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Abstract: The two-parameter Mittag–Leffler function Eα,β is of fundamental importance in fractional
calculus, and it appears frequently in the solutions of fractional differential and integral equations.
However, the expense of calculating this function often prompts efforts to devise accurate approxima-
tions that are more cost-effective. When α > 1, the monotonicity property is largely lost, resulting in
the emergence of roots and oscillations. As a result, current rational approximants constructed mainly
for α ∈ (0, 1) often fail to capture this oscillatory behavior. In this paper, we develop computationally
efficient rational approximants for Eα,β(−t), t ≥ 0, with α ∈ (1, 2). This process involves decompos-
ing the Mittag–Leffler function with real roots into a weighted root-free Mittag–Leffler function and a
polynomial. This provides approximants valid over extended intervals. These approximants are then
extended to the matrix Mittag–Leffler function, and different implementation strategies are discussed,
including using partial fraction decomposition. Numerical experiments are conducted to illustrate
the performance of the proposed approximants.

Keywords: oscillatory Mittag–Leffler function; global Padé approximation; fractional oscillation
equations; fractional plasma oscillations; fractional diffusion-wave equation

1. Introduction

We are concerned with the approximation of the two-parameter Mittag–Leffler func-
tion (MLF) Eα,β, defined by

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, Re α > 0, β ∈ C, z ∈ C. (1)

This entire function generalizes the MLF of one parameter, Eα = Eα,1, and contains several
well-known functions as special cases. In particular, E1 is the exponential function, and
E2(−z2) and zE2,2(−z2) are the cosine and sine functions, respectively, among others.
For some surveys on the Mittag–Leffler functions, see, for example, [1,2].

The Mittag–Leffler function Eα,β(z) arises frequently in the solutions of many physical
problems described by differential and/or integral equations of fractional order. In the
case α ∈ (1, 2), the MLF appears naturally in the solutions of fractional diffusion-wave
equations, fractional differential equations for motion, and fractional plasma equations
(see [3–7]).

Computing the MLF Eα,β is usually challenging (devising and implementing suitable
algorithms) and expensive (computation time). Although the series (1) converges for all
z ∈ C, it is impractical or ineffective to use it computationally for |z| ≥ 1 because the series
converges very slowly. As a result, various methods have been developed to evaluate the
MLF. In [8], an algorithm based on the location of the argument z in the complex plane
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was developed, where for large |z| values, the asymptotic series as |z| → ∞ was used;
for |z| < 1, the series definition (1) was used; and for values in intermediate regions, the
integral representation was used. In [9], an approach based on numerical inversion of
the Laplace transform was proposed. However, these approaches are computationally
time-consuming (see [10,11] for some CPU time comparisons).

Various rational approximations have been sought to efficiently and accurately ap-
proximate Eα,β. Some of them are based solely on the series definition and provide accurate
approximations for small argument values (see, for example, [12–14]). Others are based
on the global Padé approach [15], in which a hybrid of the local series definition and the
asymptotic series representation is used. These global approximations lead to approximants
that are accurate over a wide range of arguments (see [10,11,16–18]).

The existing rational approximants are effective when the MLF is completely mono-
tone, which is the case when α ∈ (0, 1) and β ≥ α. However, when α > 1, as discussed
in [19–21], for some α-β combinations, Eα,β is often oscillatory with multiple real zeros. In
these situations, the rational approximants might fail to trace the oscillation profile and
match the large zeros.

In this paper, we consider in the αβ-plane the strip

Ω = {(α, β) : 1 < α < 2, β ≥ 1}. (2)

The regions where Eα,β is monotone and where it is oscillatory are classified by studying
the zeros of its derivative. Additionally, we introduce new rational approximants that
sufficiently capture more of the MLF roots and can effectively trace their oscillations. This is
achieved by decomposing Eα,β with real roots into another weighted Mittag–Leffler function
devoid of roots, accompanied by a polynomial. Based on this decomposition, we construct
new rational approximants as a sum of the global Padé approximant and a polynomial.
Using this approach, we are able to sufficiently capture many roots of Eα,β by choosing
the appropriate degree of the polynomial. Further, we generalize these approximants
to the matrix MLF and discuss different approaches in which the approximant can be
implemented for matrix arguments. Apart from the computation cost, all approaches yield
close approximations.

Numerical experiments are presented to illustrate the performance of our approxi-
mants. Considering the MLF with scalar arguments, we observe the limitations of the
existing global Padé approximants in approximating the oscillatory MLFs. It is then demon-
strated that the new approximants introduced here are able to improve the situation,
thereby providing sufficiently accurate approximations. For the matrix MLF, we consider
four approaches for computing the rational approximants and compare them to the matrix
MLF algorithm developed in [22]. Using the values obtained from this algorithm as a
reference, it is shown that our approximants provide close values with significantly less
computation time.

