! |:l9( )aCalgfzqs:|5q5

B %
- Bon{ oa[e k] + 2 a0

(27)

and

B oL _. B d oL 9L oL
80500 -A“@wawﬁJ% 28)
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Substituting Equations (27) and (28) into Equation (26), due to the lemma of variational
calculus [44] and the independence of ég,, we obtain

19(t)la’i 9LOL oL 9¢p AL (acpﬁ ddgs  Ogg a(px>

Gy 04,9z  9Iqeip 94, Cl/ dqr dtog, Iqge+x 94,

d oL oL o9p oL
——— | + DY) ——— | + =L DY | I(t) | =
dt ag, B[ 9GDMe | 9q, | GD erp
(c=1,2--,¢) (29)

Equation (29) is the fractional-order equations of motion of the Herglotz type for the
fractional Lagrange system with nonholonomic constraints.

4. Herglotz-Type Noether Symmetry

The infinitesimal transformations are provided as
F=t+ At qi(t") = gs(t) + Ags (30)

and their expanding formulas are
" =t+uvdo (f/%f?w (f:lDf‘m)

7:(8) = as() + & (Lau,dy, DM ), (5,1 = 1,2, ) (31)

where ¢y and §s; are time and space infinitesimal generating functions, and v is a
small parameter.

The functions o (¢, 4, q;, in‘q,) and s (t,q1,4;, in‘ql) are called the generating func-
tions. The key to seeking the conserved quantities of mechanical systems by using the
Noether theorem is to find these generating functions. Under the integer-order calculus,
the generating function is generally dependent on time, generalized coordinates, and
generalized velocity functions, that is, §o(t,4;,4;) and s(t,4;,q;); such a transformation
constitutes a Lie group, which is geometrically preserved [45]. Sarlet and Cantrijin [46]
discuss in detail the problem of functional dependence for generating functions. Since we
study fractional-order nonconservative systems with nonholonomic constraints and their
invariance, we extend the range of generating functions by introducing fractional-order
derivative terms.

After the transformation, the Hamilton-Herglotz action changes accordingly

Az(t) =zZ(f) —z(t) (32)

There is the relation between nonsimultaneous variation A and simultaneous variation
0 [45]

A@ = 6@ + @At (33)
and d d
Aw = aAa) — waAt (34)

where @(t) is an arbitrary function. According to Formula (33), Equation (10) is written as

. oL oL oL . oL C ma oL
Az = at At + aqs AqS + aqs Aqs + a iD?qu ADt qs + az Az (35)
From Formulas (34) and (35), we have
iAz =M+ a—LAz (36)

dt 0z
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where

d. . oL oL aL . L o
M=L—-At+ —At+ —Ags+ —N7Ng.+ ——A
t ds ds ) gD?qs A

®

S
Equation (36) can be solved as
t

Az(1)B(t) — Az(A) = /A 8(H) Mdt (38)

Using Formulas (14) and (33), we can obtain

) . |
Aderp = a(gﬁ (Ade — 4, 88) + G, Ot (39)

Taking the derivative of Equation (39), and using Formula (34), we obtain

‘ d 9¢p 9gg . 99p
Ajeyp = a %, —0qs + o5 At + 905 ——q,At

3905 . d
+8q (dt 9o — 4o thf) (40)
From Formula (33), we have
d
GDas(t) = GDfoas(t) + 4 ((GDias(h) ) At (41)

By substituting Formulas (22)—(24) into (37), and combining Equations (40) and (41),
Equation (37) can be expressed as

d oL oL oL . d
M Ld At"_ﬁAH'aq Ags +8q (dt Jo — %tht)

(42)

Substituting Equation (42) into Equation (38) yields
tfl=d . oL oL oL (d - d
Az(1)0(t) = / {lL At + EAtJr 90, Aqs+aq (dt Jo — qutAt>
oL (da(Pﬁ 995 _ 99 a¢x>5
ag

(43)

oL c IPp
v cpe( 25 Ve bar
bty 507 (Geke

d~ oL 9L.  oL. oL d .., oL
4 —ngéTqS%JF@%JFmaADMﬁ*L (44)

Due to

0z



Fractal Fract. 2024, 8, 296 70f12
Formula (43) can be written as
t oL oL oL oL 9¢g d oL
Az(t)8(t Z/ O(t) | =— T I =
(Hs(t) A{{ ( )[8% aq oz dqevp dq, dtog,
oL (0 do 99p 0 oL
PSP 0 P |y Dy ()~
aqs—l-ﬁ aq‘T dt aqa aq€+X aq(r d ADt o
+ Dy 0() —=——— | ;940
94 o GDy
il tde+p N (45)
d oL t oL
o Tat+ 2= / ot | —2=— Cpss
+dt{ ()( ‘|‘a% ‘70>+ " ”(ang%A t0qc
oL Pp oL
+7 D ) dt — 8g, DY | O(t) ———
st 37 (o) Jar- w0505
99p oL
—iq DR | 0(t) ———— | |dt p pdt
Tag, " < 0 4D erp

