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Abstract: The massive amount of data generated by social media present a unique opportunity for
disaster analysis. As a leading social platform, Twitter generates over 500 million Tweets each day.
Due to its real-time characteristic, more agencies employ Twitter to track disaster events to make
a speedy rescue plan. However, it is challenging to build an accurate predictive model to identify
disaster Tweets, which may lack sufficient context due to the length limit. In addition, disaster
Tweets and regular ones can be hard to distinguish because of word ambiguity. In this paper, we
propose a sentiment-aware contextual model named SentiBERT-BiLSTM-CNN for disaster detection
using Tweets. The proposed learning pipeline consists of SentiBERT that can generate sentimental
contextual embeddings from a Tweet, a Bidirectional long short-term memory (BiLSTM) layer with
attention, and a 1D convolutional layer for local feature extraction. We conduct extensive experiments
to validate certain design choices of the model and compare our model with its peers. Results show
that the proposed SentiBERT-BiLSTM-CNN demonstrates superior performance in the F1 score,
making it a competitive model in Tweets-based disaster prediction.

Keywords: natural language processing; text classification; mining information; Tweet data; social media

1. Introduction

Social media has been increasingly popular for people to share instant feelings, emo-
tions, opinions, stories, and so on. As a leading social platform, Twitter has gained
tremendous popularity since its inception. The latest statistical data show that over 500
million Tweets are sent each day, generating a massive amount of social data that are used
by numerous upper-level analytical applications to create additional value. Meanwhile,
numerous studies have adopted Twitter data to build natural language processing (NLP)
applications such as named entity recognition (NER) [1], relation extraction [2], question
and answering (Q&A) [3], sentiment analysis [4], and topic modeling [5].

In addition to the social function, Twitter is also becoming a real-time platform to
track events, including accidents, disasters, and emergencies, especially in the era of mobile
Internet and 5G communication, where smartphones allow people to post an emergency
Tweet instantly online. Timing is the most critical factor in making a rescue plan, and
the rise in social media brings a unique opportunity to expedite this process. Due to
this convenience, more agencies like disaster relief organizations and news agencies are
deploying resources to programmatically monitor Twitter, so that first responders can
be dispatched and rescue plans can be made at the earliest time. However, processing
social media data and retrieving valuable information for disaster prediction requires
a series of operations: (1) perform text classification on each Tweet to predict disasters
and emergencies; (2) determine the location of people who need help; (3) calculate the
priorities to schedule rescues. Disaster prediction is the first and most important step,
because a misclassification may result in a waste of precious resources which could have
been dispatched to real needs [6].
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However, to automate this process, an accurate and robust classifier is needed to
distinguish real disaster Tweets from regular ones. Disaster prediction based on Tweets is
challenging, because words indicative of a disaster, such as “fire”, “flood”, and “collapse”,
can be used by people metaphorically to describe something else. For example, a Tweet
message “On plus side look at the sky last night it was ABLAZE” explicitly uses the word
“ABLAZE” but means it metaphorically. The length limit of Tweets brings pros and cons
for training a classifier. The benefit is that users are forced to tell a story in a concise
way, and the downside is that the lack of clear context may prevent a classifier from well
understanding and interpreting the real meaning of a Tweet. Therefore, it is crucial to build
an advanced model that can understand the subtle sentiment embedded in Tweets along
with their given contexts to make better predictions.

Recent advances in deep learning have explored approaches to address these chal-
lenges that are commonly seen in other NLP tasks. Convolutional neural networks (CNNs),
which have been widely used in numerous computer vision tasks, have also been success-
fully applied in NLP systems due to their ability for feature extraction and representation.
Recurrent neural networks and their popular variants, Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), are not only suitable for general sequential modeling
tasks but also provide the capability to capture long dependency information between
words in a sentence. In addition, LSTM and GRU can well address the gradient explosion
and vanishing issue and allow a training algorithm to converge. Another breakthrough
architecture is Bidirectional Encoder Representations from Transformers (BERT), which
stacks layers of Transformer encoders with a multi-headed attention mechanism to enhance
a model’s ability to capture contextual information.

