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Abstract: The main object of this paper is to study the traveling wave solutions of the fractional
coupled Konopelchenko-Dubrovsky model by using the complete discriminant system method of
polynomials. Firstly, the fractional coupled Konopelchenko-Dubrovsky model is simplified into
nonlinear ordinary differential equations by using the traveling wave transformation. Secondly,
the trigonometric function solutions, rational function solutions, solitary wave solutions and the
elliptic function solutions of the fractional coupled Konopelchenko-Dubrovsky model are derived by
means of the polynomial complete discriminant system method. Moreover, a two-dimensional phase
portrait is drawn. Finally, a 3D-diagram and a 2D-diagram of the fractional coupled Konopelchenko-
Dubrovsky model are plotted in Maple 2022 software.

Keywords: Konopelchenko-Dubrovsky model; complete discriminant system; traveling wave
solution; phase portrait

1. Introduction

In the present era, nonlinear evolution equations (NLEEs) [1-4] are employed in a
number of areas like physics, chemistry, biology, fluid dynamics, engineering, optical fibers,
plasma, and hydrodynamics. The analytical solutions of NLEEs can be applied to control
complex behavior and difficult phenomena when the system displays [5-23]. While there is
no unified method to obtain the exact solution of nonlinear evolution equations, most of the
time, NLEEs can be converted into an ordinary differential equation by taken the traveling
wave transformation. Based on the efforts of many predecessors, various methods have
been imposed to solve NLEEs precisely and analyze various wave phenomena. He and
Wau [24] proposed the first-time Exp-function method to seek solitary solutions, periodic so-
lutions and compacton-like solutions of the KdV equation and Dodd-Bullough-Mikhailov
equation. By using Hirota’s bilinear transformation method, Ma proved the existence of
N-soliton solutions of the (2+1)-dimensional KdV equation, the Kadomtsev—Petviashvili
equation, the (2+1)-dimensional Hirota—Satsuma-Ito equation, and a combined pKP-BKP
equation [25,26], respectively. Li et al. presented the (w/g)-expansion method [27]. Later,
Arafat and his collaborators applied the customized (w/g)-expansion method to found
the optical soliton solutions of the paraxial nonlinear Schrédinger equation and fractional
Biswas—Arshed model [28,29], respectively. Wazwaz has derived the solitons and periodic
solution of the Dodd-Bullough-Mikhailov and the Tzitzeica—Dodd-Bullough equations
via the tanh-function approach [30]. Seadawy and Igbal analyzed the nonlinear damped
Korteweg-de Vries equation in an unmagnetized collisional dusty plasma via the direct
algebraic approach [31]. Arafat also investigated scores of broad-spectral soliton solutions
to the stated system via the auxiliary equation technique [32]. However, research on the
traveling wave solutions of more complex fractional order NLEEs is still ongoing, and there
are still a large number of open issues that need to be addressed by researchers.

Fractal Fract. 2024, 8, 341. https:/ /doi.org/10.3390/ fractalfract8060341

https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract8060341
https://doi.org/10.3390/fractalfract8060341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-2502-5330
https://doi.org/10.3390/fractalfract8060341
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8060341?type=check_update&version=1

Fractal Fract. 2024, 8, 341 20f10

In this paper, we consider the fractional coupled Konopelchenko-Dubrovsky model [33]

Dfu — txxx — 6auuy + 3b%u?uy — 30y + 3buyv = 0, 1
Oy = uy,
where Dfu is the conformable fractional derivative. u = u(x,y,t) and v = v(x,y,t)

represent the velocity components along the horizontal and vertical axes, respectively. a
and b stand for the amplitude of the wave. When x = 1, Equation (1) become the well-
known integer-order Konopelchenko-Dubrovsky model [34]. The main object of this paper
is to study the traveling wave solution of the fractional coupled Konopelchenko-Dubrovsky
model by using the complete discriminant system method of polynomials. On the one
hand, the main effort of this article is to focus on constructing the traveling wave solution
of Equation (1). On the other hand, without solving Equation (1), its dynamic branch will
be analyzed.

