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Abstract: In this paper, we study the existence of positive solutions for a changing-sign perturbation
tempered fractional model with weak singularity which arises from the sub-diffusion study of
anomalous diffusion in Brownian motion. By two-step substitution, we first transform the higher-
order sub-diffusion model to a lower-order mixed integro-differential sub-diffusion model, and then
introduce a power factor to the non-negative Green function such that the linear integral operator
has a positive infimum. This innovative technique is introduced for the first time in the literature and
it is critical for controlling the influence of changing-sign perturbation. Finally, an a priori estimate
and Schauder’s fixed point theorem are applied to show that the sub-diffusion model has at least one
positive solution whether the perturbation is positive, negative or changing-sign, and also the main
nonlinear term is allowed to have singularity for some space variables.

Keywords: nonlocal boundary condition; tempered fractional equation; sign-changing perturbation;
Schauder’s fixed point theorem
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1. Introduction

The particle’s random walks in Brownian motion is governed by the following
diffusion equation [1]:

∂t f (z, t) = ∂2
z f (z, t),

where f (z, t) is the particle jump density function. In anomalous diffusion, the mean square
variance sometimes grows faster to create a super-diffusion and sometimes spreads slower
to form sub-diffusion than in the Gaussian process; thus, anomalous diffusion in Brownian
motion exhibits a long-range dependence characteristic, which can be modeled by the
fractional diffusion equation

∂α
t f (z, t) = ∂

β
z f (z, t),

where the fractional space derivative of order 0 < β < 2 corresponds to heavy-tailed power
law particle jumps P[J > z] ≈ z−β in the Lèvy flight, and the fractional time derivative
of order 0 < α ≤ 1 describes the heavy-tailed power law waiting time P[W > t] ≈ t−α

between jumps. This indicates that the solution of the anomalous diffusion equation
exhibits a feature of heavy tails, that is, it falls off like a power law decay at infinity with a
time lag. However, in most cases, a more rapid exponential decay is much more favored.
In order to find a strategy to temper the power law decay, Sabzikar et al. [2] introduced an
exponential factor e−λ|z| into the particle jump density, and gave a Fourier transform form
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for the tempered probability density function f (z, t) and tempered fractional derivative
operators ∂

β,λ
±,z f (z, t)

F [ f ](z, t) = e−[pBβ,λ
+ (z)+qBβ,λ

− (z)]µt, F [∂
β,λ
±,z f ](z, t) = Bβ,λ

± (z)F [ f ](z, t),

where p = 1 − q, 0 ≤ p ≤ 1, µ is constant and

Bβ,λ
± (z) =

{
(λ ± zi)β − λβ, 0 < β < 1,

(λ ± zi)β − λβ −±βλβ−1zi, 1 < β < 2,
(1)

which leads to the following tempered fractional equation in anomalous diffusion:

∂t f (z, t) = (−1)kCT{p∂
β,λ
+,z + q∂

β,λ
−,z} f (z, t), β ∈ (k − 1, k), k = 1, 2.

The point source of solutions for this equation is tempered stable probability densities
satisfying semi-heavy tails with transition from power law to Gaussian. This flexible model
with an exponential decay over long time scales has many advantages, for example, in the
real physical system, a Gaussian stochastic process without sharp cutoff can be captured
by a tempered Lévy flight [3]. The probability densities of the tempered Lévy flight can be
controlled by the tempered fractional diffusion model [4]. In addition, the tempered diffu-
sion model has been shown to have important applications in geophysics [5,6], finance [7]
and Laguerre polynomials [8]. In finance, the price fluctuations with semi-heavy tails can
be simulated by the tempered stable process, which resemble a power law over a moderate
time but converge to a Gaussian process over a long time [9]. In other words, the decay
follows a power law over short time scales, but eventually follows the exponential rule
over long time scales. In the following, we give the strictly mathematical definition of the
tempered fractional:

Definition 1 ([10]). Let x : (0,+∞) → R, then the tempered fractional derivative is defined by

Dα,λ
t x(t) = e−λtDtDtDt

α(eλtx(t)),

where

DtDtDt
αx(t) =

dn

dtn

(
0 In−α

t x(t)
)
=

1
Γ(n − α)

(
d
dt

)n ∫ t

0
(t − s)n−α−1x(s)ds, n = [α] + 1

is the Riemann–Liouville fractional derivative and

0 In−α
t x(t) =

1
Γ(α)

∫ t

0
(t − s)α−1x(s)ds

denotes the Riemann–Liouville fractional integral operator.

