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Abstract: Artificial Intelligence in combination with the Internet of Medical Things enables remote
healthcare services through networks of environmental and/or personal sensors. We present a remote
healthcare service system which collects real-life data through an environmental sensor package,
including binary motion, contact, pressure, and proximity sensors, installed at households of elderly
people. Its aim is to keep the caregivers informed of subjects’ health-status progressive trajectory,
and alert them of health-related anomalies to enable objective on-demand healthcare service delivery
at scale. The system was deployed in 19 households inhabited by an elderly person with post-
stroke condition in the Emilia–Romagna region in Italy, with maximal and median observation
durations of 98 and 55 weeks. Among these households, 17 were multi-occupancy residences, while
the other 2 housed elderly patients living alone. Subjects’ daily behavioral diaries were extracted
and registered from raw sensor signals, using rule-based data pre-processing and unsupervised
algorithms. Personal behavioral habits were identified and compared to typical patterns reported in
behavioral science, as a quality-of-life indicator. We consider the activity patterns extracted across
all users as a dictionary, and represent each patient’s behavior as a ‘Bag of Words’, based on which
patients can be categorized into sub-groups for precision cohort treatment. Longitudinal trends of the
behavioral progressive trajectory and sudden abnormalities of a patient were detected and reported
to care providers. Due to the sparse sensor setting and the multi-occupancy living condition, the
sleep profile was used as the main indicator in our system. Experimental results demonstrate the
ability to report on subjects’ daily activity pattern in terms of sleep, outing, visiting, and health-
status trajectories, as well as predicting/detecting 75% hospitalization sessions up to 11 days in
advance. 65% of the alerts were confirmed to be semantically meaningful by the users. Furthermore,
reduced social interaction (outing and visiting), and lower sleep quality could be observed during
the COVID-19 lockdown period across the cohort.

Keywords: ambient assisted living; binary sensor network; unsupervised behavior modeling;
sleep quality analysis; outing/visiting detection; behavior pattern extraction; anomaly detection

1. Introduction

The elderly population is growing more rapidly in comparison to other age groups
worldwide [1]. Consequently, the delivery of adequate personal healthcare services for
the aging population is not only of great concern of their loved ones, but also is becoming
crucial in maintaining a healthy functioning society. In particular, the current healthcare
infrastructure would have to be expanded to cope with the increasing demand. Thus,
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technologies that supports ‘aging in place’, where elderly can live independently and safely
at the comfort of their own homes for as long as possible, have been proposed in recent
years to mitigate the rising healthcare costs [2]. The goal is to establish systems to report
on health status objectively and automatically, informing caregivers about subject habits,
trends and critical conditions.

Presently, most geriatric methods rely on manual administration and on
internationally validated questionnaires designed for different medical purposes, to di-
agnose the physical and cognitive condition of a patient. In practice, such investigations
are often carried out through home visits by healthcare professionals, or hospital visits by
patients. This approach is labor intense, results in sparse health state reports and thus, is
not an appropriate solution for the growing elderly population and their need for long-
term monitoring. In particular, when a high visiting frequency (e.g., on a daily basis) is
required. Additionally, the response collected through self-reported questionnaires does
not fully reflect the objective medical condition of the patients. It is challenging for patients,
especially elderly patients, to recall all past events at assessment time, thus early signs of
behavior change are often missed. Researchers have found that between 29% and 76%
of age-related cognitive impairment are difficult to be detected and assessed in the brief
time available during an office visit [3]. Finally, from a privacy point of view, patients
claim that it is not always easy to discuss private health concerns in person, and there
should be better options, which could be carried out without interfering with their daily
life [4]. In particular, during onset of an epidemic, such as the COVID-19 global pandemic,
home or hospital visits became unavailable, or strictly restricted/limited in many regions.
Such challenges require a new healthcare model to be widely applied. Technologies that
offer low-cost, scalable solutions through objective and continued remote monitoring,
without interfering with user privacy and daily life, become crucial.

Ambient Assisted Living (AAL) systems [2] provide remote monitoring at the home
environment through a connected network of ambient sensors. Different sensor systems
were tested, such as the multimedia-based monitoring systems [5,6], which rely on video
signals captured through surveillance cameras or ambient sounds recorded using micro-
phones installed at the monitoring environment, thus privacy issue is of great concern for
such systems to be widely accepted. Depth camera [7], millimeter-wave sensor [8] and Li-
DAR signal [9]-based systems offer alternative monitoring options with improved privacy
experience. However, such systems often come with a non-neglectable cost. Additionally,
high-end commercial devices such as ballistocardiographic-based bed sensors [10] provide
detailed sleep analysis through passive monitoring, though the cost-factor could again be
a concern for many elderly users. On the other hand, wearable devices in combination
with ambient sensor systems enable personalized monitoring, although such systems show
reduced adherence for elderly patients [11], due to the high-maintenance requirements
by most wearable devices (e.g., battery charging, and data synchronization with a smart
device). Research efforts developed integrated platforms [12] to minimize the required
interaction efforts to improve user experience and adherence.

Binary passive environmental sensors are not just cost effective, they are also efficient
with respect to data transfer, storage, and computational needs. Furthermore, once in-
stalled they do not require any user interaction, and are the least intrusive from a privacy
standpoint. Binary passive infra-red sensor, as well as contact, and pressure sensors, are
often deployed in a connected network. Daily activity and health-status information are
extracted from raw sensor signals, based on which personalized healthcare services can be
provided. Due to the ambiguity of binary sensor signals, such systems are often restricted
to be used in single-resident households, to avoid the problem of having to distinguish
between different residents [2]. Additional personalized devices or high-level sensors
(e.g., camera and microphone) could be integrated, at the expense of user privacy and
usage complexity, to reduce the ambiguity of such systems, to make them applicable in
multiple-resident indoor environments. On the other hand, researchers have also explored



Future Internet 2021, 13, 6 3 of 24

the feasibility of identifying different individuals by deploying large amounts of binary
sensors [13], at the cost of a higher system complexity.

In this paper, we consider five types of binary sensors [14], i.e., passive infra-red
motion sensors (PIR), contact-based door sensors, pressure-based bed and chair sensors, as
well as proximity-based toilet sensors. Up to five sensors (one per type) are deployed at
multiple-resident households of elderly people to test the functionality of the system, in
terms of whether this simple sensor network could be deployed as a generic AAL system
setting, regardless of the number of residents and the structure of the households. Once
deployed, our system adaptively learns user behavior patterns in an unsupervised manner,
which does not rely on pre-defined knowledge, and does not require any data labeling.

