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Abstract:

 Cloud computing systems enable clients to rent and share computing resources of third party platforms, and have gained widespread use in recent years. Numerous varieties of mobile, small-scale devices such as smartphones, red e-health devices, etc., across users, are connected to one another through the massive internetwork of vastly powerful servers on the cloud. While mobile devices store “private information” of users such as location, payment, health data, etc., they may also contribute “semi-public information” (which may include crowdsourced data such as transit, traffic, nearby points of interests, etc.) for data analytics. In such a scenario, a mobile device may seek to obtain the result of a computation, which may depend on its private inputs, crowdsourced data from other mobile devices, and/or any “public inputs” from other servers on the Internet. We demonstrate a new method of delegating real-world computations of resource-constrained mobile clients using an encrypted program known as the garbled circuit. Using the garbled version of a mobile client’s inputs, a server in the cloud executes the garbled circuit and returns the resulting garbled outputs. Our system assures privacy of the mobile client’s input data and output of the computation, and also enables the client to verify that the evaluator actually performed the computation. We analyze the complexity of our system. We measure the time taken to construct the garbled circuit as well as evaluate it for varying number of servers. Using real-world data, we evaluate our system for a practical, privacy preserving search application that locates the nearest point of interest for the mobile client to demonstrate feasibility.
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1. Introduction


Cloud computing systems enable clients to rent and share computing resources of third party platforms such as Amazon Elastic Cloud, Microsoft Azure, etc., and have gained increased attention in recent years. Availability of a large pool of hardware and software resources allows clients of cloud computing systems to perform computations on a vast amount of data without setting up their own infrastructure [1]. Numerous varieties of mobile, small-scale, IoT (Internet-of-Things)-devices (such as smartphones, e-health devices, etc.), across users, are connected to one another through the massive internetwork of vastly powerful servers on the cloud. These individual devices on their own are significantly enhancing our everyday lives; additionally, big data analytics on the cloud enables cross-correlation of numerous datasets to learn large-scale patterns across users to further enhance the user experience.



While mobile devices store “private information” of users such as location, payment, health data, etc., they may also contribute “semi-public information” (which may include crowdsourced data such as transit, traffic, nearby points of interests, etc.) for data analytics. In such a scenario, a mobile device may seek to obtain the result of a computation, which may depend on its private inputs, crowdsourced data from other mobile devices, and/or any “public inputs” from other servers on the Internet. However, the mobile device may not perform the computation on its own: (i) due to resource constraints (in terms of computing, memory, network, power, etc.); and/or (ii) due to the restrictions (privacy, legal requirements, etc.) on the servers to share data from one user with others. Alternatively, exchange of data in “ plain text form” between the mobile client and the cloud service provider to carry out the computations will also result in complete loss of data privacy.



Homomorphic encryption [2] is one of the approaches to address the problem of preserving data privacy. It can allow the cloud service providers to perform specific computations directly on the encrypted client data, without requiring private decryption keys. To perform any arbitrary computation on encrypted data, fully homomorphic encryption (FHE) schemes (e.g., [3,4,5]) have been proposed recently. However, FHE schemes are currently not suitable for mobile cloud computing or big data applications due to extremely large cipher text size and computational requirements beyond the capabilities of mobile devices today. Therefore, there exists a need for a more efficient alternative suitable for mobile systems.



We consider Yao’s garbled circuits approach [6,7] in our work as a potential alternative to FHE schemes to drastically reduce the ciphertext size. In general, any computation can be represented using a Boolean circuit, for which, there exists a corresponding garbled circuit [6,7,8,9]. Each gate in a garbled circuit can be unlocked using a pair of input “wire keys” to reveal an output wire key, which, in turn, serves as an input wire key for unlocking the subsequent gate in the next level of the circuit, and so on. Each wire key corresponds to the underlying plaintext bit for the relevant wire in the circuit, and the association between the wire keys and the plaintext bits is kept secret from the cloud server that performs the computation. Thus, “oblivious evaluation” of any arbitrary function, expressible as a Boolean circuit, is possible using garbled circuits on any third-party server in the cloud.



While garbled circuits can preserve the privacy of client data, they are, however, one time programs—using the same version of the circuit more than once can reveal to an adversarial evaluator the mapping between the garbled values and the plaintext bits. Since creating a garbled circuit is at least as expensive as evaluating the underlying Boolean circuit, expecting the client to create a new version of the garbled circuit for each evaluation, however, is an unreasonable solution. Therefore, unlike FHE schemes which can directly delegate the desired computation to the cloud servers, a scheme using garbled circuits, presents the additional challenge of efficiently delegating to the cloud servers the creation of garbled circuit [10].



We propose a new method, in which to perform any computation on behalf of the client, a number of cloud servers collaborate to create a new version of the garbled circuit in a distributed manner. Using unique seed value from the client, each server generates a set of private input bits, and interacts with all the other servers to create a new garbled circuit, which is a function of the private input bits of all the servers. Essentially, the servers construct the desired garbled circuit without revealing their private inputs to one another using a secure multiparty computation protocol (e.g., Goldreich et al. [8,9]). Once a new version of the garbled circuit is created using multiple servers, the client utilizes an arbitrary server in the cloud for evaluation. Even if the evaluating server chooses to collude with any strict-subset of servers that participated in the creation of the garbled circuit, the resulting version of the garbled circuit, the garbled inputs that can unlock the circuit, and the corresponding garbled outputs, remain unrecognizable to the evaluator.



While the mobile clients are resource constrained, the cloud servers, however, are sufficiently provisioned to perform numerous intensive computation and communication tasks. Therefore, our proposed system is designed to readily exploit the real-world asymmetry that exists between typical mobile clients and cloud servers. Beyond the generation and exchange of compact cipher text messages, our system requires very little computation and communication involvement from the mobile client to achieve secure and verifiable computing capability. However, the cloud servers can efficiently generate and exchange a large volume of random bits necessary for carrying out the delegated computation due to the significantly large amount of resources available to them. Therefore, our proposed scheme is very suitable for mobile environments (While our proposed system is especially beneficial for clients in a mobile environment, due to compact cipher text messages, it is also suitable for clients in other environments that need to delegate their computations to the cloud servers in a secure manner).



We employ the garbled circuit design of Beaver, Micali, Rogaway (BMR [11,12]) and the secure multiparty computation protocol of Goldreich et al. [8,9] for the purpose of building a secure cloud computing system. To facilitate the construction of the garbled circuit in the cloud, and also to enable the client to efficiently recover and verify the result of the computation, our method incorporates the novel use of the cryptographically secure Blum, Blum, Shub pseudo random number generator [13,14], whose strength relies on the computational difficulty of factorizing large numbers into primes. Using our proposed system, the client can efficiently verify that the evaluator actually and fully performed the requested computation.



Our major contributions are as follows. First, we design a secure mobile cloud computing system that uses multiple servers to perform any arbitrary computation on behalf of the client. Second, even if the evaluating server colludes with all but one of the servers that created the garbled circuit, our system assures the privacy of the client input and the result of the computation. Third, using our system the client can efficiently recover the result of the computation and verify whether the evaluator actually performed the computation. Fourth, we present an analysis of the complexity of our proposed scheme from the perspective of both the client and the server. Our scheme uses very small cipher text messages suitable for mobile clients in comparison to Gentry’s FHE scheme [3]. Fifth, we evaluate our system for a privacy preserving search application that locates the nearest point of interest (bank/ATM) from the mobile client. Our method shows how publicly available location information from different sources (e.g., from Wells Fargo, Chase) may be used in conjunction with private location information of a mobile device in a privacy preserving computation. Finally, to demonstrate the feasibility of our system, we measure the time taken to construct and evaluate the garbled circuit for varying number of servers.



The rest of the paper is structured as follows. Section 2 presents a high-level overview, our adversary model and the main characteristics of our system. In Section 3, we present the background material. We present our proposed secure and verifiable cloud computing system in Section 4. We analyze the complexity of our system in Section 5. Section 6 presents our case study of a privacy preserving search application for computing the nearest point of interest from the mobile client. We discuss the related work in Section 7, and present our concluding remarks in Section 8.




