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Abstract: Flow-based generative models have recently become one of the most efficient approaches to
model data generation. Indeed, they are constructed with a sequence of invertible and tractable transfor-
mations. Glow first introduced a simple type of generative flow using an invertible 1× 1 convolution.
However, the 1× 1 convolution suffers from limited flexibility compared to the standard convo-
lutions. In this paper, we propose a novel invertible n× n convolution approach that overcomes
the limitations of the invertible 1× 1 convolution. In addition, our proposed network is not only
tractable and invertible but also uses fewer parameters than standard convolutions. The experiments
on CIFAR-10, ImageNet and Celeb-HQ datasets, have shown that our invertible n× n convolution
helps to improve the performance of generative models significantly.

Keywords: flow-based generative model; invertible n × n convolution; invertible and
tractable transformations

1. Introduction

Supervised deep learning models have recently achieved numerous breakthrough results
in various applications, for example, Image Classification [1–3], Object Detection [4–6], Face
Recognition [7–14], Image Segmentation [15,16] and Generative Model [17–22]. However,
these methods usually require a huge number of annotated data, which is highly expen-
sive. In order to tackle the requirement of large annotations, generative models have
become a feasible solution. The main objective of generative models is to learn the hidden
dependencies that exist in the realistic data so that they can extract meaningful features
and variable interactions to synthesize new realistic samples without human supervision
or labeling. Generative models can be used in numerous applications such as anomaly
detection [23], image inpainting [24], data generation [20,25], super-resolution [26], face
synthesis [22,27,28], and so forth. However, learning generative models is an extremely
challenging process due to high-dimensional data.

There are two types of generative models extensively deployed in recent years, includ-
ing likelihood-based methods [29–32] and Generative Adversarial Networks (GANs) [33].
Likelihood-based methods have three main categories: Autoregressive models [30], varia-
tional autoencoders (VAEs) [34], and flow-based models [29,31,32]. The flow-based gener-
ative model is constructed using a sequence of invertible and tractable transformations,
the model explicitly learns the data distribution and therefore the loss function is simply a
negative log-likelihood.

The flow-based model was first introduced in [31] and later extended in RealNVP [32].
These methods introduced an affine coupling layer that is invertible and tractable based on
Jacobian determinant. As the design of the coupling layers, at each stage, only a subset
of data is transformed while the rest is required to be fixed. Therefore, they may be
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limited in flexibility. To overcome this limitation, coupling layers are alternated with less
complex transformations that manipulate on all dimensions of the data. In RealNVP [32],
the authors use a fixed channel permutation using fixed checkerboard and channel-wise
masks. Kingma et al. [29] simplifies the architecture by replacing the reverse permutation
operation on the channel ordering with invertible 1× 1 convolutions.

However, the 1 × 1 convolutions are not flexible enough in these scenarios. It is
extremely hard to compute the inverse form of the standard n × n convolutions, and
this step usually produces high computational costs. There are prior approaches that
design the invertible n × n convolutions by using emerging convolution [35], periodic
convolutions [35], autoregressive flow [36] or stochastic approximation [37–39]. In this
paper, we propose an approach to generalize an invertible 1× 1 convolution to a more
general form of n× n convolution. Firstly, we reformulate the standard convolution layer
by shifting the inputs instead of the kernels. Then, we propose an invertible shift function
that is a tractable form of Jacobian determinant. Through the experiments on CIFAR-10 [40],
ImageNet [41] and Celeb-HQ [42] datasets, we prove that our proposals are significant and
efficient for high-dimensional data. Figure 1 illustrates the advantages of our approach
with high-resolution synthesized images.

Figure 1. Reconstruction results using our proposed approach.

Contributions: This work generalizes the invertible 1× 1 convolution to an invertible
n× n convolution by reformulating the convolution layer using our proposed invertible
shift function. Our contributions can be summarized as follows:

• Firstly, by analyzing the standard convolution layer, we reformulate its equation into
a form such that, rather than shifting the kernels during the convolution process,
shifting the input provides equivalent results.

• Secondly, we propose a novel invertible shift function that mathematically helps to
reduce the computational cost of the standard convolution while keeping the range of
the receptive fields. The determinant of the Jacobian matrix produced by this shift
function can be computed efficiently.

