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Abstract: Fifth generation (5G) technologies will boost the capacity and ease the management of
mobile networks. Emerging virtualization and softwarization technologies enable more flexible
customization of network services and facilitate cooperation between different actors. However,
solutions are needed to enable users, operators, and service providers to gain an up-to-date awareness
of the security and trustworthiness of 5G systems. We describe a novel framework and enablers for
security monitoring, inferencing, and trust measuring. The framework leverages software-defined
networking and big data technologies to customize monitoring for different applications. We present
an approach for sharing security measurements across administrative domains. We describe scenarios
where the correlation of multi-domain information improves the accuracy of security measures with
respect to two threats: end-user location tracking and Internet of things (IoT) authentication storms.
We explore the security characteristics of data flows in software networks dedicated to different
applications with a mobile network testbed.
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1. Introduction

Fifth generation (5G) standards are opening mobile networks to new kinds of applications, devices,
and business actors [1,2]. In the future, 5G standards will support heterogeneous access methods with
high-speed, low-latency, and high-availability, and optimize mobile networks, e.g., for safety-critical
(traffic, ehealth) and massive-scale (Internet of things—IoT) applications. Fifth generation systems exploit
software networking and network virtualization technologies to enable new stakeholders such as virtual
operators, infrastructure providers, or third-party service providers to cooperate more easily and create
end-to-end services. In particular, 5G standards will address network management challenges and ease
the deployment of secure services over complex multi-domain, multi-operator, and multi-technology
networking environments. Fifth generation standards will also ease the customization of network services
to fulfil application-specific security needs. In 5G systems, end-to-end application-layer security can be
comprised of more than just the secure tunnels (HTTPS, TLS, or VPN) used in previous generations. Thus,
5G operators will be able to provide efficient security and availability guarantees, e.g., with monitoring
and access control solutions that are customized for applications. On the other hand, new business and
industrial applications will make mobile networks tempting to adversaries and the new technologies will
introduce quite different vulnerabilities and threats.

Security monitoring in fourth generation (4G) mobile networks is domain- and operator-specific.
Operators monitor their networks for intrusions with different proprietary solutions from telecom
infrastructure providers. Monitored information is not shared across administrative borders due to both
business reasons and 4G specifications, which essentially have not supported the exchange of trust or security
monitoring information. Hence, users and service providers have to trust or distrust operators completely
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without a means to evaluate the network’s trustworthiness. In 5G systems, with more cooperating parties
and diversified service levels, such unquantified trust relationships are not adequate.

Users and service providers need an up-to-date awareness of the security and trustworthiness
of 5G systems. However, assessing and measuring the overall security of end-to-end 5G systems
is demanding, as monitoring systems must collect and combine information from different sources
operated by distrusting actors. In addition, the increased traffic volumes, heterogeneous access
technologies, and device types will cause resourcing challenges. Consequently, monitoring systems
must be flexible and scalable. They must be flexible since they must ease interoperability and enable
the sharing and the correlation of monitored information from several domains in order to form
complete end-to-end trust awareness. They must be scalable as they should enable various algorithms
to monitor large volumes of heterogeneous traffic streams flowing through mobile networks.

We contribute by presenting how existing technologies can be practically combined for fine-grained,
customized, and extensive security monitoring. We show how a various actors and different technologies
can cooperate in order to extract knowledge of the complex 5G security landscape. In this paper,
we propose a flexible and scalable framework for security monitoring, machine learning, trust measuring
and security control in 5G networks. The framework enables different parties—end-users, application
providers, third party service providers, and customer organizations, as well as (cooperating) operators and
infrastructure providers—to evaluate the trustworthiness of a mobile network. We propose a Trust Level
Agreement mechanism for sharing real-time security awareness in multi-domain/multi-operator scenarios.
We also describe approaches to address two 5G threats: tracking of end-users’ location and authentication
storms caused by IoT botnets. Our monitoring approach is evaluated using a mobile network testbed and
some selected machine learning algorithms for anomaly detection.

The framework leverages Software-Defined Network (SDN) and Network Function Virtualization
(NFV) concepts as well as big data processing and analytic engines (such as Apache Kafka and Spark)
to increase the accuracy, flexibility, and scalability of monitoring. Our hypothesis is that the framework
provides, when compared to monitoring of heterogeneous data flows combining traffic from various
4G applications, more customized and accurate information of networks’ trust levels to operators and
user organizations in a real-time mode. With software networks, we isolate application-specific data
streams and thus enable the monitoring system to focus on specific traffic patterns that are homogeneous.
Thus, the security monitoring system can apply machine learning algorithms and control strategies that
are optimal for the application. In addition, by correlating security event information from various 5G
domains, we are able to capture threats that were previously hard to address. Virtualization and sharing
of security information enable service providers to extend their monitoring landscape to the 5G systems.
Hence, security awareness improves, and mitigations speed-up and automatize when application providers
receive security information from operators’ and infrastructure providers’ domains. Figure 1 illustrates
our contributions and how the monitoring landscape will evolve when entering the 5G era. The figure
illustrates the shift from the generic security monitoring approaches of 4G to customized monitoring and
cross-domain sharing of trust relevant information in virtualized 5G networks.

The rest of this paper is structured as follows. First, in Section 2, we survey related work on 5G
security monitoring and explain how our contributions map to the 5G security landscape. We also
classify security and trust parameters shared over multiple domains and give an overview of software
networking technologies that our work builds on. In Section 3, we describe requirements for the
monitoring framework and enablers. Section 4 discusses two specific threat scenarios as well as
mechanisms for detection and mitigation. It illustrates the advantages of multi-domain data sharing
and correlation analysis. Section 5 describes our implementations and technology choices for the
framework as well as the testbed. Section 6 studies characteristics of data in SDNs dedicated for
different applications. In particular, we illustrate and study how homogeneity of data affects machine
learning based on a clustering algorithm. Section 7 discusses the applicability and limitations of the
proposed approach and, finally, Section 8 concludes the paper.
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Figure 1. Evolution of security monitoring from fourth generation (4G) to fifth generation (5G) of
mobile networks. The foci of our investigation—software-defined and big data analytic means to
customize monitoring, machine learning, and control of virtualized 5G networks as well as means to
share trust-relevant knowledge across domains—are highlighted in green.