2. A High-Level Overview of Our System


In our proposed system, the client utilizes a set of [image: there is no content] servers, [image: there is no content], in the cloud. To each server pi(1≤i≤n), the client initially sends a description of the desired computation (simple examples of which could be addition of two numbers, computation of hamming distance between two bit sequences, etc.), and a unique seed value [image: there is no content] . Each of the n servers first creates (or retrieves from its repository, if available already) a corresponding Boolean circuit (B) for the requested computation. Each server pi(1≤i≤n), uses the unique seed value [image: there is no content] to generate a private pseudorandom bit sequence whose length is proportional to the total number of wires in the Boolean circuit (B). Then, these n servers use their private pseudorandom bit sequences and the Boolean circuit (B) as inputs, communicate with one another, as well as perform some local computations, according to a secure multiparty computation protocol, to create their shares ([image: there is no content]) for an one-time program called a “garbled circuit”.



Once the shares for the garbled circuit are created, the client instructs all of the n servers, pi(1≤i≤n), to send their shares, [image: there is no content], to the server [image: there is no content]. Applying an XOR operation on these shares, the server [image: there is no content] creates the desired circuit, [image: there is no content]. Subsequently, the client instructs the server [image: there is no content] to send the garbled circuit [image: there is no content] to another server [image: there is no content] for evaluation, either for immediate or future use. Now, the client generates its own garbled input values for each input wire in the circuit using the unique seed values si(1≤i≤n), and sends them to the server [image: there is no content] for evaluation. Using these garbled inputs, the server [image: there is no content] unlocks each gate on the first level of the circuit to obtain the corresponding garbled outputs, which, in turn, can unlock each gate on the second level of the circuit, and so on. In this manner, the server [image: there is no content] unlocks every gate in the circuit, to obtain the garbled outputs of the circuit, and returns them to the client. To recover the result of the desired computation, the client now translates these garbled output values into plaintext bits.



Figure 1 depicts an overview of our proposed secure cloud computing system with [image: there is no content] servers.


Figure 1. Our secure cloud computing model with [image: there is no content] servers. (1) Client sends unique seed value, [image: there is no content], to each pi(1≤i≤3); (2) p1,p2,p3 interact ([image: there is no content]) to construct shares of the garbled circuit [image: there is no content]; (3) Each [image: there is no content] sends its share ([image: there is no content]) to [image: there is no content]; (4) [image: there is no content] computes [image: there is no content], and sends it to [image: there is no content]; (5) Client generates garbled inputs, and sends them to [image: there is no content] for evaluation; (6) [image: there is no content] evaluates [image: there is no content], and returns the garbled outputs to the client.
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2.1. Our Adversarial Model


We assume that there exists a secure communication channel between the client and each of the [image: there is no content] servers, [image: there is no content], to send the unique seed values for pseudorandom bit generation, identity of the other servers, etc. We assume that every pair of communicating servers authenticate one another (Note that without authentication, an external adversary can masquerade any of the servers to disrupt the construction of the garbled circuit in an unpredictable manner. Additionally, if the communication between the client and the [image: there is no content] servers is compromised by an external adversary, then it can determine the semantics of garbled inputs/outputs based on the seed values. Therefore, both authenticity and confidentiality of communication are essential for the construction of garbled circuits). We assume a very capable adversary, where the evaluator [image: there is no content] will remain unable to determine the plain text values from the garbled values that it can observe during evaluation even if it individually colludes with any proper subset of the n servers, [image: there is no content]. Our adversary model captures a very realistic scenario — where the client may be certain that some (however, not all) of the parties are corrupt, however, it is uncertain which of the parties are corrupt. If any adversarial party eavesdrops and analyzes all the messages between different parties, and also analyze all the messages that it has legitimately received from the other parties, it still cannot determine the shares of the other parties, or the plain text values of the garbled value pairs that are assigned to each wire in the circuit. Furthermore, the client can efficiently detect a cheating evaluator [image: there is no content] which returns arbitrary numbers as output to the client without performing any computation. A new garbled circuit is created for every evaluation in our model. Thus, the set of inputs and outputs that have changed or remained the same between different evaluations remains unknown to the evaluator.




2.2. Main Characteristics of Our System


We highlight some of the main features of our secure cloud computing system in this subsection.

	
Offloaded Computation: The client delegates the intensive computational tasks to the cloud servers of creating and evaluating the garbled circuit. The client only chooses the cloud servers, provides them with unique seed values, generates garbled inputs during evaluation, and interprets garbled outputs returned by the evaluator.



	
Compact Cipher Text: While Gentry’s scheme has an extremely large cipher text size, the cipher text size can be as small as a few hundred bits with our scheme (Section 5.6). Thus, our proposed method is far more practical for cloud computing in mobile systems in comparison to FHE schemes.



	
Decoupling: The process of creating the garbled circuit is decoupled from the process of evaluating the garbled circuit. While the servers, pi(1≤i≤n), interact with one another for creating the garbled circuit, the server [image: there is no content] evaluates the garbled circuit, independently.



	
Advance Construction: Since evaluation of the garbled circuit requires no interaction among the servers, if several versions of the garbled circuit for a given computation are precomputed and stored at the evaluator, in advance, then it can readily carry out the requested computation. Thus, the client will only incur the relatively short time taken to evaluate the garbled circuit. In other words, precomputation will drastically improve the response time for the client.



	
Collusion Resistance: To interpret any garbled value, the evaluator, [image: there is no content], must collude with each of the n servers, pi(1≤i≤n). Thus, even if [image: there is no content] out of the n servers are corrupt and collude with the evaluator, the privacy of the client’s inputs and the result of the computation are still preserved.



	
Verification of Outputs: The client has the ability to verify that the evaluator actually carried out the requested computation.










3. Background


We briefly describe the construction and evaluation of Yao’s garbled circuits [6,7], as well as the oblivious transfer protocols of Naor and Pinkas [15,16].



3.1. Yao’s Garbled Circuit


Any computation (simple examples of which could be addition of two numbers, computation of hamming distance between two bit sequences, etc.) can be represented as a Boolean circuit. Such a Boolean circuit can be expressed using only [image: there is no content] gates, which corresponds to a “functionally-complete” set of operators. Therefore, any mechanism capable of performing [image: there is no content] and [image: there is no content] operations, homomorphically, can enable secure delegation of any arbitrary computation. In our work, we achieve the homomorphic computation of [image: there is no content] and [image: there is no content] gates using garbled circuits [6,7,8,9].



Each wire in the circuit is associated with a pair of keys known as “garbled values” that correspond to the underlying binary values. For example, the circuit in Figure 2 has seven wires, ωi(0≤i≤6), and three gates, [image: there is no content], denoting OR, AND, XOR gates respectively. Keys [image: there is no content], [image: there is no content] represent the garbled values corresponding to binary values 0, 1 respectively on the wire [image: there is no content].


Figure 2. A circuit with three gates, [image: there is no content], and seven wires, ωi(0≤i≤6).
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Each gate in the circuit, is associated with a list of four values, in a random order, known as “garbled table”. Table 1 shows the garbled tables for the gates [image: there is no content] of Figure 2. Let [image: there is no content]. Let [image: there is no content] denote the encryption of v using k as the key. Then, each entry in the garble table for P is of the form, [image: there is no content]. Similarly, each entry in the garble table for Q and R are of the forms, [image: there is no content] and [image: there is no content], respectively.


Table 1. Garbled Tables for Gates [image: there is no content].


	P
	Q
	R





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]









Suppose that the client wishes to delegate the computation of Figure 2, i.e., [image: there is no content], to a server in the cloud. The server is provided with a description of the circuit (Figure 2) along with the set of the garbled tables (Table 1), which together represents a “garbled circuit”. However, the client keeps the mapping between the garbled values and the underlying binary values as secret. For example, to evaluate the circuit with inputs a=1,b=0,c=0,d=1, the client provides the set of garbled inputs, ω01,ω10,ω20,ω31, to the cloud server.