• Thirdly, evaluations of several datasets on both objects and faces have shown the
generalization of the proposed n× n convolution using our proposed novel invertible
shift function.

2. Related Work

The generative models can be divided into two groups, that is, Generative Adversarial
Networks and Flow-based Generative Models. In the first group, Generative Adversarial Net-
works [33] provide an appropriate solution to model the data generation. The discriminative
model learns to distinguish the real data from the fake samples produced using a gener-
ative model. Two models are trained as they are playing a mini-max game. Meanwhile,
in the second group, the Flow-based Generative Models [29,31,32] are constructed using a
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sequence of invertible and tractable transformations. Unlike GAN, the model explicitly
learns the data distribution p(x) and therefore the loss function is efficiently employed
with the log-likelihood.

In this section, we discuss several types of flow-based layers that are commonly used
in flow-based generative models. An overview of several invertible functions is provided in
the Table 1. In particular, all functions easily obtain the reverse function and tractability of
a Jacobian determinant. The symbols�, / denote element-wise multiplication and division.
h, w denotes the height and width of the input/output. c, i, j are the depth channel index
and spatial indices, respectively.

Table 1. Comparative invertible functions in several generative normalizing flows.

Description Function Reverse Function Log-Determinant

ActNorm [29] y = x� γ + β x = (y− β)/γ ∑ log |γ|
Affine Coupling [32] x = [xa, xb] y = [ya, yb] ∑ log |s(xb)|

ya = xa � s(xb) + t(xb) xa = [ya − t(yb)]/s(yb)
y = [yaxb] x = [xayb]

1× 1 conv [29] y:,i,j = Wx:,i,j x:,i,j = W−1y:,i,j h.w. log |det W|
Our Shift Function yc,i,j = αcxc,i,j + βc xc,i,j = [yc,i,j − βc]/αc h.w. ∑c log |αc|

Coupling Layers: NICE [31] and RealNVP [32] presented coupling layers with a nor-
malizing flow by stacking a sequence of invertible bijective transformation functions. The
bijective function is designed as an affine coupling layer, which is a tractable form of Jaco-
bian determinant. RealNVP can work in a multi-scale architecture to build a more efficient
model for large inputs. To further improve the propagation step, the authors applied batch
normalization and weight normalization during training. Later, Ho et. al. [43] presented
a continuous mixture cumulative distribution function to improve the density modeling
of coupling layers. In addition to improving the expressiveness of transformations of
coupling layers [43], utilized multi-head self-attention layers [44] in the transformations.

Inverse Autoregressive Convolution: Germain et al. [45] introduced autoregressive
autoencoders by constructing an extension of a non-variational autoencoder that can esti-
mate distributions and is straightforward in computing their Jacobian determinant. Masked
autoregressive flow [36] is a type of normalizing flow, where the transformation layer is
built as an autoregressive neural network. Inverse autoregressive flow [30] formulates the
conditional probability of the target variable as an autoregressive model.

Invertible 1× 1 Convolution: Kingma et al. [29] proposed simplifying the archi-
tecture via invertible 1 × 1 convolutions. Learning a permutation matrix is a discrete
optimization that is not amenable to gradient ascent. However, the permutation operation
is simply a special case of a linear transformation with a square matrix. We can pursue this
work with convolutional neural networks, as permuting the channels is equivalent to a
1× 1 convolution operation with an equal number of input and output channels. Therefore,
the authors replace the fixed permutation with learned 1× 1 convolution operations.

Activation Normalization: [29] performs an affine transformation using scale and
bias parameters per channel. This layer simply shifts and scales the activations with data-
dependent initialization that normalizes the activations given an initial minibatch of data.
This allows the scaling down of the minibatch size to 1 (for large images) and the scaling
up of the size of the model.

