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Abstract: The intricacy and fractal properties of human DNA sequences are examined in this work.
The core of this study is to discern whether complete DNA sequences present distinct complexity and
fractal attributes compared with sequences containing exclusively exon regions. In this regard, the
entire base pair sequences of DNA are extracted from the NCBI (National Center for Biotechnology
Information) database. In order to create a time series representation for the base pair sequence
{G, C, T, A}, we use the Chaos Game Representation (CGR) approach and a mapping rule f , which
enables us to apply the metric known as the Complexity–Entropy Plane (CEP) and multifractal
detrended fluctuation analysis (MF-DFA). To carry out our investigation, we divided human DNA
into two groups: the first is composed of the 24 chromosomes, which comprises all the base pairs that
form the DNA sequence, and another group that also includes the 24 chromosomes, but the DNA
sequences rely only on the exons’ presence. The results show that both sets provide fractal patterns in
their structure, as obtained by the CGR approach. Complete DNA sequences show a sharper visual
fractal pattern than sequences composed only of exons. Moreover, the sequences occupy distinct
areas of the complexity–entropy plane, and the complete DNA sequences lead to greater statistical
complexity and lower entropy than the exon sequences. Also, we observed that different fractal
parameters between chromosomes indicate diversity in genomic sequences. All these results occur in
different scales for all chromosomes.

Keywords: DNA; multifractal; chaotic dynamics; complexity; entropy

1. Introduction

The emergence of high-throughput DNA sequencing technologies has revolutionized
our understanding of the genetic foundations of life DNA sequences serve as the fun-
damental instructions for biological processes, providing insight into genetic variations,
functional components, and evolutionary connections [1–5]. To unlock the intricate code
hidden within DNA, an array of computational techniques have been harnessed [6–9].
Other approaches involving generalized entropies investigated human DNA sequences
and other living organisms [10,11]. These methodologies collectively enable the unveiling
of hidden genetic patterns and deciphering the complex relationships that govern DNA’s
role in shaping life’s diversity and complexity.

The term fractal geometry was coined initially by Mandelbrot in 1957 when he de-
scribed the geometry of turbulence in fluids [12]. In a general way, fractal geometry is the
systematic study of irregular shapes found in both mathematics and nature, where each
small part is similar to its magnified image, and this similarity repeats across different
scales. Fractals are characterized by a power law within the magnification process, with
the same exponent related to the fractal dimension remaining constant even as the scale
changes. If the exponent varies with the scale, we have a multifractal object with mul-
tiple fractal dimensions. The concept of multifractals was initially introduced in Frisch
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and Paris’s work in 1985 [13], which built upon B. Mandelbrot’s earlier research in the
1970s [14]. This work popularized the term “multifractal analysis” among mathematicians
and physicists. More specifically, from a mathematical standpoint, multifractal analysis
refers to a technique used to precisely characterize the heterogeneity in the distribution of a
set of measurements in a metric space at small scales [15–18]. This analysis aims to express
the dimension of the set of measurements in terms of the Legendre transformation of a
free energy function, drawing an analogy with thermodynamic theory. In mathematical
analysis, the multifractal formalism is deemed applicable to a given set µ if the Legendre
transform of its free energy yields the Hausdorff dimension of the set of measures of the
local Hölder exponent of µ [18]. Historically, multifractal analysis relied on Mandelbrot’s
box method, which was described in his book from the 1970s. This involved using boxes in
a metric space entirely separate from geometry [14]. However, the mathematician Olsen
sought to replace this approach with a more mathematically significant formalism within
geometric measurement theory [15], which is now widely used. Regardless of whether
boxes are used, this formalism has been proven valid when an auxiliary measure, known
as the Gibbs measure, is present [19]. Later, it was discovered that this formalism is valid
under Olsen’s Hausdorff-like model, where the multifractal measure is positive [20,21].
Even today, new proofs of theorems on multifractal formalism are being explored in the
field of mathematics [18].

Among these methodologies, Chaos Game Representation (CGR) has emerged as
a powerful instrument for analyzing and visualizing DNA or protein sequences [22–24].
The CGR visually represents the distribution patterns of nitrogenous bases in genomic
sequences. It highlights the structure and organization of sequences in an intuitive and
accessible way [22].

Another essential tool, the complexity–entropy causality plane, introduced in ref. [25],
has become a significant metric for quantifying the intricate structural properties of DNA
sequences [26]. The complexity–entropy plane (CEP) allows the assessment of statistical
complexity in time series data, particularly in DNA sequences, studying its behavior in
phase space. It involves the creation of a two-dimensional plane and the mapping of DNA
sequences onto it. The CEP approach then measures the entropy of this plane, which
captures the system’s inherent structural properties and unpredictability. Higher CEP
values indicate a higher level of sophistication and the presence of intricate fractal patterns
within the DNA sequences. By employing CEP, researchers gain insight into the complex
organizational characteristics of time series and can uncover hidden patterns and structural
properties that may not be apparent from a straightforward examination of the sequences
themselves [27–29].

On the other hand, multifractal detrended fluctuation analysis (MF-DFA) is a technique
used to study the complexity of time series [30–32]. By applying fractal concepts, MF-DFA
helps identify complex and heterogeneous patterns in time series and is widely used in
fields such as physics, biology, and finance [33–36]. The method provides information
about the multifractal distribution of fluctuations at different scales, revealing the intrinsic
complexity of the data.