On the other hand, we also notice that, if λ = 0, the tempered fractional derivative
reduces to the Riemann–Liouville and Caputo fractional derivatives, which implies that
the tempered fractional derivative is one of the generalized forms of the fractional deriva-
tives, that is, in a mathematical sense, tempered fractional calculus extends the theory of
classical fractional calculus such as the Riemann–Liouville, Caputo fractional derivatives,
etc. [11–24] to a more general case. In a recent work [10], the existence of a positive solution
for a singular tempered fractional turbulent flow model for a porous medium with order
α ∈ (0, 1], β ∈ (1, 2] was established.
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Dα,λ

t

(
φp

(
Dβ,λ

t z(t)
))

= f (t, z(t)), t ∈ (0, 1),

z(0) = 0, Dβ,λ
t z(0) = 0, z(1) =

∫ 1

0
e−λ(1−t)z(t)dt.

(2)

It has been proven that the tempered turbulent flow model (2) has at least one positive
solution satisfying

k1e−λttβ−1 ≤ w(t) ≤ k2e−λttβ−1,

where k1, k2 > 0 are constants. Ledesma et al. [25] considered a boundary value problem
with tempered fractional derivatives and oscillating term Dα,λ

b−

(
CDα,λ

a+ z(t)
)
= µϱ(t) f (z(t)), t ∈ (a, b),

z(a) = z(b) = 0,
(3)

where 1
2 < α < 1, λ > 0 and µ ∈ R; ϱ ∈ L∞(a, b), Dα,λ

b− and CDα,λ
a+ are tempered left

Riemann–Liouville and right Caputo fractional derivatives, respectively. By using a varia-
tional principle due to Ricceri, the existence of infinitely many weak solutions was estab-
lished provided that the nonlinear term f has a suitable oscillating behavior either at the
origin or at infinity.

In this paper, we focus on a sub-diffusion model in anomalous diffusion which pos-
sesses a changing-sign perturbation

−Dα,λ
t z(t) = f

(
t, eλtz(t),Dt

β,λz(t)
)
+ κ(t)

Dt
β,λz(0) = 0, Dt

β,λz(1) =
∫ 1

0
e−λ(1−t)Dt

β,λz(t)dt,
(4)

where 1 < α ≤ 2, 0 < β < 1 and 1 < α − β ≤ β + 1, f : [0, 1]× (0, ∞)× (0, ∞) → (0, ∞) is
continuous which implies that the nonlinearity may be singular in some space variables;
κ ∈ C([0, 1], R) may be sign-changing.

As far as we know, although many analysis methods, such as the spaces theories [26–31],
iterative techniques [32–34], smooth theories [35–37], operator methods [38–41], upper–
lower solution methods [42–44], the moving sphere method [45] and critical point theo-
ries [46–49], have been employed to study various nonlinear problems, little work has
been carried out for changing-sign problems except for [50,51]. In particular, no work has
been carried out for the changing-sign perturbation tempered fractional equation with
singularity for space variables and a nonlocal boundary condition. The present paper
is the first work for the sub-diffusion model in anomalous diffusion processes with a
changing-sign perturbation.

2. Basic Definitions and Preliminaries

Firstly, we recall some properties of the Riemann–Liouville fractional calculus.

Lemma 1 ([10]).

(1) Let g(t) ∈ L1[0, 1] ∩ C[0, 1], γ > 0, then

0 Iγ
t DtDtDt

γ(g(t)) = g(t) + b1tγ−1 + b2tγ−2 + · · ·+ bmtγ−m,

where bi ∈ R, i = 1, 2, 3, . . . , m, (m = [γ] + 1).
(2) If u ∈ L1(0, 1), α > β > 0, then

0 Iα
t 0 Iβ

t u(t) = 0 Iα+β
t u(t), DtDtDt

β
0 Iα

t u(t) = 0 Iα−β
t u(t), DtDtDt

β
0 Iβ

t u(t) = u(t).
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(3) If ρ > 0, µ > 0, then

DtDtDt
ρtµ−1 =

Γ(µ)
Γ(µ − ρ)

tµ−ρ−1.