2. Related Work

This section provides background on 5G security and surveys existing research and
standardization efforts related to monitoring and softwarization of mobile networks.

2.1. Fifth Generation Security

Fifth generation standards are advancing mobile communication systems in several areas.
For the end-users, the evolution of access interfaces will advance the service quality—with increased
bandwidth, lower latency, higher availability—and make the connectivity available to billions of
new kinds of devices and applications, including IoT [3]. For operators, 5G systems provide lower
operating expenses, as new management approaches and virtualization technologies will improve
cooperation between different parties and ease service customization.

Fifth generation security architecture is an evolution of third and fourth generation (3G/4G)
security standards and architecture defined by Third Generation Partnership Project (3GPP) [4–8].
These specifications focus on the authentication between subscriber’s terminals and networks as well
as on protection of access and core network communication against external threats. Fifth generation
security approaches address these requirements but also new threats arising from new technologies
and applications. The requirements for security mechanisms include:

• Scalability and performance—Solutions for new and legacy threats must support high traffic
volumes and large device numbers with new emerging applications. Security solutions must
be scalable in a horizontal manner (more connected devices) and in a vertical manner (support
different applications with diverse requirements).

• Insider threat protection—Increased cooperation between different parties as well as complicated
security demands of emerging applications are new challenges. They force 5G security to
focus more on threats, which originate e.g., from weakly protected partner networks or from
mobile botnets [9,10].

The security architecture provides a holistic security perspective to mechanisms and interactions
in the 5G systems. Figure 2 illustrates a domain model of the security architecture [11,12] that was
developed in the 5G-ENSURE project. It illustrates domains with trust relationships. The model divides
5G horizontally into infrastructure and tenant domains—due to emerging virtualization of devices
and hardware—and vertically into user equipment, operator, and external network domains. These
domains are divided, respectively, into user subscriber identity module (USIM), identity management
(IM), and mobile equipment (ME) domains; to access network with different Radio Access Technologies
(RATs), serving network, transport network, and home network domains; and to third party and
Internet Protocol (IP) service provider domains. Slice domains illustrate the potential of 5G for
customization—dedicating separate logical resources for different applications or users. Management
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domains, where security monitoring solutions lie, are presented separately to emphasize 5G‘s focus on
efficiency and operability of networks.

Figure 2. Fifth generation (5G) security architecture (adapted from [11,12]) reflecting security monitoring
information that is shared across domains. USIM: user subscriber identity module; RAT: Radio Access
Technology; IM: identity management; KPI: key performance indicator; MEHW: mobile equipment hardware;
UICC: universal integrated-circuit card; IP: internet protocol.

2.2. Security Monitoring and Trust Management

Security monitoring is a process of collecting, analysing, and inferring security event information
in order to gain awareness of a system’s security state and trustworthiness as well as to detect
and enable responses to security incidents. Monitoring systems collect and share information
on events—occurrences that are relevant to the security of the system—from various sources.
Networks produce large amounts of event data. Security relevant information is composed of the
following categories:

1. Network configuration information reveals security capabilities and trustworthiness of the hardware
and software deployed to the network. This information consists of software configuration of
network functions (software vendors, identities, version information, and management practices) and
physical configuration of the infrastructure (topology, location of nodes, physical security, hardware
vendors, models). Furthermore, the number, location, and configuration of end-user devices, affect the
system’s security.

2. Status information on available security services allows for keeping track of protected assets.
For instance, use of different security protocols, algorithms, firewalls, and secure tunnelling
solutions should be monitored and failures recorded.

3. Traffic statistics, various counters, and key performance indicators (KPIs) can be used to detect
different ongoing threats and attack situations. For instance, abrupt high traffic peaks or resource
starvation situations can indicate malicious attacks.

4. Application data flowing through the network can be analysed in detail when packet traces (header and
payload data from different protocol layers) are available. Packets can be scanned, e.g., for malware.
However, in many cases encryption prevents such inspections anywhere other than in the originating
and destination domains.

5. Detected incidents reports are shared across domains to enable common defence actions e.g., against
distributed-denial-of-service attacks.

Different domains in the security architecture (Figure 2) all produce detailed data from these
categories. When sharing information across administrative boundaries (between operator and
external network domains) the focus has been on incident reporting that enable common reactions
to ongoing attacks such as distributed denial-of-service. As sharing of monitoring data in large
volumes is unfeasible and as this data may contain privacy- or business-critical information, security
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analyses are typically performed locally within administrative domains. However, there is a need for
cross-domain sharing of coarse-grained data on network trust compliance. Further, sharing of more
detailed information on configuration, statuses, and KPIs is beneficial when it enables mitigations of
more subtle threats.

Security monitoring is not a specific theme in 3GPP. However, 3GPP has specified [13,14] hundreds
of counters and KPIs to monitor, assess, and optimize mobile networks’ operability and efficiency.
These KPIs include parameters related to the performance of radio interface, network services,
and user’s experience. Some of these counters and KPIs also function as security indicators. Actually,
all abnormal or unsuccessful incidents in network systems, such as failed handovers or connection
setups, are by default carefully counted, and the reasons for failures are recorded whenever possible.
Furthermore, all major mobile system vendors (Nokia, Ericsson, Huawei and others) have extended
the standard approach and they provide advanced software products for network performance and
security monitoring as well as management.

The European Telecommunications Standards Institute (ETSI) NFV Industry Specification
Group is addressing the monitoring and management of mobile networks based on virtualization
technologies. The group has defined [15] scenarios and requirements for monitoring and discussed
related orchestration and management issues. The group has also published security and trust
guidelines [16], illustrating use cases and trust issues between different domains in virtualized future
telecommunication architectures. They consider the life cycle of trust (evaluating, re-evaluating,
invalidating, re-establishing) and present different methods for trust evaluation—including
reputational, game theoretical, probabilistic, and look-up tables. The guidelines classify trust relevant
parameters in to the following categories: geographical or logical network location, jurisdiction,
hardware and software capabilities, origin, ownership, execution history, last audit, and chain of trust,
and security mechanisms (encryption, physical security etc.).