The rest of this paper is organized as follows. A characterization of the oscillatory
behavior of the MLF is given in Section 2. In Section 3, the derooting representation is
discussed. Global Padé approximants of the MLF with scalar and matrix arguments are
discussed in Sections 4 and 5, respectively. Some applications to the evaluation of solutions
of fractional evolution equations are discussed in Section 6.

2. Monotonicity and Oscillatory Properties

In this section, we characterize the oscillatory behavior of

Eα,β(−t), (α, β) ∈ Ω, t ≥ 0.

For the discussion that follows, the following formula for the derivative [1] plays a funda-
mental role:

d
dt

Eα,β(−t) = − 1
α

[
Eα,β+α−1(−t)− (β − 1)Eα,β+α(−t)

]
. (3)
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Since Eα,β(0) = 1/Γ(β), it follows from (3) that

d
dt

Eα,β(0) = − 1
α

[
1

Γ(β + α − 1)
− β − 1

Γ(β + α)

]
= − 1

Γ(β + α)
< 0. (4)

The function Eα,β(−t), t ≥ 0, is known to be completely monotone for 0 < α ≤ 1,
β ≥ α. However, this monotonicity is not necessarily preserved when (α, β) ∈ Ω, since
either the function or its derivative could have roots. On the other hand, it was established
in [20] that Eα,β has at most a finite number of roots when (α, β) ∈ Ω. Thus, Eα,β(−t) is
monotone for sufficiently large t. Furthermore, it was shown in [20] that there exists only
one zero when α is sufficiently close to 1, while the number of zeros increases as α increases
toward 2.

In Figure 1, the curve ϕ is the boundary given in Table 1 in [20] such that Eα,β has a
finite number of real roots when (α, β) is below it and none above it. However, the function
in the region below ϕ(α) differs with respect to the number of roots. Typically, the number
of roots increases as α approaches 2. Similarly, we constructed the boundary ψ for the
derivative. The corresponding data are presented in Table 1.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.5

2

2.5

3

3.5

4

(F)

(B)

(C)

(D)

(A)

Figure 1. α-β phase diagram for Eα,β(−t) and its derivative, illustrating the function’s behavior for
five distinct regions. In region (A), Eα,β exhibits oscillatory behavior with the presence of real roots.
In regions (B) and (C), Eα,β oscillates without roots. In regions (D) and (F), Eα,β displays monotonic
behavior.

The monotonicity and oscillatory behavior of Eα,β are characterized by the different
regions marked in Figure 1 and described in Table 2. It follows from (4) that Eα,β(−t)
is monotonically decreasing for (α, β) in regions (D) and (F). In regions (B) and (C), al-
though the function has no real roots, it could have a finite number of oscillations due to
the roots of the derivative.

Remark 1. Since Eα,β(−t) → 0 as t → ∞, it is obvious that each root of it is followed by at least
one root of its derivative. This is consistent with the inequality

ϕ(α) < ψ(α).
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Table 1. The data for the boundary ϕ ([20], Table 1) and the boundary ψ. The function Eα,β possesses
real roots below the curve ϕ(α) and has no real roots above it. Conversely, below the curve ψ(α), Eα,β

exhibits non-monotonic behavior, whereas above it, the function demonstrates monotonicity.

α ϕ(α) ψ(α)

1.00 1.00000 1.00000
1.05 1.05924 1.06640
1.10 1.12400 1.14204
1.15 1.19325 1.22532
1.20 1.26674 1.31565
1.25 1.34437 1.41277
1.30 1.42608 1.51654
1.35 1.51187 1.62689
1.40 1.60173 1.74374
1.45 1.69565 1.86706
1.50 1.79365 1.99685
1.55 1.89573 2.13306
1.60 2.00191 2.27568
1.65 2.11219 2.42471
1.70 2.22660 2.58014
1.75 2.34513 2.74196
1.80 2.46779 2.91017
1.85 2.59460 3.08477
1.90 2.72557 3.26575
1.95 2.86070 3.45311
2.00 3.00000 3.64686

Table 2. Number of roots in the regions in Figure 1.

Region Eα,β(−t) dEα,β/dt

A Finite number of roots Finite number of roots
B No real roots Finite number of roots
C No real roots Finite number of roots
D No real roots No real roots
F No real roots No real roots

For the region below the line β = α + 1, which includes the regions (A), (B), and (D),
the following decomposition is presented in [19],

Eα,β(−t) = gα,β(−t) + fα,β(−t), t > 0, β < α + 1, (5)

where the function fα,β(−t) is asymptotically approaching zero as t → ∞ and gα,β(−t) is
an oscillatory function.