The work space of this paper is the Banach space E = C[0, 1] which is equipped with
the usual maximum norm ||x|| = max0≤t≤1 |x(t)|. Let

P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]},

then, P is a normal cone.

Lemma 2. Suppose κ(t) is a positive continuous function in [0, 1]; then, the linear tempered
fractional equation 

−Dt
α−β,λz(t) = κ(t),

z(0) = 0, z(1) =
∫ 1

0
e−λ(1−t)z(t)dt,

(5)

has the unique positive solution

φ(t) =
∫ 1

0
H(t, s)κ(s)ds, (6)

where

H(t, s)

=



[(α − β)(1 − s)α−β−1(α − β − 1 + s)tα−β−1 − (α − β)(α − β − 1)(t − s)α−β−1]e−λ(t−s)

(α − β − 1)Γ(α − β + 1)
,

s ≤ t;

(α − β)(1 − s)α−β−1(α − β − 1 + s)
(α − β − 1)Γ(α − β + 1)

tα−β−1e−λ(t−s), t ≤ s,

(7)

is the Green function of (5).

Clearly, H(t, s) is non-negative and continuous for (t, s) ∈ [0, 1]× [0, 1].
Make the transformation

z(t) = e−λt Iβ(eλty(t)), y(t) ∈ C[0, 1],

then, by [10], the singular perturbation tempered fractional Equation (4) can be converted
to the following equivalent mixed integro-differential tempered fractional equation:

−Dt
α−β,λy(t) = f (t, Iβ(eλty(t)), y(t)) + κ(t),

y(0) = 0, y(1) =
∫ 1

0
e−λ(1−t)y(t)dt.

(8)

As a result, a function y is a solution of (8) if and only if it is a solution of the following
integral equation:

y(t) =
∫ 1

0
H(t, s)

[
f (s, Iβ(eλsy(s)), y(s)) + κ(s)

]
ds.

Now, let y(t) = tα−β−1x(t); then, we can rewrite the above integral equation:

x(t) =
∫ 1

0
tβ+1−α H(t, s)

[
f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s)) + κ(s)

]
ds.
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Let
H∗(t, s) = tβ+1−αH(t, s),

then, we consider the fixed point of the following operator:

(Tx)(t) =
∫ 1

0
H∗(t, s)

[
f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s)) + κ(s)

]
ds.

We use the following hypothesis in this paper.
(C1) There exist a constant θ ∈ (0, β

α−β−1 ) and ω1, ω2 ∈ P, ω1 ̸≡ 0, ω2 ̸≡ 0 such that

tθ(α−β−1)ω1(t)
(x + y)θ

≤ f (t, x, y) ≤ tθ(α−β−1)ω2(t)
(x + y)θ

, (x, y) ∈ [0, ∞)× (0, ∞), t ∈ (0, 1).

Let φ(t) be the unique solution of Equation (5) and rewrite φ(t) as

φ(t) =
∫ 1

0
H∗(t, s)κ(s)ds,

and define functions

ϕ(t) =
∫ 1

0
H∗(t, s)ω1(s)ds, ψ(t) =

∫ 1

0
H∗(t, s)ω2(s)ds.

For the above the functions φ, ϕ and ψ, we denote

φ∗ = min
0≤t≤1

φ(t), φ∗ = sup
0≤t≤1

φ(t),

ϕ∗ = min
0≤t≤1

ϕ(t), ϕ∗ = max
0≤t≤1

ϕ(t),

ψ∗ = min
0≤t≤1

ψ(t), ψ∗ = max
0≤t≤1

ψ(t).