The European Union Agency for Network and Information Security (ENISA) has surveyed threats
in the 5G landscape [17]. Their recommendations include the development of incident response
capabilities and information sharing practices among operators. Cooperation between operators
requires both capable computer emergency response teams and organizations enabling cooperation as
well as technical mechanisms for sharing of real-time information.

Research efforts for security management approaches for mobile networks include, e.g., Yan et al. [18],
who defined a high-level NFV-based framework and requirements for adaptive 5G security management.
Luo et al. [19] proposed security assessment mechanisms for SDN-based 5G networks. The mechanism
utilized attack graphs and an analytic hierarchy process to quantify security levels as well as to evaluate
costs of attacks and security.

Machine learning approaches [20] for monitoring the security state of mobile networks have also
drawn academic interest. Gupta et al. [21] used a supervised learning algorithm to analyse IP packet
streams from mobile terminals in order to detect distributed denial-of-service attacks. Shabtai et al. [22]
analysed mobile network traffic flows to detect malware.

Situational awareness solutions monitor a network in order to make automated decisions based
on analysed context knowledge. For 5G, Marquezan et al. [23] studied a monitoring and security
adaptation of 5G radio and access networks. Lopez et al. [24] proposed an incident management
architecture that combines different layers of 5G information, including NFV and SDN aspects,
conventional risk management schemes, and control loop for adaptive security.

2.3. Security by Software-Defined Networking

Software-Defined Networks (SDNs) ease network configuration and evolution as well as policy
enforcement. SDN is based on three principles that enable faster provisioning and configuration of
network connections [25–27]:

1. Decoupling of control and data plane—Data plane nodes (switches) query the control plane (SDN
controller) to give forwarding instructions when new packet flows emerge.
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2. Programmability of network services—The administrator may introduce complex rules and
programs for the control layer, which are then consistently executed in the data plane.

3. Logically centralized control—network administrators can program the behaviour of the traffic
in a centralized manner.

SDN is typically used with network function virtualization (NFV) technologies [28]. NFV provides
a virtualization framework where it is possible to create mobile network entities and services as Virtual
Network Functions (VNFs) on demand and place them at the most suitable location using the most
appropriate amount of resources.

Network slicing [29] is a concept based on SDN. It enables the deployment of multiple logical
networks independently on a common physical infrastructure platform. Network slices are created
on-demand and they are isolated and restricted to the assigned resources. Micro-segmentation [30] is
a concept originating from data centres, but its viability has been considered [31] for mobile networks
as well. In a 5G network, a micro-segment can be defined as a network portion, which has been
dedicated to a particular application or user and which protects particular (critical) network functions
with the same security requirements. While an end-to-end slice contains all functions needed to create
5G connectivity, micro-segments may contain only one or a few functions that are secured using
micro-segment specific means and policies. Micro-segments may be utilized to deploy fine-grained
isolation, specific access controls, and tuned security policies and controls that fulfil application-specific
trust models.

SDN provides inherent capabilities for monitoring as switches feed information to a controller
that can analyse the data in a centralized manner and the network can easily react to data flows
related to threats. However, SDN introduces new challenges. Liyanage et al. [32] presented attack
vectors that the introduction of SDN will bring for mobile networks. New interfaces, control protocols,
and centralized architecture may be vulnerable for attacks and reduced diversity enables attacks to
propagate quickly.

Researchers have proposed several concepts and tools for monitoring communication flows
in SDN. For instance, OpenNetMon by van Adrichem et al. [25] is an approach and open source
tool for monitoring data flows. It focuses on Quality of Service (QoS)-related metrics, in particular,
polling statistics from edge switches at an adaptive rate in order to verify that throughput, delay,
and packet loss are acceptable. OpenTM by Tootoonchian et al. [26] utilized OpenFlow statistics for
traffic estimation in order to, e.g., optimize load balancing in SDN or to detect anomalies. OpenSAFE
by Ballard et al. [27] utilized OpenFlow-based SDN to route selected traffic to monitoring appliances
for deeper analysis without impacting network performance. Donatini et al. [33,34] developed
an SDN-based monitoring platform for 4G networks to detect issues causing complexity and high
bandwidth. Youssaf et al. described technologies [35] These tools have mainly focused on quality
and performance issues in general. However, they are also helpful when monitoring security attacks
affecting quality and performance.

3. Framework for Security Monitoring and Multi-Domain Trust Management

This section presents a scalable and flexible framework for security monitoring, inferencing,
autonomous protection, and trust knowledge sharing between different stakeholders. The framework
builds on SDN, information distribution, and inferencing solutions. First, we present an architecture
that illustrates essential components and their requirements. Then, we describe in more detail the
opportunities that SDN brings for monitoring. Finally, we describe a mechanism for sharing security
and trust information between domains.

3.1. The Framework

The monitoring framework, illustrated in Figure 3, is a collection of enablers and features (software
components for extracting security awareness from 5G networks) and information sharing mechanisms
for tying these enablers together. The framework consists of the following enablers:
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1. The micro-segmentation enabler facilitates creation and control of slices. It organizes and isolates
network traffic flows. The enabler is a software component that uses a virtualization platform,
access control functions, and an SDN controller to create slices and manage and adapt traffic flows.

2. Monitoring brokers distribute security event information. Brokers combine event flows from
parts of the network within the end-to-end slice and make them available for different security
inferencing functions.

3. The inferencing platform and functions generate security awareness from monitored data.
The platform provides libraries for correlating and analysing large amount of streaming
data flows.

4. Security adaptation mechanisms change the behaviour of 5G networks and security control
mechanisms based on inferred knowledge on risks and trust levels.

5. The Trust Level Agreement (TLA) mechanism and Trust Metric Enabler facilitate knowledge
exchange across administrative domains. The TLA enables the orchestration of end-to-end
trustworthy slices.

Figure 3. The monitoring framework. VNF: Virtual Network Function; SDN: Software-Defined
Network; TLA: Trust Level Agreement.

3.2. Event Brokering

The glue in the monitoring framework is the information brokering mechanism. It enables
different parties to connect each other and share information and knowledge. The proposed paradigm
for information distribution is to ‘publish and subscribe’. In this paradigm, the information is published
to a central element broker, which then forwards information to components that have subscribed to
that particular information flow. The approach increases the scalability and flexibility of 5G security
monitoring as:

• It is easy to add new heterogeneous event sources to the system without changes to the broker or
existing inferencing applications.