Now, assume that there exists a mechanism to determine whether a value is decrypted correctly; for example, through zero-padding. Using ω01,ω10 as keys, the server attempts to decrypt all the four entries in the garbled table for gate P; however, only the fourth entry will decrypt correctly to reveal the garbled output [image: there is no content]. Similarly, using ω20,ω31 as keys, the first entry in the garbled table for gate Q reveals the garbled output [image: there is no content]. Finally, on using ω41,ω50 as keys, the third entry in the garbled table for gate R reveals the garbled output [image: there is no content]. Thus, the server can perform an “oblivious evaluation” of the garbled circuit and return the result of the computation [image: there is no content] to the client. Using the secret mapping, the client can determine that the garbled value [image: there is no content] corresponds to the binary value 1.



In our work, we use an alternative garbled circuit design from Beaver, Micali, Rogaway (BMR [11,12]), and adapt it, as we describe in Section 4, for the purpose of building a secure cloud computing system.




3.2. 1-Out-Of-2 Oblivious Transfer


In the 1-out-of-2 oblivious transfer (OT) protocol, there are two parties: a sender and a chooser. There are two private messages at the sender: [image: there is no content], and the chooser holds a private choice bit, [image: there is no content]. At the end of the 1-out-of-2 OT protocol, the sender learns nothing, and the chooser learns [image: there is no content] only.



Let [image: there is no content] denote a safe prime number; i.e., q is also a prime number. Let [image: there is no content], which denotes the set of integers that are relatively prime to p. Let G denote a subgroup of [image: there is no content], where [image: there is no content]. Let g denote the generator for G.



The sender randomly chooses an element, [image: there is no content], and sends it to the chooser. Note that the discrete logarithm of C is unknown to the chooser. The chooser randomly selects an integer, k(1≤k≤q), and sets PKσ=gkmodp, and PK1-σ=C×(PKσ)-1modp. The chooser sends [image: there is no content] to the sender. Note that [image: there is no content] does not reveal the choice bit σ to the sender.



The sender calculates PK1=C×(PK0)-1modp on its own, and randomly chooses two elements, [image: there is no content]. Let [image: there is no content] denote the output of the hash function (e.g., SHA, which stands for secure hash algorithm) on input x. Let [image: there is no content] denote the encryption of [image: there is no content], [image: there is no content]. Then, the sender calculates Ei=[(grimodp),(h(PKirimodp)⊕Mi)], and sends both [image: there is no content], [image: there is no content] to the chooser.



The chooser decrypts [image: there is no content] to obtain [image: there is no content] as follows. Let l1=grσmodp and l2=h(PKσrσmodp)⊕Mσ denote the first and second numbers respectively in [image: there is no content]. The chooser calculates [image: there is no content] using the relation, Mσ=h(l1kmodp)⊕l2. Note that since the discrete logarithm of C, and hence [image: there is no content], is unknown to the chooser, it cannot retrieve [image: there is no content] from [image: there is no content].




3.3. 1-Out-Of-4 Oblivious Transfer


In the 1-out-of-4 oblivious transfer (OT) protocol, there are two parties: a sender and a chooser. There are four private messages at the sender: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and the chooser holds two private choice bits, σ1,σ2. At the end of the 1-out-of-4 OT protocol, the sender learns nothing, and the chooser learns [image: there is no content] only.



The sender randomly generates two pairs of keys, (L0,L1),(R0,R1), and computes the encryptions of [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] as follows. Let [image: there is no content] denote the output of a pseudorandom function such as AES-128, that is keyed using k on the input x. Let [image: there is no content] denote the encryption of [image: there is no content], [image: there is no content]. Then, [image: there is no content].



The sender and the chooser engage in 1-out-of-2 OT twice. In the first 1-out-of-2 OT, the sender holds two messages, L0,L1, and the chooser holds the choice bit, [image: there is no content]; at the end of this OT, the chooser obtains [image: there is no content]. In the second 1-out-of-2 OT, the sender holds two messages, R0,R1, and the chooser holds the choice bit, [image: there is no content]; at the end of this OT, the chooser obtains [image: there is no content].



Now, the sender sends all the four encryptions, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], to the chooser. Using [image: there is no content], [image: there is no content], the chooser decrypts [image: there is no content] to obtain [image: there is no content], as [image: there is no content].





4. Secure and Verifiable Cloud Computing for Mobile Systems


In Section 4.1, we present the construction of BMR garbled circuit [11,12] using n servers through the secure multiparty computation protocol of Goldreich et al. [8,9]. In Section 4.2, we highlight how we adapt the protocol of Goldreich and the garbled circuit design of BMR, in order to suit them for our secure cloud computing model. In our model, each server pi(1≤i≤n), generates shares of garbled values using cryptographically secure pseudorandom number generation method of Blum, Blum, Shub [13,14]. In Section 4.3, we present our method of how the client efficiently recovers the result of the delegated computation, as well as how the client verifies that the evaluator in fact carried out the computation. We summarize our secure cloud computing model in Section 4.4.



4.1. Construction and Evaluation of Garbled Circuits


4.1.1. Construction of the Garbled Circuit, [image: there is no content]


Garbled Value Pairs: In order to denote the underlying plaintext bits 0 and 1, each wire in the circuit is associated with a pair of garbled values. Let [image: there is no content] denote two input wires, and z denote the output wire of a specific gate A in the circuit. Assume that [image: there is no content], [image: there is no content] and [image: there is no content] are the pair of garbled values associated with the wires x, y, and z, respectively. Let [image: there is no content] denote the least significant bit of the number v. Then, [image: there is no content] and [image: there is no content].



Let n denote the number of servers and k denote the security parameter. Then, each garbled value is [image: there is no content] bits long, and is a concatenation of shares from the n servers. Let [image: there is no content]. Then the garbled values for gate A are as follows: [image: there is no content]; [image: there is no content]; [image: there is no content]; here [image: there is no content], [image: there is no content], [image: there is no content] are shares of server pi(1≤i≤n).



λ Value: A 1-bit λ value is associated with each wire in the circuit, which determines the semantics for the pair of garbled values associated with that wire. Specifically, for a garbled value v whose [image: there is no content], the underlying plaintext bit is [image: there is no content].



Collusion Resistance: Let [image: there is no content] denote the λ values for the three wires [image: there is no content] respectively. Then, [image: there is no content], [image: there is no content], [image: there is no content], where [image: there is no content] are shares of server pi(1≤i≤n). Since the λ value of each wire is unknown to any individual server, the evaluator of the garbled circuit must collude with each of the n servers to interpret the garbled values.



Garbled Table: Each gate, A, in the circuit, is associated with an ordered list of four values, [image: there is no content], representing the garbled table for gate A. Note that the λ values of the input wires, which are random, and also unknown to any of the n servers, determine the order of the entries in the garbled table. Let ⊗ denote the binary operation of gate A, where [image: there is no content]. Then, the value of one specific entry is expressed as, [image: there is no content], where [image: there is no content] and [image: there is no content] are pseudorandom functions that expand k bits into [image: there is no content] bits. In the expression for [image: there is no content] , [image: there is no content] and [image: there is no content] denote the first and last [image: there is no content] bits of [image: there is no content] respectively, where G denotes a pseudorandom generator, which on providing a k-bit input seed, outputs a sequence of [image: there is no content] bits, i.e., if [image: there is no content], then [image: there is no content]. G may represent the output of AES block cipher in output feedback mode, for example.



For each gate in the circuit, to compute each garbled table entry [image: there is no content], the n servers use the secure multiparty computation protocol of Goldreich [8,9] (Section 4.1.2), where [image: there is no content], and for each server, [image: there is no content], its private input, [image: there is no content] is a vector of length [image: there is no content] bits.




4.1.2. Secure Multiparty Computation of an Entry, [image: there is no content]


Assume that n parties need to compute the value of an arbitrary function of their private inputs, namely [image: there is no content] without revealing their private inputs to one another. Assume that the function [image: there is no content] is expressed as a Boolean circuit ([image: there is no content]) (Boolean circuit [image: there is no content] is different from Boolean circuit B. While B is a circuit that corresponds to the computation requested by the client (e.g., addition of two numbers), [image: there is no content] is a circuit that creates the entries such as [image: there is no content] in the garbled tables of the garbled circuit [image: there is no content]) using XOR and AND gates only.