Inspired by these prior efforts, we propose a learning pipeline named SentiBERT-
BiLSTM-CNN for disaster prediction based on Tweets. As shown in Figure 1, the pipeline
consists of three consecutive modules, including (1) a SentiBERT-based encoder that aims
to transform input tokens to sentiment-aware contextual embeddings, (2) a Bidirectional
LSTM (BiLSTM) layer with attention to produce attentive hidden states, and (3) a single-
layer CNN as a feature extractor. In addition, a standard detection head takes as input
a concatenation of the generated features and feeds them into a fully connected layer
followed by a softmax layer to output the prediction result, i.e., disaster Tweet or not. The
design is validated through extensive experiments, including hyper-parameter tuning to
decide certain design choices and an ablation study to justify the necessity of each selected
building block. Results show that the proposed system achieves superior performance in
the F1 score, making it a competitive model in Tweets-based disaster prediction.

Tweets Pre-processing SentiBERT
BiLSTM

with
attention

CNN Detection
head

Module I Module II Module III Disaster
or not

Figure 1. The proposed SentiBERT-BiLSTM-CNN learning pipeline for disaster prediction us-
ing Tweets.

The rest of this paper is organized as follows: Section 2 reviews relevant studies;
Section 3 covers the dataset description and the technical details of the proposed learn-
ing model; Section 4 provides experimental validation with result analysis; Section 5
summarizes our work and points out future directions.

2. Related Work
2.1. Social Media Learning Tasks

Data collected from social media have a lot of potentials to explore. Social texts have
been extensively studied and mined to build a wide range of NLP applications such as
NER [1], Q&A [3], sentiment analysis [4,7–10], and topic modeling [5,11,12]. In addition,
social data have been utilized for emergency, disease, and disaster analysis [13–15]. In [16],
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the authors develop predictive models to detect Tweets that present situational awareness.
The models are evaluated in four real-world datasets, including the Red River floods of 2009
and 2010, the Haiti earthquake of 2010, and the Oklahoma fires of 2009. This paper focuses
on exploring the contextual information in Tweets to build a robust disaster classifier.

2.2. RNN/CNN-Based Models in Text Mining

Active development in deep learning in recent years has generated fruitful achieve-
ments in social text learning. As two representative learning models, RNN and CNN have
been seen in numerous studies, either individually or in a hybrid fashion.

Huang et al. [17] combined BiLSTM and Conditional Random Field (CRF) to build a
sequential tagging framework that can be applied to parts of speech (POS), chunking, and
NER tasks. In [18], Liu et al. propose a Stochastic Answer Network (SAN) that stacks various
layer types, including GRU, BiLSTM, and self-attention; along with a stochastic prediction
dropout trick, the SAN model shows superior performance in reading comprehension.

Kalchbrenner et al. [19] designed one of the earliest CNN-based methods for sentence
modeling, which featured a dynamic CNN (DCNN) that uses the dynamic k-max pooling
subsampling and achieves superior performance in sentiment classification. Due to CNN’s
ability in feature extraction, the DCNN-based system does not require hand-crafted fea-
tures, which is appreciated and widely adopted by numerous subsequent studies. Kim [4]
proposed a simple but effective CNN architecture that utilizes pre-trained word embed-
dings by word2vec. Kim’s work was modified by Liu et al. [20], who propose to learn word
embeddings rather than use pre-trained ones directly. Mou et al. designed a tree-based
CNN [21] that can capture the general semantics of sentences. In [22], Pang et al. proposed
to transform the text matching problem into an image recognition task that can be solved
by a CNN-based model. In addition to open-domain datasets, CNNs have also been exten-
sively used in domain-specific tasks, especially in biomedical text classification [22–27].

Chen et al. [18] proposed a two-stage method that combines BiLSTM and CNN for
sentiment classification. First, the BiLSTM model is used for sentence type classification.
Once assigned a type, a sentence then goes through a 1D CNN layer for sentiment detection.
In [28], the authors designed a hybrid network that combines RNN, MLP, and CNN to
explore semantic information at each hierarchical level of a document.