When β = 1 and 1 < α < 2, the function fα,1(−t) is known to be a completely
monotonic function, while the function gα,1(−t) is oscillatory with exponentially decreasing
amplitude [3]. The properties of Eα, 1 < α < 2, such as monotonicity, roots, and oscillatory
behavior, have been discussed in detail in [23].

In region (B), although Eα,β(−t) has no roots as it decays to zero, it undergoes oscil-
lations due to the roots of its derivative, as demonstrated in Figure 2. This behavior is
also consistent with the oscillatory nature of gα,β there. On the other hand, in region (D),
in which Eα,β is monotone, the behavior of the oscillatory function gα,β fades away and
fα,β(−t) dominates.
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Figure 2. Typical oscillations in region (B) about the roots (marked by the red lines) of the derivative.

3. Derooting Decomposition

A key step in accurately approximating Eα,β(−t) when 1 < α < 2 is to capture its
oscillatory behavior and roots. However, in region (A), in general, the number of roots
could exceed those of the rational approximants. This makes these approximants valid
only for small arguments.

A derooting approach can be used to extend the validity of the rational approximants
to large intervals. For this purpose, we use the following recursive identity [24]

Eα,β(t) = trEα,β+αr(t) + Pr−1
α,β (t),

α > 0, β > 0, t ∈ R, r = 0, 1, 2, . . . ,
(6)

where

Pr−1
α,β (t) :=

 ∑r−1
k=0

tk

Γ(αk + β)
, r = 1, 2, 3, . . .

0, r = 0.
(7)

In this identity, Eα,β is decomposed into another MLF with a shifted second parameter
and a polynomial of degree r − 1. This allows us to replace the parameters (α, β) in region
(A) with parameters (α, β + αr) above the boundaries ϕ(α) or above ψ(α). Consequently,
we obtain a function Eα,β+αr that has no roots or could even be monotone. Therefore, the
approximation of Eα,β(−t), 1 < α < 2, with a finite number of real roots can be replaced by
approximating another one that has no roots or one that is monotone.

4. Rational Approximation

Based on the global rational approximation technique introduced for transcendental
functions in [15], a variety of global Padé approximants for Eα,β(−t), 0 < α < 1, have been
developed and implemented [10,11,16–18]. These approximants are still valid for Eα,β(−t),
1 < α < 2, over intervals in which the number of its roots does not exceed the number of
approximant roots. This renders these approximants inadequate when approximating the
MLF over an interval in which it has multiple roots, as is the case when (α, β) is in region
(A) in Figure 1.

In general, the global Padé approximation Rm,n
α,β (t), where m and n are positive integers,

for Eα,β(−t) takes the form [10,11]

Rm,n
α,β (t) =

1
Γ(β − α)

p1 + p2t · · ·+ tν−1

q0 + q1t + · · ·+ tν
, v =

m + n − 1
2

. (8)

The construction of the global Padé approximation depends on the series definition (1) of
the MLF as well as its asymptotic expansion, given by the following theorem:
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Theorem 1 ([25]). Let α ∈ (0, 2), β ∈ C and µ ∈ R, πα
2 < µ < min{π, πα}. Then, for µ ≤

| arg z| ≤ π,

Eα,β(z) = −
n

∑
k=1

(z)−k

Γ(β − αk)
+O

(
|z|−(n+1)

)
, as |z| → ∞, n ≥ 1.

It was shown in [10] that the approximant Rm,n
α,β has the asymptotic error

|Eα,β(−t)− Rm,n
α,β (t)| =

O
(

t
m−n−1

2

)
, m ≥ n + 1, as t → 0,

O
(

t−(n+1)
)

, n > 1, as t −→ ∞.
(9)

In the rest of this section, we consider the global Padé approximants R7,2
α,β and R13,4

α,β ,
developed in [10,11], and examine their performance when 1 < α < 2. Then, we describe
how the derooting decomposition leads to approximants with an increased number of
roots, enabling them to better approximate the roots of the MLF.

4.1. Global Padé Approximation

For {(α, β) : 1 < α < 2, β ≥ 1, α ̸= β}, we consider the global Padé approximants

R7,2
α,β(t) =

1
Γ(β − α)

p1 + p2t + p3t2 + t3

q0 + q1t + q2t2 + q3t3 + t4 , t ≥ 0, (10)

and

R13,4
α,β (t) =

1
Γ(β − α)

p1 + p2t + · · ·+ p7t6 + t7

q0 + q1t + q2t2 + · · ·+ q7t7 + t8 , t ≥ 0, (11)

where the coefficients, respectively, satisfy the systems

1 0 0 a0 0 0 0
0 1 0 a1 a0 0 0
0 0 1 a2 a1 a0 0
0 0 0 a3 a2 a1 a0
0 0 0 a4 a3 a2 a1
0 0 0 a5 a4 a3 a2
0 0 1 0 0 0 b0





p1
p2
p3
q0
q1
q2
q3


=



0
0
0
−1
−a0
−a1
−b1


, (12)