The analysis methods used in this study—CGR, CEP, and MF-DFA—are complemen-
tary in providing different perspectives on the properties of genomic sequences. While
CGR offers a detailed visual representation of the distribution patterns of nitrogenous
bases, CEP provides a quantitative analysis of the statistical complexity and entropy of
the sequence. On the other hand, MF-DFA investigates the multifractal characteristics of
sequences, revealing complex fluctuation patterns at different scales. By combining these
methods, we can obtain a more complete and comprehensive understanding of genomic
sequence structure, organization, and dynamics.

In DNA sequences, exons are the coding segments and keystones of genetics, housing
the instructions for protein synthesis—the bedrock of cellular activities [37,38]. In contrast,
introns, the noncoding stretches interwoven between exons, extend their significance
beyond a mere genomic “spacer” [3,37,39–41]. Introns are increasingly recognized for
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their involvement in gene regulation, alternative splicing, and even potential evolutionary
innovation [42,43].

Here, we comprehensively investigate the characteristics of DNA sequences. The
main aim is to discern whether complete DNA sequences exhibit distinct complexity and
fractal attributes compared with sequences that contain only exon regions. Base pair
sequences are used from the NCBI database in this regard [44]. We apply the Chaos Game
Representation (CGR) approach and a mapping rule f to create a time series representation
of the base pair sequence {G, C, T, A}, allowing the application of the metric known as the
complexity–entropy plane (CEP).

This paper is organized as follows. Section 2 briefly discusses the theoretical back-
ground. Section 3 presents the results and discussion, while Section 4 describes the main
conclusions of this work.

2. Theoretical Background
2.1. Chaos Game Representation

By applying the concepts of chaotic dynamics to the construction of an image of a gene
sequence, the Chaos Game Representation (CGR) technique, as proposed by Jeffrey [22],
reveals patterns at both the local and global levels. This technique is based on chaotic
dynamics and produces an image of the gene sequence that displays local and global
patterns. Mathematically, the chaos game is described as an iterative function system (IFS)
that allows representing a DNA sequence graphically in the form of an image.

CGR is significant in assessing the prevalence of k-mers within nucleotide sequences,
with k being an adaptable integer of your choice. Each k-mer corresponds to a distinct
sequence of length k from the DNA sequence, which facilitates the identification of specific
regions within biomolecules such as DNA (for gene prediction) or proteins [23]. In the
scientific realm, this technique is recognized as Frequency Chaos Game Representation
(FCGR), enabling the visualization of k-mer frequencies in a given sequence through
an image format. In this imagery, each pixel corresponds to a distinct k-mer [45]. The
expansion of CGR to FCGR has ushered in novel approaches for sequence comparison and
phylogenetic analysis [46–48].

Visually, the construction of the FCGR for a k-mer can be achieved recursively through
the following steps: for each nucleotide sequence letter, a box is subdivided into four
quadrants: A occupies the upper left corner, T is placed in the lower right corner, G in the
upper right corner, and C in the lower left corner, as illustrated in Figure 1. The frequency
of monomers in each quadrant is assessed by the FCGR, which then assigns a grayscale
value according to their relative occurrence. Typically, a darker quadrant signifies a higher
frequency of occurrence, while a lighter shade suggests the opposite. This depiction is
specifically related to k = 1.

For instance, in the sequence “TGCA”, each quadrant receives an equal gray level,
denoting a point within each quadrant. On the other hand, if we were to follow a different
sequence, such as “ACTC”, we would see two points in the C quadrant, one in the A
quadrant, one in the T quadrant, and none in the G quadrant. As a result, as shown in
Figure 1, the grayscale intensity of the C quadrant is double that of the T and A quadrants,
although the G quadrant stays white.

The FCGR for dimers, achieved with a pixelization level of k = 2, is generated through
a process where each quadrant is further divided into four analogous subquadrants. This
division is depicted in the top-middle row of Figure 1. Within a given quadrant, these four
subquadrants encompass sequences that conclude with a specific dimer and only vary in
the last nucleotide. Like in the monomer case, the frequencies within each subquadrant are
computed and exhibited by varying the gray intensity levels. For example, in the scenarios
of the sequences “TGCA” and “ACTC”, the FCGR tables for k = 2 are portrayed in the
middle column, middle row, and bottom row of Figure 1, respectively.
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In the right column of Figure 1, the representation k = 3 corresponds to: TGC, GCA
for subsequence “TGCA”. For the “ACTC” subsequence: CTC and ACT. Since they all
appear in the series at the same frequency, they have the same degree of gray, while the
other representations are blank because they do not exist in the sequence.

Figure 1. Quadrants in FCGR at different pixelation levels k, where each quadrant uniquely corre-
sponds to a specific string of length k. (Left column) k = 1. (Middle column) k = 2. (Right column)
k = 3 (Top row). FCGR for the “TGCA” sequence is shown in the middle line. The “ACTC” sequence
is represented on the bottom line.

Generally, to obtain points representing oligonucleotides of length k, we continue the
above procedure until the pixelization level of k is desired. In this progression, the size
of the box grows exponentially. For instance, when considering tetramers (k = 4), the
resulting image will comprise 44 = 256 boxes, each symbolizing a quartet of base pairs. The
frequency of these quartets is also visually depicted through the color of the boxes, ranging
from white (indicating the absence of the tetramer in the sequence) to black (denoting
a widespread tetramer occurrence). Through the FCGR, nucleotide sequences become
amenable to an entirely new suite of statistical analysis tools and facilitate the application
of machine learning methodologies (See [45] and references therein).