We briefly describe the secure multiparty computation protocol of Goldreich [8,9] as follows. For each wire in the Boolean circuit, the actual binary value which corresponds to the XOR-sum of shares is distributed among the n parties.



Evaluation of each XOR gate in the circuit, requires no communication—it is carried out locally; each party merely performs an XOR operation over its shares for the two input wires to obtain its share for the output wire.



Evaluation of each AND gate in the circuit, however, requires communication between all pairs of parties. For the two inputs wires of the AND gate, let ai,bi denote the shares of party [image: there is no content]; and let aj,bj denote the shares of party [image: there is no content]. Then, the output of the AND gate is expressed as follows:



[image: there is no content], where [image: there is no content][image: there is no content] 2.



Each party [image: there is no content] computes [image: there is no content] locally; and the computation of each partial-product, [image: there is no content], is realized using 1-out-of-4 oblivious transfer (OT [15,16]) between [image: there is no content] and [image: there is no content], such that no party reveals its shares to the other party [8,9].



Following the above procedure, the n parties evaluate each gate in the circuit. Thus, in the end, for the BMR protocol, as we have described above, each server pi(1≤i≤n), obtains the share, [image: there is no content], such that [image: there is no content].




4.1.3. Evaluation of the Garbled Circuit, [image: there is no content]


The garbled table for each gate, A, in the circuit is an ordered list of four values, [image: there is no content].



During evaluation, let α,β denote the garbled values for the two input wires of gate A. Let a=LSB(α),b=LSB(β). Then, the garbled value for the output wire, γ, is computed using α,β,Aab, as described in the two steps below:

	
split the most significant [image: there is no content] bits of α into n parts, α1,α2,α3,…,αn; each part has k bits; similarly, split the most significant [image: there is no content] bits of β into n parts, β1,β2,β3,…,βn; each part has k bits; i.e., [image: there is no content], where [image: there is no content].



	
compute [image: there is no content].








In this manner, the garbled output for any gate in the circuit can be computed using the garbled table and the two garbled inputs to the gate. Note that while the construction of the garbled circuit requires interaction among all the n parties, pi(1≤i≤n), the server [image: there is no content] can perform the evaluation of the garbled circuit independently.





4.2. Secure and Verifiable Cloud Computing through Secure Multiparty Computation


In a secure multiparty computation protocol, multiple parties hold private inputs, and receive the result of the computation. However, in our proposed secure cloud computing system, while multiple parties participate in the creation of garbled circuits, only the client holds private inputs and obtains the result of the computation in garbled form. Therefore, we adapt the protocols of Goldreich and BMR in a number of ways, as we discuss in this section, to build an efficient, secure cloud computing system, that also enables the client to easily verify the outputs of the computation.



First, note that in the protocol of Goldreich [8,9], each party [image: there is no content] sends its share [image: there is no content] to all the other parties. Using these shares, each party computes [image: there is no content] as [image: there is no content]. In our secure cloud computing system, however, we require each server pi(1≤i≤n), to send its share [image: there is no content] to only one server, [image: there is no content], which combines the received shares using the XOR operation to produce entries such as [image: there is no content] for each garbled table in the garbled circuit, [image: there is no content].



Second, in the BMR protocol [11,12], which is also a secure multiparty computation protocol, in addition to creating the garbled circuit, for evaluation, the n parties also create garbled inputs using secure multiparty computation. Then, each of these n parties evaluates the garbled circuit and obtains the result of the computation. In our system model, since only the client holds the inputs for the computation, it generates the corresponding garbled input for each input wire on its own using the seed values it sends to each server, pi(1≤i≤n). Then, it sends these garbled values to the server [image: there is no content] for evaluating the garbled circuit and obtains the result in garbled form. Note that in our model, only the server [image: there is no content] evaluates the garbled circuit, and that [image: there is no content] cannot interpret any garbled value, unless it colludes with all the n servers, pi(1≤i≤n).



Third, in the BMR protocol [11,12], the λ value is set to zero for each output wire in the Boolean circuit. Therefore, each party evaluating the garbled circuit obtains the result of the computation in plaintext form from the LSB of the garbled output for each output wire in the circuit. In our system model, however, the λ value for each output wire is also determined using the XOR-sum of the shares from all the n servers, pi(1≤i≤n). As a consequence, result of the computation in plaintext form remains as secret for the evaluator [image: there is no content].



Fourth, in the protocol of Goldreich [8,9], each party splits and shares each of its private input bits with all the other parties over pairwise secure communication channels. In our system, we eliminate this communication using a unique seed value [image: there is no content] that the client shares with all pairs of parties, (pi,pk),(1≤i,k≤n). To split and share each of its m private input bits xij(1≤j≤m), party [image: there is no content] uses the seed value [image: there is no content] to generate rkj(∀k≠i). Specifically, party [image: there is no content] sets its own share as [image: there is no content], where [image: there is no content] corresponds to the output of the pseudorandom bit generator using the seed value [image: there is no content] for the [image: there is no content] private input bit of party [image: there is no content], for a specific garbled table entry ([image: there is no content]) of one of the gates ([image: there is no content]) in the Boolean circuit. Similarly, party [image: there is no content] sets its own share as [image: there is no content]. The total number of pseudorandom bits generated by each party for the protocol of Goldreich equals [image: there is no content], where [image: there is no content], and [image: there is no content] denotes the total number of gates in the circuit. In other words, our approach eliminates the exchange of a very large number of bits ([image: there is no content] bits) between the n parties.



Fifth, our novel use of the Blum, Blum, Shub pseudorandom number generator for generating garbled value shares enables the client to efficiently recover and verify the outputs of the computation. The client can detect a cheating evaluator, if it returns arbitrary values as output. We present this in a greater detail in Section 4.3.




4.3. Recovery and Verification of Outputs


We address the following questions in this subsection:

	
How does the client efficiently recover the result of the computation without carrying out the delegated computations by itself?



	
How does the client verify that the evaluator, in fact, evaluated the garbled circuit? Stated differently, is it possible for the client to determine whether the evaluator returned arbitrary numbers without carrying out any computation at all, instead of the actual garbled output for each output wire?








We can enable the client to efficiently retrieve and verify the outputs received from the evaluator, [image: there is no content]. To accomplish this, each of the n parties that participates in the creation of the garbled circuit uses the cryptographically secure Blum, Blum, Shub pseudorandom number generator [13,14], as we have described below.



Let [image: there is no content] denote the product of two large prime numbers such that p and q are congruent to 3 [image: there is no content] 4. The client chooses a set of n seed values, [image: there is no content]; each seed value [image: there is no content] belongs to [image: there is no content], the set of integers relatively prime to N. Over a secure communication channel, the client sends the modulus value N and a unique seed value [image: there is no content] to each party pi(1≤i≤n). However, the client retains the prime factors, p,q, of N as secret.



Let [image: there is no content] denote the [image: there is no content] bit generated by the party [image: there is no content]; here [image: there is no content][image: there is no content]N, and [image: there is no content].



In the Boolean circuit, each wire ω is associated with [image: there is no content], a pair of garbled values, and [image: there is no content], a 1-bit value. These are expressed as follows:



[image: there is no content],



[image: there is no content], and



[image: there is no content].



In the above expressions: ω0i,ω1i and [image: there is no content] are shares of the party pi(1≤i≤n), and [image: there is no content], and [image: there is no content].



Let W denote the number of wires in the Boolean circuit. For each wire ω(0≤ω≤W-1), in the Boolean circuit, each party, pi(1≤i≤n), generates [image: there is no content] pseudo random bits. Therefore, each party, [image: there is no content], generates a total of [image: there is no content] pseudorandom bits.



To generate its shares [image: there is no content] and [image: there is no content] for wire ω, party [image: there is no content] concatenates the [image: there is no content] values, where the indices j belong to the range: [image: there is no content]. Let [image: there is no content] for concise notation. Then,



[image: there is no content],



[image: there is no content],



[image: there is no content].