2.3. Transformer-Based Models for Social Text Learning

BERT [29] and its variants [30–36] have been extensively used as building blocks for
numerous applications, owing to their ability to capture contextual word embeddings.
FakeBERT [37] combines BERT and 1D CNN layers to detect fake news in social media. A
similar work [38] adopts BERT to detect auto-generated tweets. Mozafari et al. [39] designed
a BERT-based transfer learning method to detect hate speech on Twitter. Eke et al. [40]
employed BERT to build a sarcasm detector that can classify sarcastic utterances, which is
crucial for downstream tasks like sentiment analysis and opinion mining.

2.4. Learning-Based Disaster Tweets Detection

One of the early efforts to identify and classify disaster Tweets is by Stowe et al. [6],
who focused on the Tweets generated when Hurricane Sandy hit New York in 2012. In [6],
six fine-grained categories of Tweets, including Reporting, Sentiment, Information, Action,
Preparation, and Movement, are annotated. With a series of hand-crafted features, such as
key terms, Bigrams, time, and URLs, the dataset is used to train three feature-based models,
including SVM, maximum entropy, and Naive Bayes models. Palshikar et al. [41] developed
a weakly-supervised model based on a bag of words, combined with an online algorithm
that helps learn the weights of words to boost detection performance. Algur et al. [42] first
transformed Tweets into vectors using count vectorization and Term Frequency-Inverse
Document Frequency (TF-IDF), based on a set of pre-identified disaster keywords; the vec-
torized Tweets are then trained using Naive Bayes, Logistic Regression, J48, Random Forest,
and SVM to obtain various classifiers. Singh et al. [43] investigated a Markov model-based
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model to predict the priority and location of Tweets during a disaster. Madichetty et al. [44]
designed a neural architecture that consists of a CNN to extract features from Tweets and a
multilayer perceptron (MLP) to perform classification. Joao [45] developed a BERT-based
hybrid model that uses both hand-crafted features and learned ones for informative Tweets
identification. Li et al. [46] investigate a domain-adapted learning task that uses a Naive
Bayes classifier, combined with an iterative self-training algorithm, to incorporate anno-
tated data from a source disaster dataset and data without annotation from the target
disaster dataset into a classifier for the target disaster. More broadly, prior efforts on event
Tweet detection are also of interest. Ansah et al. [47] proposed a model named SensorTree
to detect protest events by tracking information propagated through the Twitter user com-
munities and monitoring the sudden change in the growth of these communities as burst
for event detection. Saeed et al. [48] developed a Dynamic Heartbeat Graph (DHG) model
to detect trending topics from the Twitter stream. An investigation of recent efforts [49] in
disaster Tweet detection reveals a lack of deep learning-based methods that have shown
superiority in numerous other NLP applications, as mentioned in Section 2.1. However, in
the sub-field of disaster Tweets detection, the use cases are still insufficient. In addition,
the idea of integrating sentiment information into a disaster detector remains unexplored,
and our study is an attempt to fill this gap.

Inspired by the prior efforts, we design a learning pipeline that includes a BERT variant
named SentiBERT [50] to obtain sentiment-aware contextual embeddings, a BiLSTM layer
for sequential modeling, and a CNN for feature extraction. The pipeline aggregates the
strength of each individual block to enhance the predictive power that realizes an accurate
disaster detector.

3. Material and Methods
3.1. Dataset

The dataset was created by Figure Eight inc. (an Appen company) from Twitter data
and used as a Kaggle competition hosted at https://www.kaggle.com/c/nlp-getting-
started/data (accessed on 21 June 2021). There are 10,876 samples in the dataset, including
4692 positive samples (disaster) and 6184 negative samples (not a disaster). Table 1 shows
four positive and four negative samples. It can be seen that the disaster and non-disaster
Tweets could use similar keywords in different contexts, resulting in different interpreta-
tions. For example, “pileup” in sample 1, “airplane’s accident” in sample 2, “Horno blaze”
in sample 3, and the phrase “a sign of the apocalypse” in sample 4 are more indicative of
a disaster. However, the words “bleeding”, “blaze”, “ambulance”, and “Apocalypse” in
samples 4 through 8 do not indicate a disaster, given their contexts. Figure 2 displays the
histograms of three variables per Tweet: the number of characters, the number of words,
and the average number of word lengths. Specifically, the means of the character number
per Tweet for disaster and non-disaster Tweets are 108.11 and 95, respectively; the means
of the word number per Tweet for disaster and non-disaster Tweets are 15.16 and 14.7,
respectively; the means of the average word length for disaster and non-disaster Tweets
are 5.92 and 5.14, respectively. The stats data show that the disaster Tweets are relatively
longer than the non-disaster ones.

