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Abstract: In this study, a class of delayed fractional-order predation models with disease and
cannibalism in the prey was studied. In addition, we considered the prey stage structure and the
refuge effect. A Holling type-II functional response function was used to describe predator–prey
interactions. First, the existence and uniform boundedness of the solutions of the systems without
delay were proven. The local stability of the equilibrium point was also analyzed. Second, we used
the digestion delay of predators as a bifurcation parameter to determine the conditions under which
Hopf bifurcation occurs. Finally, a numerical simulation was performed to validate the obtained
results. Numerical simulations have shown that cannibalism contributes to the elimination of disease
in diseased prey populations. In addition, the size of the bifurcation point τ0 decreased with an
increase in the fractional order, and this had a significant effect on the stability of the system.
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1. Introduction

There are different types of species relationships, including cooperation, compe-
tition, and predation, among which predation relationships have always been a con-
cern [1–3]. Models of stage structure in populations have proven useful in many different
systems, as highlighted in previous research [4]. In a simple predator–prey (PP) system,
both predators and prey develop in stages, leading to variations in physiological and be-
havioral characteristics among species at different stages. Understanding the biological
and ecological dimensions of a species is crucial because the growth of all species is a
dynamic process that involves various stages. The stage structure of populations is fun-
damental to ecology, and studies have demonstrated that models exploring this structure
are valuable across various systems [4]. For many organisms, stage is a more accurate
predictor of demographic rate than age [5]. Consequently, the consideration of stage
structures in predation models has sparked significant interest among mathematicians
and ecologists [6–8].

In nature, every species naturally interacts with others, and PP interactions are often
characterized by functional responses [9]. A variety of functional response functions
have been used to describe species interactions. One commonly employed function in
PP systems is the Holling type-II response function [10,11], which provides a compre-
hensive understanding of the pressure that predators exert on prey populations, making
it integral in the study of PP interactions in ecosystems. Another vital aspect when
studying PP systems is the prey refuge [12,13]. Prey refuges can be broadly defined
as strategies or environments that reduce predation risks [14]. By employing these
safeguards, prey can effectively avoid being eaten and weaken predator populations to
an extent. An excellent example is the role of seaweed in marine ecosystems. Seaweed
acts as a protective shelter, allowing small fish and crustaceans to effectively hide from
oceanic predators. Consequently, these predators face challenges when directly hunting
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prey because of the protective environments provided by seaweed. Such refuges offered
by seaweed significantly contribute to the maintenance of biodiversity and the ecologi-
cal balance within marine ecosystems. Understanding the significance of prey refuges
and their effects on PP interactions is crucial for ecological research and conservation.
This refuge illustrates the intricate and interconnected nature of species interactions in
natural ecosystems.

Cannibalism is frequently observed in animal populations [15,16]. Ecologists are
intrigued by the reasons behind cannibalism and its persistence, and extensive research
has been conducted in this area [17–19]. Remarkably, in [17], the authors point out the
lack of studies in the ecological and evolutionary literature regarding the impact of can-
nibalism on parasites and its implications for the relationship between cannibalism and
disease. Therefore, when considering the feedback between parasites and cannibalism,
some experiments have concluded that cannibalism may be more likely to reduce the
prevalence of parasites and thus limit their negative effects on cannibalistic behavior.
Mathematicians have also paid close attention to the study of cannibalism among popu-
lations. Based on this, many related mathematical models have been established [20–22].
In particular, the effects of cannibalism and disease on population dynamics are con-
sidered. For example, Li et al. [23] studied the bifurcation control problem of a class
of delay fractional-order PP systems with cannibalism and diseases. In [24], the au-
thors proposed and analyzed a PP model of cannibalism with infectious diseases in a
predator population. Hopf bifurcation and local stability analyses of the system near
the bioviable equilibrium point were performed. Cannibalistic interactions between
different developmental stages are prevalent in many animal and social insect species.
For example, when there is a high density of juveniles, some adults may consume the
offspring to increase survival and reproductive success. In particular, when some young
populations are infected with diseases, mature individuals consider consuming these
disease-carrying young individuals to ensure the survival of offspring with a higher
survival and reproductive potential. In addition, in [25–27], the authors investigated the
bifurcation behavior and stability of the considered PP system with a stage structure or
cannibalism. However, these studies did not consider the stage structure of the species
in terms of cannibalism and disease.

Recently, fractional calculus has continually advanced, with fractional differential equa-
tions finding extensive applications in fields such as astrophysics, economics, and chem-
istry [28–30]. Many excellent results have been reported, particularly in the field of cyber-
netics [31,32]. There is a close relationship between the fractional derivative and memory,
which can reflect the “memory dependence” of some dynamic processes to a certain extent.
This is one advantage of fractional derivatives over integer derivatives. Long-term memory
effects have also been observed in many populations [33,34]. For example, Zhou et al. [33]
show that organisms can retain information about temporal environmental stimuli as
“stress memories”. Stressor-induced memories can benefit organisms when exposed to
stressors that are later triggered. Therefore, the application of fractional derivatives is of
practical significance [10,35–38].

Inspired by the aforementioned article, this study focused on a delayed fractional
predation model of cannibalism and disease. For the first time, we have linked disease,
cannibalism, and stage structure. Adult prey are usually highly immune to disease, and pan-
demics occur only in young prey; mature prey selectively eat sick young individuals to
promote better survival of their offspring. In addition, the Holling type-II functional re-
sponse was used to describe the interaction between prey and predators and to consider
the protection of prey in shelters.

The structure of this paper is as follows: Section 2 discusses some preparatory
knowledge related to the fractional order. The mathematical model is presented in
Section 3. In Section 4, we examine the existence and boundedness of solutions for
systems without delay. Section 5 describes the local stability at each equilibrium point.
In Section 6, the Hopf bifurcation caused by time delay is discussed. Section 7 discusses
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relevant numerical simulations. Finally, the paper is summarized and conclusions
are presented.

2. Preliminaries

In this section, we first introduce the definition and fundamental properties of the
Caputo derivative, which will be referenced later in this article.

Definition 1 ([39]). Function f (t) is said to be a Caputo fractional derivative if there is a positive
constant n − 1 < ϱ < n, n ∈ Z+ such that

cDϱ f (t) =
1

Γ(n − ϱ)

∫ t

0
(t − τ)n−ϱ−1 f n(τ)dτ,

where Γ(·) is the Gamma function.
The following is the Laplace transform of the Caputo fractional-order derivative:

£{cDϱ f (t); s} = sϱF(s)−
n−1

∑
i=1

sϱ−i−1 f (i)(0),

where F(s) = £{ f (t)}. In particular, when f (i)(0) = 0, i = 1, 2, . . . , n− 1 , then £{cDϱ f (t); s} =
sϱF(s).

Theorem 1 ([40]). For each c > 0, d > 0 and K ∈ Cn×n , we get

£
{

td−1Ec,d(Ktc)
}
=

pc−d

pc − K
,

for R(p) > ∥K∥ 1
c , where R(p) stands for the real part of the complex number p, and Ec,d is the

Mittag–Leffler function defined as Ec,d(z) = ∑∞
n=0

zc

Γ(cn+d) .

Theorem 2 ([41]). Consider the following fractional-order system:

cDϱx(t) = f (x), x(0) = x0, (1)

with ϱ ∈ (0, 1) and x ∈ Rn. The equilibrium points of the above system are the solutions of
f (x) = 0. An equilibrium is locally asymptotically stable if all eigenvalues λj of the Jacobian matrix

J = ∂ f
∂x evaluated at the equilibrium satisfy |arg(λi)| >

ϱπ
2 .