Noticing

ϕ(t) =
∫ 1

0
H∗(t, s)ω1(s)ds ≥

∫ 1

0

(α − β)(1 − s)α−β−1(α − β − 1 + s)
(α − β − 1)Γ(α − β + 1)

e−λω1(s)ds,

then, it follows from (C1) that 0 < ϕ∗ ≤ ϕ∗ ≤ ψ∗ ≤ ψ∗.
Our main tool used in deriving our results is the following Schauder fixed

point theorem.

Lemma 3 (Schauder fixed point theorem). Let Ω be a closed bounded convex subset of a Banach
space E. Assume that T : Ω → Ω is compact. Then, T has at least one fixed point in Ω.

3. Positive Case for φ(t)

Theorem 1. Assume that (C1) holds and φ∗ ≥ 0. Then, the singular perturbation tempered
fractional equation with nonlocal boundary condition (4) has at least one positive solution.

Proof. Firstly, choose a constant

R > max

1, ϕ∗
− 1

1−θ

(
1 +

eλ

Γ(β + 1)

) θ
1−θ

, (ψ∗ + φ∗)
1

1−θ


and take the closed convex set of P

Ω = {x ∈ P :
1
R

≤ x(t) ≤ R, t ∈ [0, 1]}.
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Noticing that 1 < α − β ≤ β + 1, we have

Γ(α − β)tα−1

Γ(α)R
≤ Iβ(eλssα−β−1x(s)) =

∫ t

0

(t − s)β−1

Γ(β)
sα−β−1eλsx(s)ds

≤ eλRtβ

Γ(β + 1)
≤ eλRtα−β−1

Γ(β + 1)
≤ eλR

Γ(β + 1)
,

(9)

for θ ∈ (0, β
α−β−1 ) and s ∈ (0, 1); it follows from (C1) and (9) that

ω1(s)

Rθ
(

1 + eλ

Γ(β+1)

)θ

≤ sθ(α−β−1)ω1(s)
(sα−β−1x(s) + Iβ(eλssα−β−1x(s)))θ

≤ f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))

≤ sθ(α−β−1)ω2(s)
(sα−β−1x(s) + Iβ(eλssα−β−1x(s)))θ

≤ ω2(s)Rθ .

(10)

Consequently, by (9) and (10), one has

(Tx)(t) =
∫ 1

0
H∗(t, s)

[
f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s)) + κ(s)

]
ds

=
∫ 1

0
H∗(t, s) f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))ds + φ(t).

(11)

Thus, T : Ω → E is a completely continuous operator.
In what follows, we show that T maps the closed convex set Ω into Ω. In fact, for any

given x ∈ Ω and t ∈ [0, 1], from (9)–(11), one has

(Tx)(t) =
∫ 1

0
H∗(t, s) f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))ds + φ(t)

≥ 1

Rθ
(

1 + eλ

Γ(β+1)

)θ

∫ 1

0
H∗(t, s)ω1(s)ds

≥ ϕ∗

Rθ
(

1 + eλ

Γ(β+1)

)θ

=
ϕ∗R1−θ

R
(

1 + eλ

Γ(β+1)

)θ

≥ 1
R

,

and

(Tx)(t) =
∫ 1

0
H∗(t, s) f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))ds + φ(t)

≤ Rθ
∫ 1

0
H∗(t, s)ω2(s)ds + φ∗

≤ ψ∗Rθ + φ∗ ≤ (ψ∗ + φ∗)Rθ ≤ R.

Thus, T maps the closed convex set Ω into Ω. According to Schauder’s fixed
point theorem, T has a fixed point x∗ ∈ Ω and, hence, the singular perturbation
tempered fractional equation with a nonlocal boundary condition (4) has at least one
positive solution.
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4. Negative Case for φ(t)

Theorem 2. Assume that (C1) holds and φ∗ ≤ 0. If

φ∗ ≥

 ϕ∗θ2

ψ∗θ
(

1 + 1
Γ(β+1)

)θ


1

1−θ2 (
1 − 1

θ2

)
, (12)

then, the singular perturbation tempered fractional equation with nonlocal boundary condition (4)
has at least one positive solution.

Proof. For this case, we only need to find the suitable 0 < r < R such that T : Ω → Ω, where

Ω = {x ∈ P : r ≤ x(t) ≤ R, t ∈ [0, 1]}.