• Inferencing components can be integrated to the system for processing and inferencing of event
streams as needed and reused in different applications.

• Events are efficiently provided only for those components that are interested on them.

Security event information sources include, for instance, SDN controllers that feed the broker
with SDN topology, and authentication events, as well as traffic statistics. Different 5G network
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functions (e.g., for mobility management, routing, authentication, traffic acceleration) may also collect
and publish security event information while deep traffic inspectors intercept and analyse traffic
flows—headers and payloads—in detail.

The framework deploys ‘big data’ technologies for information brokering and inferencing.
Existing general purpose complex event processing as well as publish-and-subscribe platforms,
supporting cluster computing, are utilized to handle large numbers of event streams and infer
knowledge in near-real time.

3.3. Security Inferencing

The inferencing platform and its functions provide dynamic security responsiveness for the
network. The platform functions realize the autonomous control loop [36] in which analyses monitored
events, plans control actions, and then executes those actions. Analysis functions include rule-based
threat detectors and anomaly detectors, which are based on machine learning. Inferencing functions are
supported by different reusable complex event processing functions that merge, correlate, or aggregate
event information flows. Rule-based reasoning determines the risk level for the anomaly in the network
context (e.g., heavy traffic from a device maybe interpreted as potential DoS attack). The planning phase
selects a mitigation function (e.g., quarantining a suspected node from the network). The execution
phase then requests the mitigation function to perform a control action, for instance, for SDN to block
a suspected node.

3.4. Customizing Security by Software-Defined Networking

The framework utilizes SDN to isolate traffic flows that are related to different applications or
users. Consequently, different monitoring, inferencing, and control functions may be applied for
different applications. The approach provides scalability to 5G monitoring in the sense that it allows to
use more computationally expensive algorithms as different algorithms may be dedicated to different
data flows. For instance, some IoT applications may be more vulnerable to availability threats and
hence analysis on an IoT-specific slice may focus more on such threats and less on threats related to
privacy or tracking of a terminal’s location.

The framework includes a micro-segmentation enabler that is used to: (1) control and create
virtualized network slices; (2) control access to SDN; (3) collect monitoring information from SDN;
and (4) enable cooperation between SDNs in different domains. The enabler parses traffic statistics
available from software switches and sends them in a format supported by the broker. The enabler
can support different authentication mechanisms. The cooperation between different slices in single
administrative domain is sustained by creating secure tunnels between them.

Deep traffic analysis is enabled by redirecting particular data flows to traffic inspectors. Different
inspectors may be applied to examine headers and data payloads in order to detect protocol
non-compliance, malicious content, or other policy violations. Packet inspectors need to be delivered
decryption keys for encrypted data payloads that they are authorized to inspect.

3.5. Trust Level Agreement between Slices and Domains

SDNs in different domains provide different security levels. For instance, operators may have
different security practices and security may be customized for applications. The users of 5G slices
can be organizations, service providers, end-users, or cooperating operators. They all need to be
continuously and strictly aware of how trustworthy the network services they get are, and whether
the network fulfils their security requirements.

Security information shared between domains must be at least near-real-time and thus support
dynamic scenarios where the client, which is, for example, an end-to-end multi-domain orchestrator,
may at any time change to another operator or network. However, disclosing all security-related
information is not often feasible due to the volume and complexity of information as well as the
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sensitivity of the information for operators—it may reveal company secrets, privacy critical data,
or weaknesses that could be utilized by attackers.

The Trust Level Agreement (TLA) mechanism enables sharing of near-real time measurements
that can be used in end-to-end connectivity management and orchestration. The TLA mechanism
enables 5G users to specify and track the required level of security for the network. Users can specify
arbitrary trust models and requirements that must be fulfilled before they accept the network. The TLA
is implemented by the Trust Metric Enabler. It ensures that trust requirements are continuously fulfilled
and informs users of critical changes in the monitored trust levels. The enabler may also be used
to hide domain-specific complexities and details that may be sensitive from a privacy or operator
perspective. There may be explicit controls on what information is disclosed. Also, as the trust metrics
are calculated per application-specific slice, the enabler inherently ensures that information on other
slices and applications does not leak.

The messaging diagram, in Figure 4, illustrates four simplified phases of TLA communication.
In the first phase, the Trust Metric Enabler monitors network for security relevant events and
measurements. In the second phase, a client, wishing to use a 5G slice, requests the enabler to resolve
whether the given slice fulfils the client’s trust demands. In the third phase, the client has found
a network slice it trusts. The service provider and the client agree the use of it and establish a secure
tunnel for communication. The fourth phase illustrates how the Trust Metric Enabler continuously
monitors the network and informs the client of critical status changes.

Figure 4. Trust Level Agreement messaging—The framework aggregates, filters, and brokers of security
information between domains (updated from the Trust Metric Enabler’s open specification [37]).
VPN: Virtual Private Network.

4. Security Scenarios of Multi-Domain Data Correlation

This section presents two scenarios for 5G security. We will first describe the threats and then
propose novel approaches based on multi-domain metrics for assessing the existence of threats.

4.1. IoT Authentication Storms and Adaptive Group Authentication

In 5G systems, new emerging IoT applications cause additional threats to availability [38,39].
The previous mobile network generations were designed for user devices that authenticated at an even



Future Internet 2018, 10, 27 10 of 24

pace. In 5G systems, simultaneous authentication events may cause an excessive traffic and processing
burden for 5G Authentication, Authorization and Accounting (AAA) services. Pre-5G authentication
services (particularly Home Subscriber Server, HSS) were not designed to handle situations where
thousands or millions of devices authenticated simultaneously. In IoT, devices often behave differently
to phones by sending short periodic communication bursts, e.g., they may switch on or send reports
at even hours or when the sun starts to shine. Thus, many devices may authenticate to the network
at the same time. Furthermore, adversaries—aiming to perform a denial-of-service attack—may use
different means to initiate traffic spikes. As a result, authentication processing may face a heavy
overload situation and thus 5G service becomes unavailable. Solutions to the threat include blocking
of detected adversaries [40] as well as gateways and group authentication schemes [41,42] where the
serving network handles more of the authentication signalling load.