3. The Model

In [23], the authors discussed the following delayed fractional-order PP model with
cannibalism and disease:

cDϱx(t) =x(t)(1 − x(t))− a1x(t)y(t)
a2 + x(t)

,

cDϱy(t) =ry(t)
[

1 − h(y(t − τ) + z(t − τ))

x(t − τ)

]
− b1y(t)z(t)

b2 + y(t)
− σ1y2(t) (2)

+ c2σ2y(t)z(t) + c1σ1y2(t)− d1y(t),

cDϱz(t) =
b1y(t)z(t)
b2 + y(t)

− σ2y(t)z(t)− d2z(t),

where x(t) is the density of the prey, y(t) is the density of the susceptible predator, and z(t)
is the density of the infected predator. In [23], the authors obtained the asymptotic prop-
erties and Hopf bifurcation of system (2). In [25], Huang et al. considered a delayed
fractional-order PP system:
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cDϱ1 x(t) =x(t)

[
r − ax(t − δ)− a1x(t)y2(t)

my2
2(t) + x2(t)

]
,

cDϱ2 y1(t) =
a2x2(t − δ)y2(t − δ)

my2
2(t − δ) + x2(t − δ)

− r1y1(t)− Dy1(t), (3)

cDϱ3 y2(t) =Dy1(t)− r2y2(t),

where x(t) stands for the density of the prey population at time t and y1(t) and y2(t) denote
the densities of the immature and the mature predator population at time t, respectively.
The author focused on the study of the predator’s stage structure and studied the bifurcation
control of system (3).

Inspired by the above analysis and works, firstly, we propose a novel PP model with
cannibalism and disease in prey. The specific model is as follows:

cDϱxs
1(t) = αx2(t)− Ωxs

1(t)− θxs
1(t)xi

1(t)− dxs
1(t),

cDϱxi
1(t) = θxs

1(t)xi
1(t)− φx2(t)xi

1(t)− d1xi
1(t),

cDϱx2(t) = Ωxs
1(t)−

µ(1 − m)x2(t)y(t)
1 + a(1 − m)x2(t)

+ cφx2(t)xi
1(t)− ηx2

2(t)− d2x2(t),

cDϱy3(t) =
eµ(1 − m)x2(t − τ)y(t − τ)

1 + a(1 − m)x2(t − τ)
− d3y(t),

(4)

where the density of the susceptible immature prey is xs
1(t), the density of the infected

immature prey is xi
1(t), the density of the mature prey is x2(t), and the density of the

predator is y(t). In addition, mx2(t) can protect the prey in a more secure area (0 < m < 1).
Thus, (1 − m)x2(t) of the mature prey is consumed by the predator.

In order to derive our model, we suppose the following:
(i) The disease is only transmitted between the immature prey populations;
(ii) The infected immature prey will not recover from the disease, and this portion of

the infected immature prey can not normally grow into mature prey populations;
(iii) During cannibalism, the disease will not spread.
The meanings of the parameters of system (4) are shown in Table 1. All the parameters

are assumed as positive constants.

Table 1. Biological meaning of the parameters in system (4).

Parameter Description

α The birth rate of juvenile prey.
Ω The transition from uninfected immature prey to mature prey.
θ The transmission rate of the disease among immature prey.
φ Predation rate of mature prey on infected immature prey.
c The conversion rate of immature prey to mature prey

due to cannibalism.
η The coefficient of competition between mature prey.
µ Predation rate of the predator to mature prey.
e The conversion rate of predation from mature prey

to predator.
m The prey refuge rate.
a Half saturation constants.
d The death rate of susceptible immature prey.
d1 The death rate of infected immature prey.
d2 The death rate of mature prey.
d3 The death rate of predators.
τ The time delay generated by predation and digestion.
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It is worth noting that using the Holling type-II functional response function in system
(4) to describe the interaction between predators and prey has a kind of reasonable biological
interpretation. In fact, simply describing the interaction between predators and prey with a
linear relationship does not conform to the actual situation. Under certain circumstances,
the increase in the number of prey will lead to an increase in the feeding rate of the predator,
because there are more prey available for predation. With the increase in the feeding rate,
the number of prey begins to decrease, which in turn limits the feeding rate of the predator.
This negative feedback loop can maintain the relative stability between the predator and the
prey. Many scholars have already applied the Holling type-II functional response function
to the predation system [10,11,42].

Next, to make the model more concise, let β = d + Ω, ψ = cφ, σ = eµ. Hence,
system (4) transforms to:

cDϱxs
1(t) = αx2(t)− βxs

1(t)− θxs
1(t)xi

1(t),
cDϱxi

1(t) = θxs
1(t)xi

1(t)− φx2(t)xi
1(t)− d1xi

1(t),

cDϱx2(t) = Ωxs
1(t)−

µ(1 − m)x2(t)y(t)
1 + a(1 − m)x2(t)

+ ψx2(t)xi
1(t)− ηx2

2(t)− d2x2(t),

cDϱy3(t) =
σ(1 − m)x2(t − τ)y(t − τ)

1 + a(1 − m)x2(t − τ)
− d3y(t),

(5)

with initial conditions

xs
1(0) > 0, xi

1(0) > 0, x2(0) > 0, y(0) > 0. (6)

4. Existence and Boundness

In this section, for τ = 0, we will study some properties of system (5).

Theorem 3. System (5) has a unique solution for all the nonnegative initial conditions.

Proof. In order to prove the theorem, we consider a region Ψ × (t0, T), T < ∞, where
Ψ = {(xs

1, xi
1, x2, y) ∈ R4, max(|xs

1|, |xi
1|, |x2|, |y|) = M}. Then, we consider a map

F(X) = (F1(X), F2(X), F3(X), F4(X)),

where X = (xs
1, xi

1, x2, y) and X̂ = (x̂s
1, x̂i

1, x̂2, ŷ),

F1(X) = αx2(t)− βxs
1(t)− θxs

1(t)xi
1(t),

F2(X) = θxs
1(t)xi

1(t)− φx2(t)xi
1(t)− d1xi

1(t),

F3(X) = Ωxs
1(t)−

µ(1 − m)x2(t)y(t)
1 + a(1 − m)x2(t)

+ ψx2(t)xi
1(t)− ηx2

2(t)− d2x2(t),

F4(X) =
σ(1 − m)x2(t)y(t)
1 + a(1 − m)x2(t)

− d3y(t).

For any X, X̂ ∈ Ψ, we have
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∥F(X)− F(X̂)∥

=
4

∑
i=1

|Fi(X)− Fi(X̂)|

= | αx2 − βxs
1 − θxs

1xi
1 − [αx̂2 − βx̂s

1 − θx̂s
1 x̂i

1] |
+ | θxs

1xi
1 − φx2xi

1 − d1xi
1 − [θx̂s

1 x̂i
1 − φx̂2 x̂i

1 − d1 x̂i
1] |

+ | Ωxs
1 −

µ(1 − m)x2y
1 + a(1 − m)x2

+ ψx2xi
1 − ηx2

2 − d2 x2

− [Ωx̂s
1 −

µ(1 − m)x̂2ŷ
1 + a(1 − m)x̂2

+ ψx̂2 x̂i
1 − ηx̂2

2 − d2 x̂2] |

+ | σ(1 − m)x2y
1 + a(1 − m)x2

− d3y − [
σ(1 − m)x̂2ŷ

1 + a(1 − m)x̂2
− d3ŷ] |

≤{β + 2θM + Ω} | xs
1 − x̂s

1 | +{(2θ + φ + ψ)M + d1} | xi
1 − x̂i

1 |

+ {(α + φ + ψ + 2η)M + d2 +
µ(1 − m)M + 2M2a(1 − m)

(1 + a(1 − m))2

+
σ(1 − m)M + 2M2a(1 − m)

(1 + a(1 − m))2 } | x2 − x̂2 | +{µ(1 − m)M + M2a(1 − m)

(1 + a(1 − m))2

+
σ(1 − m)M + M2a(1 − m)

(1 + a(1 − m))2 + d3} | y − ŷ |

≤ℓ|F(X)− F(X̂)∥.

where

ℓ = max{β + 2θM + Ω, (2θ + φ + ψ)M + d1, (α + φ + ψ + 2η)M + d2+

(µ + σ)(1 − m)M + 4M2a(1 − m)

(1 + a(1 − m))2 ,
(µ + σ)(1 − m)M + 2M2a(1 − m)

(1 + a(1 − m))2 + d3}.

Thus, F satisfies the local Lipschitz condition, which implies the theorem is proven.

Theorem 4. All the solutions of system (5) are uniformly bounded in the domain Ψ, where

Ψ =

{
(xs

1, xi
1, x2, y) ∈ R4

+ | 0 < xs
1(t) + xi

1(t) + x2(t) + y(t) ≤ α2

4ηΥ
+ δ, δ > 0

}
.