Representing F
can obtain

¢

L L
0 gDzIEX%+ﬁ

and

where ¢, =

Go —

ormulas (43) and (45) with generating functions ¢y and ¢,, we

oL

aqs
oL

%I(T (

C
95D

t
oL oL oL

el

<3<P/3 d 3%@

aq5+,5 aqcr
a0 aiag, )
; i
+ 1D} (ﬂ() % g o
—I—a 19(t)<

et o
+0(t) ( oL

- oL
)] —¢o tDj (l?(t)
9 G Do
= 998
CU aqa

3 G Do
- oL
QDIE, +
(19(1?)

g

ot

C
A

14

D<a

t

oL a<P;;

99p 99y
aq€+?( aqa

aq5+ﬁ
oL
0 %Dtlx%

Co

)
)
)

(47)
d

~ oL —
Léo + fég
9,

aﬂg
[

——— D} | —
7 9GD! i aq

) )

d ng‘q€+/5

o

B

q,Co- The variational Formulas (46) and (47) are important foundations

for establishing Noether symmetry criterion equations for fractional Lagrange systems
with nonholonomic constraints.
We now establish the definition of Herglotz-type Noether symmetry and derive the

criterion equation.
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Definition 1. The infinitesimal transformations of time and space for the fractional Lagrange
system with nonholonomic constraints are called Herglotz-type Noether symmetric, if and only if

Az(B) =0 (48)

where z(B) is the fractional Hamilton—Herglotz action.

Criterion 1. If the generating functions ¢y and ¢y of time and space satisfy the generalized Noether
identity

oL aL d 9P 99 99p Igx\=
5o+ 5 €S+ (EE 3~ Feer 0q, )60

bt ( a‘%> o+ yeip: ( GDIE + & (5D1a0) o) (49)
L )
+acg+q€+ﬁ< ( %CJ) (4 t%ﬂ%)go) =0

then the infinitesimal transformations of time and space are Herglotz-type Noether symmetric.

5. Noether Theorem

Theorem 1. If the infinitesimal transformations of time and space for a fractional Lagrange system
with nonholonomic constraints are Herglotz-type Noether symmetric, then

I= ()<L§0+ §o>+fA[ <aCaDL“ aDiCs + % (?’Zﬁga'>) (50)

~

Fd 7 % oL
—Go tDjp (19( )aCDrx> —Coag. £ tD% (ﬁ(t)% dt = const.

is a conserved quantity.

Proof. According to Definition 1 and using Equations (47) and (29), we acquire

[ #{oc (Lc+ iLE)

300 (5 D1 + el S0t (32T, )) 1)

_E(T tD% (19( )a C;a ) 303%3 tD% (19<t)agﬂaé%+ﬁ):|dt}}dt =0

Hence, we have

d
G1=0 (52)

Consequently, integrating (52), we obtain the conserved quantity (50). The proof of
the theorem is provided. [

Theorem 1 can be called a Noether theorem of the Herglotz type, which generalizes the
classical Noether theorem to a fractional Lagrange system with nonholonomic constraints.

6. Examples
Example 1. Let the Herglotz-type Lagrangian be

I 2 1 .2 ¢
L= M + FMy ~ 5 ADiq —z (53)

The system is constrained by
f=a—1tq =0 (54)

where the damping coefficient 7y and the mass m are fixed constants.
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From Equation (10), the Hamilton—Herglotz action z satisfies

1 .2
= Smi; + qu 7 SDtq — (55)

Comparing Equation (13) with Equation (54), we obtain q, = tq, = @1, and substituting it
into (53), we have
¥ 2
L=3m(1+t)4 — % SDf1—2 (56)

According to Equation (29), we obtain
A —m(1+£2)gy —m(B+t+1)q,| — % DseA~t =0 (57)
or write as Pl ) .
L AR T e M
Equations (57) or (58) is the fractional-order Herglotz-type differential equation of motion for

the system under study.
According to Formula (49), the generalized Noether identity is

(58)

mtdido + mtdy (€1~ 180) +m(1+ P)inéy
+(3m(1+ ) = § §Df —z — m(1+ 2)47) & (59)
-3 (D2 (& — o) + § (5D &) =0
Equation (59) has a solution
So=128=0 (60)

According to Theorem 1, we obtain

I = eA_t{ T CD"‘ql —z— fm(l—i—tz)ql}

(61)
T [FeA tCD”‘ — gy tD%eA~]dt = const.
Equation (61) is a fractional Hegroz-type Noether conserved quantity.
When the fractional derivative term disappears, Equation (61) degenerates to the Noether
conserved quantity of the Herglotz type:

1 .
= —eAt {Zm(l + t2>q§ + Z} = const. (62)

Example 2. We study the nonsliding rolling of a homogeneous sphere on a completely rough
horizontal plane. Suppose that the sphere is subject to nonconservative forces, and take the spherical
center coordinates q4 and qs, and the three Euler angles q1, g2 and q3 as generalized coordinates;
thus, the Herglotz-type Lagrangian is

1 2 .2 1 2 .2 .2 . Y c
L= sm(i+d5) + zma (i + iy + 5+ 2005 c02) + 3 GDigs =7z (63)
and the nonholonomic constraints are
gy = —a(g;cosqysingy — g, singy) (64)
g5 = —a(gssingy sing, + g, cosqq) (65)

where a, m and <y are constants, and 0 < o < 1.
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Substituting Equations (64) and (65) into Equation (63), we obtain

~ 1
[ = Emu [ 7, + q3 sin? g2+ = (ql + q3 + 2q1q3 cos qz)] ?2/ gD“q4 (66)

From Equation (29), the fractional Herglotz-type equations of the system are

_ev(f*A){éﬂt [2ma®(q, + g3 cosqa) | + Eyma® (g, + g5 cos q2)
+maq, (4, cos g1 + g5 singy singa) + mags (g, singy — g5 cos g1 singa) } =0,

e1(t=4) {ma2 (qg singy cos g — 24,45 sin q2> — Zyma?q, — Zma*q,
+maq, (4, cos g1 + 45 cos g1 €os ) + maqs (4, singq + g5 singy cos q2) }
+ZJasing tD”E‘;eV(t’A) =0,
—er(t=4) { gl [ma2q3 sin? gy + 2ma® (g5 + 4, cos q2)]

+yma? (g, sin® g + % (q3 + 4 cosqp)] + maq, glt (cos gy sing,) (67)
+mags $ (sin gy squ)} Tacosqysingy 1D&e?=4) =0

er(t=4) {ma2 (q§ singp cos gy — %ql% sin qz) — g’ymazih - gma2q'2

+maqy(q, cos g1 + 43 €0s 41 €05 42) + maqs (g, singy + g5 sin gy cos q2) }
+Yasingy (De7t-4) =0,

Substituting Equations (64) and (65) into Equation (67), we obtain
41 + 4308 02 — 4543 5in.q2 + ¥ (q; + g3 cos g2) =0,
—§mae" =N (q,G5 singa +9q, + ,) + § singy (D=4 =0,

eY(t=4) mﬂ{ 0 Cos 112 + 43 sin? g2 + 5@3 5171172 sin gy + 4,45 sin gz cos g (68)
+7d3 sin’ g2 +5 gma 2(g3+ g1 cosq2) ] } + § cos g1 singn tD”‘ﬂ(t A) =0

By Formula (49), the generalized Noether identity is

Eéo + ma2q3 singy (45 cos gz — %‘71)52 - maz% sin g (‘71 + g5 cos QZ).@Z - ‘7250)
+ma*q, sin g (41 + 43 cosq2) (&3 — 4380) + %maz (41 + g3 cos g2) (‘31 - ‘71‘30)

Ema2ay (& — 4,80 ) + ma® [y sind g2 + 3(ds iy cosaa) (& — 1:¢0) (©9)
+3 4Dt asing (€2 — i) ] + 3 5 i (4DF94) o
C G Dy [acos g1 singa (&3 — 4380)] =0
Equation (69) has a solution
§0=0,¢1=1¢6=0,=0 (70)
According to Theorem 1, we obtain
I = 2ma2e""=4) (g, + g5 cosqa) = const. (71)

This is the conserved quantity of a purely rolling sphere with nonconservative forces applied.

7. Conclusions

Fractional calculus is a more precise tool for studying and describing complex sys-
tems’ physical processes and dynamic behavior. In this study, the Herglotz-type Noether
theorem is presented for fractional Lagrange systems with nonholonomic constraints. Two
variational formulas are found for the fractional Hamilton-Herglotz action, as well as the
criterion and definition of fractional Noether symmetry. Symmetry is closely related to



Fractal Fract. 2024, 8, 296 11 of 12

conserved quantities. The fractional Herglotz-type Noether theorem is an extension of
classical Noether’s theorem, which shows how the conserved quantity and the system’s
symmetry relate to one another. The issue degenerates to the variational problem of frac-
tional Lagrange systems with classical nonholonomic constraints when the Lagrangian
function does not explicitly contain z, and Equation (50) degenerates to Noether’s theorem
of fractional Lagrange systems with nonholonomic constraints. As a result, this paper’s
results are more broadly applicable to holonomic and nonholonomic systems as well as
conservative and nonconservative processes. The approach and findings in this paper can
also be used to investigate Herglotz-type Noether theorems for other kinds of constrained
mechanical systems under fractional models.
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