Invertible n × n Convolution: Since the invertible 1 × 1 convolution is not flexi-
ble, Hoogeboom et al. [35] proposed an invertible n × n convolution generalized from
the 1 × 1 convolutions. The authors presented two methods to produce the invertible
convolutions: (1) Emerging Convolution and (2) Invertible Periodic Convolutions. Emerging
Convolution is obtained by chaining specific invertible autoregressive convolutions [30]
and speeding up this layer through the use of an accelerated parallel inversion module
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implemented in Cython. Invertible Periodic Convolutions transform data to the frequency
domain via Fourier transform; this alternative convolution has a tractable Jacobian determi-
nant and inverse. However, these invertible n× n convolutions require more parameters;
therefore, these have an additional computational cost compared to our proposed method.

Lipschitz Constant: Behrmann et al. [37] developed a theory that any residual blocks
satisfying the Lipschitz Constant can be invertible. Hence, Behrmann et al. proposed
an invertible residual network (i-ResNet) as a normalizing flow-based model. Similar
to [29,31,32,35], i-ResNet is learned by optimizing the negative log-likelihood in which the
inverse flow and Jacobian determinant of the residual block can be efficiently approximated
by the stochastic methods. Inheriting the success of Lipschitz theory, Kim et al. [38]
proposed an L2 self-attention that allows the self-attention of the Transformer networks [44]
to be invertible.

3. Background
3.1. Flow-Based Generative Model

Let x be a high-dimensional vector with unknown true distribution x ∼ pX (x), x ∈ X ,
a simple prior probability distribution pZ on a latent variable z ∈ Z , a bijection f : X → Z ,
the change of variable formula defines a model distribution on X as shown in Equation (1).

pX (x) = pZ (z)
∣∣∣det

(∂ f (x)
∂x

)∣∣∣, (1)

where ∂ f (x)
∂x is the Jacobian of f at x. The log-likelihood objective is then equivalent

to minimizing:

L(X ) = −x∈X log pX (x)

= −x∈X

[
log pZ (z) + log

∣∣∣det
(∂ f (x)

∂x

)∣∣∣].
(2)

Since the data x are discrete data, we add a random uniform noise u ∈ U (0, a), where
a is determined by the discretization level of the data, to make x be continuous data. The
generative process can be defined as Equation (3).

z ∼ pZ (z)

x = f−1(z).
(3)

The bijection function f is constructed from a sequence of invertible and tractable
Jacobian determinant transformations: f = f1 ◦ f2 ◦ ... ◦ fK (K is the number of transfor-
mations). Such a sequence of invertible transformations is also called a normalizing flow.
Here, Equation (2) can be written as in Equation (4).

L(X ) = −x∈X log pX (x)

= −x∈X

[
log pZ (z) +

K

∑
k=1

log
∣∣∣det

( ∂hk
∂hk−1

)∣∣∣] (4)

where hk = f1 ◦ f2 ◦ .. ◦ fk(h0) with h0 = x.
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3.2. Standard n× n Convolution

In this section, we revisit the standard n× n convolution. Let X be an C × H ×W
input; W is a D× C× K kernel, and the convolution can be expressed as follows:

Y = W ? X =
[
W:,:,1 W:,:,2 · · · W:,:,k

]
×


X1

:,:,:

X2
:,:,:

...

XK
:,:,:


=

K

∑
k=1

W:,:,k × Xk
:,:,: =

K

∑
k=1

W:,:,k × Sk(X),

(5)

where Xk
:,:,: is a C× H×W matrix that represents a spatially shifted version of input matrix

X with shift amount (ik, jk), . W:,:,k represents the D× C matrix corresponding to the kernel
index k, the symbol ? denotes a convolution operator.

In Equation (5), the standard convolution is simply a sum of 1× 1 convolutions on
shifted inputs. The function Sk maps the input X to the corresponding shifted input
Xk

:,:,:. The standard convolution uses the common shifted input with integer-valued shift
amounts for index k. Figure 2 illustrates our reformulated n× n convolution, if we can
share the shifted inputs regardless of the kernel index, especially Sk(X) = S(X), the
standard convolution will be simplified as the 1× 1 convolution as shown in Equation (6).
In this paper, we propose a shift function S , which is an invertible and tractable form of
the Jacobian determinant.

K

∑
k=1

W:,:,k × Sk(X) =
K

∑
k=1

W:,:,k × S(X)

=

(
K

∑
k=1

W:,:,k

)
× S(X).