Proof. Define the function

ℵ = xs
1(t) + xi

1(t) + x2(t) + y(t). (7)

Then, applying the Caputo fractional derivative to (7) yields

cDϱℵ(t) =cDϱxs
1(t) +

cDϱxi
1(t) +

cDϱx2(t) + cDϱy(t)

=αx2(t)− βxs
1(t)− θxs

1(t)xi
1(t) + θxs

1(t)xi
1(t)− φx2(t)xi

1(t)− d1xi
1(t)

+ Ωxs
1(t)− d3y(t)− µ(1 − m)x2(t)y(t)

1 + a(1 − m)x2(t)
+

σ(1 − m)x2(t)y(t)
1 + a(1 − m)x2(t)

− ηx2
2(t)− d2x2(t) + ψx2(t)xi

1(t)

≤αx2(t)− dxs
1(t)− d1xi

1(t)− d2x2(t)− d3y(t)− ηx2
2(t). (8)
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If Λ = min{d, d1, d2, d3}, then the following formula is valid:

cDϱℵ(t) + Λℵ(t) ≤ −η(z2(t)−
α

2η
)2 +

α2

4η
≤ α2

4η
. (9)

By applying the Laplace transform to (9), it holds that

sϱF(s)− sϱ−1ℵ(0) + ΥF(s) ≤ α2

4ηs
. (10)

where F(s) = £{ℵ(t)}. Multiply both sides of the (10) by s.[
sϱ+1 + Υs

]
F(s) ≤ sϱℵ(0) + G, (11)

where G = α2

4η . Based on (11), we have

F(s) ≤ ℵ(0) s−1

sϱ + Υ
+

G
s(sϱ + Υ)

. (12)

Taking the inverse Laplace transform of both sides of (12), we get

ℵ(t) ≤ ℵ(0)£−1
{

sϱ−1

sϱ + Υ

}
+ G£−1

{
sϱ−(ϱ+1)

sϱ + Υ

}
. (13)

Using Theorem 1, we can obtain

ℵ(t) ≤ ℵ(0)Eϱ,1{−Υtϱ}+ GtϱEϱ,ϱ+1{−Υtϱ}. (14)

By the properties of the Mittag–Leffler function, we have

Eϱ,1{−Υtϱ} = (−Υtϱ)Eϱ,ϱ+1{−Υtϱ}+ 1
Γ(1)

, (15)

that is to say

tϱEϱ,ϱ+1{−Υtϱ} = − 1
Υ
[
Eϱ,1{−Υtϱ} − 1

]
. (16)

Therefore,

ℵ(t) ≤
{
ℵ(0)− G

Υ

}
Eϱ,1{−Υtϱ}+ G

Υ
. (17)

Since Eϱ,1 → 0 ( t → ∞), all the solutions of system (5) are uniformly bounded in the region

Ψ =

{
(xs

1, xi
1, x2, y) ∈ R4

+ | 0 < xs
1(t) + xi

1(t) + x2 + y(t) ≤ α2

4ηΥ
+ δ, δ > 0

}
.

This completes the proof of Theorem 4.

Remark 1. The biological meaning of Theorem 4 is that the population size in biological systems
is often limited by the available resources. If the population size grows infinitely, the available
resources will eventually be exhausted, resulting in the extinction of the population. Therefore,
the boundedness of the solution can reflect the limitedness of resources and the sustainability of the
population size. By considering the boundedness of the solution, the biomathematical model can
more accurately describe the dynamic changes and interactions in the biological system, as well as
the mechanisms to maintain biodiversity and ecological balance within a certain range.
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5. Stability of Equilibrium Points

In this section, we investigate the existence and stability of the equilibrium points of
system (5). The equilibrium points are as follows:

(i) The trivial equilibrium point E0 = (0, 0, 0, 0) always exists.
(ii) The boundary equilibrium point E1 = (x̃s

1, 0, x̃2, 0) exists if and only if αΩ > d2β
where

x̃s
1 =

αx̃2

β
, x̃2 =

αΩ − d2β

βη
.

(iii) If the following assumptions are satisfied:

Hypothesis 1. σ > ad3.

Hypothesis 2. αθd3
βφd3+βd1 A > 1.

Hypothesis 3. d3(2d1Ωφ2+ψθ)A+Ωφ3d2
3

(d2θ+d2
1Ω+d1βψ)A2+θηd3 A+ΩA3 > 1.

then the coexistence equilibrium point E2 = (xs
1
∗, xi∗

1 , x∗2 , y∗) exists, where

A = (1 − m)(σ − ad3), xi
1 =

αx∗2 − βxs
1
∗

θxs
1
∗ ,

xs
1
∗ =

φx∗2 + d1

θ
, x∗2 =

d3

(1 − m)(σ − ad3)
,

y∗ =
(Ωxs

1 + ψx∗2 xi∗
1 − ηx∗2

2 − d2x∗2)(1 + a(1 − m))x∗2
µ(1 − m)x∗2

.

Theorem 5. The trivial equilibrium point E0 is locally asymptotically stable if and only if βd2 > αΩ.

Proof. The Jacobian matrix for system (5) at E0 is shown below

J(E0) =


−β 0 α 0
0 −d1 0 0
Ω 0 −d2 0
0 0 0 −d3

, (18)

with characteristic equation

(λ + d1)(λ + d3){λ2 + (β + d2)λ + βd2 − αΩ} = 0. (19)

The eigenvalues of (19) are

λ1 = −d1, λ2 = −d3, λ3,4 =
−(β + d2)±

√
(β + d2)2 − 4(βd2 − αΩ)

2
. (20)

It is easy to see that

| arg(λ(1,2)) |= π >
πϱ

2
. (21)

To find the principal values of parameters λ3 and λ4, we consider two cases.
Case a: βd2 < αΩ and then (β + d2)

2 − 4(βd2 − αΩ) > 0. By (20), this yields λ3 < 0
and λ4 > 0. Hence,

| arg(λ3) |= π >
πϱ

2
, | arg(λ4) |= 0 <

πϱ

2
, (22)

for all 0 < ϱ ≤ 1. Based on Theorem 2, the trivial equilibrium point E0 is unstable.
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Case b: If βd2 > αΩ, there are two situations; they are

A(1) : (d2 + β)2 − 4(βd2 − αΩ) ≥ 0,

or
A(2) : (d2 + β)2 − 4(βd2 − αΩ) < 0.

If A(1) holds, then λ3 < 0 and λ4 < 0. Hence,

| arg(λ3,4) |=
π

2
>

πϱ

2
. (23)

If A(2) holds, then the eigenvalues of J(E0) are a pair of complex conjugates λ3 and
λ3, which yields

Re(λ3) = Re(λ3). (24)

By Equation (24), we can obtain

| arg(λi) |>
π

2
>

πϱ

2
. (25)

Therefore, the equilibrium point E0 is locally asymptotically stable if βd2 > αΩ. This
completes the proof.

Theorem 6. The boundary equilibrium point E1 is unstable.

Proof. The Jacobian matrix of system (5) at E1 is provided as

J(E1) =


−β −θx̃s

1 α 0
0 m1 0 0
Ω ψx̃2 m2 m3
0 0 0 m5

, (26)

where
m1 = θx̃s

1 − φx̃2 − d1, m2 = −2ηx̃2 − d2,

m3 = − µ(1 − m)x̃2

1 + a(1 + m)x̃2
, m5 =

σ(1 − m)x̃2

1 + a(1 + m)x̃2
− d3.

The characteristic equation is

(λ − m1)(λ − m5){λ2 + (β + m2)λ + (m2β − αΩ)} = 0. (27)

Because m2 < 0, specifically m2β − αΩ < 0, one eigenvalue of Equation (27) must possess
a positive real component. By Theorem 2, E1 is unstable. This completes the proof.

Theorem 7. The coexistence equilibrium point E2 = (xs∗
1 , xi∗

1 , x∗2 , y∗) of system (5) is locally
asymptotically stable if Hypotheses 1–4 are established.