Based on internationally validated geriatric references, aging is often associated with
physical, cognitive, psychological, and social health-status changes. The decline of these
factors can considerably affect older adults’ quality of life. Given the minimized sen-
sor setting strategy and multiple-resident households of our pilot study, we focus on
sleep and outing/visiting analysis as indicators of elder patients’ health status in this
paper. Sleep quantity and quality are well-recognized indicators of physical and mental
wellness [15,16]. We deploy a pressure-based bed sensor at the target subject’s sleep side
of the bed, to track personalized sleep activities. Loneliness and lack of social interaction
is one of the major health issues associated with aging and thus, a serious concern in
elderly care [17]. Outdoor activity and home visits can be used as reference of not only
social activities, but also the capability of carrying out necessary outdoor-based household
maintenance activities such as shopping, as well as to make sure that the necessary home-
based medical or house-care related assistance have been delivered. Behavior patterns
are extracted as groups of activity profiles that share similar features. We conduct both
horizontal (across the cohort) analysis, and vertical (personalized behavior tracking over
time) analysis. Specifically, user segmentation is conducted by grouping patients with
similar behavior patterns across the cohort, resulting in ‘precision cohorts. A user’s change
of routine can be observed by tracking the personalized activity patterns over time.

Our objective is to provide a scalable generic solution for long-term practical usage to
support independent living of senior adults with mild physical or cognitive impairments,
regardless of the different number of residents and structures of the households. The system
should be able to alleviate care provider workloads with reduced number of necessary
home visits, and reduced medical emergencies by early detection of disease worsening.
Our participant population consists of subjects with a mild post-stroke condition and other
comorbidities. The sleep profile was used as the main daily activity indicator in our system,
due to the sparse sensor setting and the multi-occupancy living condition, which can be
enhanced when richer sensor setting becomes available.

The paper is organized as follows. Section 2 reviews related research literature of
binary-sensor-network-based AAL systems. Sections 3 and 4 introduce the sensor set-
ting and the IT architecture of our system. The patient recruitment criteria and study
statistics are explained in Section 5. Section 6 provides details of the methods applied for
daily sleep profile extraction, sleep quality estimation, as well as sleep-based cohort anal-
ysis and longitudinal health-status tracking. Outing and visiting detection is introduced
in Section 7. They are important physical and cognitive health-status indicators, thus,
improving the personalized monitoring accuracy. Section 8 introduces and benchmarks
the anomaly detection methods. Finally, concluding remarks are drawn in Section 9.

2. Related Work

Ambient Assisted Living systems can be differentiated along four different dimen-
sions [2], namely the sensors package, the data collected, the algorithms applied, and the
objectives of the system. In this paper, we focus on the use of passive binary environment
sensor networks, due to its low-cost, and minimal-intrusive nature. As a result, event-based
behavioral data is acquired, which is analyzed by unsupervised algorithms, to eliminate the
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labeling overhead. The objective is to provide medically relevant notifications to caregivers,
so they can intervene at the right time and mitigate medical worsening.

Identifying different activity types is often the fundamental step in sensor-based
assisted living systems. In [18], patient daily activity was extracted using presence sensors
deployed in a hospital setting. In [19], 14 binary sensors were installed at a three-room
apartment to recognize 7 pre-defined activity categories. In [20], activity recognition
was achieved by converting annotated binary sensor data into binary activity images in
combination with a four-layer (two convolution layers and two fully connected layers)
neural network. Recurrent network models were also used to recognize and predict
daily activities in densely deployed binary sensor networks [21,22]. Most such systems
were tested in single-resident environments, and required carefully labeled training data.
In [23], densely distributed binary sensors were deployed at two multi-person households
to recognize 27 different activity categories. Sixty to a hundred activity labels were collected
as ground-truth per day to train the system.

High-quality sleep is considered a cornerstone of a healthy lifestyle [24] and is recog-
nized to be an active and dynamic process of physical and mental recovery. Traditionally,
sleep quality is quantified using the Pittsburgh Sleep Quality Index (PSQI) [25], which
is a self-report questionnaire consisting of 19 items of 7 aspects. In the medical field,
Polysomnography [26] is conducted as a diagnostic tool to monitor different sleep stages
based on neuronal and eye activities during sleeping. Heart rate variability-based sleep
analysis is presented in [24,27]. Meanwhile, wearable devices that incorporate accelerome-
ters for sleep analysis have been used on a massive scale [28]. Nocturnal sound-based sleep
staging analysis has also been explored in [29]. In [30], sleep patterns were inferred by
using actigraphy data generated by binary motion sensors scattered around participants’
apartment.

In addition to the typical indoor activities, outings and visits are strong cues of social
activity. Outings are often considered to be long inactive periods. In [31], multiple motion
sensors and a door sensor were installed in a single room office. A Naive Bayes classifier
and hidden Markov models were then applied to detect visits based on the raw binary
sensor signals. Room transitions at each time stamp were used to detect visiting events
in [32]. In [33], the dwell time, number of sensor firings, and number of transitions between
major living spaces are extracted as features from 15-minutes windows, based on which
a Support Vector Machine (SVM) classifier was applied. These systems rely on carefully
labeled visiting and non-visiting events. However, in real life it is challenging and intrusive
to label every visit in the life of elders at their private homes. In [34], the authors proposed
an unsupervised method for visiting detection using room transitions. In [35], visits were
identified when simultaneous activities were detected in bedroom and bathroom. These
systems rely on a sensor connection topology, which is carefully crafted, based on the
sensor installation floor-map. In [11], sensor signals between adjacent door activities were
represented in a feature space and semi-supervised learning algorithms were trained with
partially labeled visiting events.

Human behavior understanding, such as extracting daily routines and behavior habits
is crucial for learning about a user’s health condition, and tracking any pattern change, as
well as conducting precision cohort analysis. Time, duration and frequency were referred to
as the key characteristics of daily activities, and were used individually to identify different
behavioral patterns across users [23]. In [36], matrix decomposition was used to discover
routine clusters from two time-series modalities, specifically from calorie expenditure
and steps.

Once a person’s typical habits are learned by a model, long-term behavioral change can
be identified as a continuous transformation of the activities of daily living [37]. Distance
measures or outlier detection algorithms can be used to detect behavior deviation from a
typical habit. In [38], several outlier detection algorithms were compared, and the authors
found that Isolation Forest, and DBSCAN perform the best. Negative behavioral changes
in daily activity, mobility, social life and cognitive status are considered to be indicators of
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older adult frailty, which considerably affect their quality of life [39]. A moving-window-
based algorithm was applied in [35,39], to detect continuous change occurred if a selected
number (7 days) of deviations were consecutively detected, where quantity, duration, time
and place were used as metrics to represent activity patterns.

3. Sensor Setting

In this section, we discuss the sensor kit selection and design strategy, as well as the
deployment protocols that were applied.

3.1. Sensor Design and Selection Strategy

The first concern in designing the AAL sensor kit was to determine a minimal yet
expressive set of sensors that can capture relevant user behaviors. Indeed, an extremely
rich set of sensors could provide plenty of information, possibly redundant. However,
such a setup may be perceived as excessively intrusive by the subjects, therefore limiting
the acceptance of the study. A trade-off between these two competing requirements is
therefore necessary. To define the most important behaviors that should be captured inside
the home, a discussion with representatives of the formal caregivers involved in the project
was organized. The following information was considered important to monitor: (1) bed
and chair presence patterns, to capture the resting phases; (2) toilet use patterns, both in
terms of accesses and timing; (3) door openings as a proxy of social interaction; (4) overall
presence and activity in a significant location, possibly close to the entrance area of the main
corridor. The AAL sensor kit was designed based on those requirements and, therefore,
features 5 sensors in total.