(6)

Shifted Inputs

Standard n⨉n Convolution
Reformulated n⨉n Convolution

Shift Function

: Convolution 

: Invertible shift function 

Figure 2. Reformulating n × n convolution. We propose to shift inputs instead of kernels. The
proposed invertible n × n convolution will be simplified as a combination of the invertible shift
function S and the invertible 1× 1 convolution.

4. Invertible n × n Convolution

In this section, we first introduce our proposed Invertible Shift Function and then
present invertible n× n convolution in details.
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4.1. Invertible Shift Function

The shift function S will approximate all shifted input Xk
:,:,: (1 ≤ k ≤ K). Here,

we propose to design S as a linear transformation per channel; specifically, we have
learnable variables αc, βc; 1 ≤ c ≤ C are scale and translation parameters for each channel,
respectively. The shift function S can be formulated as follows:

S(Xc,i,j) = αcXc,i,j + βc, (7)

where c, i, j are the depth channel index and spatial indices, respectively. The reverse
function of S can be easy to obtain:

Xc,i,j =
S(Xc,i,j)− βc

αc
. (8)

Thanks to Equation (7), the value of S(Xc,i,j) only depends on Xc,i,j and the Jacobian
matrix will be in the form of the diagonal matrix as follows:

J =
∂S(X)

∂X
=



∂S(X1,1,1)
∂X1,1,1

0 · · · 0

0 ∂S(X1,1,2)
∂X1,1,2

· · · 0
...

...
. . .

...

0 0 · · · ∂S(XC,H,W )
∂XC,H,W



=


α1 0 · · · 0
0 α1 · · · 0
...

...
. . .

...
0 0 · · · αc.


(9)

Therefore, the determinant of Equation (9) is the product of all elements in the diagonal
of the matrix J as in Equation (10).

det

(
∂S(X)

∂X

)
=

C

∏
c=1

αH×W
c

log

∣∣∣∣∣det

(
∂S(X)

∂X

)∣∣∣∣∣ = H ×W ×
C

∑
c=1

log |αc|.
(10)

4.2. Invertible n× n Convolution

Kingma [29] proposed invertible 1× 1 convolution as the smart way to learn the
permutation matrix instead of the fixed permutation [31,32]. However, the 1× 1 suffers
from limited flexibility compared to the standard convolution. In particular, the receptive
fields of 1× 1 convolution is limited. When the network goes deeper, the receptive fields of
1× 1 convolutions are still small areas; these, therefore, cannot generalize or model large
objects of high-dimensional data. However, the 1× 1 convolution has its own advantages
compared to the standard convolution. First, the 1× 1 convolution allows the network to
compress the data of the input volume to be smaller. Second, 1× 1 suffers less over-fitting
due to small kernel sizes. Therefore, in our proposal, we still take advantages of the
1× 1 convolution. Specifically, we adopt the successfully invertible 1× 1 convolution of
Glow [29] in our design.

In the previous subsection, we proved that the shift function S is invertible and proved
the tractability of the Jacobian determinant. In Section 3.2, we indicated that if we can share
shifted inputs regardless of the kernel index via the shift function S , we can simplify the
standard n× n convolution to the composition of the S and 1× 1 convolution. Therefore,
the invertible n× n convolution will be equivalent to the combination of the invertible
shift function S and the invertible 1× 1 convolution. Specifically, the input will first be
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forwarded to the shift function S and then convoluted with the 1× 1 filter. Algorithm 1
illustrates the pseudo code of the invertible n× n convolution.