1 0 0 0 0 0 0 a0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 a1 a0 0 0 0 0 0 0
0 0 1 0 0 0 0 a2 a1 a0 0 0 0 0 0
0 0 0 1 0 0 0 a3 a2 a1 a0 0 0 0 0
0 0 0 0 1 0 0 a4 a3 a2 a1 a0 0 0 0
0 0 0 0 0 1 0 a5 a4 a3 a2 a1 a0 0 0
0 0 0 0 0 0 1 a6 a5 a4 a3 a2 a1 a0 0
0 0 0 0 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0
0 0 0 0 0 0 0 a8 a7 a6 a5 a4 a3 a2 a1
0 0 0 0 0 0 0 a9 a8 a7 a6 a5 a4 a3 a2
0 0 0 0 0 0 0 a10 a9 a8 a7 a6 a5 a4 a3
0 0 0 0 0 0 0 a11 a10 a9 a8 a7 a6 a5 a4
0 0 0 0 1 0 0 0 0 0 0 0 b0 b1 b2
0 0 0 0 0 1 0 0 0 0 0 0 0 b0 b1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 b0





p1
p2
p3
p4
p5
p6
p7
q0
q1
q2
q3
q4
q5
q6
q7



=



0
0
0
0
0
0
0
−1
−a0
−a1
−a2
−a3
−b3
−b2
−b1



, (13)

aj =
(−1)j+1Γ(β − α)

Γ(β + jα)
, bj =

(−1)j+1Γ(β − α)

Γ(β − (j + 1)α)
, j = 0, 1, . . . .
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Remark 2. As mentioned in [11], it is important to highlight that systems (12) and (13), for de-
termining the coefficients of the approximants R7,2

α,β and R13,4
α,β , exhibit relatively high condition

numbers. Consequently, solving these systems necessitates careful attention to avoid accuracy loss
due to possible ill-conditioning. In the implementations, we make use of the MATLAB function

“linsolve” or the corresponding Python function “scipy.linalg.solve”, which can handle this range of
condition numbers.

Computationally, it is observed that R13,4
α,β has at most three real roots, while R7,2

α,β has
exactly one real root. Consequently, in approximating some of the oscillatory MLFs, each
approximant is only able to trace the function up to its largest root. To illustrate the accuracy
and limitations of both approximants when 1 < α < 2, we compare them with the MATLAB
routines ml [9] and ml_matrix [22] for the scalar and matrix arguments, respectively, as our
reference values. Other implementations of the MLF, such as the MATLAB function mlf [26]
and the Mathematica MittagLefflerE function, can also be used. However, these functions
are not available for Matrix arguments, which are of primary interest in the current work.
As such, we adopt those in the aforementioned references for our comparisons.

In Figure 3, two examples from region (A) are shown. In plot (a), the MLF has only
one root, which is typically the case for 1 < α < 1.4. As observed, R13,4

α,β provides a good
approximation in this case. In plot (b), the MLF has many roots, which is typically the case
as α approaches 2. As expected, each approximant fails beyond its largest root to capture
the oscillations of the MLF.

0 10 20 30 40 50 60 70 80 90 100

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 = 1.3,  = 1.2

(a) Region (A): one root

0 10 20 30 40 50 60 70 80 90 100

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 = 1.9,  = 1.2

(b) Region (A): many roots

Figure 3. Plots of R13,4
α,β and R7,2

α,β approximants of Eα,β when (α, β) is in region (A).

In Figure 4, typical cases from regions (B) and (C) are shown. The corresponding MLFs
in both regions are root-free but are oscillatory. As shown, R13,4

α,β is sufficiently accurate for
an extended interval. However, eventually, it takes negative values, as shown in plot (b).

In Figure 5, typical cases from regions (D) and (F) are illustrated. In both regions, the
MLF is monotone and globally positive. As can be clearly seen, R13,4

α,β is a good approxima-
tion for an extended interval.
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(a) Region (B): no roots and oscillatory
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(b) Region (C): no roots and oscillatory

Figure 4. Plots of R13,4
α,β and R7,2

α,β approximants of Eα,β when (α, β) is in regions (B) and (C).
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(a) Region (D): monotone and positive
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0.05

0.1

0.15

0.2

0.25

0.3

 = 1.95,  = 3.5

(b) Region (F): monotone and positive

Figure 5. Plots of R13,4
α,β and R7,2

α,β approximants of Eα,β when (α, β) is in regions (D) and (F).