Another key requirement that emerged while planning the study execution is the
necessity to standardize the sensor network setup, while keeping the installation time to
be within one hour. A quick and transparent deployment procedure is, in fact, important
to foster technology acceptability in the user homes. In terms of network design, many
wireless communication protocols were taken into consideration, from ZigBee to ZWave or
6LowPan. Such protocols, however, require the presence of a specific edge router that acts
as a bridge between the local sensor network and the Internet, thus increasing the cost of
each sensor kit. From such considerations it is apparent that a wireless sensor network that
allows the obtaining of a scalable installation while optimizing costs consists of exploiting
the pre-existing home IT infrastructure, well suits the needs and thus provides a possible
solution. The IEEE 802.11 b/g/n WiFi protocol was chosen for networking. This way, each
sensor can directly transmit its information over the Internet.

3.2. Sensor Kit

As previously stated, the AAL sensor kit should consist of WiFi-based devices that can
monitor the five different types of activities, namely bed, chair, toilet usages, door activities
and motion presence, as well as a 4G WiFi router. Consequently, the following sensing
technologies are considered:

• Bed and chair sensors use pressure-sensitive pads to detect presence. Whenever
a sufficient pressure is applied (i.e., a person sitting on the chair or lying over the
mattress), the sensor exhibits very low impedance, whereas absence implies high
impedance.

• Toilet sensor attempts to measure toilet bowl usage by means of an active Infra-Red
(IR) illuminator and a photodetector. The IR sensitivity can be trimmed to detect
presence only within a given proximity (60 cm in our study), which makes this a
selective sensor. In other words, this sensor is specifically triggered when the user is
quite near it: proper placement allows the precise counting of toilet bowl uses.

• The room activity sensor is a wide-range PIR (Passive IR) sensor that detects motion
within the environment. The higher the activity level in the room, the higher the
sensor firing counts throughout the day.
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• Door opening is detected by means of a magnetic contact sensor, featuring a magneti-
cally sensitive switch that closes when a permanent magnet comes in strict proximity.
By placing one element on the door and the other one on the door frame, the sensor
can detect open/close conditions.

Each of the above-mentioned sensors triggers event-based binary signals, at 1 Hz
frequency. A person interacting with such sensors leaves a trace of events that are logged
by each of them.

Hardware and firmware were specifically designed to fulfill interoperability and data
security constraints as well as ensuring that the information is stored in national servers,
hosted by authorized operators. Our selected sensors are low-power and low-quiescent
devices powered by batteries. Power saving is achieved by the following strategies. First,
the use of super-capacitor technology, allowed to meet the demanding dynamic power
range requirements, to fully exploit the battery capacity. Furthermore, sensors triggering
are collectively transmitted once per hour, rather than at each occurrence, which provides
acceptable latency for long-term data analytics.

3.3. Sensor Network Deployment

The deployment procedure of our AAL system involves the installation of the selected
sensor kit and a home WiFi router. Larger or multi-level flats may require the use of an off
the shelf wireless range extender, which does not change the overall network architecture.
Figure 1 shows a typical installation setup. The WiFi router is placed in the center of the
house, to achieve optimal signal coverage for all sensors. The motion sensor is installed at
‘a point of passage’ of the house, which typically could be at the main corridor area. The
door sensor is deployed at the main entrance of the house. A full deployment typically
requires 45 to 60 min, as measured in the pilot installations.

Figure 1. Example of sensor network deployment.

All devices feature the same micro-controller and network processor, a CC3220 System
on Chip (SoC) by Texas Instruments (Dallas, TX, USA). This unit is a Wi-Fi certified product,
providing IoT networking security, device identity and keys and is optimized for low-
power operation. The certified stack implements both IPv4 and IPv6 protocols, with
industry-standard, optimized BSD sockets (both TCP and UDP), secured by SSL/TLS.

4. IT Architecture

Figure 2 shows the IT Architecture of our solution. The structure comprehends four
sub-components:
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• Private Homes: the deployed household(s) of elderly people, which serves as the data
source of the system.

• End-users: patients, family members, and healthcare professionals (i.e., doctors, med-
ical staff, formal caregivers) can access different services, such as entire or partial
behavioral record of individual patient or cohort, through a web interface, according
to the corresponding permission policies.

• Server Infrastructure: It stores raw sensor data and semantic activity patterns after
data processing. Respective privacy and security measures, according to General Data
Protection Regulation (GDPR) are implemented.

• IBM Cloud: offers the cloud-based data analysis service, which access raw sensor data
from the server, and send back analytic results to the server, through a secure gateway.

Figure 2. IT Architecture showing four main sub-components: (1) Private homes of the elderly, (2) end user access to the
AAL services, (3) server infrastructure, and (4) the IBM Cloud with the analytics services.

Data Acquisition, Storage, and Processing

The data transmission from the sensors to the local server is performed using the
MQTT communication protocol, a lightweight and data-agnostic protocol, particularly
suitable for IoT applications. MQTT relies on a broker for exchanging data between
publishers and subscribers, and it supports various levels of Quality of Service (QoS). In
this project, all messages are sent with a QoS of 2, i.e., they are sent exactly once, with a
unique reception confirmation. To guarantee data security, all traffic towards the cloud
is encrypted by means of SSL/TLS protocol: certificates signed by a public Certification
Authority guarantee the identification and proper authorization of devices. Before storing
the raw sensor data in the database, an anonymization module is applied to protect
user privacy. A pseudo-random identification number is assigned to each patient. The
correspondence to the patient identity is stored in a separate table, only accessible to the
data controller (the local health authority).

The behavioral analytical algorithms, are accessible as services on the IBM Cloud
through REST API calls, enabling extraction of daily activity diary, longitudinal health-
status progressive trajectory, as well as conducting user segmentation (precision cohort),
activity prediction, anomaly detection, and device battery level monitoring. The data
exchange with the host server is performed through a Virtual Private Network (VPN) link.

5. Patient Recruitment and Engagement

The recruitment of subjects for this study was performed by general practitioners in
the Emilia–Romagna region in Italy, under the supervision of the local health authority. All
subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol
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was approved by the Ethics Committee of the Emilia Nord area. This section introduces the
criteria we followed to include patients in the study, and the statistics of patient profiles.

5.1. Inclusion Criteria

The focus was on the behavioral monitoring of elderly subjects with post-stroke con-
ditions living at their homes. Accordingly, the inclusion criteria were the following: (i) age:
≥65 years, (ii) condition: post-stroke with comorbidities and drug therapies, (iii) state of
disability as defined by the following questionnaire scores:

• Barthel scale sec. Shah [40]: 48 to 75, with 18 to 32 for motor activity
• Activity of Daily Living (ADL) [41]: ≥4
• Instrumental Activities of Daily Living Scale (IADL) [42]: ≥5
• Short Portable Mental Status Questionnaire (SPMSQ) [43]: ≤5

Furthermore, the caregiver of the subject needed to agree to be part of the study and
to adhere to the study protocol.

5.2. Patient Profile

Eight of the 27 initially registered patients dropped-out before or shortly after the
system installation, among which two were due to disease worsening and six due to
patients’ privacy issues or caregivers’ concerns. The caregivers were concerned about
negative effects of the system on the stress-level of the participants.