Similar to (9), we have
Γ(α − β)tα−1r

Γ(α)

≤ Iβ(eλssα−β−1x(s))

≤ eλRtβ

Γ(β + 1)

≤ eλR
Γ(β + 1)

,

(13)

and then
ω1(s)

Rθ
(

1 + eλ

Γ(β+1)

)θ

≤ f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))

≤ ω2(s)
rθ

.

(14)

Consequently, for any given x ∈ Ω and t ∈ [0, 1], from (14), one has

(Tx)(t) =
∫ 1

0
H∗(t, s) f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))ds + φ(t)

≥ 1

Rθ
(

1 + eλ

Γ(β+1)

)θ

∫ 1

0
H∗(t, s)ω1(s)ds + φ∗

≥ ϕ∗

Rθ
(

1 + eλ

Γ(β+1)

)θ
+ φ∗,

(15)

and

(Tx)(t) =
∫ 1

0
H∗(t, s) f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))ds + φ(t)

≤ 1
rθ

∫ 1

0
H∗(t, s)ω2(s)ds

≤ ψ∗

rθ
.

(16)

From (15) and (16), T : Ω → Ω holds provided that the following inequalities are
valid:

ϕ∗

Rθ
(

1 + 1
Γ(β+1)

)θ
+ φ∗ ≥ r,

ψ∗

rθ
≤ R. (17)
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In order to show that (17) holds, let

R =
ψ∗

rθ
.

Clearly, to ensure that the inequalities (17) are true, we only need to find a suitable
r > 0 such that

R =
ψ∗

rθ
> r,

ϕ∗rθ2

ψ∗θ
(

1 + 1
Γ(β+1)

)θ
+ φ∗ ≥ r,

i.e.,

0 < r < ψ∗ 1
1+θ , φ∗ ≥ r − ϕ∗

ψ∗θ
(

1 + 1
Γ(β+1)

)θ
rθ2

. (18)

Now, let

h(x) = x − ϕ∗

ψ∗θ
(

1 + 1
Γ(β+1)

)θ
xθ2

, x ∈ (0, ∞).

Obviously,

h′(x) = 1 − θ2ϕ∗

ψ∗θ
(

1 + 1
Γ(β+1)

)θ
x1−θ2

,

which implies that h(x) takes the minimum value

h(ϑ) =

 ϕ∗θ2

ψ∗θ
(

1 + 1
Γ(β+1)

)θ


1

1−θ2 (
1 − 1

θ2

)
,

when

ϑ =

 θ2ϕ∗

ψ∗θ
(

1 + 1
Γ(β+1)

)θ


1

1−θ2

.

Let r = ϑ; since ϕ∗ ≤ ψ∗, 0 < θ2 < 1, 1 + 1
Γ(β+1) > 1, from (12), we obtain

r = ϑ =

 θ2ϕ∗

ψ∗θ
(

1 + 1
Γ(β+1)

)θ


1

1−θ2

<

(
ψ∗

ψ∗θ

) 1
1−θ2

= ψ∗ 1
1+θ ,

and

φ∗ ≥

 ϕ∗θ2

ψ∗θ
(

1 + 1
αΓ(α)

)θ


1

1−θ2 (
1 − 1

θ2

)

= r − ϕ∗

ψ∗θ
(

1 + 1
Γ(β+1)

)θ
rθ2

.

Therefore, if

r = ϑ, R =
ψ∗

ϑθ
,
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then (18) is true. Thus, by mean of Schauder’s fixed point theorem, T has a fixed point
x∗ ∈ Ω and, hence, the singular perturbation tempered fractional Equation (4) with nonlocal
boundary condition has at least one positive solution.

5. Changing-Sign Case for φ(t)

In order to establish the existence of a positive solution for the changing-sign case, we
firstly consider the following equation:

x1−θ2
(ψ∗ + φ∗xθ)1+θ =

θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ
. (19)

Lemma 4. If 0 < θ < 1, then Equation (19) possesses a unique positive solution ϑ in
(0, ∞). Moreover,

ϑ ∈

0,

 θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ


1

2+2θ

.