As general guidelines, we have the following:

• When (α, β) is in region (A), the existing global Padé approximants are not effective
over extended intervals due to the existence of roots.

• When (α, β) is in region (B) or (C), more accurate approximants should be used due to
the oscillatory behavior of the MLF.

• When (α, β) is in region (D) or (F), the approximant R13,4
α,β is sufficiently accurate since

the MLF is globally monotone.

4.2. Rational Approximation for Oscillatory MLFs

As observed in the above subsection, when (α, β) lies below the boundary ψ(α) in
Figure 1, then more accurate and multi-root approximants are essential for extended inter-
vals. Next, we propose a class of rational approximants that have the desirable performance.

It follows from (6) that we can write

Eα,β(−t) = (−t)rEα,β+αr(−t) + Pr−1
α,β (−t), t > 0. (14)

Let Rm,n
α,β be the global Padé approximants described in [10]. We introduce the rational

approximant
Eα,β(−t) ≈ Rm,n,r

α,β (t), t > 0, (15)
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where
Rm,n,r

α,β (t) := (−t)rRm,n
α,β+αr(t) + Pr−1

α,β (−t), r = 0, 1, 2, . . . . (16)

Note that as a special case, we have

Rm,n,0
α,β = Rm,n

α,β .

The integer r could be chosen so that (α, β + αr) lies above the boundary ψ(α) in Figure 1.
As demonstrated in the previous subsection, this shifting of parameters would enhance
the performance of Rm,n

α,β+αr since in this case, Eα,β+αr(−t) is root-free and non-oscillatory.
Furthermore, r could be chosen large enough so that the approximant Rm,n,r

α,β captures the
desired number of roots and the oscillations of Eα,β over an extended interval.

4.3. Asymptotic Behavior of the Approximation Error

We define the error
em,n,r

α,β (t) := Eα,β(−t)− Rm,n,r
α,β (t).

By subtracting the decompositions (14) and (16), and then using the asymptotic error (9),
we can determine the asymptotic behavior:

|em,n,r
α,β (t)| = |(−t)r|

[
Eα,β+αr(−t)− Rm,n

α,β+αr(t)
]

= tr

O
(

t
m−n−1

2

)
, m ≥ n + 1, as t → 0,

O
(

t−(n+1)
)

, n > 1, as t −→ ∞,

=

{
O
(

t
m−n−1

2 +r
)

, m ≥ n + 1, as t → 0,

O
(
t−n−1+r), n > 1, as t −→ ∞.

(17)

Note that although the exponent (−n − 1 + r) in the error term (17) becomes positive
as t → ∞ when r > n + 1, large values of r increase the number of roots in the modified
approximant Rm,n,r

α,β , which improves its capability to capture the oscillations of the MLF
over an extended interval. Consequently, the actual error starts to grow only after the final
root of the approximant.

The performance of the generalized approximant R13,4,r
α,β when (α, β) is in regions (A)

and (C) is demonstrated in Figures 6 and 7, respectively, where∣∣∣em,n,r
α,β (t)

∣∣∣ :=
∣∣∣Eα,β(−t)− Rm,n,r

α,β (t)
∣∣∣.

As can be observed, the interval of the approximation can be extended by increasing r.
The generalized approximant R7,2,r

α,β has the same features, although it is not as accurate as

R14,3,r
α,β , as shown in Figure 8.
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Figure 6. Plots of R13,4,r
α,β for different values of r when (α, β) is in region (A).
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Figure 7. Plots of R13,4,r
α,β for different values of r when (α, β) is in region (C).
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Figure 8. Plots of R7,2,r
α,β for different values of r when (α, β) is in region (A).

5. Approximation of the Matrix Mittag–Leffler Function

In this section, we study the approximation of the matrix MLF, defined by [27]

Eα,β(A) =
∞

∑
k=0

Ak

Γ(αk + β)
, Re α > 0, β ∈ C, A ∈ Cn×n. (18)

Using the definition of rational functions of matrices (see [28]), we define the global Padé
approximation of Eα,β(A) as

Rm,n
α,β (A) :=

1
Γ(β − α)

[q(A)]−1 p(A), (19)

for some appropriate matrix A, where p and q denote the numerator and denominator,
respectively, of Γ(β − α)Rm,n

α,β . Furthermore, by extending the decomposition (6) to matrix
arguments, we define the rational approximant

Rm,n,r
α,β (A) := (−A)rRm,n

α,β+rα(A) + Pr−1
α,β (−A), r = 0, 1, 2, . . . , (20)

where Pr−1
α,β is the polynomial given by (7).

Several approaches exist for extending a scalar rational function to matrix arguments.
For a comprehensive overview, we recommend consulting [28]. Next, we discuss some
approaches for implementing (19) and compare their accuracies and computation times.