https://www.kaggle.com/c/nlp-getting-started/data
https://www.kaggle.com/c/nlp-getting-started/data
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Table 1. Disaster Tweets dataset samples. A + sign indicates a positive sample, and a− sign indicates
a negative sample.

ID Sample Tweet Class

1 Grego saw that pileup on TV keep racing even bleeding. +

2 Family members who killed in an airplane’s accident. +

3 Pendleton media office said only fire on base right now is the
Horno blaze. +

4 I know it’s a question of interpretation but this is a sign of the
apocalypse. +

5 bleeding on the brain don’t know the cause. −
6 alrighty Hit me up and we’ll blaze!! −
7 waiting for an ambulance. −
8 Apocalypse please. −
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Figure 2. Stats of Tweets in the dataset. Histograms of (a) the number of characters per Tweet, (b) the
number of words per Tweet, and (c) the average word length per Tweet, plotted for disaster Tweets
(left) and non-disaster Tweets (right).

3.2. Data Pre-Processing

The raw data obtained from Twitter have noises that need to be cleaned. Thus, we
apply a pre-processing step to remove the hashtags, emoticons, and punctuation marks.
For example, a message “# it’s cool. :)”, becomes “it’s cool.” after the filtering. We then
apply some basic transformations such as changing “We’ve” to “We have” to create a better
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word separation within a sentence. Finally, we tokenize each message to generate a word
sequence as the input of the learning pipeline.

3.3. Overview of the Proposed Learning Pipeline

Figure 3 shows the proposed SentiBERT-BiLSTM-CNN learning pipeline, which con-
sists of three sequential modules:

1. SentiBERT is utilized to transform word tokens from the raw Tweet messages to con-
textual word embeddings. Compared to BERT, SentiBERT is better at understanding
and encoding sentiment information.

2. BiLSTM is adopted to capture the order information as well as the long-dependency
relation in a word sequence.

3. CNN acts as a feature extractor that strives to mine textual patterns from the embed-
dings generated by the BiLSTM module.

The output of the CNN is fed to a detection layer to generate the final prediction result,
i.e., disaster or not.

Figure 3. An overview of the SentiBERT-BiLSTM-CNN learning pipeline.

3.4. Sentibert

BERT [29] is an attention-based language model that utilizes a stack of Transformer
encoders and decoders to learn textual information. It also uses a multi-headed attention
mechanism to extract useful features for the task. The bidirectional Transformer neural
network, as the encoder of BERT, converts each word token into a numeric vector to
form a word embedding, so that words that are semantically related would be translated
to embeddings that are numerically close. BERT also employs a mask language model
(MLM) technique and a next sentence prediction (NSP) task in training to capture word-
level and sentence-level contextual information. BERT and its variants have been applied
to numerous NLP tasks such as named entity recognition, relation extraction, machine
translation, and question and answering, and achieved the state-of-the-art performance.
In this study, we choose a BERT variant, SentiBERT, which is a transferable transformer-
based architecture dedicated to the understanding of sentiment semantics. As shown
in Figure 4, SentiBERT modifies BERT by adding a semantic composition unit and a
phrase node prediction unit. Specifically, the semantic composition unit aims to obtain
phrase representations that are guided by contextual word embeddings and an attentive
constituency parsing tree. Phrase-level sentiment labels are used for phrase node prediction.
Due to the addition of phrase-level sentiment detection, a sentence can be broken down
and analyzed at a finer granularity to capture more sentiment semantics.
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Figure 4. Module I: SentiBERT.