In this scenario, illustrated in Figure 5, we monitor signalling in three domains involved
in authentication: access, serving, and home network domains. The collected monitoring data
includes SDN traffic statistics towards authentication components as well as the used and available
authentication mechanisms.

An overload situation in one domain may then trigger different control actions:

1. In a situation where a home network has enough capacity, the system allows devices to
authenticate directly with the home network using, e.g., a standard authentication and key
agreement (AKA) [5] protocol.

2. In a case where a monitor detects an overload situation in the home network domain, it adapts
security controls in access and/or user equipment domains so that traffic flows are blocked and
devices are required to use group authentication mechanisms instead. These mechanisms require
less effort from the home network but may also have some downsides with respect to the access
network performance or for the security level [43].

3. In a situation where the access network does not have enough capacity for group authentication,
the monitoring system may allow device access through trusted gateways which authenticate
devices locally. This solution is the most scalable but places trust in local gateways.

4. In a situation where a slice subscriber has specified a trust model with high integrity requirements,
the strongest (e.g., direct authentication with home network) is applied even if that means
that some devices will be disconnected. The slice may also have set particular trust models,
which define the amount of devices that can be connected to a slice using group authentication
mechanisms and for which authentication mechanisms are possible.

The controls can be implemented through the SDN means by redirecting traffic flows to a slice
that provides authentication services suitable for each situation.

Figure 5. Domains and information in the authentication storm scenario. GW: gateway.
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4.2. Location Tracking and Adaptive Privacy Protection

A device’s location can be tracked by eavesdropping identifiers that are transmitted in clear
text between a base station and a user terminal. For instance, the location can be tracked [44,45] by
using Globally Unique Temporary Identifier (GUTI) or Temporary Mobile Subscriber Identity (TMSI).
Devices use these identifiers to detect signals that are targeted for them and hence they are sent
unencrypted. The identifiers are pseudonyms but are randomly changed (typically only in roaming
situations). Broadcasting a temporary identifier, which is known or suspected to belong to Alice,
is an indication that Alice is close to the broadcasting base station. Hence, if such identifiers are
not changed (re-pseudonymized) before an adversary is able determine which identifier belongs to
a victim, the victim’s location can be tracked. In 5G systems, the cell sizes in urban environments are
becoming smaller, and thus location tracking is becoming more accurate. In a typical attack, Mallory
triggers communication (a harmless looking short message, email, internet call, or instant message) to
Alice that will cause signalling in radio interfaces where Mallory is listening.

The solution to this location tracking threat is to change (re-pseudonymize) temporary identifiers
often enough but not so often that excessive signalling is caused. The challenge in this approach is to
know when to change identifiers.

We propose using a monitoring system (adaptive security controller in Figure 6) to track application
layer communication in order to infer what the optimal re-pseudonymization time is. Identifiers do not
need to be changed if there have not been any traffic flows that could had been triggered by an adversary.
The security controller must have application domain knowledge on the potential sources of Mallory’s
reconnaissance messages. For instance, Mallory may trigger communication through Alice’s email and
social media servers. The monitor, in the access network domain or network domain, may then track
the incoming messages (large encrypted packets) from these server addresses. In case, when the security
controller sees such messages, it triggers re-pseudonymization in the access network domain.

Figure 6. Domains and information in location tracking scenario.

The identifiers must be reallocated at the same time for all the nodes in the same cell and slice.
If reallocation were to be done only for the targeted node, the mechanisms might leak information as
the adversary, after initiating malicious flows, would notice a new identifier emerging.

The adaptive privacy protection maximizes privacy protection while trying to optimise
reallocation signalling. The approach provides operators a chance to differentiate privacy services.
As the approach requires more monitoring, it can be provided as an optional service that is available
in a particular slice that has been created with SDN and dedicated for particular application. For many
applications, such as for vehicles and medical devices, there may be less revealing connections and
reallocations can be sparse but the privacy threat may be large. However, the solution may be
unfeasible for some applications. For example, for some IoT equipment with fixed geostationary
locations, tracking is not a threat and thus identifier reallocations are not needed. For some cells with
lots of active devices with frequent messaging and social media applications, the signalling overhead
due to mechanism can be large. In these cases, an operator may consider the most feasible reallocation
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frequency, considering whether the operator should provide a service with a high privacy level where
reallocations are executed after every potential compromising flow or whether the operator should
delay reallocations.

The amount of worst case signalling overhead caused by adaptive privacy protection can be
estimated. The worst-case pseudonyzation frequency is given by the number of revealing messages
divided by the number of messages that is needed to map a pseudonym to users identity multiplied
by the number of average connected devices to a base station. For instance, it may be assumed that the
average number of social media messages is 32 [46], the number of users connected to a base station is
750 [47], and that an attacker needs to send 10 social media messages for mapping [45]. In this case,
the worst case amount of reallocations is 2325 per day. However, in practise the revealing messages
will arrive in overlapping time periods: after a reallocation is made an adversary must send the ten
probing messages again.

5. Implementation

This section describes our implementation of the framework and enablers. Detailed interface
specifications [12] and user manuals [48] are available from the 5G-ENSURE project website [49].
Figure 7 illustrates the components and technology selection for the prototype implementations.
It also highlights the information distribution aspects of the framework. It shows how different
elements are connected and how the security-related information flows. The architecture separates the
network and infrastructure specific security event sources (below the broker) from the application-
and resource-specific security processing and inferencing (above the broker). The figure illustrates
planned event publishers (blue in the figure), event consumers (i.e., inference components—green in
the figure), and event distribution and processing framework (red in the figure).

Figure 7. Framework for distribution of security event information—showing technology selections
for prototype implementation (updated from the user manual of the monitoring enabler [48]). EPC:
Evolved Packet Core; CEP: Complex Event Processing; AA: Authentication and Authorization; IDS:
Intrusion Detection System.