The conformable fractional derivative was first proposed by Khalil et al. [35]. Com-
pared with traditional fractional derivatives, the conformable fractional derivative has a
more intuitive physical meaning. At present, it has been widely used in the construction
of infectious disease dynamics models, nonlinear system modeling, and thermal science
fields. Its definition is usually described as follows.

Definition 1 ([36]). Let f :[0,00) — R. Then, the conformable derivative of f of order « is
defined as

Kf(t) = lim £EF stlj) —F0) i e (0, 4+00),x € (0,1], @

e—0

and the function f is xk-conformable differentiable at a point t if the limit in Equation (2) exists.

The remaining sections of this article are arranged as follows: In Section 2, the traveling
wave solutions of Equation (1) are constructed by using the complete discriminant system
method. Moreover, a two-dimensional phase portrait is drawn. In Section 3, the three-
dimensional, two-dimensional, and density plots to some obtained solutions of Equation (1)
are plotted. Finally, a brief summary is presented.

2. Dynamical Analysis and Traveling Wave Solutions of Equation (1)
2.1. Traveling Wave Transformation

In this section, we first consider the wave transformation

tK
u(x,y,t) = UG), v(x,y,t) = V(E), & = kx + 1y +p—, 3)
Substituting Equation (3) into Equation (1), we have

pl’ — U — 6akUU’ + Skb>UPU — 31V' + 3kbU'V = 0,
KV =1u'. @)

Integrating the second equation of Equation (4), we obtain

I
V= U (5)

Substituting Equation (5) into the first equation of Equation (4), we have

2
—KPur + %kb2u3 + (%b — 3ak)U? + (p — %)u =dj, (6)

where d; is the integral constant.
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2.2. Dynamical Analysis

Here, we consider the planar dynamic system of Equation (6) when d; =

diu:Z
LR ) )
d@ = (3U° + LL,U? + 41U,

where {3 = 2k2’ b= 5 (% —3ak), b = P L — 3*12)
The first integration of Equation (7) is

H(U,z) = la by bLp b

2 _
5 1 3 2LI—h. 8)

By setting the parameter values of fixed Equation (7), we draw the planar phase
portrait of Equation (7), as shown in Figure 1.

NS7A ST A =7 A
=Y V=V

@) t=1,6=26=1 (b)tz3=1,00=2,0, =2 (€)t3=1,60=3,6,=1 (d)tz =1,0, = —2v/2,0; = —

Figure 1. Phase portrait of Equation (7).

2.3. Traveling Wave Solutions of Equation (1)
Multiplying both sides of Equation (6) by U’ simultaneously and integrating it yields

(U')? = byU* + b3l + boU? + by U + by, ©)

2 2
where by = 4%, by = }(—2 — ig, b, = k”3 — %, by = k3 , bp = 2dy; here, d is the integral
constant.

Here, we make a transformation:

{ w = (b4) (u+ 4b4) (10)
= (bs)i¢.
Substituting Equation (10) into Equation (9), we obtain:
wi = w* + couw? + c1w + ¢, (11)
— b (B kb -1 sl L T
where ¢; = &, 01 = (Sbﬁ S +b1)(ba) %, 0o = 25603 + 1w 1p, + Do
By integrating Equation (11) once, one has:
dw
+(x — xo0) =/ , (12)
V't + cow? 4 cqw + ¢

where )x( denotes an integrating constant.
Denote that G(w) = w* + cow? + c;w + cy. We derive its complete discrimination
system in the following form:
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D1 =4,Dy) = —c;,D3 = —ZCE + 8crco — 9c%, Dy = —0201 + 40200 + 36czclco - 3262(30 — Ec‘f + 6460,

Ey = c103 — 32c200. (13)

According to the root-classifications of Equation (11), we will discuss the traveling
wave solutions of Equation (1) under nine cases.

Case1: Dy < 0,D3 = 0,Dy =0, G(w) = [w? + ¢2°.