Let s = {wi|i = 1, ..., n} denote a Tweet message with n word tokens, which are the
input of SentiBERT. Our goal is to leverage the power of SentiBERT to generate sentiment-
enhanced word embeddings, which can be denoted by e = {ei = SentiBERT(wi)|i =
1, ..., n}. In this study, each Tweet should have no more than 64 tokens; the Tweets with less
than 64 tokens are padded, namely, n = 64. Reference [29] experimentally showed that the
output of the last four hidden layers of BERT encodes more contextual information than
that of the previous layers. To this end, we also chose a concatenation of the outputs of the
last four hidden layers as the word embedding representation.

3.5. Bilstm with Attention

A regular LSTM unit consists of a cell, an input gate, an output gate and a forget gate.
The cell can memorize values over arbitrary time periods, and the three gates regulate
information flow into and out of the cell to keep what matters and forget what does not.
The BiLSTM consists of a forward and a backward LSTM that process an input token
vector from both directions. By looking at past and future words, a BiLSTM network
can potentially capture the more semantic meaning of a sentence. In our study, the word
embeddings e produced from module I are fed into a standard BiLSTM layer to generate a
list of hidden states h = {hi|i = 1, ..., n}, where hi is given by Equation set (1).

←−
hi =

←−−−
LSTM(ei,

←−−
hi−1)

−→
hi =

−−−→
LSTM(ei,

−−→
hi−1)

hi = [
←−
hi ;
−→
hi ]

(1)

where [; ] is a concatenation operation. The structure is shown in Figure 5.
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Figure 5. Module II: BiLSTM with attention.

In a Tweet, each word influences the disaster polarity differently. Using an attention
mechanism can help the model learn to assign different weights to different words so that
the more influential words are given higher weights. For a hidden state hi, its attention ai
is given in the Equation set (2).

ui = tanh(W · hi + b)

ai =
eu>i ·uw

∑i eu>i ·uw
,

(2)

where W denotes a weight matrix, b denotes the bias, and uw a global context vector, and
all three are learned during training. The output of module II is a concatenation of attentive
hidden states H′ = [a1h1; ...; anhn].

3.6. CNN

Module III is a CNN that extracts local features, as shown in Figure 6. We adopt a 1D
convolutional layer with four differently-sized filters. Each filter scans the input matrix H′

and performs a 1D convolutional along the way to generate a feature map. The extracted
features are then fed into a max-pooling layer and concatenated to form a feature matrix F.
Lastly, we send a concatenation of H′ and F to the dense layer.

H'

k2

k3

k4

k5

Conv1D

M
ax

-p
oo

lin
g 

F + [H';F]

Figure 6. Module III: feature extraction via a CNN layer.
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3.7. A Fusion of Loss Functions

In this subsection, we explore the options of loss functions. We considered two
individual loss functions including the binary cross-entropy (BCE) loss and the Focal Loss.
In addition, we employed a fusion strategy as suggested in [51] to combine the two losses,
which resulted in performance improvement.

Since the disaster Tweet detection task is a typical binary classification problem, it is
intuitive to utilize the BCE loss as shown in Equation (3) below.

LBCE = − 1
m

m

∑
i=1

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))), (3)

in which m is the training set size, and y(i) and ŷ(i) denote the ground truth and the
predicted class for the ith sample in the dataset, respectively.

Meanwhile, considering the imbalanced sample distribution, this study also employs
Focal Loss, defined in Equation (4).

LFL = − 1
m

m

∑
i=1

(y(i)α(1− ŷ(i))
γ + (1− y(i))(1− α)ŷγ

(i)log(1− ŷi)), (4)

where γ is a coefficient that controls the curve shape of the focal loss function. Using
Focal Loss with γ > 1 reduces the loss for well-classified examples (i.e., with a prediction
probability larger than 0.5) and increases loss for hard-to-classify examples (i.e., with a
prediction probability less than 0.5). Therefore, it turns the model’s attention towards the
rare class in case of class imbalance. On the other hand, a lower α value means that we
tend to give a small weight to the dominating or common class and high weight to the rare
class. By fusing the focal loss and the BCE loss in a certain ratio, we obtain Equation (5), in
which β1 and β2 specify the fusion weights.