Short-Cut: Note that each server [image: there is no content] must compute all the previous [image: there is no content] bits before it can compute the [image: there is no content] bit. However, using its secret knowledge of the prime factors of N, i.e., p,q, the client can directly calculate any [image: there is no content] (hence, the bit [image: there is no content]) using the relation: xi,j=xi,02jmodC(N)modN; here [image: there is no content] denotes the “Carmichael function”, which equals the least common multiple of [image: there is no content] and [image: there is no content].



Therefore, without having to compute ω0,ω1, and [image: there is no content] for any intermediate wire in the circuit, the client can readily compute ω0,ω1, and [image: there is no content] for any output wire ω in the circuit using the secret values p,q. The client can translate each of the garbled values from the evaluator [image: there is no content] into a plaintext bit using the [image: there is no content] values of the output wires in order to recover the result of the requested computation. Only if the garbled output from the evaluator matches with either [image: there is no content] or [image: there is no content], for each output wire ω of the circuit, the client declares that the output verification is successful.



Collusion Resistance: Notice that the evaluator can return one of the two expected garbled outputs for every output wire in the circuit without performing any computation at all, if and only if: (i) it colludes with all the n servers, [image: there is no content], that participated in creating the garbled circuit; or (ii) it factorizes N into the prime factors, p and q, which is infeasible.



Furthermore, note that in order to cheat successfully without any collusion, the evaluator would have to correctly guess one of the two expected garbled outputs for each output wire in the circuit. Each garbled output value is [image: there is no content] bits long. Therefore, for any reasonable value of the number of servers [image: there is no content] and security parameter [image: there is no content], for example), the evaluator would have to correctly guess hundreds of bits for each output wire in the circuit. Hence, it is very highly unlikely for the evaluator to be successful.



Unpredictability: Even with the knowledge of all the previous/future bits, one cannot predict the next/previous bit output from the Blum, Blum, Shub pseudorandom number generator [13,14]. Therefore, through the observation of garbled values during evaluation, the evaluating server, [image: there is no content], cannot predict the preceding or subsequent garbled values, or the λ values for every wire in the circuit.




4.4. Summary of Our Proposed System


We summarize our secure cloud computing model in this subsection.

	
The client chooses [image: there is no content], a set of [image: there is no content] servers in the cloud. Then, to each server pi(1≤i≤n), the client provides a unique seed value [image: there is no content], and a description of the desired computation. To each pair of servers, [image: there is no content], the client also provides another seed value [image: there is no content].



	
For the requested computation, each server, pi(1≤i≤n), creates (or retrieves from its repository, if available already) a corresponding Boolean circuit (B).



	
Using the pseudo random generator of Blum, Blum, Shub, each server, pi(1≤i≤n), uses the seed value [image: there is no content] to generate its shares for the pair of garbled values and a λ value for each wire in the circuit (B). Each server, [image: there is no content], generates a pseudorandom bit sequence of length [image: there is no content] bits using seed value [image: there is no content]; here W denotes the number of wires in the Boolean circuit (B).



	
The client instructs the n servers pi(1≤i≤n) to construct the shares ([image: there is no content]) of a BMR garbled circuit, [image: there is no content], using their shares as private inputs for the secure multiparty computation protocol of Goldreich. Each pair of servers, [image: there is no content], generates pseudorandom bits using pairwise seed values [image: there is no content] while using the protocol of Goldreich. Let [image: there is no content] denote the shares of server [image: there is no content] corresponding to the four garbled table entries of gate A. Then, [image: there is no content] equals the concatenation of all bit strings of the form [image: there is no content], where the concatenation operation is carried out over all the gates in the circuit.



	
The client instructs each of the n servers, pi(1≤i≤n) to send their shares [image: there is no content] to the server [image: there is no content]. Performing only XOR operations, the server [image: there is no content] creates the desired circuit, [image: there is no content], which is sent to server [image: there is no content] for evaluation.



	
The client generates garbled input values for each input wire in the circuit using the unique seed values si(1≤i≤n), and sends them to the server [image: there is no content] for evaluation. The client also generates the λ values and the two possible garbled values for each output wire in the circuit using these seed values, and keeps the λ values as secret.



	
The server [image: there is no content] evaluates [image: there is no content] using the garbled inputs to obtain the garbled output for every output wire in the circuit and sends them to the client. The client now translates these garbled values into plaintext bits, using the λ values, to recover the result of the requested computation.



	
For each output wire in the circuit, the client checks whether the garbled output that is received from the evaluator, [image: there is no content], matches with one of the two expected garbled values that it computed on its own. If the client determines that there is a match for all output wires, it declares that the evaluator in fact carried out the computation.










5. Complexity


5.1. Circuit Size of One Garbled Table Entry


We analyze the size of the Boolean circuit ([image: there is no content]) for computing one specific entry ([image: there is no content]) in the garbled table. Assume that each gate produces one output bit from two input bits. As we have shown in Section 4.1.1, [image: there is no content]; here [image: there is no content] denotes the binary operation of gate A.



Let s denote the expression: [image: there is no content]. Since [image: there is no content], [image: there is no content], [image: there is no content], where [image: there is no content] are shares of server [image: there is no content], computing s requires a total of [image: there is no content]XOR gates and 1 ⊗ gate.



Boolean circuit [image: there is no content] includes a multiplexer that chooses [image: there is no content], where [image: there is no content], which is composed of 2 XOR gates and 1 AND gate. The multiplexing is performed on the most significant [image: there is no content] bits since [image: there is no content], and [image: there is no content]. This multiplexer is composed of a total of [image: there is no content]XOR gates and [image: there is no content]AND gates.



Now, consider the expression: [image: there is no content]; it has [image: there is no content] terms, which are combined using [image: there is no content]XOR operations. Computing this expression requires a total of [image: there is no content]XOR gates, since each term has a length of [image: there is no content] bits.



Therefore, the Boolean circuit ([image: there is no content]) that computes one specific garbled table entry ([image: there is no content]) has a total of [image: there is no content]XOR gates, [image: there is no content]AND gates, and 1 ⊗ gate.



Figure 3 shows the total number of gates in the circuit that computes [image: there is no content], when A is an AND gate, as a function of n for a fixed value of [image: there is no content] bits. Notice the relatively small number of AND gates in the circuit. For example, when [image: there is no content], the circuit that computes [image: there is no content] has a total of 10782 XOR and 769 AND gates. To summarize, while the number of XOR gates increases quadratically with n, the number of AND gates increases only linearly with n.


Figure 3. Number of gates in the circuit that computes one garbled table entry as a function of n.
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Let B denote the Boolean circuit that corresponds to the desired computation such as addition of two numbers. Then, in order to create the garbled circuit [image: there is no content] for B, the n parties use the Boolean circuit [image: there is no content] for the protocol of Goldreich to compute each one of the four garbled table entries of the form [image: there is no content] for each gate A in the circuit B.




5.2. Communication Cost to Compute One Garbled Table Entry


In general, a 1-out-of-2 OT [15] exchange between two parties involves the exchange of: (i) a random element C from the prime order subgroup, G, of [image: there is no content]; (ii) a public key, [image: there is no content]; and (iii) the encryptions, E0,E1, of the plaintext messages M0,M1. Let k denote the security parameter, which equals the size of the plaintext messages, M0,M1. Let [image: there is no content] denote the total number of bits that are exchanged during a 1-out-of-2 OT. Then, [image: there is no content].



A 1-out-of-4 OT [16] exchange between two parties includes: (i) two 1-out-of-2 OTs, and (ii) four encryptions, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. Let [image: there is no content] denote the total number of bits exchanged during a 1-out-of-4 OT. Then, [image: there is no content]; here [image: there is no content] and k are public and symmetric key security parameters, respectively. For example, [image: there is no content] achieves the equivalent of [image: there is no content]-bit security [17]; in this case, the sum of the sizes of all messages exchanged during a 1-out-of-4 OT is [image: there is no content] bytes.



For each AND gate in the circuit [image: there is no content], each pair of servers, [image: there is no content], engage in a 1-out-of-4 OT, and there are a total of [image: there is no content] combinations of [image: there is no content]. The total number of 1-out-of-4 OTs is at most [image: there is no content] since the number of AND gates in the circuit [image: there is no content] is at most [image: there is no content].