By combining Equation (9) with Equation (3), the traveling wave solutions of Equation (1)
can be expressed as below:

2ak — Ib 2(uk — 312 (uk — 312)

wilxyt) = 2010 VIR o (VR0 (2 ety 4 ) ). (1)
2akl — 1%b 1\/ k=3P) V/2(uk — 312 b t

ooyt =M (k=3 o (V2E S (2 ety 40— 200). 15)

Case2: D, =0,D3 =0,Dy =0, G(w) = w*. In this situation, the traveling wave
solutions of Equation (1) take the form:

1
2ak —1b 2k b t*
ua(x,y,t) = Tz j(\/ﬁ(’”“’l]/"‘ﬂ;)—?co) . (16)
2akl — I2b 2 b g -
UZ(Xrl/rf):W*l fk( i(karly*V;)*Xo) . (17)

Case3: D, > 0,D3 = 0,D4 = 0, G(w) = (w—a)*(w— B)?, where a, B are real
number, and & > 8.

(i) Ifw > aorw < B, the traveling wave solutions of Equation (1) take the form:

. (=) /Rl 1y + 1) = %0
u3,1(x,y,t):a\/§flb 2ﬂk+(/3*a)\/§coth ( ’ ) (18)

kb? 2

(0= ) (Bl + 1y 8) ~ o

I b —2akl  1(B —«)

Z}3,1(751 yt) = 20k T + N coth 5 (19)
(i) If B < w < a, the traveling wave solutions of Equation (1) take the form:
kK Ib—2ak 3 (“—ﬁ)(\/g(kxﬂyw%)— )
uzp(x,y,t) = % e +(B—a) % tanh 3 . (20
le  Pb—2akl | 1(B—a) ("‘*5)<\/g(kxﬂy+u%)ﬂm)
v3a(xy,t) = - + tanh O3
' V2bk k2p? V/2bk 2

Case4: Dy >0,D3 > 0,D4 =0, G(w) = (w — a)*(w — B)(w — 7), where &, B and 7
are real number, § > 7.
(i) Ifa>pBandw > B,ora < yand w < 7, the implicit traveling wave solutions of
Equation (1) can be expressed as below:

(kx—i—ly—l—y%) _X0> = (lx—ﬁ)l(lx—'y)
2 (22)

[V (kb2ug g + 16— 2ak — V2(kD) 2 B) (& — ) — \/ (& — B) (kbugy + I — 2ak — \/2(kb)3 )]
kb1 1 + b — 2ak — /2(kb)?a| '

H_
VN
=

In
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[b £ 1
i( zz<(kx+l~"+”x)_"°> T @—pB)la—7)
2 (23)

[\/(k2b2v4,1 + 12b — 2alk — ﬁ(kb)%lﬁ)(a — ) — \/(a — B) (k2?04 + 12b — 2alk — V2(kb)2 )]
k262041 + 12b — 2alk — /2(kb)?la| '

In

(i) Ifa>pBandw < 9, ora < yand w < B, the implicit traveling wave solutions of
Equation (1) can be expressed as below:

b t 1
i(VZk(kx—H]H_yx) ‘X0> R CEDICED))
2 (24)

[V (kb2ugp + 1 — 2ak — V2(kD) 2 B) (7 — o) — \/ (B — ) (kbugp + I — 2ak — \/2(kb)3 )]
k21155 + Ib — 2ak — /2(kb) 24 '

:i:(\/g(kx—f—ly—i—yt’:) _X0> = (oc—ﬁ)l(zx—'y)
2 (25)

[V (20204 + 12b — 2alk — /2 (kD)2 18) (7 — &) — /(B — ) (k2204 + 12b — 2alk — /2 (kD) 1))
k2620, 5 + 126 — 2alk — /2(kb)? Ia| '