Global Distance

The distance between the genomic signatures of two DNA sequences is essential in
evaluating their differences. Such a distance measure can be used, for example, in phylo-
genetic analysis. Several similarity measures can be used to compare two sequences [49].
For a given scale k, ref. [45] suggests utilizing FCGR to calculate the dissimilarity, rwp,q,
between two DNA sequences. To perform this, we use the following formulas to obtain the
global distance d between two FCGR of two DNA sequences.
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where the values of pi and qi represent each k-mer’s frequency of occurrence in the first
and second sequences, respectively. The nw is a kind of “normalization factor”, p̄w and
q̄w are, respectively, a mean of frequency in the first and second sequence, and sp and sq
are a kind of variance between the distribution. Finally, rwp,q is the Pearson correlation
coefficient modified. For example, consider the FCGR of two sequences for k = 2. We
obtain the dimers AA, AC, AG, AT, . . ., TA, TC, TG, and TT for the two sequences in this
configuration. The values pi and qi are the frequency of the 16 dimers of the first and
second sequences, respectively.

The alteration to Pearson’s conventional definition involves incorporating a weighted
variance, represented by the frequency nw. The essential advantage of employing this
modified Pearson coefficient definition, as opposed to the other distance metrics, lies in the
proportional significance assigned to each quadrant, in accordance with the represented
oligomer’s frequency. By [45], the global distance is defined:

d = 1 − rwp,q. (2)

Its value ranges from 0 to 2. The precise resemblance between the sequences is represented
by null values of d, while values larger than one would indicate correlation coefficients of
negative value.

2.2. Times Series and Fractal Theory

The four nitrogenous bases of DNA, which are also known as G, C, A, and T, are
Guanine, Cytosine, Adenine, and Thymine. To use them in our analysis tools, we first
convert the DNA sequence into a numerical sequence using a mapping rule f , where
f (G) → 1, f (C) → −2, f (A) → 2, and f (T) → −1 are the formal definitions of the
mapping. As a result, we obtain {xk : k = 1, 2, . . . , N} as a sequence of values, where
xk ∈ {±1,±2}. The values of xk are cumulatively added to create our time series x(t).
There will be a value matching a temporal measurement t for each cumulative sum value.
Ref. [50] was the first publication to employ this mapping rule.

Formally, the time series {Xt : t = 1, 2, . . . , N} consists of the sum of the elements
of xk.

This definition of f allows us to distinguish purines and pyrimidines. We emphasize
that alternative orders can be chosen to replace bases A, C, G, and T, such as Keto and GC
coding [51].

2.3. Ordinal Patterns

An advanced method that captures the dynamics of time series in great detail is the
use of ordinal pattern algorithms. Using this method, a time series is converted into a
series of rankings or patterns, each of which precisely reflects the order of values within a
given data point window. This method’s strength is its capacity to reveal the minute details
inside dynamic systems using metrics like the complexity–entropy plane and permutation
entropy [52–55].



Fractal Fract. 2024, 8, 312 6 of 22

The principles behind this approach were first presented by Bandt and Pompe in
2002 [25] as a reliable and computationally efficient way to measure complexity in time
series data. At the core of this method lies the notion of measuring complexity through
Shannon entropy. The probability distribution linked to these ordinal patterns is metic-
ulously examined and extracted through partitions of the original time series using the
Bandt–Pompe symbolization approach.

Assume that we perform N observations in the time series {Xt : t = 1, 2, . . . , N}.
The series is divided into nx = N − (dx − 1)τx nonoverlapping divisions (or partitions),
with time τx ≥ 1 separating the dx > 1 items. We acquire the partitions set wp =
(xp, xp+τx , . . . , xp+(dx−1)τx ) for a given τx and dx. The index of the partition is denoted
by p.

The components inside each division are then put in ascending order. To achieve
this, we evaluate the permutation πp for each partition indicated by wp. This permutation
effectively sorts the elements within wp in ascending order. Applying this step-by-step
process to every data partition results in a symbolic sequence called πp, where p = 1, . . . , nx.
We suggest consulting the refs. [52,55,56] for additional information about this technique.

The ordinal probability distribution {ρi(Πi)}i=1,...,nπ
is the relative frequency of all

possible permutations within the symbolic sequence, given by

ρi(Πi) =
number of partitions of type Πi in {πp}

nx
,

where Πi represents each of the nπ = dx! different ordinal patterns.

Complexity–Entropy Plane

The ordinal probability distribution is a fundamental component in the computation
of the Shannon entropy of permutations. By analyzing the frequency and occurrence of
different ordinal patterns within a time series, this distribution provides valuable insights
into the underlying structure and dynamics of the data. The Shannon entropy, derived
from this ordinal probability distribution P = ρi(Πi), quantifies the level of uncertainty or
randomness present in the arrangement of ordinal patterns

S(P) = −
nπ

∑
i=1

ρi(Πi) log ρi(Πi). (3)

A higher Shannon entropy implies a more diverse and intricate pattern distribution, indi-
cating greater complexity and potentially revealing important characteristics of the system
generating the time series. In particular, randomness is indicated by S ≈ log nπ , whereas
more regular dynamics are indicated by S ≈ 0. Additionally, we may denote the normalized
permutation entropy as follows:

E(P) =
S(P)

log nπ
(4)

where the value of E is limited to the interval [0, 1]. This is because the maximum value of
S is Smax = log nπ .