1. Linear system approach
A straightforward approach is to evaluate p(A) and q(A) using efficient methods for
the evaluation of matrix polynomials, such as the Paterson–Stockmeyer method and
Horner’s method (nested multiplication) [28]. Additionally, the powers A2, A3, . . . ,
can be precomputed and used in the computation of both p(A) and q(A) to minimize
the overall cost. It is noteworthy that research in the field of matrix polynomial evalu-
ation is increasingly active. In particular, a new family of methods for evaluating ma-
trix polynomials, which are more efficient than the established Paterson–Stockmeyer
method, was proposed in [29]. This area could be a subject of future research for us,
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as this section concentrates on introducing general techniques for approximating the
MLF matrix using rational approximation, aiming for a general comparison.
Using this approach, the approximant Rm,n

α,β (A) is obtained by solving the matrix
system

q(A)Rm,n
α,β (A) = p(A).

This requires solving N systems for an N × N matrix.
2. Partial fraction approach

Partial fraction decomposition is known to provide an efficient form for evaluating
rational functions. For the global Padé approximants, it was discussed in [10,11] that
these approximants have complex conjugate roots, which can contribute to efficient
implementation. As an example, the approximant R13,4

α,β (t), admits the partial fraction
decomposition

R13,4
α,β (t) =

4

∑
i=1

[
ci

t − si
+

c̄i
t − s̄i

]
, (21)

where {c1, c2, c3, c4} and {s1, s2, s3, s4} are the non-conjugate residues and poles, re-
spectively. This expression can be simplified as

R13,4
α,β (t) = 2 Re

4

∑
i=1

[
ci

t − si

]
. (22)

So, for a matrix argument A, the approximant can be calculated as

Eα,β(−A) ≈ R13,4
α,β (A) := 2 Re

4

∑
j=1

cj
(

A − sjI
)−1, (23)

where I is the identity matrix.
For example, in the implementation using the partial fraction approach, the par-
tial fraction decompositions (22) are used to compute the matrix-vector products
as outlined below.
For a given square matrix A and a vector v, the matrix-vector product Eα,β(−A)v is
computed using (20) as

Eα,β(−A)v ≈ Rm,n,r
α,β (A)v := (−A)rRm,n

α,β+αr(A)v + Pr−1
α,β (−A)v,

where the term
Rm,n

α,β+αr(A)v,

is computed using the partial fraction decomposition approach. From (23), we use the
approximation

Eα,β+αr(−A)v ≈ Rm,n
α,β+αr(A)v = 2 Re

4

∑
j=1

cj
(

A − sjI
)−1v.

By solving the systems (
A − sjI

)
xj = v, for j = 1, 2, 3, 4, (24)

we obtain

Eα,β+αr(−A)v ≈ 2 Re
4

∑
j=1

cjxj,

where xj, are the solutions of the linear systems (24). As such, no matrix inversion
is required. Moreover, using the partial fraction decomposition of the rational ap-
proximations is considered an efficient and cost-effective alternative. As mentioned
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in [11], the poles and residues in the partial fraction decomposition (22) rely on α and
β. Therefore, their computation can be achieved independently of the argument A.
The Python or MATLAB “residue” function could be used for this purpose.

3. Matrix diagonalization approach
When the matrix argument A is diagonalizable, a scenario frequently encountered in
matrices derived from the semi-discretization of partial differential equations, then
the factorization A = ZDZ−1 could be considered, where D is the diagonal matrix
containing the eigenvalues, and the columns of Z are the corresponding eigenvectors.
In this case, the matrix MLF can be computed as [28,30]

Eα,β(A) = Z Eα,β(D) Z−1 = Z diag(Eα,β(λi)) Z−1.

Accordingly, the approximant Rm,n
α,β can be computed as

Rm,n
α,β (A) = Z diag(Rm,n

α,β (λi)) Z−1.

By employing this approach, we only need to calculate the rational approximation for
scalar arguments and perform matrix multiplications, which considerably reduces
the computational time. We note that using the diagonalization approach is advisable
only under the condition that the matrix is guaranteed to be well conditioned [28].

Remark 3. The above approaches for computing the MLF matrix are discussed for completeness
and general comparisons. However, they are mainly developed to compute the matrix-vector
products involved in the implementation of numerical methods for solving fractional differential
equations. To the best of our knowledge, computing matrix-vector products involving the MLF
remains a fundamental challenge, as current algorithms for evaluating the MLF of scalar or matrix
arguments [8,9,22] require considerable implementation cost. Therefore, developing such rational
approximants is essential, as they have been proven to offer comparable accuracy and efficient
approximations at a low cost.