To create the desired garbled table entry, [image: there is no content], at the completion of the secure multiparty computation protocol of Goldreich, each server, pi(1≤i≤n), sends its share [image: there is no content] to another server, [image: there is no content], which receives a total of [image: there is no content] bits from the other n servers since [image: there is no content].



To summarize, in order to create one garbled table entry, [image: there is no content], the total amount of network traffic, [image: there is no content]. The network traffic is a cubic function of n when the security parameters, k and [image: there is no content], are fixed.



Figure 4 shows the network traffic to create one garbled table entry as a function of n. For example, when [image: there is no content], the cloud servers exchange [image: there is no content] MB of data in order to create a single entry in the garbled table.


Figure 4. Amount of network traffic to compute one garbled table entry as a function of n.
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In the process of creating the garbled circuit, [image: there is no content], the total amount of network traffic equals [image: there is no content], where [image: there is no content] denotes the total number of gates in the circuit B that corresponds to the desired computation.




5.3. Computation Cost of Creating the Garbled Circuit


Let W denote the total number of wires in the circuit B. For each wire, each server, pi(1≤i≤n), generates [image: there is no content] bits using the Blum, Blum, Shub (BBS) pseudorandom number generator (PRNG) [13,14] for its share of garbled values and the λ value. Therefore, the n servers collectively generate a total of [image: there is no content] bits using the BBS PRNG. Let N denote the modulus value in BBS PRNG (note: [image: there is no content] achieves 128-bit security [17]). Then, [image: there is no content] modular multiplication operations in [image: there is no content] are necessary to generate bits using BBS PRNG.



Let [image: there is no content] denote the number of output wires in the circuit B. Let G denote the PRNG, which we have described in Section 4.1.3, that outputs a sequence of [image: there is no content] bits on providing a k-bit input seed. Each server uses the PRNG G, on its share of each garbled value for every non-output wire in the circuit B. Then, while creating the garbled circuit, the n servers collectively use the PRNG G, [image: there is no content] times to generate a total of [image: there is no content] bits.



Let [image: there is no content] denote the total number of gates in the circuit B. For protocol of Goldreich, the total number of pseudorandom bits generated by each party using the PRNG R, equals [image: there is no content], where [image: there is no content] (Section 4.2). Thus, the n parties collectively generate a total of [image: there is no content] bits using the PRNG R.



Note that both the PRNG G and PRNG R can be realized using a block cipher such as AES (which stands for advanced encryption standard) operating in output feedback mode.



Let [image: there is no content] denote the number of 1-out-of-4 OTs to create one garbled table entry (Section 5.2). Then, the total number of 1-out-of-4 OTs to create the complete garbled circuit [image: there is no content] is at most [image: there is no content].



During a 1-out-of-2 oblivious transfer, the sender and chooser generate a total of [image: there is no content] bits. Each 1-out-of-4 oblivious transfer involves the cost of two 1-out-of-2 oblivious transfers, in addition to generating a total of [image: there is no content] bits. A very small constant number of modular arithmetic operations, AES and SHA crypto operations are carried out during each OT. While creating the garbled circuit [image: there is no content], these sets of operations are performed [image: there is no content] times; and a total of [image: there is no content] bits are generated during the OTs.



To summarize, the total number of bits that are generated by the n parties while creating the garbled circuit is [image: there is no content]. Thus, for any given Boolean circuit, when the security parameters k and [image: there is no content] are fixed, the total number of bits generated randomly is a cubic function of n.



For example, consider the construction of a garbled circuit for adding two 32-bit numbers. The corresponding Boolean circuit has a total of [image: there is no content] wires, [image: there is no content] output wires, and [image: there is no content] gates (The 32-bit adder circuit in [18] has 127 AND gates, 61 XOR gates and 187 NOT gates. Note that a NOT gate is equivalent to an XOR gate, since NOT[image: there is no content]). As we have mentioned in Section 4.1, we consider only two different types of gates, namely, [image: there is no content] in our work. Alternatively, note that more efficient constructions are possible; for example, an AND gate with a NOT gate on its output wire may be replaced with a single NAND gate, if the output wire of the AND gate is not an input wire for any other gate in the circuit).



Figure 5 shows the total number of Mbits that are generated randomly while creating one garbled table entry (i.e., [image: there is no content]) for the 32-bit adder. As an example, when [image: there is no content], these parties collectively generate a total of [image: there is no content] Mbits to create one garbled table entry.


Figure 5. Total number of Mbits generated randomly while creating one garbled table entry for the 32-bit adder.
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5.4. Cost of Evaluating the Garbled Circuit


In order to perform the requested computation, the server [image: there is no content] obtains the garbled circuit, [image: there is no content], from the server [image: there is no content]. Let [image: there is no content] denote the total number of gates in the circuit B. Each entry in the garbled table has a length of [image: there is no content] bits. Therefore, the size of the garbled circuit equals [image: there is no content] bits.



Figure 6 shows the size of the garbled circuit in Kbits for the 32-bit adder. This circuit has [image: there is no content] gates. The security parameter [image: there is no content].


Figure 6. Size of the garbled circuit in Kbits for the 32-bit adder.
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Let W and [image: there is no content] denote the total number of wires and output wires, respectively, in the Boolean circuit B. During evaluation, for each non-output wire of the circuit, the server [image: there is no content] uses the PRNG G n times. Therefore, G is used for a total of [image: there is no content] times.




5.5. Cost for the Client


In order to create the garbled circuit, the client provides: (i) a unique seed value, [image: there is no content], to each server pi(1≤i≤n); and (ii) a seed value, [image: there is no content], to each pair of servers [image: there is no content].



The length of each seed value, [image: there is no content] for the BBS PRNG. The length of each seed [image: there is no content] for the PRNG R, which can be implemented using a block cipher such as AES in output feedback mode. Let [image: there is no content] denote the total number of bits that the client exchanges for the seed values. Then, [image: there is no content].



For each plaintext input bit to the circuit, the client is required to generate the garbled input. Each garbled value is [image: there is no content] bits long, whose least significant bit depends on the λ value, and the λ value, in turn, depends on the 1-bit shares for the n parties. Let [image: there is no content] denote the number of bits that the client needs to generate for each input wire. Then, [image: there is no content].



The client needs to generate both possible garbled outputs for each output wire to enable the verification of outputs. Let [image: there is no content] denote the number of bits that the client needs to generate for each output wire. Then, [image: there is no content].



Let [image: there is no content] and [image: there is no content] denote the number of input and output wires, respectively, in the Boolean circuit B. Then, the client generates/exchanges a total of [image: there is no content] bits.



Figure 7 shows the total number of Kbits that the client generates in order to enable the servers to construct and evaluate the garbled circuit, as well as for the verification of outputs for the 32-bit adder. This circuit has [image: there is no content] input wires and [image: there is no content] output wires. The security parameters are [image: there is no content] and [image: there is no content].


Figure 7. Total number of Kbits that the client generates to delegate the construction and evaluation of the garbled circuit, and to verify the outputs for the 32-bit adder.
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For example, when [image: there is no content], the client generates about 209 Kbits, if the security parameters are [image: there is no content] and [image: there is no content]. Furthermore, note that even when the security parameters are increased to [image: there is no content] and [image: there is no content], the client generates only 510 Kbits (The security parameters k and [image: there is no content] are related; Barker et al. [17] provide a tabular listing of recommended combination of value-pairs [image: there is no content]).



Comparing Figure 7 with Figure 4 and Figure 5, we notice that while the servers generate and exchange Gigabytes of information to create the garbled circuit, the resource constrained mobile client, on the other hand, generates and exchanges only Kbytes of information with the evaluator and the other servers in the cloud.



While the network traffic among the servers is a cubic function of n (Section 5.2), our result in Figure 7 shows that it is feasible to perform privacy preserving computations on behalf of resource-constrained clients, and that our system is well-suited for such clients, since they generate and exchange only compact cipher text messages with the servers - that are many orders of magnitude smaller than the amount of network traffic between the servers.