Lmix = β1LBCE + β2LFL (5)

4. Experiments

We utilize the disaster Tweet dataset discussed in Section 3.1 for performance evalua-
tion. We first present the performance metrics and then report the experimental results.

4.1. Evaluation Metrics

We use precision (Pre), recall (Rec), and the F1 score to evaluate the model performance.
Given that the positive/negative samples are not balanced, F1 is a better metric than
accuracy. Precision and recall are also important. The former reflects the number of false
alarms; the higher the precision, the fewer false alarms. The latter tells the number of
positive samples that are missed; the higher the recall, the fewer disaster Tweets missed. A
large precision–recall gap should be avoided, since it indicates that a model focuses on a
single metric, while a model should really focus on optimizing F1, the harmonic mean of
precision and recall.

Let TP, TN, and FP denote the number of true positives, true negatives, and false
positives, respectively, we can then calculate precision, recall, and F1 as follows.

Pre =
TP

TP + FP
(6)

Rec =
TP

TP + FN
(7)

F1 = 2× Pre× Rec
Pre + Rec

. (8)
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4.2. Training Setting

The dataset was divided into training and validation sets in the ratio of 7:3, generating
7613 training and 3263 validation samples. For the SentiBERT, the embedding dimension
was 768, max sequence length was 128, and layer number was 12; for the BiLSTM module,
the layer number was 1, and the feature number was 768; for the CNN module, the sizes of
the four filters were set to 2, 3, 4 and 5. For the overall architecture, we used a learning rate
of 1× 10−4, the Adam optimizer, and experimented with different batch sizes (16 and 32)
and training epochs (6, 8, 10, 12, and 14). All experiments were implemented using Python
3.9.4 and PyTorch 1.8.0 on Google Colab with an NVIDIA Tesla K80.

4.3. Baseline Model

The baseline model we chose was a BERT-based hybrid model developed by Joao [45].
We denote the model as BERThyb. We regard BERThyb as a credible baseline because it
presented the state-of-the-art (SOTA) performance compared to a variety of models on four
datasets. BERThyb works by combining a series of hand-crafted Tweet features and the
BERT word embeddings and sending the feature concatenation to an MLP for classification.

4.4. Effect of Hyper-Parameter Choices

We conducted experiments to evaluate the performance of our model SentiBERT-
BiLSTM-CNN under different hyper-parameter settings. Specifically, the model was trained
with a combination of three values of epochs (6, 8, 10, 12, and 14) and two values of batch
sizes (16, 32), creating ten experiments, as shown in Table 2. It can be seen that when
the model was trained with 10 epochs and with a batch size of 32, the model achieved
the best performance, with an F1 of 0.8956. We also observe a consistent performance
improvement as the number of epochs increases from 6 to 10, and beyond 10 epochs, the
gain is not apparent. The training was efficient because SentiBERT has been pre-trained
and was only fine-tuned on our dataset. It is noted that for this set of experiments, we
applied a basic cross-entropy loss function. The effect of the fused loss function is reported
in the next subsection.

Table 2. Performance of SentiBERT-BiLSTM-CNN under different hyper-parameter settings.

Epochs Batch Size Precision Recall F1 Score

6 32 0.8525 0.8478 0.8501
16 0.8495 0.8364 0.8429

8 32 0.8654 0.8701 0.8677
16 0.8643 0.8618 0.8630

10 32 0.8987 0.8932 0.8959
16 0.8903 0.8827 0.8865

12 32 0.8848 0.8956 0.8902
16 0.8817 0.8893 0.8855

14 32 0.8902 0.9012 0.8957
16 0.8949 0.8878 0.8913

4.5. The Effect of a Hybrid Loss Function

We conducted experiments to evaluate the model’s performance under different loss
function settings. We first evaluated the performance of using BCE and FL individually
and then fused the two loss functions in the ratio of 1:1. The results are reported in Table 3.
We observe that the model with FL outperformed the model with BCE, validating the
efficacy of FL in the case of imbalanced data distribution. In addition, the model with a
hybrid loss function performed the best, with an F1 of 0.9275. The result demonstrates the
effectiveness of the fusion strategy in this study.
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Table 3. Performance of SentiBERT-BiLSTM-CNN under different loss function settings.