Proof. Let

µ :=

 θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ


1

2+2θ

, h(x) =
θ2ψ∗ϕ∗(

1 + 1
Γ(β+1)

)θ
− x1−θ2

(ψ∗ + φ∗xθ)1+θ ,

then

h(0) = lim
x→0

h(x) =
θ2ψ∗ϕ∗(

1 + 1
Γ(β+1)

)θ
> 0. (20)

Since 0 < θ < 1, ψ∗ ≥ ϕ∗, one has

0 < µ =

 θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ


1

2+2θ

< ψ∗ 1
1+θ ,

which yields
µ(1+θ)2

< ψ∗1+θ .

Hence,
h(µ) = µ2+2θ − µ1−θ2

(ψ∗ + φ∗µθ)1+θ

= µ1−θ2
[
µ(1+θ)2 − (ψ∗ + φ∗µθ)1+θ

]
< µ1−θ2

[
µ(1+θ)2 − ψ∗1+θ

]
< 0,

(21)

Moreover,

h′(x) = −(1 − θ2)x−θ2
(ψ∗ + φ∗xθ)1+θ − φ∗θx1−θ2

(ψ∗ + φ∗xθ)θ xθ−1

< 0, x ∈ (0, ∞),
(22)

which implies that h(x) is strictly decreasing in (0, ∞). Thus, it follows from (20)–(22) that
Equation (19) possesses a unique positive solution ϑ ∈ (0, µ).
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Theorem 3. Suppose that (C1) holds and φ∗ ≤ 0, φ∗ ≥ 0. If

φ∗ ≥ ϑ − ϕ∗ϑ2θ

(ψ∗ + φ∗ϑθ)θ
(

1 + 1
Γ(β+1)

)θ
, (23)

where ϑ is the solution of Equation (19), then the singular perturbation tempered fractional Equation
(4) with nonlocal boundary condition has at least one positive solution.

Proof. If φ∗ ≤ 0, φ∗ ≥ 0, we still need to seek for suitable 0 < r < R such that
T : Ω → Ω, where

Ω = {x ∈ P : r ≤ x(t) ≤ R, t ∈ [0, 1]}.

For any given x ∈ Ω, it follows from (13) and (14), φ∗ ≤ 0, φ∗ ≥ 0 that

(Tx)(t) =
∫ 1

0
H∗(t, s) f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))ds + φ(t)

≥ 1

Rθ
(

1 + eλ

Γ(β+1)

)θ

∫ 1

0
H∗(t, s)ω1(s)ds + φ∗

≥ ϕ∗

Rθ
(

1 + eλ

Γ(β+1)

)θ
+ φ∗,

(24)

and

(Tx)(t) =
∫ 1

0
H∗(t, s) f (s, Iβ(eλssα−β−1x(s)), sα−β−1x(s))ds + φ(t)

≤ 1
rθ

∫ 1

0
H∗(t, s)ω2(s)ds ≤ ψ∗

rθ
+ φ∗.

(25)

By (24) and (25), to guarantee T : Ω → Ω, it is sufficient to find 0 < r < R such that

ϕ∗

Rθ
(

1 + 1
Γ(β+1)

)θ
+ φ∗ ≥ r,

ψ∗

rθ
+ φ∗ ≤ R. (26)

To perform this, take

R =
ψ∗

rθ
+ φ∗.

This is equivalent to finding an r > 0 satisfying

ψ∗

rθ
+ φ∗ > r, φ∗ ≥ r − ϕ∗r2θ

(ψ∗ + φ∗rθ)θ
(

1 + 1
Γ(β+1)

)θ
. (27)

Let

h(x) = x − ϕ∗x2θ

(ψ∗ + φ∗xθ)θ
(

1 + 1
Γ(β+1)

)θ
.