Proof. The Jacobian matrix of system (5) at E2 is

J(E2) =


h11 h12 α 0
h21 h22 h23 0
Ω h32 h33 h34
0 0 h43 h44

, (28)
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where

h11 = −β − θxi∗
1 , h12 = −θxs∗

1 , h21 = θxi∗
1 , h22 = θxs∗

1 − φx∗2 − d1,

h23 = −φxi∗
1 , h32 = ψx∗2 , h33 = ψxi∗

1 − µ(1 − m)y∗

(1 + a(1 + m))2 − 2ηx∗2 ,

h34 = − µ(1 − m)x∗2
1 + a(1 − m)x∗2

, h43 =
σ(1 − m)y∗

(1 + a(1 + m))2 , h44 =
σ(1 − m)x∗2

1 + a(1 − m)x∗2
.

So, the characteristic Equation (28) is as follows:

λ4 + A1λ3 + A2λ2 + A3λ + A4 = 0, (29)

where

A1 = −(h11 + h22 + h33 + h44),

A2 = h22h44 + h33h44 − h34h43 + h11h22 − h12h21 + h11h33 − αΩ + h22h33 − h23h32

+ h11h44,

A3 = h12h21h44 − h11h22h44 − h11h33h44 + h11h34h43 + αΩh44 − h22h33h44

+ h22h34h43 + h23h32h44 − h11h22h33 + h11h23h32 + h12h21h33 − h12h23Ω

− αh21h32 + αΩh22,

A4 = h11h22h33h44 − h11h22h34h43 − h11h23h32h44 − h12h21h33h44 + h12h21h34h43

+ Ωh12h23h44 + αh21h32h44 − αΩh22h44.

Consider the following hypothesis:

Hypothesis 4. A1 > 0, A2 > 0, A3 > 0, ∆2 > 0, ∆3 > 0, ∆4 > 0

where

∆2 =

∣∣∣∣ A1 1
A3 A2

∣∣∣∣, ∆3 =

∣∣∣∣∣∣
A1 1 0
A3 A2 A1
0 A4 A3

∣∣∣∣∣∣, ∆4 = A4∆3.

By utilizing Hypothesis 4 and the Routh–Hurwitz criterion, it is shown that the eigenvalues
of (29) have negative real parts. Thus, E2 is locally asymptotically stable when τ = 0. This
completes the proof.

In the following section, we investigate the Hopf bifurcation of system (5) with a
time delay.

6. Hopf Bifurcation

For convenience, use the transformation

us
1(t) = xs

1(t)− xs∗
1 , ui

1(t) = xi
1(t)− xi∗

1 ,

u2(t) = x2(t)− x∗2 , v(t) = y(t)− y∗.

Then, system (5) turns into:
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cDϱus
1(t) = α(u2(t) + x∗2)− β(us

1(t) + xs∗
1 )− θ(u1(t) + xs∗

1 )(ui
1(t) + xi∗

1 ),
cDϱui

1(t) = θ(u1(t) + xs∗
1 )(ui

1(t) + xi∗
1 )− φ(ui

1 + xi∗
1 )(u2(t) + x∗2)− d1(ui

1(t) + xi∗
1 ),

cDϱu2(t) = Ω(us
1(t) + xs∗

1 ) + ψ(ui
1 + xi∗

1 )(u2(t) + x∗2)− η(u2(t) + x∗2)
2

− a(u2 + x∗2)(v + y∗)
1 + a(1 − m)(u2 + x∗2)

− d2(u2(t) + x∗2),

cDϱv(t) =
b(u2(t − τ) + x∗2)(v(t − τ) + y∗)

1 + a(1 − m)(u2(t − τ) + x∗2)
− d3(v(t) + y∗). (30)

From system (30), we can obtain

cDϱus
1(t) = p11us

1(t) + p12ui
1(t) + p13x2(t),

cDϱui
1(t) = p21us

1(t) + p22ui
1(t) + p23u2(t),

cDϱu2(t) = p31us
1(t) + p32ui

1(t) + p33u2(t) + p34v(t),
cDϱv(t) = p44v(t) + q43u2(t − τ) + q44v(t − τ),

(31)

where

p11 = −β − θxi∗
1 , p12 = −θxs∗

1 , p13 = α, p21 = θxi∗
1 ,

p22 = θxs∗
1 − φx∗2 − d1, p23 = −φxi∗

1 , p34 = − ax∗2y∗

1 + a(1 − m)x∗2
,

p31 = Ω, p32 = ψx∗2 , p33 = ψxi∗
1 − 2ηx∗2 − d2 −

ay∗

(1 + a(1 − m)x∗2)
2 ,

p44 = −d3, q43 =
by∗

(1 + a(1 − m)x∗2)
2 , q44 = − bx∗2y∗

1 + a(1 − m)x∗2
.

Using the Laplace transform [20] on both sides of the equation of system (31) yields

sϱ£[us
1(t)]− sϱ−1ϕ1(0) = p11£[us

1(t)]− p12£
[
ui

1(t)
]
− p13£[u2(t)],

sϱ£
[
ui

1(t)
]
− sϱ−1ϕ2(0) = p21£[us

1(t)] + p22£
[
ui

1(t)
]
+ p23£[u2(t)],

sϱ£[u2(t)]− sϱ−1ϕ3(0) = p31£[us
1(t)] + p32£

[
ui

1(t)
]
+ p33£[u2(t)] + p34£[v(t)],

sϱ£[v(t)]− sϱ−1ϕ4(0) = p44£[v(t)] + q43e−sτ

(
£[u2(t)] +

∫ 0

−τ
e−stϕ3(t)dt

)
+ q44e−sτ

(
£[v(t)] +

∫ 0

−τ
e−stϕ4(t)dt

)
,

which can be rewritten as:

∆(s) ·


£
[
us

1(t)
]

£
[
ui

1(t)
]

£[u2(t)]
£[v(t)]

 =


ς1(s)
ς2(s)
ς3(s)
ς4(s)

, (32)

where

ς1(s) = sϱ−1ϕ1(0), ς2(s) = sϱ−1ϕ2(0), ς3(s) = sϱ−1ϕ3(0),
ς4(s) = sϱ−1ϕ4(0) + q43e−sτ

∫ 0
−τ e−stϕ3(t)dt + q44e−sτ

∫ 0
−τ e−stϕ4(t)dt.

The characteristic equation of Equation (32) is



Fractal Fract. 2024, 8, 333 12 of 24

∣∣∣∣∣∣∣∣
sϱ − p11 −p12 −p13 0
−p21 sϱ − p22 −p23 0
−p31 −p32 sϱ − p33 −p34

0 0 −q43e−sτ sϱ − p44 − q44e−sτ

∣∣∣∣∣∣∣∣ = 0. (33)

Equation (33) can be written as

Γ1(s) + Γ2(s)e−sτ = 0, (34)

where

Γ1(s) =s4ϱ − (p11 + p22 + p33 + p44)s3ϱ + (p22 p33 − p32 p34 + p44 p11 + p44 p22

+ p44 p33 + p11 p22 − p12 p21 − p13 p31 + p11 p33 − p23 p32 + p11 p23)s2ϱ

+ (p13 p22 p31 − p12 p23 p31 − p13 p21 p32 − p11 p22 p33 + p12 p21 p33 + p11 p32 p34

+ p22 p32 p34 − p11 p22 p44 + p12 p21 p44 + p13 p31 p44 − p11 p33 p44 + p23 p32 p44

− p22 p33 p44)sϱ + p12 p23 p31 p44 − p11 p23 p32 p44 + p13 p21 p32 p44 − p13 p22 p31 p44

+ p11 p22 p33 p44 − p12 p21 p33 p44 − p11 p22 p32 p34 + p12 p21 p32 p34,

Γ2(s) =− s3ϱq44 + (p11 + p22 + p33)q44s2ϱ + (p12 p21 − p11 p22 + p13 p31 − p11 p33

+ p23 p32 − p22 p33)q44sϱ + (p11 p23 p32 + p12 p23 p31 + p13 p21 p31 − p13 p22 p31

+ p11 p22 p33 − p12 p21 p33)q44.

On the one hand, in order to find the critical value of the delay for which the stability
of system (32) switches, one can assume

A(3) : |Γ1(0)| < |Γ2(0)|. (35)

Assume that s = κi = κ(cos π
2 + i sin π

2 )(κ > 0) is a purely imaginary root of Equation (34);
then, it follows that {

h̄1 cos κτ + h̄2 sin κτ = −h̄3,
h̄2 cos κτ − h̄1 sin κτ = −h̄4.