For experimental purposes, we evaluate the performance of the approximant (16)
when applied to the Redheffer matrix of size 100 × 100, comparing it with the reference
values obtained by the ml_matrix function. In Figure 9, a color map shows the component-
wise values and relative errors for R13,4

α,β , with (α, β) = (1.9, 1), calculated using partial
fractions. Table 3 presents a comparison of the absolute errors, relative errors, and runtimes
for the different techniques in computing R13,4

α,β . The absolute and relative errors are given
by ∣∣∣Eα,β(−t)− Rm,n

α,β (t)
∣∣∣,

and ∣∣∣∣∣Eα,β(−t)− Rm,n
α,β (t)

Eα,β(−t)

∣∣∣∣∣,
respectively.
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Figure 9. MLF matrix approximation R13,4
α,β , with (α, β) = (1.9, 1), of a 100 × 100 Redheffer matrix

using partial fractions (left) and its relative error (right).

Table 3. Maximum absolute errors (AEs), maximum relative errors (REs), and runtimes (in seconds)
for computing the matrix MLF of a 100 × 100 Redheffer matrix, with β = 1.

α = 1.5 α = 1.9

AE RE Runtime AE RE Runtime

Linear System 1.13 ×
10−04

7.20 ×
10−03

1.90 ×
10−03

2.41 ×
10−08

3.00 ×
10−06

1.10 ×
10−03

Partial Fraction 1.13 ×
10−04

7.20 ×
10−03

3.70 ×
10−03

2.41 ×
10−08

3.00 ×
10−06

2.30 ×
10−03

ml_matrix 1.44 ×
10−01

9.73 ×
10+00

6. Applications and Numerical Experiments

Here, we present some applications of the general Padé approximant (16) related
to fractional oscillation equations, where MLFs arise naturally as solutions. Numerical
experiments are included to highlight the efficiency and accuracy of these approximants.

6.1. Application: Fractional Plasma Oscillations

The fractional plasma oscillation model, described in [31], is given by

cDαu(t) + Au(t) = f (t),

u(0) = u0,

u′(0) = u1,

(25)

where cDα denotes the Caputo fractional derivative of order α ∈ (1, 2), defined by

cDαu(t) :=


1

Γ(2 − α)

∫ t

0
(t − τ)1−αu′′(τ)dτ, 1 < α < 2,

u′′(t), α = 2.

The constant A is the fractional electron plasma frequency and f (t) is the electric field. We
consider the model with a static electric field and with no electric field.

6.1.1. Fractional Plasma Oscillation Model with a Static Electric Field

Consider the special case of problem (25),

cDαu(t) + u(t) = 1, u(0) = 1, u′(0) = −1.
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The exact solution for this initial value problem is

u(t) = Eα(−tα)− tEα,2(−tα) + tαEα,α+1(−tα). (26)

In Figure 10, a comparison of the approximations for (26) when α = 1.2 is provided.
Considering the three terms in (26), the pair (α, β) with β = 1 falls within region (A) of
the phase diagram in Figure 1, where the MLF is oscillatory. Meanwhile, the pairs (1.2, 2)
and (1.2, 2.2) fall within regions (D) and (F), respectively, where the MLF has no real roots
and no oscillations. A similar comparison for α = 1.9 is shown in Figure 11. In this case,
the terms E1.9,1 and E1.9,2 correspond to (α, β) in parts of region (A) where the MLF is highly
oscillatory and has many real roots.

To illustrate the computational efficiency, Table 4 shows that R13,4
α,β and R13,4,r

α,β with
r = 2, 5, 8 exhibit significantly lower computation costs (in terms of time) compared to
the ml function. Moreover, while the modified approximant R13,4,8

α,β yields more accurate

approximations than R13,4
α,β in comparison to the reference values, they have comparable

computation times.
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Figure 10. Profiles (left) and relative error (right) in approximating the solution of (26), with α = 1.2.
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Figure 11. Profiles (left) and relative error (right) in approximating the solution of (26), with α = 1.9.
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Table 4. Maximum relative errors (REs) and runtimes for computing the solution for (26) over the
time mesh [0, 0.17, 0.34, . . . , 10], with α = 1.9.

RE Runtime

R13,4
α,β 3.00 × 10−01 5.69 × 10−04

R13,4,2
α,β 5.95 × 10−03 5.19 × 10−04

R13,4,5
α,β 2.23 × 10−06 5.20 × 10−04

R13,4,8
α,β 3.55 × 10−10 5.52 × 10−04

mL - 2.38 × 10−02

6.1.2. Fractional Plasma Oscillation Model with No Electric Field

Consider the initial values problem

cDαu(t) + u(t) = 0, u(0) = 0.2, u′(0) = 0.1.