Then

h′(x) = 1 −
ϕ∗

[
θ2xθ2−1(ψ∗ + θ2 φ∗xθ)θ − φ∗xθ2

(ψ∗ + φ∗xθ)θ−1xθ−1
]

(ψ∗ + φ∗xθ)2θ
(

1 + 1
Γ(β+1)

)θ

= 1 − ϕ∗θ2xθ2−1

(ψ∗ + φ∗xθ)θ
(

1 + 1
Γ(β+1)

)θ

[
1 − φ∗xθ

ψ∗ + φ∗xθ

]

= 1 − ϕ∗ψ∗θ2xθ2−1

(ψ∗ + φ∗xθ)θ+1
(

1 + 1
Γ(β+1)

)θ
,
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and, hence,
lim
x→0

h′(x) = −∞, lim
x→∞

h′(x) = 1.

Thus, there exists ϑ such that

h′(ϑ) = 1 − ϕ∗ψ∗θ2ϑθ2−1

(ψ∗ + φ∗ϑθ)θ+1
(

1 + 1
Γ(β+1)

)θ
= 0,

i.e., ϑ solves Equation (19).

x1−θ2
(ψ∗ + φ∗xθ)1+θ =

θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ
.

It follows from Lemma 4 that ϑ is unique and

ϑ ∈

0,

 θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ


1

2+2θ

.

On the other hand,

h′′(r) =
(1 − θ2)θ2ϕ∗ψ∗rθ2−2

(ψ∗ + φ∗rθ)θ+1
(

1 + 1
Γ(β+1)

)θ
+

(1 + θ)θ3 φ∗ϕ∗ψ∗rθ2+θ−2

(ψ∗ + φ∗rθ)θ+2
(

1 + 1
Γ(β+1)

)θ
> 0,

which implies that h(r) reaches its minimum value at ϑ, that is

h(ϑ) = min
r∈(0,∞)

h(r).

Take r = ϑ, assumption (23) ensures the following inequality holds:

φ∗ ≥ r − ϕ∗r2θ

(ψ∗ + φ∗rθ)θ
(

1 + 1
Γ(β+1)

)θ
.

Next, we verify the inequality R > r. It follows from

R =
ψ∗

ϑθ
+ φ∗, ϑ1−θ2

(ψ∗ + φ∗ϑθ)1+θ =
θ2ψ∗ϕ∗(

1 + 1
Γ(β+1)

)θ
,

that

ϑ1+θ R1+θ =
θ2ψ∗ϕ∗(

1 + 1
Γ(β+1)

)θ
,

that is

R =
1
ϑ

 θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ


1

1+θ

.

Since

0 < ϑ <

 θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ


1

2+2θ

,
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one has

R >

 θ2ψ∗ϕ∗(
1 + 1

Γ(β+1)

)θ


1

2+2θ

> ϑ = r.

Hence, we have found a constant r = ϑ such that (26) holds. According to Schauder’s
fixed point theorem, the singular perturbation tempered fractional Equation (4) with
nonlocal boundary condition has at least one positive solution.

6. Example

In anomalous diffusion, the mean square variance sometimes grows slower than
Gaussian to form a sub-diffusion which can be modeled by the time tempered fractional
diffusion equation. In this section, we only give an example for the most complex case,
i.e., with uncertain changing-sign perturbations, to demonstrate the application of our
main results.

Example 1. Consider the sub-diffusion model (4) in anomalous diffusion with a changing-sign
perturbation κ(t) for the case α = 3

2 , β = 1
4 , λ = 2,

−Dt
3
2 ,2z(t) =

100.5t
1
12

e2t
(

e2tz(t) + |Dt
1
4 ,2z(t)|

) 1
3
+ κ(t)

Dt
1
4 ,2z(0) = 0, Dt

1
4 ,2z(1) =

∫ 1

0
e−2(1−t)Dt

1
4 ,2z(t)dt,

(28)

where

κ(t) =


− 1

5
e−2t, t ∈

[
0,

1
2

)
,

1
5

e−2t+1, t ∈
[

1
2

, 1
]

.

Conclusion The sub-diffusion model (28) has at least one positive solution.

Proof. Let ω1(t) = 100e−2t, ω2(t) = 101e−2t and

f (t, x, y) =
100.5t

1
12

e2t(x + y)
1
3

, (x, y) ∈ [0, ∞)× (0, ∞), t ∈ (0, 1),

then
100t

1
12 e−2t

(x + y)
1
3

≤ f (t, x, y) ≤ 101t
1
12 e−2t

(x + y)
1
3

, (x, y) ∈ [0, ∞)× (0, ∞), t ∈ (0, 1).