5.1. Micro-Segmentation Enabler

A micro-segmentation enabler is a software component facilitating creation, deletion and control
of slices within SDN. The enabler uses a modified OpenVirteX virtualization platform [50,51] to create
slices and the Ryu SDN controller [52] to manage and adapt traffic flows. The enabler has been
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integrated with different authentication protocols including the Extensible Authentication Protocol
-Authentication and Key Agreement (EAP-AKA) [5] and the EAP Method for MD5 hash (EAP-MD5),
which is a computationally light SIMless alternative for IoT devices. Furthermore, the enabler supports
multi-domain cooperation by supporting the creation of IPsec VPN tunnels between different slices.

The development and testing was done on a Linux host on top of Mininet environment [53],
which emulates OpenFlow-supported network and hosts, using Open vSwitch virtual switches [54]
and Linux namespaces.

The micro-segmentation enabler provides an interface that can be used to publish traffic statistics
as well as topology and authentication events to the monitoring enabler. Furthermore, it provides
an interface that monitoring enablers can use to request control actions, especially to quarantine
particular nodes from the network.

5.2. Sharing of Monitoring Data

The monitoring enabler utilizes Apache Kafka [55] as an event broker to distribute information
between event producers and event subscribers. Kafka is a publish-and-subscribe system that has been
designed to be fast, scalable, and durable. Kafka brokers can be clustered to provide more resources
elastically and transparently. A broker keeps messages on disk and replicates them within a cluster to
prevent data losses. Each broker should be able to store terabytes of messages and handle megabytes of
reads and writes per second from thousands of clients. Event information from a broker in one domain
may be subscribed and delivered to other brokers in order to further distribute decision making
(to enable further scalability) and to enable domains to share information and detect cross-domain
attacks, for example. To control information sharing across domains, Kafka provides authentication
and authorization functions.

The framework is targeted for near-real-time processing of monitored data streams. However,
in security inference, history data is also needed, e.g., short-term history for correlation analysis,
and a longer history for machine learning. Smaller amounts of history data can be stored by the broker
and for longer term history data the inference components must be integrated with a database for
storing relevant events. Kafka integrates easily with Hadoop, which is the recommended database for
the framework deployments.

5.3. Security Inferencing and Anomaly Detection

The platform for security inferencing is Apache Spark [56]. Spark is a general engine for cluster-based
data processing originating from UC Berkeley. It provides specialized data processing libraries (including
Structured Query Language (SQL) and DataFrames, MLlib for machine learning, GraphX, and Spark
Streaming), which may be combined to create parallelized applications. Spark is designed to be fast,
and by supporting mainstream languages (Java, Scala, Python and R languages) it is easily accessible
for developers. It can be run as a stand-alone mode or, e.g., within Hadoop—which is a framework for
distributed storage (using Hadoop Distributed File System, HDFS) and processing (using MapReduce) of
large sets of (history) data.

The Monitoring Enabler is a Python application that subscribes and processes event information
in order to, for example, detect anomalies or occurring attack patterns or to generate security status
information for other security/trust components. Inferencing information users at the end of the chain,
the Trust Metric Enabler and Adaptive Security Controller are then expected to infer knowledge on slice’s
security situation, i.e., provide trust metrics or initiate some security responses.

The anomaly detection mechanism integrated into the current implementation is streaming-
k-means clustering [57,58] which is an unsupervised machine-learning algorithm. Streaming-k-means is
an adaptation of a K-means algorithm [59,60], which partitions a set of data points (feature vectors) into
k number of clusters. The original k-means algorithm learns a clustering model during a training period.
Anomalies are then found by calculating the distance of new data points from the cluster centre points
and determining whether the distance is larger than the predefined threshold. Streaming-k-means
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provides support for forgetfulness; the algorithm can learn over time how the clustered data changes.
The algorithm is therefore suitable for dynamic environments where devices are connecting and
disconnecting to the network and initiating new connections (even in normal non-attack situations).
A challenge for the algorithm is to detect attacks that are gradually strengthening or which are
variations of previously seen attacks (if those have not been excluded from the clustering model).

5.4. Trust Metric Enabler

The Trust Metric Enabler is a Python application that implements the Trust Level Agreement
Mechanism, specified in Section 3.5. It simplifies the security monitoring from the client’s perspective.
The enabler is requested to follow particular 5G measurements and events and determine how well
they match a trust model specified by the client. The enabler notifies clients only if changes occur in
the network that affect client’s trust towards it. The implementation utilizes a Kafka framework to
collect measurements as well as to exchange trust models and trust metric information with clients
at run-time.

Trust models specify requirements that the 5G network must fulfil to provide the required trust
level. All requirements stated in the model must be fulfilled to confirm that the network is trusted.
The current implementation supports three types of measurements:

• Service—Stating that a particular service is running. “The service must be running for the network
to be trusted”.

• Max_level—Setting an upper boundary for particular aggregated events. “There must be at most
x number of events y occurrences for the network to be trusted.”

• Min_level—Setting a lower boundary for particular aggregated events. “There must be at least
x number of events y occurrences for the network to be trusted.”

Trust models are presented using JavaScript Object Notation (JSON) files. A simple example
is given in Figure 8. The example contains an identifier of the model and a requirement that two
particular enablers must be running, as well as requirements that the number of devices that have
been authenticated using MD5-based AKA is at most 50, and that the anomaly level is 1.

Figure 8. A trust model example.

Trust models are sent to the Trust Metric Enabler, which provides metrics as a reply, first when
the request is made and then again if the metric changes. Metrics are presented as a simple JSON file,
with the model’s identifier (as specified by the Trust Model Creator) and its value. The enabler counts
the amount of rules in each trust model and can be used to filter models that provide only few rules
and hence may, for example, leak privacy critical information.

5.5. Mobile Network Testbed

To evaluate the framework, we developed a testbed composed of example applications (IoT
and video streaming) and software implementations of mobile network’s core functions, as well as
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emulated User Equipment (UE) and radio access network functions. The testbed produces realistic
traffic patterns that were then analysed using machine learning algorithms (See Section 6).