(36)

where
h̄1 = Re(Γ2(iκ)), h̄2 = Im(Γ2(iκ)),

h̄3 = Re(Γ1(iκ)), h̄4 = Im(Γ1(iκ)).

The specific expression of h̄i(i = 1, 2, 3, 4) is given in Appendix A.
Based on (36), the following results can be obtained: sin κτ = h̄1 h̄4−h̄2 h̄3

h̄2
1+h̄2

2
= χ1(κ),

cos κτ = − h̄3 h̄1+h̄2 h̄4
h̄2

1+h̄2
2

= χ2(κ).
(37)

It is apparent from (37) that
χ1(κ)

2 + χ2(κ)
2 = 1. (38)

On the other hand, by (34), we can obtain

|Γ1(κi)| = |Γ2(κi)|. (39)

As a matter of fact

|Γ2(iκ)| − |Γ1(iκ)| ≤ |Γ2(iκ)| −
(∣∣∣(iκ)3ϱ

∣∣∣− ∣∣∣Γ1(iκ)− (iκ)3ϱ
∣∣∣)

= −(iκ)3ϱ + |Γ2(iκ)|+
∣∣∣Γ1(iκ)− (iκ)3ϱ

∣∣∣. (40)
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By limiting both sides of (40)

lim
κ→+∞

(|Γ2(iκ)| − |Γ1(iκ)|) = −∞. (41)

Because of assumption A(3), the equation |Γ1(iκ)| = |Γ2(iκ)| has at least one positive
solution. In addition, by combining Equation (36), the value of κ can be found. Finally, we
find that the specific expression of time delay τ is

τ(n) =
1
ω
[arccos Ø1(κ) + 2nπ], n = 0, 1, 2, . . . (42)

Due to (42), define the bifurcation point as

τ0 = min{τn}, n = 0, 1, 2, . . . , (43)

where τn is defined by (42).
In order to find the conditions under which Hopf bifurcation occurs, we give a neces-

sary hypothesis:

Hypothesis 5. Θ1Ξ1+Θ2Ξ2
Ξ2

1+Ξ2
2

> 0

where the expressions of Θi, Ξi (i = 1, 2) are defined in (46).
From the above basic theoretical results, we present an important lemma in this section.

Lemma 1. If hypothesis Hypothesis 5 holds, let s(τ) = ϕ(τ) + iκ(τ) be the root of Equation (34)
near τ = τj satisfying ϕ

(
τj
)
= 0, κ

(
τj
)
= κ0. Then, the following transversality condition holds

Re
[

ds(τ)
dτ

]∣∣∣∣
(τ=τ0,κ=κ0)

> 0.

Proof. By differentiating both sides of (34) with regard to τ, one obtains

Γ′
1(s)

ds
dτ

+ Γ′
2(s)e

−sτ ds
dτ

+ Γ2(s)e−sτ

(
−τ

ds
dτ

− s
)
= 0, (44)

where Γ′
i(s) is the derivative of Γi(s) (i = 1, 2). Based on (44), we claim that

ds
dτ

=
Θ(s)
Ξ(s)

, (45)

where

Θ(s) = −s3ϱ+1q44e−sτ + (p11 + p22 + p33)q44s2ϱ+1e−sτ + (p12 p21 − p11 p22

+ p13 p31 − p11 p33 + p23 p32 − p22 p33)q44sϱ+1e−sτ + se−sτ(p11 p23 p32

+ p12 p23 p31 + p13 p21 p31 − p13 p22 p31 + p11 p22 p33 − p12 p21 p33)q44,
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Ξ(s) = Γ′
1(s) + Γ′

2(s)e
−sτ − τΓ2(s)e−sτ

= 4ϱs4ϱ−1 − 3ϱs3ϱ−1(p11 + p22 + p33 + p44) + 2ϱs2ϱ−1(p22 p33 − p32 p34 + p44 p11

+ p44 p22 + p44 p33 + p11 p22 − p12 p21 − p13 p31 + p11 p33 − p23 p32 + p11 p23)

+ (p13 p22 p31 − p12 p23 p31 − p13 p21 p32 − p11 p22 p33 + p12 p21 p33 + p11 p32 p34

+ p22 p32 p34 − p11 p22 p44 + p12 p21 p44 + p13 p31 p44 − p11 p33 p44 + p23 p32 p44

− p22 p33 p44)ϱsϱ−1 + e−sτ{−3ϱs3ϱ−1q44 + (p11 + p22 + p33)q442ϱs2ϱ−1

+ (p12 p21 − p11 p22 + p13 p31 − p11 p33 + p23 p32 − p22 p33)q44ϱsϱ−1} − τesτ

{−s3ϱq44 + (p11 + p22 + p33)q44s2ϱ + (p12 p21 − p11 p22 + p13 p31 − p11 p33

+ p23 p32 − p22 p33)q44sϱ + (p11 p23 p32 + p12 p23 p31 + p13 p21 p31 − p13 p22 p31

+ p11 p22 p33 − p12 p21 p33)q44}.

It can be deduced from Equation (45) that

Re
[

ds(τ)
dτ

]∣∣∣∣
(τ=τ0,κ=κ0)

=
Θ1Ξ1 + Θ2Ξ2

Ξ2
1 + Ξ2

2
, (46)

where the expressions of Θi, Ξi (i = 1, 2) are given in Appendix B.
From assumption Hypothesis 5, we have completed the proof of Lemma 1.

Theorem 8. For system (5), if Hypotheses 1–5 and A(3) hold, then one can obtain the following
results.

(i) If τ ∈ [0, τ0), then the coexistence equilibrium E2 of system (5) is asymptotically stable.
(ii) The coexistence equilibrium E2 of system (5) is unstable when τ > τ0.
(iii) If τ = τ0, then system (5) undergoes a Hopf bifurcation.

Remark 2. This study investigates the bifurcation behavior and stability of a class of delayed
fractional-order predation models with disease and cannibalism in the prey. In particular, comparing
with existing models [20–27], we consider the stage structure, cannibalism, and diseases for the
prey population. In addition, the dynamical interaction between the predator and the mature prey is
described by the Holling type-II functional response function, and the influence of prey refuge is
considered. Therefore, model (5) and the results obtained in this paper can be seen as a supplement
to and extensions of previous studies [20–27].

7. Numerical Simulations

Numerical simulations of fractional-delay differential system (5) were performed using
the Adams–Bashforth–Moulton predictive correction method to validate the feasibility of
the theoretical analysis in [43]. The detailed algorithm of the Adams–Bashforth–Moulton
predictive correction method for system (5) is given in Appendix C. Consider the following
parameter values:

α = 3, β = 1.15, θ = 0.3, φ = 0.15, d1 = 0.3, Ω = 1, a = 0.1,

µ = 0.25, m = 0.25, ψ = 0.1, η = 0.1, d2 = 0.15, σ = 0.2, d3 = 0.18,

and the initial values (xs
1(0), xi

1(0), x2(0), y(0)) = (2, 3, 2, 7). By direct calculation, we
obtain

σ − ad3 ≈ 0.18,
αθd3

βφd3 + βd1 A
≈ 2.07,

d3(2d1Ωφ2 + ψθ)A + Ωφ3d2
3

(d2θ + d2
1Ω + d1βψ)A2 + θηd3 A + ΩA3

≈ 1.0052.

Then, we know that conditions Hypotheses 1–5 are true, and the coexistence of equilibrium
point E2 = (xs∗

1 , xi∗
1 , x∗2 , y∗) = (1.74, 1.48, 4.67, 11.41) is proven. We will now study the

effects of some important parameters in the system on the system dynamics.
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Case 1: The influence of fractional orders on the stability region.
We assume τ = 0, and first discuss the effect of the fractional order on the rate of

the equilibrium point of solution convergence. To ensure the reliability of the numerical
simulation results, we initially disregarded the effect of the time delay on the system
stability by setting τ = 0.