The demographics of the remaining 19 registered patients is depicted in Table 1.
These subjects were included at different times into the study, starting from September
2018, triggered by the installation of the sensors in their homes. The study ended on
6th June 2020. Most of study participants were men, living in multi-occupancy apartments.
A maximal and median observation time of 98 weeks (close to 2 years) and 55 weeks
(>1 year) were observed (see Table 2). Overall, 10 apartments were installed with the full
set of sensors, 3 were installed with 2, 3, 4 sensors, respectively.

Table 1. Statistics of the study participants.

Variable Number (Percentage)

Drop-outs Total 8 (29.6%)
before/after Reasons:
installation Disease worsening 2

Privacy concerns 3
Caregiver concerns 3

Installed Total 19
subjects Gender: female 6 (31.6%)

Condition: post-stroke 19 (100%)
Living status: not alone 17 (89.5%)

Number of Sensors installed
apartments Bed 15

installed Motion 18
with this Door 16
sensors Toilet 15

Chair 13

Table 2. Demographic information of study participants.

Variable Unit Median Quartile (25th/75th) Max

Age [years] 77 (71.5/83.5)
Score Barthel [44] [-] 70 (60/70)

ADL [41] [-] 5 (5/4)
Observation period [weeks] 55 (11/74) 116
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6. Sleep Pattern Extraction and Sleep Quality Analysis

Sleep is an important indicator of quality of life and can be observed with the bed
sensor in our AAL environment. Due to the sparse sensor setting and the multi-occupancy
living condition, sleep profile was used as the main daily activity and health-status indicator
in our system. This could be enhanced when richer sensor settings become available. In
this section, we report on individual sleeping events, from which we extract daily sleep
profiles (including night sleep and naps), sleep behavioral patterns, and derive sleep quality
scores based on medical recommendations by sleep experts. Additionally, a horizontal
and vertical pattern analysis is conducted to categorize users into sub-groups and to track
each user’s health-status trajectory. Finally, we share interesting findings observed from
the COVID-19 lockdown period.

We employ a simple pressure-based passive bed sensor, which offers an affordable
solution for long-term usage at households of elderly people. Event-based binary signals
are triggered when a sensor state (on/off-bed) change is detected. The sensor is calibrated
using the weight of the target user, and deployed at the side of the bed where the target user
usually sleeps to reduce signal noise that could be triggered by objects or other residents in
the households.

6.1. Background Research

Quantity (sleep duration) and quality (absence of sleep disturbances or disorders) are
among the most important metrics of a healthy sleep.

Researchers found out that there is a U-shaped association between sleep duration
and all-cause mortality, where those who sleep the least and the most are at higher risk of
morbidity and all-cause mortality [45]. Recommendations [46] by the American Academy
of Sleep Medicine and the Sleep Research Society state that less than 7 h of sleep per night
on a regular basis is associated with adverse health outcomes, both physically and mentally.
Meanwhile, sleep of more than 9 h per night is also not recommended, unless the subjects
are young adults or individuals recovering from illnesses or sleep debt. The sleep duration
recommended by the National Sleep Foundation [15] for older adults (>65 years) is 7 to
8 h per night, while less than 5 or more than 9 h is not recommended.

In terms of sleep quality, 12 indicators were identified in the National Sleep Founda-
tion’s recommendations [16], among which there are 4 sleep continuity variables (sleep
latency, number of awakenings, length of awakenings after sleep onset, and sleep effi-
ciency), 5 sleep architecture variables (neural activity-related sleep stages), and 3 nap
variables (number of naps per day, nap duration, nap frequency). Additionally, panelists
claim that the optimal range of the sleep indicators depends on the age of the subject. They
have agreed on 9 age categories and suggested different recommendations for each group.
For this study, with the youngest patient being 68 years old, we consider the ‘older adults’
(>65 years) as the relevant age category for sleep quality guideline. Sleep architecture
measurements (i.e., the identification of sleep stages) require sophisticated devices, and are
out of the scope of this study. We consider sleep continuity, and nap variables to quantify
sleep qualities in our system. Optimal conditions for high sleep quality in the target age
group are: (i) falling asleep in less than 30 min, (ii) waking up no more than twice per night,
(iii) time being awake after sleep onset of no more than 30 min, and (iv) the ratio of total
sleep time to time in bed of >85%. In terms of naps, the fewer naps, and the shorter the
nap duration per day the higher the sleep quality.

6.2. Bed Sensor Event Data Pre-Processing

For visualization purpose, we transform the second-based binary signal into and
hourly based bedtime diary, by computing the time-percentage the sleep sensor was
‘on’ within each hour. Figure 3 illustrates the hourly bedtime diary of a user (from
February 2019 to the end of June 2020) as a heat-map. We can clearly identify night sleep,
which starts and ends with a repeating pattern, while day sleep is visible for only some
periods of the time. Furthermore, two periods of close to no sleep are visible, resulting
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from a hospitalization from May 28 to July 15 in 2019, and a holiday from 28 November to
24 December 2019.

Periods of continuous sleep sensor ‘on’-state are considered to identify individual
sleep events (e.g., night sleep, day naps). However, short ‘off’-state periods can occur due
to toss and turns, awakenings and other movements in bed. In such cases, it is necessary to
merge the over-segmented events. We use medically recommended rules to identify those
interruptions, based on which the over-segmented events are merged. Those interruptions
will also be taken into consideration as toss and turns, awakenings, or breaks accordingly
for sleep quality analysis.

Figure 3. Sleep diary of a subject, indicating the ratio of time spent in bed within every hour.

According to the National Sleep Foundation’s (NSF) sleep quality
recommendations [16], sleep interruptions of more than 5 min can be considered to be
‘awakenings’; a break of less than 30 min indicates good sleep; breaks longer than an hour
are considered as not ‘appropriate’. Based on these recommendations we defined gaps
of less than 5 min as ‘toss and turn’, gaps from 5 to 30 min as ‘awakening’, and gaps
from 30 to 60 min as ‘break’, and merge the corresponding segments. Events of less than
10 min duration, which could be caused by sitting on the bed rather than sleeping, are
considered to be not relevant and are therefore eliminated. Sleep events of less than 30%
efficiency (percentage of ‘on bed’ time of a sleep event), which could result from merging
short ‘on bed’ fractions (often sensor noise) with comparably large gaps in between, are
also removed in the experiments.

6.3. Event-Based Sleep Analysis

Event-based analysis can be used to extract different sleep types, and identify out-
lier activities as soon as abnormal characteristics of an event onset is detected. In this
section, we introduce the event-based sleep feature representation and pattern extraction
methodologies that we applied.

6.3.1. Feature Representation

Time of sleep onset and sleep duration are key differentiators for personal sleep
habits. Therefore, the sleep start time (TS_s), sleep end time (TS_e) and sleep duration
(DS) are included as features, to represent a sleep event. To encode the periodic nature
of ‘time’ as a smooth function, we convert timestamps (TS_{s, e}) into a two-element
trigonometric vector representation: ([sin(2 ∗ pi ∗ TS_{s, e}/seconds_in_day), cos(2 ∗ pi ∗
TS_{s, e}/seconds_in_day)]).