The statistical complexity serves as a crucial metric for delineating the traits of a
sequence. Along with the Bandt and Pompe symbolization approach, the complexity–
entropy plane is a well-known technique for analyzing time series data [25]. This technique
establishes a two-dimensional realm, using permutation entropy E and the intensive
statistical complexity measure C, thereby creating an analytical space. This approach
is designed initially to differentiate chaotic from stochastic time series; moreover, it has
demonstrated its utility across various contexts, encompassing pattern recognition and
classification endeavors.

Lopez-Ruiz’s work introduces a complexity measure grounded in a probabilistic
representation of physical systems. For them, this measure is called statistical complexity
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and can be defined as the product of information E(P) and system order D(P, U) [57].
Mathematically, we can write this statistical complexity as

C(P) =
D(P, U)E(P)

Dmax , (5)

where E(P) is the Shannon entropy and D(P, U) is defined by Jensen–Shannon diver-
gence between the ordinal distribution P = ρi(Πi)i=1,...,nπ

and the uniform distribution
U = {1/nπ}i=1,...,nπ

. Formally, we write

D(P, U) = S[(P + U)/2]− 1
2

S(P)− 1
2

S(U),

and Dmax is the normalization constant given by

Dmax = −1
2

(
nπ ! + 1

nπ !
log(nπ ! + 1)− 2 log(2nπ !) + log nπ !

)
.

Recall that nπ = dx! is the number of all combinations of ordinal patterns.
The existence of complex structures in a system is measured by statistical complexity.

At the extremes of order (where only one permutation symbol happens) and disorder
(where all permutations are equally probable), statistical complexity C assumes a value of
0. In contrast, permutation entropy maintains nonzero values in both cases. Unlike entropy
E, the value C captures structural properties, revealing nuanced information that is not
conveyed by E. Furthermore, various distinct C values can correspond to a single E value,
making C a nontrivial function of E.

2.4. Multifractal Detrended Fluctuation Analysis

Let xk be a function of a time series with N data points. The following standard stages
form the process known as multifractal detrended fluctuation analysis (MF-DFA) [30]:

1. The profile follows the calculation

Y(i) =
i

∑
k=1

(xk − ⟨x⟩), for i = 1, 2, . . . N (6)

where the data’s average is denoted by ⟨x⟩.
2. The profile Y(i) is divided into nonoverlapping segments of equal length s, summing

up Ns = int(N/s) segments. Because s might not always divide N, there is a chance
that some of the profile will stay unsegmented. The residual segment must not be
discarded; thus, the procedure is reiterated starting from the end. Finally, we obtain
2Ns segments, and each one is subjected to a comprehensive calculation of the local
variance using the least squares fit.

3. The calculation of the variance for the 2Ns segments follows from the least squares fit

F2(v, s) =
1
s

s

∑
i=1

{Y[(v − 1)s + i]− yv(i)}2 (7)

for each segment v, v = 1, 2, . . . , Ns, and

F2(v, s) =
1
s

N

∑
i=1

{Y[N − (v − Ns)s + i]− yv(i)}2 (8)

for each segment v = Ns + 1, Ns + 2, . . . , 2Ns. Here, yv(i) represents the polynomial
fit within segment i and is determined according to the trend observed in the time
series. Various polynomial orders can be utilized in the fitting process.
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4. Using an arbitrary polynomial, we calculated F(v, s), which represents the variance in
segment v of size s. The average of all 2Ns segments is represented by the fluctuation
function of q-th order.

Fq(s) =

{
1

2Ns

2Ns

∑
v=1

[F2(v, s)]q/2

}1/q

. (9)

We return the standard DFA method for q = 2. We are interested in the fluctuation
function Fq(s) for various values of q on each length scale s. Steps 2 through 4 are
repeated, changing s,

5. Fq(s) increases for high values of s if the series xk exhibits a long-range power law
correlation, simulating a power law

Fq(s) ∼ sh(q). (10)

Here, h(q) is the generalized Hurst exponent.

As the MF-DFA method only computes positive generalized Hurst exponents, it is
inappropriate for strongly anticorrelated series where h(q) → 0. It has been suggested
that a modified MF-DFA technique be used to address this problem. This adjustment
offers a more suitable way to analyze such data by using a double sum replacement in
Equation (6) [30]

Ỹ =
i

∑
k=1

[Y(k)− ⟨Y⟩]. (11)

After completing the MF-DFA technique as previously stated, we produce generalized
fluctuation functions F̃q(s), with larger exponents h̃(q) = h(q) + 1, a scaling rule similar to
that in Equation (10),

F̃q(s) ∼ sh̃(q) = sh(q)+1 (12)

If a time series’ Hurst exponent H is constant for all values of q, it is categorized
as monofractal. On the other hand, variable h(q) values corresponding to distinct q in a
time series indicate multifractality. Slopes in the Fq(s)× s graph for various q values define
the spectrum of h(q) [30,58]. We analyze the changes in h(q) to determine the effect of
scale fluctuations. The deviation from monofractal behavior is measured by computing
∆h(q) = hqmin − hqmax , which is the difference between the asymptotic values of h(q).
∆h(q) = 0 is the monofractal series parameter. The time series’ multifractality and degree
of dynamical complexity are indicated by the size of ∆h(q).