The exact solution of this problem is given by

u(t) = 0.2Eα(−tα) + 0.1tEα,2(−tα). (27)

A comparison of the approximations of (27) when α = 1.9 is provided in Figure 12.
Unlike the static electric field case, it can be observed that over an extended time interval,
the solution of the fractional oscillation equation has more oscillations around zero. To suf-
ficiently capture these oscillations on the interval [0, 20], the approximant R13,4,15

α,β can be
used. Clearly, as the values of r increase, the number of roots in the rational approximation
also increases. As a result, the precision of the approximants improves, and their ability
to capture a greater number of roots and oscillations across a relatively broader range is
enhanced. Consequently, the accuracy of the approximants improves, enhancing their
capability to capture more roots and oscillations over a relatively extended interval.
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Figure 12. Profiles (left) and relative error (right) in approximating the solution of (27), with α = 1.9.

6.2. Application: Time-Fractional Diffusion-Wave Equation

Consider the fractional diffusion-wave problem [32]:

c∂α
t u(x, t) = ∂2

xu(x, t), 0 ≤ x ≤ π,

u(x, 0) = sin(x),

∂tu(x, t)|t=0 = 0,

u(0, t) = u(π, t) = 0, t ∈ (0, T],

(28)

where c∂α
t and ∂t are the fractional partial time derivative of order α ∈ (1, 2) and the first

partial derivative in t, respectively, and ∂2
x is the second partial derivative in space.
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The exact solution of (28) is u(x, t) = Eα(−tα) sin(x); however, this problem is in-
tended to illustrate the performance of the approximants (16). To this end, applying the
second central difference approximation to (28) over a uniform spatial mesh with step size
h = π/(m + 1) leads to a system of the form

cDαU(t) + AU(t) = 0, t > 0,

U(0) = U0,

U′(0) = 0,

(29)

where the m × m matrix A =
[
aij

]
is tridiagonal with ai,i = 2 and ai,j = −1 for j = i ± 1.

Further, U(t) = [u1(t), u2(t), . . . um(t)]T , U(0) = [sin(x1), sin(x2), . . . sin(xm)]T , where
u1(t) = u(x1, t) and xi = i × π/m. The solution of the above system of differential
equations is given by U(t) = Eα(−Atα)U0. As an experiment, we take h = π/100, so the
coefficient matrix A is of size 99 × 99. In addition, the rational approximation of the matrix
MLF is computed using the diagonalization approach.

In Figure 13, the solution profile is presented for the case α = 1.2. As can be seen,
both the global Padé approximant R13,4

1.2,1 and its generalization R13,4,2
1.2,1 are comparable. This

is expected since the solution has only one root, and not much oscillatory behavior is
experienced. In Figure 14, the case α = 1.9, where the MLF is more oscillatory, is presented.
In this case, the rational approximant R13,4

1.9,1 fails to capture the oscillations for large t and

thus yields undesirable approximations. However, the modified R13,4,r
1.9,1 with an appropriate

choice r = 2 rectifies this issue and gives more accurate approximate values.
To illustrate the efficiency of these approximants, their runtimes are compared with

that of the ml_matrix MATLAB function. Table 5 showcases the CPU times for computing
the solution U(t) = Eα(−Atα)U0 on a time mesh {tn = 0.1n, n = 0, 1, . . . 100}. The results
show that the approximant R13,4,2

1.9,1 performs about seven times faster than the ml_matrix

function. Moreover, while the approximant R13,4,2
1.9,1 on an extended interval is able to achieve

higher accuracy than R13,4
1.9,1, their runtimes are comparable.
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Figure 13. Approximation of u(π/2, t) (left) and relative error (right), with α = 1.2.
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Figure 14. Approximation of u(π/2, t) (left) and relative error (right), with α = 1.9.

Table 5. Runtimes for computing the solution of (29) over the time mesh [0, 0.1, 0.2, . . . , 10], with
α = 1.9.

Runtime

R13,4
1.9,1 8.00 × 10−02

R13,4,2
1.9,1 9.95 × 10−02

ml_matrix 6.70 × 10−01

7. Concluding Remarks

In this paper, a characterization of the oscillatory and monotone behavior of the
two-parameter Mittag–Leffler function is given. Furthermore, generalized rational ap-
proximants over extended intervals are developed. These approximants are based on
decomposing a Mittag–Leffler function that possesses real roots into a combination of a
weighted rootless Mittag–Leffler function and a polynomial. The approximants have good
tracking capabilities of the roots and oscillations over extended intervals. To show the
efficiency of these approximants, numerical experiments are presented alongside various
applications. Furthermore, to demonstrate computational efficiency, comparisons with the
ml and ml_matrix MATLAB functions are included. Such approximants play an effective
role in the implementation of numerical methods for fractional oscillation equations.
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