As stated in Section 6.1, sleep continuity variables (number of interruptions, length
of interruptions, and sleep efficiency), are important measurements for quantifying sleep
quality. We consider three different ‘interruption’ categories for representing a sleep event,
i.e., toss and turns, awakenings, and breaks (according to the definitions in the previous
Section 6.2). For each sleep event, we compute the number (#Toss&Turn, #Awakening, #Break)
and total duration (DToss&Turn, DAwakening, DBreak) of each interruption category, which
resulted in 6 additional features. Sleep efficiency is computed as: 1 − (DToss&Turn +
DAwakening + DBreak)/D. Furthermore, toilet breaks during a sleep event are considered to
be of special interest in geriatrics, which we include as an additional descriptor.
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6.3.2. Sleep Event Pattern Extraction

With each sleep event represented in the 12-dimensional feature space, we adopt
unsupervised algorithms to cluster events into groups of similar behaviors. The resulting
clusters demonstrate sleep behavior patterns of the target user.

DBSCAN [47], a density-based, non-parametric clustering method, groups regions
of densely connected samples (within a neighborhood of size ε) into clusters. To allow
varying densities across clusters, HDBSCAN [48,49] conducts a hierarchical clustering
scheme, where varying neighborhood distance thresholds are naturally selected. Specifi-
cally, selecting the most stable branches of the hierarchy allows the tree to be cut at varying
heights, thus resulting in clusters of different density. Additionally, this algorithm does not
require prior knowledge about the number of clusters.

We conduct HDBSCAN on sleep events extracted from each user. Figure 4 visualizes
the centers (median feature of all samples per cluster) of the resulting two clusters, extracted
from the user shown in Figure 3. The first cluster represents the night sleep pattern with
the sleep onset at around 10 p.m. and the getting up time at around 8 a.m., with some toss
and turns, short awakenings, and toilet breaks. The second cluster illustrates a day-time
nap pattern. The user typically takes a short nap in the early afternoon, with few toss and
turns. Note, for visualization purposes we use the original time of day to represent the
start/end time instead of the two-element sinusoidal cyclic representation. Figure 5 maps
clustering results of the user on a 2-D t-SNE [50] space. We can see that the extracted sleep
patterns align well with the densely distributed groups formed in the t-SNE space.
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            5

# toileting

Cluster-1: 195 events

Naps 

Figure 4. Extracted sleep patterns from unsupervised clustering, represented by cluster centers.

Figure 5. Projection of a user’s sleep event feature vectors into the t-SNE space.

6.4. Daily Sleep Profile and Sleep Quality Score

In this section, we aim to provide insights into the definition of a sleep quality score
based on all sleep events (night sleep and naps) on a given day, considering the sleep
quality indicators recommended in [16]. First, we propose to create a daily sleep profile
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that reports on the two sleep types separately, and a sleep quality score scheme that
combines the appearance of the two.

6.4.1. Daily Sleep Profile

A night sleep is considered to be any sleep event that started before midnight of the
given day and ended after, or started before 5am of the next day. Note, a daily sleep profile
can contain multiple night sleep events, as derived according to the policy in Section 6.2,
i.e., if there are breaks that last more than an hour at nighttime. Any other sleep events that
occur in the given day are considered to be naps.

Aiming at providing an effective, yet concise representation, we illustrate the users’
daily sleep profile with sleep indicators (three for night sleeps, and two for naps), according
to the guidance provided in [16]. Specifically, night sleep profiles are composed of duration,
number of awakenings/breaks, as well as sleep efficiency; nap profiles are composed of
the number of naps and total nap duration. Figure 6 shows an example of a daily profile of
the user shown in Figure 3.

Figure 6. Daily sleep profile composed of nightly sleeps and naps for a single user.

Given this 5-dimensional representation of the daily sleep profile, we can use the
methodology applied in Section 6.3.2 to extract daily sleep patterns, analogous to the sleep
pattern extraction from sleep events. Figure 7 illustrates the four dominating daily sleep
patterns extracted from this user. The first cluster refers to days, where only night sleep was
detected. The last two clusters show days, where the user had both day and night sleep.
More specifically, the last cluster depicts days with a larger number of naps and longer
nap durations than cluster 2, which indicate a lower sleep quality according to [16]. The
second cluster indicates days without any sleep onset. Those days can easily be identified
in Figure 3 and are due to holidays or hospitalizations.

From this analysis, caregivers can be informed about the daily sleep patterns of a
patient. For this specific user, with a monitoring period of 502 days, 156 days with daily
sleeps with both night sleep and naps during the day, 270 days with daily sleep without
a nap, and 63 days without sleep-onset were identified. The remaining 13 days do not
correspond to any of these daily sleep patterns, due to their dissimilarity to the clusters in
the feature space. Figure 8 shows the clustered daily profile samples in the t-SNE space.
Again, we can see that the extracted daily sleep profile patterns align well with the densely
distributed groups that formed in the t-SNE space.
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Figure 7. Extracted daily sleep patterns from daily sleep profiles, indicated by the feature values of their cluster centers.

Figure 8. Projection of the daily sleep profile into the t-SNE space for a single patient.

6.4.2. Sleep Quality Score

Additionally, we aim to define a sleep quality score based on the daily sleep profiles,
capable of providing a quick overview of a patient’s sleep status to the caregiver. According
to the recommended sleep quality guideline for elderly adults in [16], we propose a scheme
that combines night sleep and nap quality features. We adjusted the original quality score
scale of the sleep efficiency measurement, because our sensor only detects physical off-bed
moments rather than awakenings in a neurological sense or micro movement way, thus it
is not rare to see a sleep efficiency score above 80%, and sleep durations longer than 7 h.

Referring to the National Sleep Foundation’s recommendations [15,16], Table 3 illus-
trates the metrics, scales, and scoring schemes we applied. The overall score range is [0, 16].
A higher sleep score indicates a better sleep quality. Any measurement beyond the listed
‘value ranges’ does not contribute to the sleep score. In practice, we found that night sleep
quality often has a greater impact to the overall sleep quality than daily naps. Therefore,
the overall range of the night sleep score is [0, 12], while the range of the daily nap score is
[0, 4].

Figure 9 shows daily sleep quality scores derived using this scheme, from the same
user as shown in Figure 3. We can see a subtle, but consistent quality drop starting in
the middle of May 2019, followed by poor sleep quality scores from 27 May 2019. From
the daily profile plot (Figure 6) an increase in naps can be observed from the middle of
May, followed by a sleep-onset absence starting on the 27th of May (which was due to a
hospitalization of the patient). Additionally, a quality drop can be observed from March
2020, which is due to increased naps during the day, and reduced sleep efficiency at night.
Interestingly, this behavior could be observed among multiple patients across the cohort
and was caused by the COVID-19 lockdown, which started on March 8th and ended in
May 2020 in Northern Italy. An increased night sleep duration was observed for 6 users,
among which 5 were observed to have reduced sleep efficiency. Additionally, increased
naps were observed for 3 users. Overall, we observed a sleep score drop for 8 patients.
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Table 3. Daily sleep score quantification metrics.