Therefore, even in the case when h(q) is less than zero for some values of q, the scaling
behavior may be reliably established. To understand the dependence on q in the multifractal
scenario, one might use the multifractal scale exponent τ(q).

τ(q) = qh(q)− 1, (13)

Once there is a stronger nonlinear link between τ and h(q), the multifractality features
become more robust.

An alternate approach to representing a time series as a multifractal is provided by
the multifractal spectrum (α, f (α)), which is linked to the multifractal scale spectrum τ(q)
through a first-order Legendre transformation [59,60]. In the event that τ(q) is sufficiently
smooth, α, the singularity strength, may be determined as follows:

α =
dτ(q)

dq
= h(q) + qh′(q), (14)

which allows one to create the singularity spectrum f (α)

f (α) = qα − τ(q). (15)



Fractal Fract. 2024, 8, 312 9 of 22

The features of the h(q) profile are reflected in the plot of f (α) × α, also known as the
multifractal spectrum or singularities spectrum. The scale exponent fluctuations are shown
by the exponent α; larger singularity strengths correspond to increased multifractality
around the dominant scale h. The function f (α) approaches max f (α) = 1 at q = 0, where
it reaches its maximum value. We obtain a singular point by the representation of f (α) in a
monofractal series, where α = τ′(q) = H.

Defining the symmetry parameter B

B =
αmax − α0

α0 − αmin
. (16)

If B = 1, the multifractal spectrum is symmetric. When B > 1, subsets with smaller
fluctuations have a stronger effect on the multifractal spectrum, indicating a symmetric
spectrum. On the other hand, if B < 1, then the larger fluctuations tend to have a greater
influence on the multifractal spectrum, which skews left. See refs. [30,58,59] for further
information.

3. Results and Discussion

We used the database available from NCBI [44] to investigate the base pair sequence
properties of human DNA. To carry out this investigation, we divided human DNA into
two groups: The first, composed of the 24 chromosomes, comprises all the base pairs
that form the DNA sequence, considering all the regions that form DNA: exons, introns,
intergenic, etc. The second group also comprises the 24 chromosomes, but the DNA
sequences rely only on the exons’ presence. Then, we apply all the methods and tools
described in Section 2 to both sets.

On the NCBI website, it is possible to find data on complete sequences and sequences
composed only of exons. To obtain the FCGR images, we just applied the CGR algorithms
directly to the data. The sample size for each chromosome can be seen in Table S1. In
creating the exon-only region data, we concatenate the noncontiguous sequences of the
exon regions before calculating the FCGR. We emphasize that it was the best way to build
the database since it would be intractable to apply the methods to each exon of each
chromosome. Then, we use the same data to construct the time series.

3.1. Chaos Game Representation

We obtained the Chaos Game Representation for all 48 chromosomes from the two data
sets. The construction of the Chaos Game Representation images, described in Section 2.1,
was carried out using the code available at [23]. The number of base pairs in each chromo-
some, both for the complete and exon-only sequences, is found in the column with index
“N” in Table S1 (See Supplementary Files).

The frequency of 3-mers, 5-mers, and 6-mers for chromosomes 8 and 15, chosen at
random, covering the entirety of their sequences, is shown in Figure 2, The complete
sequences of the other chromosomes present a similar pattern so that we cannot distinguish
one chromosome from the other. These outcomes correspond to pixelation degrees of
k = 3, 5, and 6, respectively, revealing all feasible combinations of nucleotide sequences.
In Figure 3, we present analogous results using the same pixelation scales (k = 3, 5, and
6) for the exon regions of chromosomes 8 and 15. The other exon sequences, for the other
chromosomes, present visual behavior similar to that shown in Figure 3.

Our FCGR results on all chromosomes, for both data sets, employing various scales,
reveal geometric patterns encompassing parallel lines and squares indicating self-similarity
characteristics in the base pair sequences.

The empty squares in Figure 2 indicate the underrepresentation of specific patterns
in the exon chain. This pattern is the already observed “double-scoop” pattern [61]. The
difference in shape from the usual “double-scoop” pattern is due to our choice of the
position of each base A, C, G, and T in the CGR. This result is probably related to the fact
that there is a strong under-representation of CG dinucleotides in human sequences due
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to the hypermutability of cytosine. The hypermutability of cytosine refers to its tendency
to undergo spontaneous deamination, converting it into uracil. During replication, uracil
pairs with adenine instead of guanine, resulting in a C-G to T-A mutation. This process is
one of the main causes of the reduction in the frequency of CG dinucleotides in genomic
sequences [62].

Figure 2. The frequency Chaos Game Representation for the complete sequence. We present the
results for randomly chosen chromosomes 8 and 15. The columns on the left are the results from
chromosome 8, and those on the right are from chromosome 15. Each row corresponds to a pixelation
level. Top: k = 3, middle: k = 5, and bottom: k = 6.
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In the exon sequence of chromosome base pairs, in addition to the under-representation
of CG pair, we also observed the under-representation of the TA pair. This property mani-
fests through two empty squares in the FCGR representation in Figure 3. To confirm this
result, we performed FCGR to k = 2, for chromosomes. In almost all of them, we found
that the CG and TA pairs occur less frequently than the other pairs. Visually speaking, this
behavior is not as straightforward as in the complete sequence, but it is possible to identify.