In

In

(iii) If B > a > v, the implicit traveling wave solutions of Equation (1) can be expressed
as below:

i(@(kx%-ly-i-ﬂt:) _X0> - (/3—04)1(11—’)’)

arcsin (kb?us3 + 1b — 2ak — ﬁ(kb)%ﬁ)(“ — ) + (a — B) (kb?uy3 + Ib — 2ak — \@(kb)%’r) (26)
|(kb2u43 + 1b — 2ak — ﬁ(kb)%a) (B—")|
b s 1
i<\/;(kx+ly+y")_xo> ICEICET] 27)

(k26204 5 + 126 — 2alk — /2(kb)21B) (& — 7) + (& — B) (K2b%v4 5 + 12D — 2alk — v/2(kb)2 1)
|(K2b20, 5 + 12b — 2alk — \/2(kb)212) (B — 7)]
Case5: Dy >0,D3=0,D4 =0,E; = 0,G(w) = (w —a)*(w — B), where «, B are real
numbers.

Whenw > aand w > B, or w < a and w < B, the traveling wave solutions of
Equation (1) take the form:

arcsin

8v/2(x — Pk V2a(kb)? +2ak — Ib
yt) = + 28
D bl ke 1y ) Va8 @ “
8v/2(x — B)lkz V2la(kb)? +2akl — 12b
Ly, b)) = + 29
S B —aP btk + g+ ) — Vo 4 22 )

Case 6: Dy = 0,D,D3 < 0, G(w) = (w — «)? [(w — L)+ sﬂ The traveling wave
solutions of Equation (1) take the form:
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oV =253 Gty )—x0) _ vl @ =)+ 22— 9)
wg(x,9, ) 2ak—lb+ 2k i
6\, Y, t) = —75— m K 2 ’
kb b [ei\/m(\/g(kﬁrlwﬁ)—xo) B 7] 1
R e e S R N I MR
_ 2akl - b 2 {e 2 TV A

U6<x1y/ t) - T 1212 +l kb ? ’ (31)
2b kb [ei (D‘_ll)2+5%(\/g(kx-ﬁ—ly-ﬂl%)—)(o) _ ’Y} -1

(30)

a—2I
(ocfll)ers% .
Case7: Dy >0,D3 >0,D1 >0,G(w) = (w—a1)(w — a) (w — a3) (w —ay), in which
a1, %0, 03, &4 is real number and a7 > ar > a3z > ay.
When w > a1 or w < ay, the traveling wave solutions of Equation (1) take the form:

2ak — b
Uzq (x,y, t) = e

where v =

+\/§a2(o¢1 _ a4)sn2<(‘"1”‘32)(”‘2“4) (@(kxvhly—i-yt,:) —X()),m) —wap(ag —ayg)
’ (a1 — “4)SHZ<W (\/g(kijlerﬂt,:) —Xo>,m> — (a2 — ay)
32
2akl — I?b (32)
U7,1(x/]//t) = e
2 oz (g —“4)SHZ<W< e (kx + 1y + pt) —Xo>/m) — oy (@ — ay)
+ 1. ’
kb K1 —K Ky — KX, K
(a1 — ay) Sn2<(132)(24) (\/g(kx + 1y + pl) —Xo>/m) — (a2 — ag)
(g t) — 21D
7,2 /y/ - ka
N 2](064(062—0&3)%2(W(@(kx+ly+ﬂi) —Xo>,m> — a3 — ay)
’ (a2 —“3)SHZ<W<\/§(’W+W+#€:) —Xo>,m> — (a2 — ay)
(33)

2akl — I?b
7)7,2(x;]/rt) = B

7 oc4(zx2—oc3)sn2<(“1“32)M< L(kx + 1y +pt) —X0>,m) —az(ay — ay)
+\/ ,

K (a2 — a3) Snz(W <\/§(kx +ly+pk) - X0>/m> — (a2 —aq)

2 _ (w1—ag)(ap—as)
T (m—az)(ap—ag)