Loss Function Epochs Batch Size Precision Recall F1 Score

LBCE 10 32 0.8987 0.8932 0.8959
LFL 10 32 0.9029 0.9135 0.9082
Lmix 10 32 0.9305 0.9271 0.9275

4.6. Performance Evaluation

We also conducted experiments to evaluate a set of models, and present a performance
comparison of all evaluated models in Table 4, using the best hyper-parameter settings and
the fused loss function, as reported in the previous two subsections. We give the result
analysis as follows.

• The set of models CNN, BiLSTM, SentiBERT, BiLSTM-CNN, and SentiBERT-BiLSTM-
CNN forms an ablation study, from which we can evaluate the performance of each
individual module and the combined versions. It can be seen that the pure CNN
model performs the worst since a single-layer CNN cannot learn any contextual
information. Both BiLSTM (with attention) and SentiBERT present an obvious im-
provement. SentiBERT is on a par with BiLSTM-CNN in precision, but outperforms it
in recall. Our final model, SentiBERT-BiLSTM-CNN tops every other model, showing
its power to combine the strength of each individual building block.

• The set of models fastText-BiLSTM-CNN, word2vec-BiLSTM-CNN, BERT-BiLSTM-
CNN, and SentiBERT-BiLSTM-CNN are evaluated to compare the effect of word
embeddings. FastText [52], word2vec [53], BERT, and SentiBERT are used for the same
purpose, i.e., to generate word embeddings. A model’s ability to preserve contextual
information determines its performance. From the results, we observe that by adding
contextual embeddings, the models gain improvements to varying degrees. SentiBERT-
BiLSTM-CNN, as the best-performing model, demonstrates superior capability in
encoding contextual information.

• Another observation is that SentiBERT-BiLSTM-CNN outperforms BERT-BiLSTM-
CNN by 1.23% in F1, meaning that sentiment in Tweets is a crucial factor that can help
detect disaster Tweets, and a sentiment-enhanced BERT validates this hypothesis.

• Lastly, SentiBERT-BiLSTM-CNN outperforms BERThyb, i.e., the SOTA, by 0.77% in
F1. Although BERThyb presented the highest precision 0.9413, its precision–recall
gap (4.21%) is large, compared to that of SentiBERT-BiLSTM-CNN (0.34%), meaning
that BERThyb focuses more on optimizing precision. On the other hand, SentiBERT-
BiLSTM-CNN demonstrated a more balanced result in precision and recall.

Table 4. A performance comparison of models.

Model Precision Recall F1 Score

CNN 0.8064 0.8086 0.8025
BiLSTM 0.8571 0.8405 0.8487

SentiBERT 0.8668 0.8712 0.8690
BiLSTM-CNN 0.8674 0.8523 0.8598

word2vec-BiLSTM-CNN 0.8831 0.8767 0.8799
fastText-BiLSTM-CNN 0.8935 0.8736 0.8834

BERT-BiLSTM-CNN 0.9118 0.9187 0.9152
BERThyb 0.9413 0.8992 0.9198

SentiBERT-BiLSTM-CNN 0.9305 0.9271 0.9275

4.7. Error Analysis

Table 5 shows ten samples, including five positive and five negative ones, which
are misclassified by the proposed SentiBERT-BiLSTM-CNN model. In this subsection,
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we provide an analysis of these mistakes that may shed light on further improvement of
our model.

• For the five samples that are marked as disaster Tweets (i.e., samples one through
five), none of them are describing a common sense disaster: sample 1 seems to
state a personal accident; sample 2 talks about US dollar crisis which may indicate
inflation given its context; in sample 3, the phrase “batting collapse” refers to a
significant failure of the batting team in a sports game; sample 4 is the closest to a
real disaster, but the word “simulate” simply reverses the semantic meaning; sample
5 does mention a disaster “Catastrophic Man-Made Global Warming”, but the user
simply expresses his/her opinion against it. Our observation is that the process
of manual annotation could introduce some noises that would affect the modeling
training. From another perspective, the noises help build more robust classifiers and
potentially reduce overfitting.