Sleep Types Metrics Value Ranges Sleep Score

Night sleeps

[7, 8] h 4
Night sleep duration [5, 7) h or (8, 9] h 3

(DNS) [3, 5) h or (9, 12] h 2
[1, 3) h or (12, 15) h 1

0 4
Number of 1 3

awakenings and breaks 2 2
(i f 1 6 DNS < 15 h) 3 1

[95, 100) % 4
Sleep efficiency [90, 95) % 3

(i f 1 6 DNS < 15 h) [85, 90) % 2
[80, 85] % 1

Day naps

Number of naps [0, 1] 2
(i f 1 6 DNS + DDN < 15 h) [2, 3] 1

Nap duration (DDN) [0, 50) mins 2
(i f 1 6 DNS + DDN < 15 h) [50, 100] mins 1

Figure 9. Daily sleep score based on the metrics defined in Table 3.

6.5. Cohort Analysis

Dividing patients into groups (precision cohort) with common characteristics is crucial
to providing personalized care. Thus, we conducted the same pattern extraction method-
ology as discussed in Section 6.3.2 across the entire patient population, using the daily
sleep profile representation (Section 6.4.1) to identify patient groups with similar sleep
patterns. The resulting sleep patterns are depicted in Figure 10. Cluster-0 and cluster-3 are
the two most dominating sleep patterns, where cluster-0 represents the healthiest pattern,
according to [16]. Cluster-4 and cluster-5 represent two sleep profile patterns with many
long naps. Cluster-1 refers to long night sleep patterns. The last cluster represents days
where only a few short naps were recorded. Cluster-2 indicates days without any sleep
activities detected, which is often due to the user being away from home. These clusters
can be considered to be the ‘behavior pattern dictionary’ of our patient database, and each
pattern is referred to as a ‘word’ in the ‘dictionary’. The dictionary can be enriched over
time, when new patterns are formed.

Given the extracted ‘dictionary’, a user’s recent sleep profile can be represented by the
appearance frequency of each ‘word’. Table 4 lists the 15 bed-sensor users in our database,
and the number of days they were in a respective sleep pattern. Thus, a user’s sleeping
pattern during the monitored period can be represented as a ‘bag of words’, indicating the
frequency of appearance of each ‘word’. Based on the resulting user representation, a user
segmentation was performed with HDBSCAN, resulting in 4 clusters:

• Group-A: patients 1, 14, and 15
• Group-B: patients 2, 5, 7, 8, and 12
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• Group-C: patients 4, 6, and 13
• Group-D: patients 9, 10, and 11

User 3’s daily sleep pattern could not be assigned to any of the patient groups. The
care manager confirmed that this user was in a unique health condition, which keeps
him/her in bed most of the time.

Cluster-0: 1802 days
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and long naps 
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Figure 10. Extracted daily sleep patterns from daily sleep profiles of the entire cohort, indicated by the feature values of
their cluster centers.

Table 4. Daily sleep profile patterns of individual patients from the cohort with installed bed sensor.

Cluster Id

User Id
1 2 3 4 5 6 7 8 9 10

C0: Night sleep with breaks 129 15 2 252 26 235 13 34 282 248
C1: All-day sleep with breaks 1 32 0 39 5 1 0 0 0 4
C2: No sleep 0 0 1 67 36 62 37 0 16 20
C3: Night sleep with breaks and naps 303 339 0 176 312 151 280 292 25 38
C4: Night sleep, no breaks and long naps 0 0 105 0 0 1 0 1 0 1
C5: Night sleep with breaks and long naps 0 0 18 0 0 0 0 0 0 0
C6: Naps only 0 0 0 26 0 1 2 0 3 0

Cluster Id

User Id
11 12 13 14 15 Total

C0: Night sleep with breaks 373 0 49 125 19 1802
C1: All-day sleep with breaks 4 0 24 0 13 123
C2: No sleep 80 14 2 0 0 335
C3: Night sleep with breaks and naps 9 300 56 267 60 2608
C4: Night sleep, no breaks and long naps 0 1 0 0 0 109
C5: Night sleep with breaks and long naps 0 1 0 0 0 19
C6: Naps only 0 0 0 0 0 32

6.6. Health-Status ‘Trajectory’ Tracking

Longitudinal behavioral change often infers the elderly patient’s health-status pro-
gression trajectory over time. We consider behavior as activity patterns formed over an
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accumulated period of time. Given the activity pattern dictionary (Section 6.5), we repre-
sent a patient’s ‘recent’ behavior habit by a ‘bag of words’. The progression of behavior
change over time can be tracked as the change of patterns. From Figure 11 (top), we can
observe a decline of ‘C0’ (healthiest sleep pattern) during the initial monitoring phase,
which led to a hospitalization in the middle of May 2019; and in the beginning of March
2020, which was due to the COVID lockdown. An increased ‘C0’ and ‘C3’ can be observed
in the recovering stage after hospitalization. Figure 11 (bottom) illustrates the user’s daily
sleep profiles in t-SNE space, from which we can observe a seasonal trend, with an isolated
group of days where no sleep onset was detected; and behavior patterns deviated from the
main trend being days where long sleep duration were detected.

Healthy Hospitalized Recovering Healthy Vocation Healthy COVID a�ected life

Figure 11. Sleep behavioral change trajectory of one subject. (Top) Behavior and health-status ‘trajectory’, where the health
status is indicated by the BoW representation of activity patterns (see Figure 10) over a 7-day moving average window.
Blue color palettes are used to indicate healthier sleep patterns (‘C0’, and ‘C3’); while red color palettes depict outings and
unhealthy patterns (‘C1’, ‘C2’, ‘C6’). (Bottom) Trend of behavior change and outlier patterns observed in the t-SNE space,
where the isolated group of points on the left are the outings (‘C2’) taking place in June (hospitalization) and December
(vacation). The points that deviated from the main trend were derived from activity pattern ‘C1’ and ‘C6’, which occurred
during the recovery phase after hospitalization.

7. Outing and Visiting Detection

Outings and visits are important indicators of elderly people’s quality of life. Outings
can be used as an indicator of the capability to carry out outdoor-based activities, such
as grocery shopping. Visits can be used as a proxy of social engagement, which in turn
is an indicator of major health issues [17] and is thus important to be detected, possibly
facilitating early interventions. Furthermore, detected outings and visits are relevant for
reasoning about the absence of bed sensor ‘on’ states, as well as increased indoor motion
caused by visitors.
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7.1. Data Pre-Processing

In multi-person households, it is challenging to use sparsely deployed binary envi-
ronmental sensors to track personalized activities, such as outings and visits. Therefore,
we define outings as times when nobody is at home, and visits as times of exceptionally
increased activity reported by the environmental sensors. Consequently, the detected
outings and visits can only be used as an indirect indicator to track the changes of patients’
social and physical health status, instead of being reported as a comprehensive list of the
corresponding activities.

In the literature, outings are typically identified as long inactive periods, and visits
either based on pre-defined rules (certain overlap of sensor activities), or with supervised
algorithms trained using carefully labeled datasets. Our approach is different in the
following way: first, we assume that any outing/visiting event happens between adjacent
door open/close activities at the entrance. Consequently, outings and visits are identified
as inactive and exceptionally increased sensor activities between adjacent door segments.
This way, the algorithm can adapt to different households and sensor topology. Please note
that we disregard any segment that lasts less than 10 min.