Figure 3. The frequency Chaos Game Representation for the exon sequence. We present the results
for randomly chosen chromosomes 8 and 15. The columns on the left are the results of chromosome
8, and those on the right are from chromosome 15. Each row corresponds to a level of pixelation. Top:
k = 3, middle: k = 5, and bottom: k = 6.

Our analysis of chromosome similarity, conducted through Equation (2), revealed
fundamental information about genomic organization and composition at different resolu-
tion levels. The similarity d between the two data sets is shown in Figure 4 and Table S2.
Each column corresponds to the similarity between the chromosome of the entire sequence
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set and the same chromosome of the exon sequences, calculated on one of the scales
k = 3, 5 and 6. By calculating the distance between these two data sets at different scales,
we can discern how the distribution of k-mers varies across each. Our results show that
the absence of nonexon regions does not significantly alter the distribution of k-mers in
sequences. The chromosome that presents the most significant variation in k is the Y
chromosome.

Figure 4. The similarity between chromosomes composed of entire sequences and chromosomes
composed only of exons. The numerical values are in Table S2 (See Supplementary Files).

The Y chromosome is known to have a unique and distinctive genomic composition,
as it is highly specialized for functions related to the male sex determinant. Therefore,
variations in the patterns of global distance d between the complete sequence of the Y
chromosome and the sequence composed only of exons may reflect differences in the
organization and function of the intronic and exonic regions of the Y chromosome.

A possible interpretation is that the complete Y chromosome sequences may have
distinct d similarity patterns compared with the exonic regions, indicating differences in
the organization of the repeating structure and the complexity of the sequences. These
differences may be related to the specific function of the Y chromosome in sex determination
and reproductive biology.

3.2. Time Series Analysis

We construct the time series from the sequences of base pairs utilizing the mapping
rule f established in Section 2. The main statistical characteristics for the two sets of
chromosomes are shown in Figure 5, and the numeric values are in Table S1. The time
series representation for the set of complete base pair sequences is shown in Figure 6, and
the exon sequences can be seen in Figure 7. The different mapping rule could influence the
parameter values since we generate a different series for each mapping rule. However, the
general behavior of the sequence is preserved, given that the sequence generating process
is the same (the DNA sequence).
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Figure 5. Time series measurements are represented by mapping the four nitrogenous bases (A, C, G,
T) into four discrete values (−2,−1, 1, 2). The column of bars shows the number of points (size) in
each time series. Line charts display the maximum (max), minimum (min), and mean (mean) values
of the time series. It is observed that the maximum, minimum, and average values are significantly
smaller compared with the total number of points. At the top, we have the measurements for the
complete sequence; at the bottom figure, we have the measurements for the exons. The X and Y
chromosomes occupy positions 23 and 24 on the “CHR” axis. The numerical values are in Table S1
(See Supplementary Files).

When examining the time series, we observed a notable limitation in the range of
maximum, minimum, and average values concerning the total number of points; see
Figure 4. This restriction suggests that the variation between the mapped nitrogen base
values may be contained within a relatively narrow range, decreasing the limited range in
the data. Additionally, we identify repetitive or regular patterns in maximum, minimum,
and average values over time by analyzing time series graphs. These patterns suggest
the presence of recurring behaviors or cycles in the data, which can be attributed to the
intrinsic nature of the underlying process that generates the time series. Combining these
characteristics of limited amplitude and repetitive patterns in time series highlights the
importance of detailed analysis to understand the structure and dynamics of data using
tools such as the complexity–entropy plane and MF-DFA.
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Figure 6. Time series from the entire sequence of base pairs for human chromosomes.
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Figure 7. Time series derived from the coding region of human DNA (exons).

3.3. Complexity Entropy

For each one of the 48 chromosomes, we additionally computed the statistical com-
plexity (C) and entropy (E). We employ the Python library ordpy, which was presented
and extensively examined in ref. [55]. This is a useful tool for finding whether the time
series is chaotic or stochastic and how these measurements behave at different scales in
DNA sequences.

First, we compute the statistical complexity and entropy for scaling segments dx = 3
and τx = 1. For exons, we obtain 0.87 < E < 0.925 and 0.08 < C < 0.12, and for the
complete sequences, 0.83 < E < 0.87 and 0.12 < C < 0.16. The entropy–complexity plane
for this condition is shown in Figure 8. Note that there is a very sharp separation between
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the two sets. Both sets have high entropy and low statistical complexity, indicating that the
time series generated from these base pair sequences are stochastic. This means that the
time series exhibits variations and fluctuations that appear random and the evolution of the
data over time cannot be described by an exact deterministic relationship. The future course
of the series is uncertain and can only be described in terms of probability distributions.

Figure 8. Complexity–entropy causality plane for complete and exons sequences. At the top, we
use dx = 3, and at the bottom, dx = 4. The upper (bottom) dashed line represents the maximum
(minimum) complexity value as an entropy function.

As defined, based on Shannon entropy, E is associated with the uncertainty of ordinal
patterns. The above values for E indicate a great uncertainty related to the distribution
of ordinal patterns. The meaning of this is associated with the fact that, although some
ordinal patterns are more likely to occur than others, one of them has no predominance of
occurrence. In addition, we observed that introns’ presence in DNA sequences makes the
complete sequence more complex than sequences composed only of introns (See Figure 8).