Thus, (C1) holds. On the other hand, by Lemma 2, we obtain

H(t, s) =


5
[
(1 − s)

1
4 ( 1

4 + s)t
1
4 − 1

4 (t − s)
1
4

]
e−2(t−s)

Γ( 9
4 )

, s ≤ t;

5(1 − s)
1
4 ( 1

4 + s)
Γ( 9

4 )
t

1
4 e−2(t−s), t ≤ s,

(29)
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then

H∗(t, s) =


5
[
(1 − s)

1
4 ( 1

4 + s)− 1
4 t−

1
4 (t − s)

1
4

]
e−2(t−s)

Γ( 9
4 )

, s ≤ t;

5(1 − s)
1
4 ( 1

4 + s)
Γ( 9

4 )
e−2(t−s), t ≤ s.

(30)

Now, we compute φ∗, φ∗ and ϕ∗, ψ∗. Note that

φ(t) =
∫ 1

0
H∗(t, s)κ(s)ds =

1
Γ( 9

4 )


− 5

9
e−2t +

1
25

e−2tt, 0 ≤ t <
1
2

,

5
9

e−2t+1 +
1

25
e−2t+1t,

1
2
≤ t ≤ 1,

and, hence,

φ∗ =
− 5

9

Γ( 9
4 )

= −0.4903, φ∗ =
5

9Γ( 9
4 )

+
1

50Γ( 9
4 )

= 0.5080.

Similarly, we have

ϕ(t) =
∫ 1

0
H∗(t, s)ω1(s)ds =

2500
9Γ( 9

4 )
e−2t − 20

Γ( 9
4 )

e−2tt,

ψ(t) =
∫ 1

0
H∗(t, s)ω2(s)ds =

2525
9Γ( 9

4 )
e−2t − 101

5Γ( 9
4 )

e−2tt,

and, consequently,

ϕ∗ = min
0≤t≤1

ϕ(t) = 30.8, ϕ∗ = max
0≤t≤1

ϕ(t) = 245.2,

ψ∗ = min
0≤t≤1

ψ(t) = 27.472, ψ∗ = max
0≤t≤1

ϕ(t) = 247.6.

Thus, Equation (19) becomes

x
8
9 (247.6 + 0.5080x

1
3 )

4
3 =

1
9 × 247.6 × 30.8

(1 + 1.1033)
1
3

= 661.3405. (31)

which has a unique solution ϑ = 0.3814. Hence,

ϑ − ϕ∗ϑ2θ

(ψ∗ + φ∗ϑθ)θ
(

1 + 1
Γ(β+1)

)θ
= 0.3814 − 0.3814

2
3 × 30.8

(247.6 + 0.5080 × 0.3814
1
3 )

1
3 (1 + 1.1033)

1
3

= −1.6310 < φ∗ = −0.4903.

It follows from Theorem 3 that the sub-diffusion model (28) has at least
one positive solution.

7. Conclusions

The tempered fractional derivative is a more flexible alternative to classical fractional
derivatives, which can model random walks with semi-heavy tails and stable probability
densities for the particle jumps, i.e., the transition has a semi-long-range dependence in a
long time range as a power law but is like the Gaussian in a short time range. In this paper,
by using the technique of two-step substitution, the higher-order sub-diffusion model is
converted to a lower-order mixed integro-differential sub-diffusion model, and then, by
introducing a power factor, we derive that the linear integral operator we define has a
positive infimum; this innovative technique is introduced for the first time in the literature
and it is critical for controlling the influence of changing-sign perturbation. Then, an a priori
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estimate and Schauder’s fixed point theorem are applied to prove that the sub-diffusion
model has at least one positive solution whether the perturbation is positive, negative or
changing-sign. In particular, the main nonlinear term is allowed to have singularity for
some space variables. In the end, we shall also address that the perturbation in this paper
only depends on a time variable; if it relies on both time variables and space variables, then
further study will become more challenging and interesting.
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