5.6. Comparison of Our Scheme with Gentry’s FHE Scheme


While Gentry’s FHE scheme [3] requires a single server only, it, however, expects the client to exchange [image: there is no content] bits with the evaluating server, for each input and output wire of the circuit. In our secure cloud computing system, for each input and output wire, the client exchanges [image: there is no content] bits only with the server [image: there is no content] since each garbled value has a length of [image: there is no content] bits. For example, the size of each encrypted plain text bit equals several Gigabits with Gentry’s FHE scheme, while it equals a mere 641 bits in our approach with [image: there is no content] and [image: there is no content]. Therefore, in comparison to FHE schemes, our approach is far more practical for cloud computing in mobile systems.




5.7. Construction and Evaluation Time


We used BIGNUM routines and crypto functions from the OpenSSL library to implement our secure cloud computing system. We built our system as a collection of modules, and our implementation uses TCP (which stands for Transmission Control Protocol) sockets for communication among the servers. Using a server with Intel Xeon [image: there is no content] GHz processor (Intel, Santa Clara, CA, USA), with 6 cores and 32 GB RAM we evaluated our system. Figure 8 shows the time taken to construct one garbled table for varying number of servers. We note that in order to significantly reduce the construction time, the garbled tables for any number of gates in the circuit can be constructed in parallel.


Figure 8. Time taken to construct one garbled table.
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Figure 9 shows the time taken to evaluate one garbled gate for varying number of servers. Notice that evaluation is significantly faster than construction, and that the latter can be done offline. The evaluating server can readily carry out the requested computation, and therefore drastically reduce the response time for the mobile client, if the garbled circuits are pre-computed and made available to the evaluator, in advance.


Figure 9. Time taken to evaluate one garbled gate.
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While our prototype is implemented entirely in software, we note that it is possible to achieve significant speedup through special dedicated hardware blocks. For example, our method relies on the computation of pseudorandom functions such as AES, which can be expressed as a Boolean circuit with only AND gates and XOR gates [18]. Therefore, using hardware blocks for realizing the computation of pseudorandom functions that are used very frequently in our system can dramatically improve the overall time taken for performing privacy-preserving computations on the cloud on behalf of the client.





6. Privacy Preserving Search for the Nearest Bank/ATM


In this section, we consider the special scenario of a mobile device seeking to obtain the result of a computation that depends on its own “private inputs”, and also on “public inputs” obtained from other servers on the Internet. More specifically, we examine the following privacy preserving application. A mobile client, which is located at the intersection of two streets, needs to determine the location of the nearest Chase or Wells Fargo banks or an ATM machine in a privacy-preserving manner. We evaluate our application using real-world data available for Salt Lake City, UT, whose streets are arranged in a “grid pattern”. Our application assures the privacy of the following: (i) the mobile client’s input location; (ii) the computed bank/ATM location nearest to the client; and (iii) the computed distance to the nearest ATM. Note that these secrets are revealed to the evaluator only if it colludes with all the n servers that participate in the creation of the garbled circuit.



We consider an area of Salt Lake City, UT that lies between the Main Street (which represents the 0 East Street), the 1300 East Street, the South Temple Street (which represents the 0 South Street), and the 800 South Street. This area consists of [image: there is no content] ATM locations that are shown in Table 2.


Table 2. Locations of Banks and ATMs in Salt Lake City, UT (source: Chase [19], Wells Fargo [20]).


	Bank/ATM
	Location





	Chase
	201 South 0 East



	Chase
	185 South 100 East



	Chase
	376 East 400 South



	Chase
	531 East 400 South



	Wells Fargo
	299 South 0 East



	Wells Fargo
	381 East 300 South



	Wells Fargo
	79 South 0 East



	Wells Fargo
	778 South 0 East



	Wells Fargo
	570 South 700 East



	Wells Fargo
	235 South 1300 East









Each East/South coordinate in this area is an [image: there is no content]-bit unsigned number. Therefore, the location of the mobile client at an intersection, or any bank/ATM in this area can be identified using [image: there is no content] bits.



6.1. Circuit for Computing Manhattan Distance


Let [image: there is no content] represent the coordinates of the mobile client at an intersection. Similarly, let [image: there is no content] represent the coordinates of a bank/ATM. Since the streets are arranged in a grid pattern, the shortest distance (D) between [image: there is no content] and [image: there is no content] equals the sum of the absolute differences between the respective coordinates: [image: there is no content]. This distance metric is more commonly referred to as the Manhattan distance.



We design a Boolean circuit for computing the Manhattan distance between two points, [image: there is no content] and [image: there is no content]. Assume that each coordinate is an l bit unsigned number. Figure 10 and Figure 11 show the block diagram of our circuit. We use the [image: there is no content] and [image: there is no content] blocks of Kolesnikov et al. [21].


Figure 10. Absolute difference between the X and Y coordinates.
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Figure 11. Manhattan Distance Computation.
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Each [image: there is no content]/[image: there is no content] block is composed of l 1-bit subtractors/adders; each 1-bit subtractor/adder, in turn, is composed of 4 XOR gates, 1 AND gate. Note that [image: there is no content] output bit of [image: there is no content] block equals the complement of carry-out bit from the [image: there is no content] 1-bit subtractor.



If [image: there is no content], then the output of [image: there is no content] block equals the absolute difference, [image: there is no content]. Otherwise, the output of [image: there is no content] block equals the negative value, [image: there is no content], in [image: there is no content] complement form. Since [image: there is no content] for negative values, we use [image: there is no content] as one of the inputs for the [image: there is no content] gates in the [image: there is no content] block to compute the [image: there is no content] complement of the absolute difference. Then, we subsequently use [image: there is no content] as a carry-in input bit for the [image: there is no content] block. Thus, the output of the [image: there is no content] block accounts for both [image: there is no content] and [image: there is no content] cases.



Similarly, for the Y coordinates we use the [image: there is no content] and [image: there is no content] blocks to compute the absolute difference in [image: there is no content] complement form. To account for the case when [image: there is no content], we use an [image: there is no content] block that adds the value of the bit [image: there is no content] to the output of the [image: there is no content] block. The [image: there is no content] block is composed of l half-adder (HA) blocks, where each [image: there is no content] block, in turn, is composed of 1 [image: there is no content] and 1 [image: there is no content] gate.



The output of the [image: there is no content] block represents the [image: there is no content]-bit Manhattan distance between [image: there is no content] and [image: there is no content]. Using the circuit design of Figure 10 and Figure 11, a list of distances between the location of the mobile client and any number (L) of ATM locations can be computed. Table 3 shows that our Boolean circuit for computing the Manhattan distance between two points has a total of [image: there is no content][image: there is no content] gates and [image: there is no content][image: there is no content] gates.


Table 3. Circuit size for Manhattan distance calculation.


	Block
	[image: there is no content] Gates
	[image: there is no content] Gates





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	0



	[image: there is no content]
	[image: there is no content]
	l



	[image: there is no content]
	[image: there is no content]
	l



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]









Note: In a more direct alternative to compute Manhattan distance, we may first find [image: there is no content] and [image: there is no content], and always subtract [image: there is no content] from [image: there is no content] (similarly for the Y coordinates). While this approach would eliminate [image: there is no content] and [image: there is no content] blocks, it however would require the use of two comparator and conditional swap blocks [22], which together introduce [image: there is no content] new [image: there is no content] gates and [image: there is no content][image: there is no content] gates. Consequently, this alternative approach to compute Manhattan distance would require a total of [image: there is no content][image: there is no content] gates and [image: there is no content][image: there is no content] gates. Thus, in comparison to this more direct alternative, our design shown above in Figure 10 and Figure 11 requires a significantly smaller number of [image: there is no content][image: there is no content] and [image: there is no content][image: there is no content] gates.




6.2. Circuit for Computing the Nearest ATM


Following the computation of distance between the mobile client and L ATM locations, it is necessary to find the nearest ATM, along with its distance. We use the approach of Kolesnikov et al. [21] to find the minimum value and its index, given a list of values. Kolesnikov et al. [21] have designed a [image: there is no content] block to find the minimum of two input values – it uses the result of a comparator to multiplex the minimum value, as well as the corresponding index as shown in Figure 12. Table 4 shows the size of the circuit that computes the minimum of two values, along with its index. In our privacy preserving application, each distance is an [image: there is no content]-bit number, and each index that identifies an ATM using its East and South coordinates is an [image: there is no content]-bit number.