We carry out the same procedure for the dimension dx = 4 and τx = 1. The complexity–
entropy plane under this condition is seen in Figure 8. Again, the sequence containing
introns has a statistical complexity of 0.22 < C < 0.24 and an entropy of 0.78 < E < 0.80,
as well as the exon sequences 0.80 < E < 0.830 and 0.190 < C < 0.230. At this scale, we
observe that there is still a separation for each data set. The set containing introns continues
to exhibit greater statistical complexity and lower entropy. However, we observed that
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the increase in dimension dx caused a decrease in the uncertainty E and an increase in
the statistical complexity C. From this scale, missing patterns appear due to our choice of
mapping, which fails to distinguish between some patterns.

A significant connection can be established between complexity–entropy analysis and
the Chaos Game Representation (CGR) method, as they reveal complementary insights into
the structure and organization of genomic sequences. The visual patterns identified by CGR,
which vary in terms of structure and organization, demonstrate an inverse relationship
with the entropy and statistical complexity of the sequences. In particular, we observed
that more structured and organized patterns (complete sequence), visually evidenced
by the CGR, tend to exhibit lower entropy and greater complexity. In comparison, less
structured patterns are associated with greater entropy. This relationship suggests that
the organization of patterns in the CGR can directly influence the complexity and entropy
of genomic sequences, providing a valuable perspective on the multifaceted nature of
genome structure.

In other words, at different scales, introns increase the complexity of the sequences
while decreasing the uncertainty associated with the occurrence of ordinal patterns.

3.4. MF-DFA

Considering the biological relevance of exons in the production of amino acids and
the available computational capacity, we decided to apply the MF-DFA method only to the
coding sequences.

The Hurst exponent H measures the degree of correlation in a time series. In random
sequences, H is approximately 0.5, indicating a weak correlation between nucleotides. The
generalized Hurst exponents for some chromosomes are represented in Figure 9. For these
sequences, we observed values ranging from 0.65 to 0.98 for H, suggesting a persistent
behavior across base pairs. This persistence is evidenced by the consistent presence of
Adenine and Guanine (or Cytosine and Thymine), where these nitrogenous bases tend to
recur within the DNA chain. Moreover, this persistent pattern persists even in the absence
of these bases, indicating a sustained trend over time.

Figure 9. For coding human chromosomes selected at random, the generalized Hurst exponents h(q)
are displayed. Comparable behaviors are noted in the remaining chromosomes. The values h(2) are
made easier to see by the vertical line at q = 2.

The h(q) spectra for chromosomes 10, 16, 19, and Y exhibit relatively minor variations
with q compared with other chromosomes, as illustrated in the ∆h column in Table 1.
This observation suggests a straightforward fractal structure featuring long-range power-
law correlations among nucleotides, which can be adequately described by a limited
number of scaling factors. In contrast, the h(q) spectra for chromosomes 05, 07, 12, and 14
display more pronounced variations with q, indicative of a more heterogeneous sequence
characterized by a well-defined multifractal structure. This structure entails long-range
power-law correlations among nucleotides and requires a relatively higher number of
scaling factors for its description.
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Table 1. Fractal metrics: The first column denotes the chromosome, while the second column displays
the Hurst exponent H. The subsequent columns, third through fifth, represent the variations of
∆h = hmax − hmin, ∆α = αmax − αmin, and the symmetry parameter B, respectively.

CHR H ∆h ∆α B

01 0.92 0.81 0.98 2.16

02 0.96 0.73 0.85 3.72

03 0.91 0.69 0.80 2.48

04 0.92 1.39 1.48 3.93

05 0.92 1.46 1.55 5.73

06 0.95 0.85 0.99 5.60

07 0.86 1.45 1.60 2.26

08 0.94 1.20 1.30 6.64

09 0.98 0.96 1.08 1.76

10 0.93 0.55 0.65 1.95

11 0.85 1.02 1.20 2.64

12 0.90 1.46 1.62 6.04

13 0.96 0.96 1.12 1.95

14 0.93 1.60 1.75 4.64

15 0.91 1.07 1.23 3.92

16 0.92 0.49 0.59 3.92

17 0.85 1.10 1.20 2.20

18 0.88 1.33 1.44 3.64

19 0.95 0.58 0.69 5.90

20 0.65 0.67 0.76 2.45

21 0.91 1.34 1.48 1.50

22 0.70 1.02 1.16 3.14

X 0.91 0.98 1.11 5.53

Y 0.76 0.57 0.70 0.52

As can be seen in Figure 10, the multifractal spectra derived from Equation (15)
show concave behavior with maximum values at the scaling indices α = h(2). The de-
gree of multifractality is measured by the width of f (α); a wider width denotes more
heterogeneity in the fractal, suggesting more complexity in the process of generating the in-
vestigated series and more difficulty in making predictions, and vice versa. Chromosomes
05, 07, 12, and 14 exhibit the highest variation in ∆α compared with other chromosomes,
while 16, 10, 19, and Y display the lowest, as indicated in the table.
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Figure 10. The spectrum f (α)× α for human chromosomes. Similar responses are noted for the
remaining chromosomes.