Figures 1 and 2 show the local asymptotic stability of the equilibrium point of the sys-
tem for various orders. In Figure 1a–d, for the orders ϱ = 0.85, 0.9, and 0.95, the oscillatory
behavior of the solution intensifies as the order increases. A shift from stability to instability
occurred in the system solution as the order rose from 0.95 to 0.99, as shown in Figure 2a–d.
This transition highlights the significant effect of the order of a fractional-order system in
the stable region.
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Figure 1. Local asymptotic stability diagram of system at E2 when ϱ = 0.85, 0.9, 0.95. (a) Stability of
xs

1(t) when ϱ = 0.85, 0.9, 0.95. (b) Stability of xi
1(t) when ϱ = 0.85, 0.9, 0.95. (c) Stability of x2(t) when

ϱ = 0.85, 0.9, 0.95. (d) Stability of y(t) when ϱ = 0.85, 0.9, 0.95.
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Figure 2. Dynamical behavior of system (5) under different ϱ. (a,b) are the time series and phase
diagram when ϱ = 0.95; (c,d) are the time series diagram and phase diagram when ϱ = 0.99.

Remark 3. When ϱ = 1, the fractional-order system transforms into an integer-order system, and at
this time, the integer-order system should be unstable because the fractional-order system has already
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shown an unstable state when ϱ = 0.99. Therefore, the stability domain of the fractional-order system
is much larger than that of the integer-order system. The biological explanation is as follows: the
population will use past experience to produce an impact on the current behavior, thus explaining
the memory effect in animal behavior. Such memory is more beneficial to the long-term development
of the species.

Case 2: The effect of cannibalism on disease.
By keeping the above parameters unchanged with a time delay of τ = 0, we examined

the effects of altering the values of φ and ψ on the number of infected prey in the young
prey category. Specifically, we tested φ values of 0.15, 0.35, and 0.65, combined with ψ
values of 0.1, 0.25, and 0.45. The results of these variations are depicted in Figure 3a–f,
where (a) and (d), (b) and (e), and (c) and (f) represent the waveform and phase diagrams
of system (5) in the vicinity of E2 for φ = 0.15 and ψ = 0.1, for φ = 0.35 and ψ = 0.2, and
for φ = 0.65 and ψ = 0.4, respectively. As φ increases, signifying a higher predation of
infection by adult prey in the population, the number of infected populations exhibits a
decreasing trend, ultimately leading to potential extinction. This suggests that cannibalism
plays a crucial role in restraining disease propagation.
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Figure 3. Waveform plot and phase portrait of the system (5) near E3 when ϱ = 0.95. Where (a) and
(d) represent the waveform and phase diagrams of system (5) in the vicinity of E2 for φ = 0.15 and
ψ = 0.1; (b,e) represent the waveform and phase diagrams of system (5) in the vicinity of E2 for
φ = 0.35 and ψ = 0.2; (c,f) represent the waveform and phase diagrams of system (5) in the vicinity
of E2 for φ = 0.65 and ψ = 0.4.

Remark 4. The adult prey killing the sick juvenile individuals plays a role in controlling the spread
of diseases. Through cannibalism, the juvenile individuals infected with the pathogen are predated
and digested, and this behavior helps to eliminate or reduce the transmission rate of the pathogen
from the juvenile group, which can reduce potential disease outbreaks in the group and help to
maintain the overall health of the group. In addition, by eliminating sick and vulnerable individuals,
cannibalism can promote the survival and reproduction of the genetically superior individuals.

Case 3: The effect of time delays on system stability and Hopf bifurcation
In this section, we take a time delay as the bifurcation parameter to explore the stability

of the time delay at the equilibrium point E2 and the Hopf bifurcation phenomenon. A
numerical analysis was conducted to demonstrate the influence of a delay in system (5)
with ϱ = 0.9. Thus, according to Theorem 8, system (5) experiences a Hopf bifurcation at
the equilibrium point E2 when τ0 = 0.95. To be specific, system (5) is locally asymptotically
stable at the equilibrium point E2 when τ = 0.88 < τ0, as shown in Figure 4a–c. Conversely,
when τ = 1.3 > τ0, the system transitions from a stable to an unstable state, leading to the



Fractal Fract. 2024, 8, 333 17 of 24

emergence of a family of oscillations, as shown in Figure 5a–c. Consequently, surpassing
the critical value τ0 indicates that system (5) exhibits Hopf bifurcation originating from the
coexistence equilibrium E2.
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Figure 4. Waveform plots and phase portraits of system (5) when ϱ = 0.9, τ = 0.88 < τ0 = 0.95.
(a) Stability of xs

1(t), xi
1(t), x2(t) and y(t) when ϱ = 0.9, τ = 0.88 < τ0 = 0.95. (b) Stability of

x2(t) and y(t) when ϱ = 0.9, τ = 0.88 < τ0 = 0.95. (c) Stability of xs
1(t), xi

1(t) and x2(t) when
ϱ = 0.9, τ = 0.88 < τ0 = 0.95.
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Figure 5. Dynamical behavior of system (5) when ϱ = 0.9, τ = 1.3 > τ0 = 0.95. (a) Instability of
xs

1(t), xi
1(t), x2(t) and y(t) when ϱ = 0.9, τ = 1.3 > τ0 = 0.95. (b) Instability of x2(t) and y(t) when

ϱ = 0.9, τ = 1.3 > τ0 = 0.95. (c) Instability of xs
1(t), xi

1(t) and x2(t) when ϱ = 0.9, τ = 1.3 > τ0 = 0.95.

To better demonstrate the effect of the fractional order, the value of ϱ was continuously
adjusted in the subsequent simulation, with ϱ set at 0.95. Following the computation of
the bifurcation point τ0 = 0.35, it becomes apparent that compared to the case of ϱ = 0.9,
the original bifurcation point of 0.95 is reduced to 0.35. This reduction implies an increase
in the bifurcation threshold. To enhance the comparative analysis, τ is set to 0.88, which
is greater than τ0 = 0.35. From Figure 6a–c, it is evident that the solution is oscillatory,
signaling a transition from the initial stable waveform and phase diagrams depicted in
Figure 4 to an unstable state under the condition ϱ = 0.95.
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Figure 6. Dynamical behavior of system (5) when ϱ = 0.95, τ = 0.88 > τ0 = 0.35. (a) Instability
of xs

1(t), xi
1(t), x2(t) and y(t) when ϱ = 0.95, τ = 0.88 > τ0 = 0.35. (b) Instability of x2(t) and

y(t) when ϱ = 0.95, τ = 0.88 > τ0 = 0.35. (c) Instability of xs
1(t), xi

1(t) and x2(t) when ϱ = 0.95,
τ = 0.88 > τ0 = 0.35.

By setting ϱ = 0.85 and calculating the fork point as τ0 = 1.75, a comparison can be
made with the case when ϱ = 0.95. In the scenario where ϱ = 0.95, the bifurcation point is
delayed from the initial value of 0.35 to 1.75, signifying a delay in the bifurcation threshold.
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To establish a more comprehensive comparison, we consider τ = 0.88 < τ0 = 1.75. By ex-
amining Figure 7a–c, we find that the solution of the system stabilizes, in contrast to the
outcome shown in Figure 6. This observation enables us to understand the effect of the
fractional-order sequence on the bifurcation point of the system. As illustrated in Figure 8,
the bifurcation point steadily decreased as the fractional order increased. Conversely, a re-
duction in fractional order leads to a continuous backward delay at the bifurcation point.
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Figure 7. Dynamical behavior of system (5) when ϱ = 0.85, τ = 0.88 < τ0 = 1.75. (a) Stability of
xs

1(t), xi
1(t), x2(t) and y(t) when ϱ = 0.85, τ = 0.88 < τ0 = 1.75. (b) Stability of x2(t) and y(t) when

ϱ = 0.85, τ = 0.88 < τ0 = 1.75. (c) Stability of xs
1(t), xi

1(t) and x2(t) when ϱ = 0.85, τ = 0.88 < τ0 = 1.75.
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Figure 8. The effect of fractional-order sequence ϱ on bifurcation point τ0.

Case 4: The effect of prey refuge on the system’s stability and bifurcation
In this part, by keeping the other parameters unchanged with τ = 0, for different

values of m, we investigate the impact of prey refuge on the system. Hence, we set
m = 0.01, 0.4, 0.99; the corresponding numerical simulation results of these variations are
depicted in Figure 9. From the numerical simulation figures in Figure 9a–c and the values
of m, we can see that as the value of m increases, the time for the system to reach stability
exhibits a decreasing trend. Thus, appropriately increasing the value of m will contribute
to the system reaching a stable state within a short period of time. However, if the value of
m reaches 0.99, then it will directly lead to the extinction of the predator population, which
is extremely detrimental to the development of the predator population.