The testbed’s devices comprised (see Figure 9) one laptop computer connected via WiFi and
Ethernet to a server in the local laboratory network named Willab. User Equipment (UE), Evolved
Node B (eNB), and all Evolved Packet Core (EPC) components were run on the laptop. For those,
we used OpenEPC Rel. 6 [61] that implements the EPC components and emulates eNB and UE
functionalities in various virtual machines. In our case, the UE, eNB, and Packet Data Gateway
(PGW) each had their own virtual machine. The Serving Gateway (SGW) and EPC-Enabler virtual
machines contained more than one component, e.g., the SGW’s virtual machine supported the Mobility
Management Entity (MME) in addition to the SGW. The EPC-Enablers also contained the Media
Delivery Function (MDF) server that was used for streaming video to the UE. The virtual machines
were connected to each other through virtual network interfaces (net_a/b/c/d in the figure). In our
setup, the UE used an Long Term Evolution (LTE) connection to the eNB and the EPC. The OpenEPC
also supports WiFi connections, but we did not utilize them in these tests. Traffic can be generated
by activating any application in the UE or on the server. We implemented the libcoap [62] client and
server to generate IoT traffic that uses the Constrained Application Protocol (CoAP) [63]. The Session
Initiation Protocol (SIP) [64] was needed to initiate and control the video streaming sessions over
a Real-time Transport Protocol (RTP) [65]. The traffic data from each interface was captured with
Wireshark [66]. The captured packet traces can then be further analysed with security inferencing
algorithms from Spark.

Figure 9. The testbed. UE: User Equipment; SGW: Serving Gateway; MME: Mobility Management
Entity; CoAP: Constrained Application Protocol; PGW: Packet Data Gateway; DNS: Domain Name
System; HSS: Home Subscriber Server; MDF: Media Delivery Function; LTE: Long Term Evolution;
IMS: Internet Protocol Multimedia Subsystem.
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6. Characteristics of Application-Specific Data in the Mobile Network Testbed

We illustrated and studied how application isolation affects the characteristics of data flows
in mobile networks by building two experimental arrangements with our mobile network testbed.
Essentially, we studied the characteristics in a single application scenario—with homogeneous traffic
flows—and then compared it to a multi-application scenario—with more heterogeneous flows. In the
first scenario, we monitored a mobile network running an IoT application. In the second scenario,
we analysed the mobile network supporting both video streaming and IoT applications.

6.1. EPC Data from Video and IoT scenarios

Data was collected from different measuring points in our testbed (as depicted in Figure 9).
The measured time was roughly two minutes. The feature vector used in the analysis contained four
individual packets: the destination and source IP address and timestamp, as well as used protocols.
Most of the traffic consisted of IoT or video traffic over CoAP or RTP protocols, respectively. In the IoT
only scenario, the number of CoAP packets comprised 53–57% at all measurement points except at
net_d, where CoAP packets presented only 36% of all packets. The Address Resolution Protocol (ARP)
covered also 36% at that point. In the video and IoT scenario, video produced 96–97% of all packets at
all measurement points, while only 1% were from CoAP. This is due to the much greater CoAP packet
interval of two seconds, which also explains the rather low packet percentages for CoAP in the IoT-only
scenario. In the video scenario, also some SIP packets that control the video stream were detected.
Otherwise, the rest of the packets belonged to the Spanning Tree Protocol (STP), the Internet Control
Message Protocol (ICMP, ICMPv6), the Stream Control Transmission Protocol (SCTP), the Address
Resolution Protocol (ARP), and the Domain Name System (DNS).

The heterogeneity of the data collected from the testbed is visualized in Figure 10 (data seen
when only IoT applications were used) and Figure 11 (data seen in combined video and IoT case).
The illustrations were done using a Multidimension Scaling (MDS) algorithm [67,68] that places
our multi-dimensional data objects into a four-dimensional diagram (where colour is the fourth
dimension) in a manner that the distances between objects are preserved as well as possible. The MDS
algorithm provides a visual mean—by comparing the shapes of result diagrams—to measure the level
of similarity of datasets.

Figure 10. Multidimensional scaling illustration of the testbed communication with Internet of things
(IoT) applications only.
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Figure 11. Multidimensional scaling illustration of the testbed communication with video and
IoT applications.

The figures illustrate the increased diversity between the two scenarios. In practice, the difference
comes from the fact that in the video and IoT scenario there are more packets, more protocols, as well
as more data flows going from different destinations to different sources.

6.2. Effects on Machine Learning

The data sets were also analysed using machine learning algorithms in order to study how the
homogeneity affects to data analysis. The used algorithms were k-means [59,60], which is a well-known
clustering algorithm often used in anomaly detection, and bisecting-k-means [69], which is a fast variation of
k-means where clusters are found hierarchically. We studied differences in the complexity of optimal models
(i.e., the optimal cluster amount k). For the analysis, the collected data was first normalized using scripts
based on scikit-learn library [70,71] and then analysed with of Apache Spark’s clustering algorithms [72].
The results are only suggestive. The results of the k-means algorithm depend on the data set and may in
some cases provide counterintuitive results. For this analysis, we used our IoT and video-IoT data sets,
that have lots of similarities (the same core network signalling).

The k-means algorithm clusters data points into k amount of clusters. The accuracy of a learned cluster
model is evaluated by measuring the variance (so called Within Set Sum of Squared Errors—WSSSE),
which is the combined Euclidean distance of all data points to their nearest cluster centres. Figure 12
illustrates these distances in the two distinct data sets. The y-axis shows distance values, while the x-axis
depicts the k value. In k-means the average error distances decreases while cluster amount value increases
but on the other hand a large k value makes models less feasible. The effective k value locates in ‘elbow’
points of diagrams where a decrease of WSSSE slows down.

By looking the figures, we can see that in both cases, the distance to closest cluster centroids is
smaller for the IoT data than it is for the combined IoT and video data (y-axis). However, the curves in
the diagram cannot be directly compared as the scales for different data sets are different. Therefore, to
find the optimal k-amount we compared diagrams using the shape of the diagram and by locating the
‘elbow’ points.
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Figure 12. The k-means clustering for IoT only and video/IoT scenarios. The diagram illustrates
average distances to cluster centroids with different numbers (k) of clusters. The left side y-columns
provide values for IoT data (red curves) and the right side y-columns provide values for video/IoT
data (black curves). WSSSE: Within Set Sum of Squared Errors.