Case 8: Dy < 0,D,D3 >0, then G(w) = (w — «)(w — B) [(w —h)*+ sﬂ , where real
number & > B,11,51 > 0.
The traveling wave solutions of Equation (1) take the form:

in which m

-2 — x
wol ) = 2 2k acn (Y0P (b (kx4 Iy + ) — x0),m) + 2
s\X Yy, = —F5 -
kb2 b ) _ .
en (VOB (b (e Iy + us) — xo),m) + e

. (34)
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2akl — 12b 7 acn (VOB (b (ke 1y + ) — x0),m) + ez
_ e .39

og(x, 1) = 20 b
K252 =T .
ccn(%@(%(kx—kly—ky%) —Xo0),m)+ ey
in which e; = 3 (a+ B)es — 3(a — Bles,er = F(a+ Bles — J(a — Bles,e3 = a — 1) — 3L

m1’
_ _ st (a=1)(B=h) _ STE T 2 1
eg=a—l—symy, E="—ng—m =E-VE +1m = mE

Case 9: Dy > 0,D,D3 < 0, then G(w) = {(w —Lh)*+ sﬂ [(w —1)? +s§}, where
I1,15,51,57 are real and s; = s > 0. The traveling wave solutions of Equation (1) take

the form:
2ak — I
o 2 s O Gt by ) = o) m) ez (kx  ly ) = 0 m0) (36)
b eysn ((g (kx + Iy + uk) — xo),m) +egen (7 (L (kx + 1y + u&) — x0),m)
2akl — 12b
vo(x,y,t) = eT
(37)

T [2 evsn (g (kx + Iy + p) — xo),m) +eaen (y (5 (kx + 1y + p%) — xo),m)
kb ez sn (175 (kx + Iy + p) — xo),m) +ea.en (5 (g5 (kx + 1y + p'e) — xo),m)

(h—h)*+s2+s3

. . s
in which e; = lje3 + s1e4,6p = ljeg — s1e3,63 = —51 — m—21,€4 =L —-bLE= o5 ,
2 20 2\ (12,21 2
mi—1 521/ (3+¢3) (mieg+e})
m =E+VE2—-1,m?> =",y = AN )
mj e3tey

3. Numerical Simulation

In order to understand the dynamical processes and mechanisms of complex phenomena
of the fractional coupled Konopelchenko-Dubrovsky model, numerical simulations of the ob-
tained soliton solutions are given in this section. As is vividly shown in Figures 2a, 3a and 4a,
up(x,y,t),uz(x,y, t) and uz(x,y, t) stand for the tangent function solutions, the rational func-
tion solutions and the hyperbolic function solutions, respectively. Figures 2b, 3b and 4b denote
the level curve at time t = 1. Furthermore, Figures 2c, 3c and 4c represent the density plots.
Figures 2d, 3d and 4d stand for the contour plots.

2000-]

1500

1000

(b) Two-dimension graphic

-4 -2 0 2 4

(c) Density plot (d) Contour plot

Figure 2. Equation (14) fora =3,b =4,k =1,1 =2,y = 16.
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20 40 60 30 100

(@) Three-dimension graphic (b) Two-dimension graphic

(c) Density plot (d) Contour plot

Figure 3. Equation (16) fora =k=1=1,b=2,u = 3.

(@) Three-dimension graphic (b) Two-dimension graphic

-10 -5 0 5

(c) Density plot (d) Contour plot

Figure 4. Equation (18) fora =k=1=1,b=2,u=2,a = %,,3 =

S

4. Conclusions

In this article, we have presented the traveling wave solutions of Equation (1) via the
complete discriminant system method, which is one of the most useful tools in solving
NLEEs. The trigonometric function solutions, the rational function solutions, the hyperbolic
function solutions, the exponential function solutions, and the Jacobian elliptic function so-
lutions are obtained. Lastly, in order to understand the mechanisms of physical phenomena
for Equation (1), we have also depicted two-dimensional and three-dimensional diagrams.
In future work, we will focus on the traveling wave solutions and dynamic behavior of
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more complex NLEEs. Furthermore, we will also use the Darboux transformations to
discuss the N-soliton solutions of more complex NLEEs.
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