Next, we explore the impact of the change in the value of m on system bifurcation.
In Figure 6, we have calculated that when m = 0.25 and ϱ = 0.95, the system’s Hopf
bifurcation point is 0.35. In order to achieve a better comparison effect, here, we only
change the value of m, and the other parameters are consistent with the parameters used
in Figure 6. After setting m = 0.4, this time, the bifurcation point of the system becomes
0.55, as shown in Figure 10a–c and Figure 11a–c. After a comparison with Figure 6, it can
be found that appropriately increasing the value of m will delay the time for system (5) to
undergo Hopf bifurcation.

Remark 5. The stability of the ecosystem requires maintaining the relative balance between each
population. The prey population is moderately regulated by the predators, which helps to maintain
the stability and function of the entire ecosystem. Reasonable protection measures should comprehen-
sively consider the interaction between the prey and the predator to ensure the balance and stability
of biodiversity and the ecosystem.
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Figure 9. Dynamical behavior of system (5) when m = 0.01, 0.4, 0.99, where ϱ = 0.95. (a) Waveform
plots of xs

1(t), xi
1(t), x2(t) and y(t) when m = 0.01 and ϱ = 0.95. (b) Waveform plots of xs

1(t), xi
1(t),

x2(t) and y(t) when m = 0.4 and ϱ = 0.95. (c) Waveform plots of xs
1(t), xi

1(t), x2(t) and y(t) when
m = 0.99 and ϱ = 0.95.
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Figure 10. Dynamical behavior of system (5) when ϱ = 0.95, τ = 0.35 < τ0 = 0.55, where m = 0.4.
(a) Stability of xs

1(t), xi
1(t), x2(t) and y(t) when ϱ = 0.95, τ = 0.35 < τ0 = 0.55, where m = 0.4.

(b) Stability of xs
1(t) and y(t) when ϱ = 0.95, τ = 0.35 < τ0 = 0.55,where m = 0.4. (c) Stability of

x2(t), xi
1(t), and y(t) when ϱ = 0.95, τ = 0.35 < τ0 = 0.55, where m = 0.4.
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Figure 11. Dynamical behavior of system (5) when ϱ = 0.95, τ = 0.8 > τ0 = 0.55, where m = 0.4.
(a) Instability of xs

1(t), xi
1(t), x2(t) and y(t) when ϱ = 0.95, τ = 0.8 > τ0 = 0.55, where m = 0.4.

(b) Instability of xs
1(t) and y(t) when ϱ = 0.95, τ = 0.8 > τ0 = 0.55, where m = 0.4. (c) Instability of

x2(t), xi
1(t), and y(t) when ϱ = 0.95, τ = 0.8 > τ0 = 0.55, where m = 0.4.

8. Conclusions

In this study, stability and bifurcation problems of a class of delayed fractional-order PP
systems with cannibalism and disease in the prey were studied. Disease, cannibalism, and
the stage structure were examined in prey populations for the first time. We hypothesized
that sick, immature prey might not develop into mature prey effectively. In prey populations
afflicted with disease, mature individuals may choose to eat the sick offspring. This
behavior exists in the animal kingdom and some species are known for cannibalism. In this
system, predators primarily consume mature prey, and PP interactions are described using
the Holling type-II functional response. Furthermore, we considered the protective role of
prey refuge and developed a delayed fractional predator–prey model.

The existence of solutions, uniform boundedness, local stability, and Hopf bifurcations
in the system was investigated. Numerical simulations demonstrated that in this unique
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predation system, prey cannibalism contributes to disease extinction. In the numerical
examples, it can be observed that diseased, immature prey gradually become extinct as
predation by mature prey increases. Second, the fractional order has a significant effect on
the stability of the entire system, and an increase in the fractional order can destroy the
stability of the system. Compared with integer-order systems, fractional-order systems
have more complex dynamics.

In addition, we found that a time delay can cause instability in the predation system,
and the order can delay or advance the occurrence of Hopf bifurcation. Moreover, prey
refuges have a significant impact on the stability of the considered system. Increasing
the number of prey refuges can make the system reach the stable state earlier, and it can
also delay the time of Hopf bifurcation. Future research will focus on the bifurcation of
fractional-order time-delay systems and implementation controllers to mitigate bifurcation.

Author Contributions: Conceptualization, H.Z. and A.M.; methodology, H.Z.; software, H.Z.;
validation, H.Z. and A.M.; formal analysis, H.Z. and A.M.; writing—original draft preparation, H.Z.
and A.M.; writing—review and editing, H.Z. and A.M.; supervision, A.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Open Project of Xinjiang Key Laboratory of Applied
Mathematics (grant no. 2023D04045) and the National Natural Science Foundation of Xinjiang (grant
no. 2021D01C067).

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

h̄1 =− κ3ϱ cos
3ϱπ

2
q44 + κ2ϱ cos

ϱπ

2
(p11 + p22 + p33)q44 + κϱ cos

ϱπ

2
(p12 p21 − p11 p22

+ p13 p31 − p11 p33 + p23 p32 − p22 p33)q44 + (p11 p23 p32 + p12 p23 p31 + p13 p21 p31

− p13 p22 p31 + p11 p22 p33 − p12 p21 p33)q44,

h̄2 =− κ3ϱ sin
3ϱπ

2
q44 + κ2ϱ sin

ϱπ

2
(p11 + p22 + p33)q44 + κϱ sin

ϱπ

2
(p12 p21 − p11 p22

+ p13 p31 − p11 p33 + p23 p32 − p22 p33)q44,

h̄3 = κ4ϱ cos 2ϱπ − κ3ϱ cos
3ρπ

2
(p11 + p22 + p33 + p44) + κ2ϱ cos ϱπ(p22 p33 − p32 p34

+ p44 p11 + p44 p22 + p44 p33 + p11 p22 − p12 p21 − p13 p31 + p11 p33 − p23 p32 + p11 p23)

+ κϱ cos
ϱπ

2
(p13 p22 p31 − p12 p23 p31 − p13 p21 p32 − p11 p22 p33 + p12 p21 p33 + p11 p32 p34

+ p22 p32 p34 − p11 p22 p44 + p12 p21 p44 + p13 p31 p44 − p11 p33 p44 + p23 p32 p44 − p22 p33 p44)

+ p12 p23 p31 p44 − p11 p23 p32 p44 + p13 p21 p32 p44 − p13 p22 p31 p44 + p11 p22 p33 p44

− p12 p21 p33 p44 − p11 p22 p32 p34 + p12 p21 p32 p34,

h̄4 = κ4ϱ sin 2ϱπ − κ3ϱ sin
3ρπ

2
(p11 + p22 + p33 + p44) + κ2ϱ sin ϱπ(p22 p33 − p32 p34

+ p44 p11 + p44 p22 + p44 p33 + p11 p22 − p12 p21 − p13 p31 + p11 p33 − p23 p32 + p11 p23)

+ κϱ sin
ϱπ

2
(p13 p22 p31 − p12 p23 p31 − p13 p21 p32 − p11 p22 p33 + p12 p21 p33 + p11 p32 p34

+ p22 p32 p34 − p11 p22 p44 + p12 p21 p44 + p13 p31 p44 − p11 p33 p44 + p23 p32 p44 − p22 p33 p44).
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Appendix B

Θ1 =− κ
3ϱ+1
0 q44 cos(

(3ϱ + 1)π
2

− κ0τ0) + (p11 + p22 + p33)q44κ
2ϱ+1
0 cos(

(2ϱ + 1)π
2

− κ0τ0)

+ (p12 p21 − p11 p22 + p13 p31 − p11 p33 + p23 p32 − p22 p33)q44κ
ϱ+1
0 cos(

(ϱ + 1)π
2

− κ0τ0)

+ κ0 cos(
π

2
− κ0τ0)(p11 p23 p32 + p12 p23 p31 + p13 p21 p31 − p13 p22 p31 + p11 p22 p33

− p12 p21 p33)q44,

Ξ1 = 4ϱκ
4ϱ−1
0 cos

(4ϱ − 1)π
2

− 3ϱκ
3ϱ−1
0 cos

(3ϱ − 1)π
2

(p11 + p22 + p33 + p44)