Figure 12. Finding minimum value and index.
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Table 4. Circuit size of 1 Min block.


	Block
	[image: there is no content] Gates
	[image: there is no content] Gates





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]









Given L values and their indices, using [image: there is no content][image: there is no content] blocks organized as a tree, the minimum value and the corresponding index are propagated from the leaves to the root. Figure 12 shows the computation of the minimum of 4 input values, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and the corresponding index, [image: there is no content], as an example.



Table 5 shows the number of [image: there is no content] and [image: there is no content] gates in the complete circuit that computes the nearest ATM location. It shows that in our privacy preserving application of finding the nearest Chase or Wells Fargo ATM in Salt Lake City, the circuit has a total of 2596 [image: there is no content] and 854 [image: there is no content] gates.


Table 5. Complete circuit size for nearest ATM. [image: there is no content] denotes distance to L locations. [image: there is no content] denotes the tree of MIN blocks.


	Block
	[image: there is no content] Gates
	[image: there is no content] Gates





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	2596
	854










6.3. Server-Side and Client-Side Cost


Figure 13 shows the network traffic as a function of the number of servers (n) involved in the creation of the garbled circuit that can compute the nearest ATM and the corresponding distance in a privacy preserving manner. For example, with [image: there is no content] servers, the servers exchange a total of 126 [image: there is no content] of information to create the garbled circuit. This result demonstrates the feasibility of our approach for performing real-world privacy-preserving computations.


Figure 13. Server-side network traffic to construct the garbled circuit for determining the nearest ATM.
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In order to facilitate the creation of the garbled circuit, and for the evaluation, the mobile client sends: (i) the seed values to the n servers; and (ii) the garbled values representing the coordinates of the input location to the evaluator. Since the ATM locations are publicly known, they are assumed to be hard-coded in the garbled circuit. i.e., the client is not required to transmit the ATM locations to the servers.



Figure 14 shows the total number of bits generated by the client to delegate the privacy preserving computation of finding the nearest ATM and the distance from the client. To preserve location privacy, the client exchanges a very small amount of information with the servers—less than 60 Kbits, with [image: there is no content] servers, for example. From Figure 13 and Figure 14, we note that in comparison to the server-side cost, the client-side cost grows much slowly with the number of servers.


Figure 14. Client-side cost to determine the nearest ATM.



[image: Futureinternet 08 00017 g014 1024]








7. Related Work


Homomorphic encryption methods enable computations directly on the encrypted data, without requiring private decryption keys. For example, the product of two ciphertext messages produces a ciphertext corresponding to the product of the underlying plain text messages in the RSA public key system [2]. Domingo-Ferrer et al. [23] present an additive and multiplicative homomorphic scheme in which polynomials are used to represent ciphertext; however, multiplication operations drastically increase the size of the cipher text in their scheme. Recently, fully homomorphic encryption (FHE) schemes (e.g., [3,4,5]) have been proposed, which enable performing any arbitrary computation on encrypted data. However, FHE schemes are currently not suitable for mobile cloud computing applications due to extremely large cipher text size and computational requirements beyond the capabilities of mobile devices today. Our work presents a far better alternative suitable for mobile systems.



Yao’s garbled circuits have been mainly used in the context of secure two-party computation [6,7,24]. Lindell et al. [25] present an extensive survey of secure multiparty computation, along with numerous potential applications—some examples of which are privacy preserving data mining, private set intersection, electronic voting and electronic auction. Over the years, a number of secure two-party and multiparty computation systems have been built (e.g., [26,27,28]). In secure multiparty computation systems, multiple parties hold private inputs and receive the result of the computation. While multiple parties participate in the creation of garbled circuits, only the client has the private inputs and obtains the result of the computation, in garbled form however, in our secure cloud computing system. As we have described in Section 4.2, in our work, we adapt secure multiparty computation protocols [8,9,11,12], for building a secure and verifiable cloud computing for mobile systems.



Some existing works [29,30] use arithmetic circuits for performing homomorphic addition and multiplication operations. However, Boolean circuits are sufficient for our purpose of creating the garbled table entries, since it only involves simple binary operations such as XOR and AND (Section 4.1.1). Additionally, Boolean circuits are more efficient than arithmetic circuits for homomorphic comparison of numbers, which we have used abundantly in our privacy preserving search application (Section 6), since comparison using an arithmetic circuit involves a large number of multiplications and communication rounds among the participants [29,30].



Branching programs offer an alternate method for representing Boolean functions. Ames et al. [31] present a branching program formulation for secure health monitoring using homomorphic encryption. Ames et al. [31] present simulation results on real ECG (which stands for electrocardiogram) data, and note that their approach of using branching programs provides significant speedup in comparison to methods using traditional circuits. It could be a very interesting avenue for future research to explore the use of garbled circuits in conjunction with branching programs, especially for secure cloud computing applications and mobile big data systems.



In the Twin clouds [32] secure cloud computing architecture, the client uses a private cloud for creating garbled circuits and a public commodity cloud for evaluating them. Our solution, however, utilizes multiple public cloud servers for creating as well as evaluating the garbled circuits. Stated alternatively, our solution obviates the requirement of private cloud servers. Furthermore, in twin clouds, the privacy of the client data is lost if the evaluator colludes with the sole/only server that constructs the garbled circuit. In our work, on the other hand, the use of multiple servers for construction of garbled circuits offers greater resistance to collusion (Section 2).



While FHE schemes remain impractical currently, they, however, offer interesting constructions, such as reusable garbled circuits [33] and verifiable computing capabilities [34]. In our proposed system, we enable the client to efficiently verify whether a cloud server has actually evaluated the garbled circuit, without depending on any FHE scheme.



Naehrig et al. [35] present an implementation of a “somewhat” homomorphic encryption scheme, which is capable of computing simple statistics such as mean, standard deviation and regression, which require only addition operations, and a very few multiplication operations. Another recent work (P4P [36]) provides privacy preservation for computations involving summations only. In comparison, our scheme, which is based on Yao’s garbled circuits, is not limited to computation of simple statistics or summations only; i.e., our scheme is more generic, and can perform any arbitrary computation.



Carter et al. [37] have proposed a secure two party computation system, which however has three participants: Alice, Bob and a Proxy. In their work, Alice is a mobile device that delegates the task of evaluating the garbled circuits to the Proxy, which is a cloud server, and Bob is a webserver that creates garbled circuits. We note that our computation and adversary models are very different from that of Carter et al.’s work [37]. First, in their work, both Alice and Bob provide private inputs for the secure two party computation that they wish to perform jointly; however, in our work, only one party, i.e., the mobile client, provides inputs and obtains the result of the computation in garbled form. Second, Carter et al.’s [37] scheme requires that neither Alice nor Bob can collude with the Proxy; in a sharp contrast, even if the evaluating server colludes with all but one of the cloud servers that participated in the creation of the garbled circuit, our method can preserve the privacy of the client’s data.




8. Concluding Remarks


We proposed a novel secure and verifiable cloud computing for mobile big data systems using multiple servers. Our method is a unique combination of the secure multiparty computation protocol of Goldreich et al. [8,9], the garbled circuit design of Beaver et al. [11,12], and the cryptographically secure pseudorandom number generation method of Blum et al. [13,14]. Even if the evaluator colludes with all but one of the servers that participated in the creation of the garbled circuit, our method can preserve the privacy of the mobile client’s inputs and the results of the computation. Furthermore, our system can detect a cheating evaluator that returns arbitrary output without performing any computation at all. We presented the server-side and client-side complexity analysis of our system. Using real-world data, we evaluated our system for a privacy preserving search application that locates the nearest point of interest from the mobile client. We also evaluated the time taken to construct and evaluate a garbled circuit for varying number of servers to demonstrate the feasibility of our proposed approach.



To summarize, our method shows how publicly available location information from different sources (e.g., from Wells Fargo, Chase) may be used in conjunction with private location information of a mobile device in a privacy preserving computation.



Our software implementation is available through our computing in the cloud website [38].
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