These results show that the MF-DFA method can distinguish variations in the genetic
composition of chromosomes and indicate functional differences between them. A deeper
study is necessary to identify which biological characteristic is captured by this method.

The value of the parameter B is more significant than 1 for all chromosomes (except the
Y chromosome). Asymmetry in the multifractal spectrum suggests that subsets exhibiting
minor fluctuations contribute substantially to the spectrum of DNA sequences.

The difference between the values of the fractal parameters for each chromosome, as
shown in Table 1, indicates variation in the complexity of DNA sequences throughout the
genome. Each chromosome has a unique set of genes and regulatory regions, and these
variations in genomic composition can lead to different fractal patterns. Differences in
the values of the fractal parameters can be related to several characteristics, such as the
presence of specific genes, sequence repetitions, and regulatory elements.

We want to discuss the results found in some articles, such as [9,63], where a long-
range correlation behavior was observed between base pairs and the nature of persistence
(H > 0.5) in rich and poor sequences in introns, corroborating the results obtained in this
article. However, unlike our findings, these studies also indicated a monofractal nature in
the sequences used, characterized by a single Hurst exponent. These results differ from
those obtained in our work due to the database used. The (multi)fractal analyses in these
studies employed fragments of human DNA, such as the HUMHBB sequence and the
ECO110K sequence, which are probably the most famous examples of intron-rich and
intron-poor sequences, respectively. However, considering the human genome as a whole,
it is essential to note that these sequences are relatively small in terms of base pairs.

Our approach, on the other hand, involved using the complete human DNA sequence,
aiming for a more comprehensive and representative analysis of fractal properties. This de-
cision was motivated by our intention to explore the full complexity of the human genome,
which allowed us to investigate a wider variety of fractal patterns and trends present in
DNA sequences. We recognize that choosing smaller sequences may be computationally
and methodologically convenient. However, the inclusion of the complete sequence pro-
vided a more complete and robust perspective for our analysis, revealing a multifractal
nature previously unobserved in the cited works.

4. Conclusions

Our study leveraged the robustness of Chaos Game Representation, ordinal patterns,
and the CEP to delve into the influence of intron sequences on human DNA. These methods
allowed us to explore structural properties at various scales, providing a comprehensive un-
derstanding of the topic. The CGR offers a detailed visual representation of the distribution
patterns of nitrogenous bases, indicating that chromosome sequences present better-defined
structural patterns. The complexity–entropy plane provides a quantitative analysis of the
statistical complexity and entropy of sequences, suggesting that complete sequences have
less disorder (entropy) and a more complex structure (greater statistical complexity). On
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the other hand, MF-DFA revealed multifractal characteristics of the sequences, revealing
complex fluctuation patterns at different scales. By using these methods, the following has
been shown.

Through the CGR approach, we identified that both sets of chromosomes present geo-
metric figures at different scales, manifested by parallel lines and squares (self-similarity).
Furthermore, we detected the underrepresentation of the CG pair in the exons and the
underrepresentation of the CG and TA pairs in the complete sequences.

Through MF-DFA analysis of time series generated from DNA sequences, we observed
that all chromosomes exhibit a persistent nature, evidenced by H > 0.5 in all time series.
Furthermore, we identified variations in fractal structure between chromosomes. In par-
ticular, chromosomes 05, 07, 12, and 14 demonstrate a more defined fractal structure and
greater complexity in the process that generates their time series compared with the others.
On the other hand, chromosomes 10, 16, 19, and Y exhibit a less defined fractal structure.
Through the symmetry parameter B, we observe that small fluctuations contribute more
significantly to the construction of the multifractal spectrum of chromosomes. This varia-
tion in fractal parameters highlights the complexity of the dynamic characteristics present
in these genomic sequences.

Using the complexity–entropy plane, we find that both of the time series that are gener-
ated from chromosomal sequences have low statistical complexity and high entropy, which
suggests that they are stochastic. The two data sets are notably situated in distinct locations
on the complexity–entropy plane, revealing variations that remain at different scales.

Our findings indicate that the presence of introns in base pair sequences significantly
alters the statistical complexity and entropy of the time series. This observation, which
holds true across different CEP scales, underscores the importance of considering introns
in the analysis of genomic sequences, as they introduce a unique layer of complexity.

While exon regions have traditionally been considered the main areas of interest due
to their role in protein coding, nonexonic regions play a variety of critical functions in
controlling gene expression, epigenetic regulation, and the formation of three-dimensional
structures of DNA. For example, introns, despite not encoding proteins, have been increas-
ingly recognized as important regulators of gene expression and as sites of alternative
RNA processing. Furthermore, intergenic and noncoding regions are essential in regulating
transcription, modulating chromosomal structure, and genome evolution. Therefore, a
possible extension of this work is investigating the fractal properties and complexity in
these regions for a comprehensive understanding of the structure and function of the
genome, as well as to advance knowledge in molecular biology and genomics.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/fractalfract8060312/s1, Table S1: Statistical characteristics of
the time series generated by the sequences of human chromosomes. The first column indicates the
chromosome. The column with index N is the size of each sample. The index Max and Min are the
maximum and minimum values of the time series generated from each chromosome, and mean is the
mean of the samples. Table S2: The similarity between chromosomes composed of entire sequences
and chromosomes composed only of exons. The first column indicates the chromosome, and the
others show the scales on which we calculated the similarity.
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