• For the five negative samples (6–10), we also observe possible cases of mislabeled
samples: sample 6 clearly reports a fire accident with the phrase “burning buildings”
but was not labeled as a disaster Tweet; sample 7 states a serious traffic accident;
sample 8 mentions bio-disaster with the phrase “infectious diseases and bioterrorism”;
sample 9 has only three words, and it is hard to tell its class without more context,
although the word “bombed” is in the Tweet; sample 10 reflects a person’s suicide
intent, which could have been marked as a positive case.

Table 5. Examples of misclassified samples. A “+” sign indicates a positive sample, and a “−” sign
indicates a negative sample.

ID Sample Tweet Label Prediction

1 I was wrong to call it trusty actually. considering it
spontaneously collapsed on me that’s not very trusty. + −

2
Prices here are insane. Our dollar has collapsed
against the US and it’s punishing us. Thanks for
the info.

+ −

3 Now that’s what you call a batting collapse. + −

4 Emergency units simulate a chemical explosion at
NU. + −

5 99% of Scientists don’t believe in Catastrophic Man-
Made Global Warming only the deluded do. + −

6 all illuminated by the brightly burning buildings all
around the town! − +

7 That or they might be killed in an airplane accident
in the night a car wreck! Politics at it’s best. − +

8 automation in the fight against infectious diseases
and bioterrorism − +

9 misfit got bombed. − +

10
Because I need to know if I’m supposed to throw
myself off a bridge for a #Collapse or plan the parade.
There is no both.

− +

We need to clarify that these misclassified samples presented in the table are randomly
selected from all error predictions. It can be seen that the length limit of Tweets presents
pros and cons for training a classifier. The bright side is that users are forced to use short
and direct words to express an opinion, and the downside is that some short Tweets are
hard to interpret due to the lack of more context information, which is the main challenge
for training an accurate model.
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5. Conclusions

Disaster analysis is highly related to people’s daily lives, and recent years have seen
more research efforts dedicating to this field. Research on disaster prediction helps augment
people’s awareness, improve the mechanism of a government rescue, and schedule charita-
ble institutions’ work. This paper investigates a novel model for disaster detection using
Tweets. Our model, SentiBERT-BiLSTM-CNN, leverages a sentiment-aware BERT encoder,
an attentive BiLSTM, and a 1D convolutional layer to extract high-quality linguistic features
for disaster prediction. The model is validated through extensive experiments compared to
its peers, making it a competitive model for building a real-time disaster detector.

Although the proposed model is trained and validated on an English dataset, it can
be applied to datasets in other languages. Specifically, in a different language environ-
ment, the following adjustments need to be made: first, we should find a BERT model
pre-trained in the target language or in a multi-lingual setting, which is readily avail-
able online (https://huggingface.co/transformers/pretrained_models.html, accessed on
12 March 2021); second, we need to retrain SentiBERT on a sentiment analysis dataset in
the target language; lastly, a new disaster Tweet dataset in the target language is needed
to train and validate the model. In this new language environment, SentiBERT can now
generate sentiment-aware word embeddings to be consumed by the subsequent BiLSTM
and CNN modules, which are language independent.

This work has the following limitations that also point out the future directions. First,
it remains interesting to uncover the role keywords played in disaster detection. Given
that keywords like “blaze” and “apocalypse” can appear in both disaster and non-disaster
Tweets, it is challenging to effectively utilize the keywords as extra knowledge to help
boost the detection accuracy. One potential solution is to fine-tune BERT through pair-wise
training, taking a pair of Tweets containing the same keywords but with opposite training
labels; this way, BERT is forced to better understand the contextual difference between
two Tweets. Second, it remains unknown that how well the model trained on our dataset
performs on other disaster datasets, such as HumAID [54] and Crisismmd [55]; in addition,
we expect to obtain a more robust model that is trained across multiple disaster/crisis
Tweets datasets. Third, we are interested in creating a multilingual disaster detector
that can understand and process Tweets in different languages; it is worth conducting a
performance comparison between a multilingual and a monolingual model.
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