7.2. Outing Detection

As described above, a segment between adjacent door activities is considered to be an
outing event, if no sensor activity was detected during this time period. Due to calibration
errors, sensors may trigger events with different delays which could result in signals
detected right after the beginning or shortly before the end of the segment, even in the case
of an actual outing event. To account for this error, we introduce a tolerance buffer before
and after any door event. Within the buffer time any sensor activity is neglected. In practice,
we found one minute to be a reasonable buffer to be used in our system. Additionally,
sensors may trigger short and isolated events by accident. Thus, we employ a noise cut-off
threshold to eliminate this type of noise. In practice, we take 0.5%× DO as the cut-off
threshold, with DO representing the segment duration.

Figure 12 shows outings detected at a household. We can see that outings happened
quite often in the morning or around 4 p.m. in the afternoon. However, since March 2020,
barely any outings were detected, except for a few cases in April. This is another behavioral
change due to the COVID-19 lockdown. We found similar outing reductions across the
entire cohort.

Figure 12. Detected outing events of one patient.

7.3. Visiting Detection

Visiting events are considered to be rare occasions where an increased sensor activity
is reported, caused by the presence of visitors.

The following features are extracted for a given time segment (between adjacent door
activities): segment start time (TV

s ), and end time (TV
e ), as well as segment duration (DV).
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Furthermore, any signal overlap between sensor pairs O{Si ,Sj}, where Si and Sj indicate the
ith and the jth sensor (1 ≤ {i, j} ≤ N, i 6= j, N is the total number of sensors deployed),
as well as the overall signal overlap across all deployed sensors (O{S1,S2,...,SN}). As in
Section 6.3.1, the start and end time are represented in the two-component cyclic manner.
By doing so, each segment is represented in a 6 + (N

2 )-dimensional feature space, where
(N

2 ) is the number of sensor-pair combinations to compute the signal overlap.
To extract the ‘rare events’, we conduct Isolation Forest [51] calculations on all can-

didate segments, represented in the feature space. Each segment is computed with an
‘isolation score’. The lower the isolation score, the more likely the segment is to be ‘normal’.
We consider MIS + 2× STIS, where MIS and STIS refer to the mean and standard deviation
of the isolation scores, as threshold to decide whether the segment is a relatively rare
occasion. Selected ‘rare’ events are then post-processed by removing those with sensor
active levels lower than the median value of all segments. The objective is to disregard
segments which are rare due to other reasons.

Figure 13 depicts detected visiting events in a household, with an increased occurrence
in December in comparison to other periods of the year, i.e., six visits were detected
between the middle and the end of December 2019. Additionally, we can see that after
5 March 2020, there were barely any visiting events detected except for on 7 April and in
the middle of June. Across the cohort, reduced visiting onsets were generally observed
during lockdown times.

Figure 13. Detected visiting events of one patient.

8. Behavioral Anomaly and Change Detection

Behavioral anomalies are rare events that deviate from the probability distribution of
the “normal” data [52]. In comparison to other learning tasks, anomaly detection in human-
centric systems is typically more challenging due to the following reasons: first, people’s
behaviors vary from person to person. Therefore, it is essential to build personalized
detection models. Secondly, people’s behaviors evolve over time, either in cyclic patterns
or due to external and internal factors (e.g., changing of living environment and style, or
adjusting of social, professional and family roles). Thus, it is crucial to train models that
actively adapt to new behavior patterns. Additionally, an occasional activity change does
not always imply a health-related concern.

Most of the current ambient assistant living systems are focused on detecting sudden
behavioral anomalies (point anomalies), which could indicate serious emergencies, e.g.,
fall detection. On the other hand, long-term behavioral changes may happen in a more
subtle way, such as gradually reduced daily mobility, or slightly lower sleep quality over
successive days. Such long-term changes may be more subtle compared to short-term
emergencies. However, over time, the change might evolve into a significant impairment
on a medical scale. Proactive detection of such changes can help geriatricians to discover
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health-related problems at an early stage, guiding them towards initiating personalized
medical interventions.

8.1. Point Anomaly Detection

Typical anomaly detection methods can be grouped into three main categories: rule-
based methods, statistic models, and machine learning algorithms. Unlike other ap-
proaches, data-driven machine learning methods do not assume any pre-defined rules or
statistic data distributions, and could thus be used to learn user-specific, adaptive models.
DBSCAN [53], and Isolation Forest [51] are often used to detect abnormal data points,
based on density and isolation. However, when applied to time-series data, it is challeng-
ing for such algorithms to encode the temporal dependency between time steps. Deep
neural networks are also used for anomaly detection in time-series data, where convolu-
tional/recurrent networks are learned to predict future elements of a sequence. Prediction
errors are then used to recognize anomalous behaviors. Temporal Convolutional Network
(TCN) [54] have shown to be able to efficiently encode long-term time dependency.

8.1.1. Sequence Prediction-Based Anomaly Detection

We formulate abnormal behavior detection in a TCN-based multi-variate time-series
prediction framework, where the prediction errors are used as anomaly scores. Due to the
sparsity of the sensor setting and the multi-person household nature of our systems, we
consider the sleep profile alone to represent the daily activity, based on which abnormal
days are identified. Given an input time series X of length LM (memory length), where
each data point xt in the sequence is a 5-D daily sleep profile representation vector, the
model aims to predict sleep activities in the next LP (prediction length) days. In this paper,
the memory length is 20 days (LM = 20), and the prediction length is 1 day (LP = 1). The
5-D sleep profile of the coming day is the prediction target. For the TCN structure, we
stacked 4 causal CNN layers with increasing dilation and width (1, 2, 4, 8). With a kernel
size k = 2, the final receptive field is 16. The output from the TCN layer is passed to a
fully connected layer for the final prediction of the target 5-D sleep profile. The Rectified
Adam [55] optimizer is used.

As any deep learning framework, TCN relies on a large amount of training data.
However, at the initial stage of an AAL deployment, only a limited amount of personalized
data is available. To tackle the cold-start problem, we first train a generic model using
data from the other users and later personalize it with data from the specific test user. To
minimize the amount of personal data required, only the fully connected layer is retrained,
as typically done in transfer learning approaches. To adapt to new behaviors, the model is
retrained daily with data collected from the previous N days, regardless of whether there
are abnormal days. Additionally, old data is ‘forgotten’ (removed from the training data
pool). The lower the number of previous days (N) used in the training, the faster the model
adapts to new behaviors, although it could lead to a lower prediction accuracy.

We consider MPE + α × STPE, where MPE and STPE are the mean and standard
deviation of the prediction errors of the personalized training data, as the threshold to
decide whether the test day is abnormal or normal. The parameter α can be adjusted to
achieve higher recall or precision in detecting ‘point anomalies’. Figure 14 (top) depicts the
detected abnormal days (α = 2, N = 60) as red dots. For visualization purposes, we show
them on the sleep duration curves. The entire sleep profile can be seen in Figure 6.