When considering the complexity of the model (amount of clusters), the results from the k-means
provide some indications that the same accuracy can be achieved with a smaller cluster amount in the
IoT only case) than in the combined scenario. The k-means figure illustrates that the IoT-only curve
turns upwards to a greater degree than the combined curve, so the elbow for the IoT only curve is more
on the left. To obtain some numerical estimates about the differences in optimal k values, we looked at
the ratio between the decrease in WSSSE value and the previous value. The decrease is less than 5%
when k is 17 for the IoT-only data and 20 for the combined data. Hence, in this case, k is three clusters
(15%) smaller for homogeneous data than for more heterogeneous flows. The fewer centroids there are,
the more likely it is that random and uniformly-distributed ‘malicious’ data points generate a longer
distance to the centroids and, hence will be correctly interpreted as malicious. Detection of anomalies
is likely to be easier when the average distances are small as in these cases the detection threshold can
be set lower and will catch more anomalous datapoints.

The results from bisecting-k-means (Figure 13) did not produce the same advantages in the optimal
cluster count. The algorithm utilizes the hierarchical algorithm where clusters are split recursively as
the algorithm progresses. The ‘elbow points’ were at the same locations for both the IoT and IoT/video
data sets.

Figure 13. The bisecting-k-means clustering for IoT only and video/IoT scenarios. The diagram
illustrates average distances to the cluster centroid with different numbers (k) of clusters. The left side
y-columns provide value for IoT data (red curves) and the right side y-columns provide values for
video/IoT data (black curves).
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7. Discussion

Security monitoring and sharing of the security knowledge are essential enablers for ensuring
the security of the 5G systems and the new emerging applications. Firstly, they support design time
security planning as they enable different actors to develop and deploy mechanisms that address the
security issues that emerge frequently. Secondly, they also support operational (run-time) protection of
systems, as they enable different parties to exchange information on their security capabilities and
readiness to fulfil other parties’ requirements. They also advance run-time responsiveness to detected
security incidents and automation of security protection.

Monitoring enables SDN orchestration, i.e., autonomous adjustment of network’s behaviour and
cooperation. Based on the knowledge of threats and the trust situation gained by monitoring and
inferring, the security behaviour of a 5G network can be adapted in different manners. For instance,
traffic flows can be filtered or redirected, nodes can be blocked from the network, alternative security
protocols can be deployed, and security monitoring can be intensified.

SDN-based slicing enables security monitoring to focus on particular threats and traffic types.
Algorithms that analyse the same information and detect the same threats from large heterogeneous
traffic masses are possible—but more complex—to develop. It is simpler and easier to implement
monitoring algorithms for homogeneous data streams. The development of modular monitoring
solutions is more flexible, faster, and scalable as we can focus on the relevant threats only.

In principle, conventional network management, firewalling, routing, and monitoring solutions
provide a means of separating applications and to focus monitoring on particular data flows. However,
conventional approaches suffer from complexity as policies must be defined on top of large and
versatile mobile network settings. With SDN, we can do slicing more efficiently and with fewer errors.

The proposed framework can detect different kinds of threats. In Section 4, we discussed location
tracking and IoT botnet scenarios in more detail. Other potential use cases could include:

• Detecting man-in-the-middle (MitM) attacks by following times that it takes for specific
packets to cross different domains and detecting if there are delays that could indicate MitM.
Such an approach can be used to improve application domain security—e.g., to detect attacks
against two-channel authentication/verifications used for example in bank applications or in
company intranet authentication.

• Downgrading attacks—detecting cases where a capable device is forced to use connectivity
alternatives (5G ≥ 3G, 4G, or WiFi) that may have weaker protection. Such attacks can be detected
by monitoring the use of weak connectivity alternatives in locations where stronger mechanisms
are available.

• Location spoofing by end-points—A device may want to spoof its location to an end-service in
order to circumvent location-specific access controls. For instance, a sensor may be stolen and
transferred to another location in order to spoof a data collector. Such attacks can be detected by
monitoring which base stations are used to connect to the network. SDNs can also control access
so that access to slices is only possible from particular locations.

Our SDN-based approach focuses on threats within network slices dedicated for particular
applications. However, in many applications the adversary has access to several slices. For instance,
the adversary may use one slice for control or reconnaissance purposes while another slice is used in
actual attacks. An example environment for these cross-slice threats could be, for instance, a connected
car that needs access both to “navigation” and “entertainment” slices. When a car is detected to be
involved in an attack within a “navigation” slice (say providing bogus traffic statistics), the domain
might drop this car also from the “entertainment” slice (as this slice may be used as a control channel
for the navigation attack).

This means that the solutions monitoring different slices should share and correlate information.
Consequently, some of the advantages brought by focusing only on homogeneous data streams are
lost. However, the amount of information that must be shared across slices may still be insufficient
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with respect to the amount of information that the monitoring of one heterogeneous unsliced network
would require. At the maximum, information would need to be shared only between those slices that
have common users.

8. Conclusions and Future Work

We studied how to utilize software networking and virtualization concepts to slice and segment
a 5G network into small portions that are easy to manage and monitor. We also proposed an SDN-based
monitoring framework that separates different phases of monitoring: information collection, distribution,
inferencing, and control actions. The framework provides flexibility and eases application-specific and
spatial customizations of security monitoring and control solutions for 5G. Also, to enable more accurate
threat detection, our framework supports cross domain (between different 5G stakeholders) exchange of
security knowledge and trust measurements. We evaluated the feasibility of our proposals by describing
two monitoring scenarios—with cross domain-correlated metrics and with novel control proposals.

We also argued that monitoring accuracy increases as customized monitoring can focus on few
specific data flows. The results we gained from the testbed illustrate that SDNs dedicated to only
one application provide more homogenous data flows than SDNs that support more applications.
This indicates that application-dedicated software networks can simplify monitoring and autonomous
control and thus decrease the numbers of false positives and false negatives in anomaly detection.
The initial results on monitoring accuracy should be verified with larger data sets and with different
applications. We utilized MDS, k-means, and bisecting-k-means algorithms for data analysis. In the
future, more work will be needed to evaluate how different learning models, such as k-means||,
spectral clustering, Density-based spatial clustering of applications with noise (DBSCAN), may be
applied and which models are suitable for which applications. More work also is needed to understand
how well these approaches respond to different kinds of attacks. Specific attention should be given to
cross-slice threats where an adversary has access to many applications and slices.
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