+ 2ϱκ
2ϱ−1
0 cos

(2ϱ − 1)π
2

(p22 p33 − p32 p34 + p44 p11 + p44 p22 + p44 p33 + p11 p22

− p12 p21 − p13 p31 + p11 p33 − p23 p32 + p11 p23) + (p13 p22 p31 − p12 p23 p31 − p13 p21 p32

− p11 p22 p33 + p12 p21 p33 + p11 p32 p34 + p22 p32 p34 − p11 p22 p44 + p12 p21 p44 + p13 p31 p44

− p11 p33 p44 + p23 p32 p44 − p22 p33 p44)ϱκ
ϱ−1
0 cos

(ϱ − 1)π
2

− 3ϱκ
3ϱ−1
0 q44 cos(

(3ϱ − 1)π
2

− κ0τ0) + (p11 + p22 + p33)q442ϱκ
2ϱ−1
0 cos(

(2ϱ − 1)π
2

− κ0τ0) + (p12 p21 − p11 p22

+ p13 p31 − p11 p33 + p23 p32 − p22 p33)q44ϱκ
ϱ−1
0 cos(

(ϱ − 1)π
2

− κ0τ0) + τ0q44κ
3ϱ
0 cos

(
(3ϱ − 1)π

2
− κ0τ0)− τ0(p11 + p22 + p33)q44κ

2ϱ
0 cos(ϱπ − κ0τ0)− τ0(p12 p21 − p11 p22

+ p13 p31 − p11 p33 + p23 p32 − p22 p33)q44κ
ϱ
0 cos(

ϱπ

2
− κ0τ0)− τ0q44(p11 p23 p32

+ p12 p23 p31 + p13 p21 p31 − p13 p22 p31 + p11 p22 p33 − p12 p21 p33) cos(κ0τ0),

Θ2 =− κ
3ϱ+1
0 q44 sin(

(3ϱ + 1)π
2

− κ0τ0) + (p11 + p22 + p33)q44κ
2ϱ+1
0 sin(

(2ϱ + 1)π
2

− κ0τ0)

+ (p12 p21 − p11 p22 + p13 p31 − p11 p33 + p23 p32 − p22 p33)q44κ
ϱ+1
0 sin(

(ϱ + 1)π
2

− κ0τ0)

+ κ0 cos(
π

2
− κ0τ0)(p11 p23 p32 + p12 p23 p31 + p13 p21 p31 − p13 p22 p31 + p11 p22 p33

− p12 p21 p33)q44,

Ξ2 = 4ϱκ
4ϱ−1
0 sin

(4ϱ − 1)π
2

− 3ϱκ
3ϱ−1
0 sin

(3ϱ − 1)π
2

(p11 + p22 + p33 + p44)

+ 2ϱκ
2ϱ−1
0 sin

(2ϱ − 1)π
2

(p22 p33 − p32 p34 + p44 p11 + p44 p22 + p44 p33 + p11 p22

− p12 p21 − p13 p31 + p11 p33 − p23 p32 + p11 p23) + (p13 p22 p31 − p12 p23 p31 − p13 p21 p32

− p11 p22 p33 + p12 p21 p33 + p11 p32 p34 + p22 p32 p34 − p11 p22 p44 + p12 p21 p44 + p13 p31 p44

− p11 p33 p44 + p23 p32 p44 − p22 p33 p44)ϱκ
ϱ−1
0 sin

(ϱ − 1)π
2

− 3ϱκ
3ϱ−1
0 q44 sin(

(3ϱ − 1)π
2

− κ0τ0) + (p11 + p22 + p33)q442ϱκ
2ϱ−1
0 sin(

(2ϱ − 1)π
2

− κ0τ0) + (p12 p21 − p11 p22

+ p13 p31 − p11 p33 + p23 p32 − p22 p33)q44ϱκ
ϱ−1
0 sin(

(ϱ − 1)π
2

− κ0τ0) + τ0q44κ
3ϱ
0 sin

(
(3ϱ − 1)π

2
− κ0τ0)− τ0(p11 + p22 + p33)q44κ

2ϱ
0 sin(ϱπ − κ0τ0)− τ0(p12 p21 − p11 p22

+ p13 p31 − p11 p33 + p23 p32 − p22 p33)q44κ
ϱ
0 sin(

ϱπ

2
− κ0τ0)− τ0q44(p11 p23 p32

+ p12 p23 p31 + p13 p21 p31 − p13 p22 p31 + p11 p22 p33 − p12 p21 p33) sin(κ0τ0).

Appendix C

Let the fractional-order system with delay be as follows{
cDϱ Hj(t) = f j(t, Hj(t), Hj(t − τ)), t ∈ [−τ, 0], Hr

j (0) = Hr
j0,

r = 0, 1, 2, . . . , ⌈ϱ⌉, j ∈ N,
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where Lr
j0 ∈ R, ϱ > 0 and

Hj(t) =
⌈ϱ⌉−1

∑
n=0

Hr
j0

tn

n!
+

1
Γ(ϱ)

∫ t

0
(t − s)ϱ−1 f j(s, Hj(s), Hj(s − τ))ds, j ∈ N.

Let h = T
i , tn = nh, n = 0, 1, 2, . . . , i. Then, the corrector formulae are as follows:

xs
1n+1 =xs

1(0) +
hϱ

Γ(ϱ + 2)
(αx2

p
n+1 − βxs

1
p
n+1 − θxs

1
p
n+1xi

1
p
n+1) +

hϱ

Γ(ϱ + 2)

n

∑
j=0

ϖj,n+1(αx2j

− βxs
1j − θxs

1jx
i
1j),

xi
1n+1 =xi

1(0) +
hϱ

Γ(ϱ + 2)
(θxs

1
p
n+1xi

1
p
n+1 − φx2

p
n+1xi

1
p
n+1 − d1xi

1
p
n+1)

+
hϱ

Γ(ϱ + 2)

n

∑
j=0

ϖj,n+1(θxs
1jx

i
1j − φx2jxi

1j − d1xi
1j),

x2n+1 =x2(0) +
hϱ

Γ(ϱ + 2)
(Ωxs

1
p
n+1 −

µ(1 − m)x2
p
n+1yp

n+1

1 + a(1 − m)x2
p
n+1

+ ψx2
p
n+1xi

1
p
n+1

− ηx2
2

p
n+1 − d2x2

p
n+1) +

hϱ

Γ(ϱ + 2)

n

∑
j=0

ϖj,n+1(Ωxs
1 j −

µ(1 − m)x2jyj

1 + a(1 − m)x2j

+ ψx2jxi
1j − ηx2

2j − d2x2 j),

yn+1 =y(0) +
hϱ

Γ(ϱ + 2)
(

σ(1 − m)x2
p
n+1yp

n+1

1 + a(1 − m)x2
p
n+1

− d3yp
n+1)

+
hϱ

Γ(ϱ + 2)

n

∑
j=0

ϖj,n+1(
σ(1 − m)x2jyj

1 + a(1 − m)x2j
− d3yj),

where

ϖj,n+1 =


nϱ+1 − (n − ϱ)(n + 1)ϱ, if j = 0,
(n − j + 2)ϱ+1 + (n − j)ϱ+1 − 2(n − j + 1)ϱ+1, if 0 ≤ j ≤ n,
1, if j = 1.

And the predictor formulae are

xs
1

p
n+1 = xs

1(0) +
1

Γ(ϱ)

n

∑
j=0

ε j,n+1(αx2j − βxs
1j − θxs

1jx
i
1j),

xi
1

p
n+1 = xi

1(0) +
1

Γ(ϱ)

n

∑
j=0

ε j,n+1(θxs
1jx

i
1j − φx2jxi

1j − d1xi
1j),

x2
p
n+1 = x2(0) +

1
Γ(ϱ)

n

∑
j=0

ε j,n+1(Ωxs
1 j −

µ(1 − m)x2jyj

1 + a(1 − m)x2j
+ ψx2jxi

1j − ηx2
2j − d2x2 j)),

yp
n+1 = y(0) +

1
Γ(ϱ)

n

∑
j=0

ε j,n+1(
σ(1 − m)x2jyj

1 + a(1 − m)x2j
− d3yj),

where ε j,n+1 = hϱ

ϱ ((n + 1 − j)ϱ − (n − j)ϱ), 0 < j < n.
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