8.1.2. Isolation Forest-Based Anomaly Detection

We also conduct point anomaly detection using Isolation Forest as a baseline. Specifi-
cally, given the daily sleep profile representation, we apply the Isolation Forest using the
specific user’s data only. The first two weeks of sensor readings after the AAL system
deployment are considered to be the initial learning phase, after which we run the Isolation
Forest algorithm daily on data from the past N days and the current day (test day) to
compute anomaly scores. As in Section 8.1.1, we forget data that is older than N days for
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the model to adapt to new behavior patterns. A test day is considered to be abnormal if
its anomaly score is larger than MIS + α× STIS, where MIS and STIS are the mean and
standard deviation of the isolation scores of the reference data (past N days). Figure 14
(bottom) depicts the detected abnormal days (α = 2, N = 60) as red dots.

8.2. Long-Term Behavior Change Detection

A point anomaly may not necessarily have to trigger a health-related alarm. It could
simply be a one-time change in behavior due to special events. However, consecutive
abnormal days could indicate a long-term behavioral change. Thus, we trigger a long-term
behavior change alert once N consecutive abnormal days are detected. Specifically, when
five consecutive days are detected as abnormal, we report a long-term change and notify
the caregivers, so they can investigate whether the anomaly is of medical relevance by
assessing the patient’s data or contacting the patient directly. Detected long-term behavior
changes are depicted as red bars in Figure 14. We can see that six and five long-term
changes were detected with sequence prediction and Isolation Forest-based algorithms,
respectively. Among them there are sleep absence; as well as sleep quality and quantity
triggered changes.

8.3. Anomaly Post-Processing

Long-term behavioral changes could indicate positive or negative health-status changes,
or could be caused by other non-health-related reasons, e.g., a patient being away from
home. Therefore, it is necessary to prune the detection results, so that the system only
reports health-related negative behavior changes, to mitigate the distraction of caregivers.

Specifically, we overlap outing detection results with ‘sleep absence’ changes, and
could identify one long-term anomaly (the fifth at the top and the fourth at the bottom of
Figure 14) to be caused by an outing (family vacation). Thus, it did not need to be reported.
Additionally, to distinguish positive and negative changes, we compare the average sleep
scores (Section 6.4.2) within a window of 5 days before and after the detected beginning of
the change. The long-term anomaly (the second at the top and the third at the bottom of
Figure 14) is therefore a positive improvement, but not an issue to be reported. Thanks to
the pruning strategy, 4 and 3 instead of 6 changes were reported as alerts in an observation
period of 16 months of this patient with each algorithm.

On the other hand, the first long-term anomaly was detected to begin on 18 May
2019 and 21 May 2019 by each algorithm, and reported 5 days later, which is 5 and 2 days
before the hospitalization of the patient (28 May 2019). The second and third long-term
anomaly in Figure 14 (top), and the third long-term anomaly in Figure 14 (bottom) illustrate
increased sleep duration during the recovery phase after hospitalization. Interestingly,
the last long-term anomaly was detected on 17 March 2020 by both algorithms, when the
patient started to take naps during the day, meanwhile the night sleep efficiency decreased.
After submitting the alert, we received feedback from the user through the care manager
that in this case the patient was not experiencing any health issue, the prolonged sleeping
was due to the COVID-19 lockdown situation.

Across the cohort, there were 4 recorded hospitalizations, and 9 recorded hospital
visits. Our system using the TCN-based detection algorithm reported 17 long-term change
anomalies, among which 1 was confirmed as a sensor failure; 3 alerts were able to predict
hospitalization sessions, 2, 5 and 11 days in advance; 2 alerts were detected prior to hospital
visits; and 5 were related to negative behavior changes due to the COVID lockdown. For
the remaining 6 alerts, we were not able to get confirmation from the users. Although the
Isolation Forest-based algorithm reported 12 long-term change anomalies, among which
8 were relevant with either health-condition decline or sensor failure. Overall, using the
extracted sleep profile alone, both the TCN and the Isolation Forest-based systems were able
to detect 3 out of the 4 hospitalization sessions in advance. Although the Isolation Forest-
based algorithm achieved a slightly higher precision (67%) than the TCN-based detection
(65%), the latter had shown to be more sensitive to subtle behavior change and thus led
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to a higher recall (11 relevant alerts). Additionally, the detection rate can be improved by
incorporating additional sensors that could provide complementary information of daily
activities, e.g., sensors installed in the kitchen (digital power meter, fridge door sensor,
presence sensor etc.) for inferring nutrition intake.

Figure 14. Point anomalies (red dots) and long-term changes (red lines) detected by the prediction-based deep learning
framework using TCN (top); and Isolation Forest (bottom) on sleep pattern data.

9. Results Discussion

We deployed a simple binary environmental sensor setting at 19 households of elderly
people, to test its application in an elderly care setting. The system enables a well-informed
personalized healthcare experience with behavioral pattern extraction, health trajectory
tracking, anomaly notifications, and cohort analysis capabilities. The applied behavioral
data processing pipeline is depicted in Figure 15.
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Figure 15. Overview of the behavioral data processing pipeline.

Daily activity patterns were extracted using unsupervised learning approaches, based
on which the user’s health trajectory was adaptively learned and tracked over time. Addi-
tionally, we carefully formed a scheme to quantify binary-bed-sensor-based sleep quality
scores. Health-related anomalies were detected as collective behavior changes over time.
Methods to reduce false notifications are also reported, which is crucial to reduce dis-
traction of caregivers. Outing and visits were extracted not only as physical and social
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activity indicators, but the detected outings were also used to remove non-health-related
‘behavioral’ changes.

Population-wide behavioral patterns can be extracted by grouping daily activity
profiles observed in the cohort, resulting in a behavior ‘dictionary’. Each user is then
represented by a bag of ‘words’ in the dictionary, based on which user segmentation can be
conducted to enable risk group stratification.

Finally, we observe shared behavior pattern changes across the cohort during the
COVID-19 lockdown phase in Northern Italy. Specifically, a large percentage of users
prolonged their night sleep duration and increased the number/duration of naps during
the day, resulting in a decreased sleep efficiency. Additionally, reduced outing/visiting
frequencies were detected across the cohort during the lockdown.

The proposed system is generic and can be customized to fit various sensor settings,
household structures and personalized needs. It relies on unsupervised approaches, thus
mitigating the manual labeling workload. Additionally, the passive nature of the sensors
minimizes user input and interaction, thus improving adherence and mitigating miss-
ing data. Such systems could complement the current healthcare experience, without
interfering with patients’ daily life or compromising their privacy. Future work includes
expanding the system with additional environmental sensors, which could be used to
infer other activity types, such as kitchen usage, shower/bathing, motion (with densely
deployed PIR sensors), and personalized devices with a user friendly device management
platform that enables personalized activity tracking with improved user experience; con-
sidering user feedback as partially labeled examples to optimize the accuracy of the system;
implementing real-time anomaly detection and data exchange; incorporating medically ad-
vised intervention into the care system. A wide deployment of such system could improve
elderly patients’ quality of life at large, and alleviate the pressure on the healthcare system
through reduced hospital re-admission.
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