Algorithm 1: Invertible n× n Convolution

Input: An input X ∈ RN×H×W×C

Result: An output of invertible n× n convolution and the log Jacobian
determinant

Initialize α, β ∈ RC for the invertible shift function;
Initialize W ∈ RC×C as a rotation matrix for the invertible 1× 1 convolution

function;
logdet = 0.0;
The invertible shift function;
Y = X× α + β (Channel-wise operations);
The inverse will be X = Y−β

α ;
logdet = logdet + ∑C

i=1 log(αi);
The invertible 1× 1 convolution;
Z = Conv(Y, W);
The inverse will be Y = Conv(Z, W−1);
logdet = logdet + log(det(W)) * H * W;
Return Z and logdet;

Figure 3a illustrates our one step of flow. We adopt the common design of a flow
step [29,35,46] in our design. Our proposal can be easily integrated to the multi-scale
architecture designed by Dinh et al. [32] (Figure 3b). From our proposal, we can generalize
the invertible 1 × 1 convolution to the invertible n × n convolution through the shift
function S . It can help to encourage the filters to learn a more efficient data representation
and embed more useful latent features than the invertible 1 × 1 convolution used in
Glow [29]. Besides, we use fewer parameters and have less inference time compared to the
standard n× n convolutions.

Flow

Squeeze

Split

Flow

Squeeze

(b) Multi-scale Architecture(a) One step of flow

ActNorm

Affine Coupling Layer

Invertible nxn Conv

Figure 3. (a) is our one step of flow using an invertible n× n convolution. Our proposal flow step is
able to combine with the multi-scale architecture designed in RealNVP (b). K and L are the depth of
flow and the number of levels, respectively.

5. Experiments

In this section, we present our experimental results on CIFAR-10, ImageNet and
Celeb-HQ datasets. Firstly, in Section 5.1, we compare log-likelihood against the previous
flow-based models, that is, RealNVP [32], Glow [29] and Emerging Convolution [35].
Finally, in Section 5.2, we show our qualitative results trained on the Celeb-HQ dataset.



Future Internet 2021, 13, 179 8 of 12

5.1. Quantitative Experiments

Datasets and Metric: We evaluate our invertible n × n convolution on CIFAR-10
(Figure 4a) and ImageNet (Figure 4b) with 32× 32 and 64× 64 image sizes. We use bits per
dimension as the criteria with which to evaluate models. We compare our method against
RealNVP [32], Glow [29] and Emerging Convolution [35]. We adopt the network structures
of Glow and replace all invertible 1× 1 convolutions of Glow with our invertible n× n
convolutions. For the data preprocessing, we follow the same process as in RealNVP [32].

Figure 4. The examples from the CIFAR dataset (a), ImageNet dataset (b) and Celeb-HQ dataset (c).

Network Configurations: In the CIFAR experiment, the depth of flow K and the
number of levels L are set to 32 and 3, respectively. Meanwhile, the depth of flow in Ima-
geNet experiments is set to 48, the numbers of levels of ImageNet 32× 32 and ImageNet
64× 64 experiments are set to 3 and 4, respectively. We use the Adam optimizer [47] to op-
timize the networks in which batch size and learning rate are set to 64 (per GPU) and 0.001,
respectively. We choose Normal Distribution as the prior distribution pZ (z) ∼ N (z; 0, I)
in all experiments.

The shift function S will be not inverse if the αc = 0 (∃ c ∈ [1...C]). Hence, in the
training process, we will first initialize αc = 1 and βc = 0 (1 ≤ c ≤ C). During the learning
processing, we keep αc (1 ≤ c ≤ C) as a different 0 to guarantee that the shift function S
is inverse and to guarantee the tractability of the Jacobian determinant. Training models
on high-dimensional data requires large memory. To be able to train with a large batch
size, we simultaneously and distributively trained the models on four GPUs via Horovod
(https://github.com/horovod/horovod, accessed on 8 July 2021) and TensorFlow (https://
tensorflow.org, accessed on 8 July 2021) frameworks.

Results: Table 2 shows our experimental results. In particular, our proposal helps
to improve the generative models on ImageNet 32× 32 and ImageNet 64× 64 datasets,
which are more challenging than CIFAR-10. In particular, our proposed method achieves a
state-of-the-art performance in which the bit per dimension results in ImageNet 32× 32,
and ImageNet 64× 64 is 3.96 and 3.74, respectively. In comparison, the Emerging Con-
volution [35] and Glow achieve similar results in both ImageNet 32× 32 and ImageNet
64× 64 benchmarks, which are 4.09 and 3.81, respectively. Meanwhile, the corresponding
results of RealNVP on these benchmarks are 4.28 and 3.98, respectively. As shown by the
results, our proposed invertible n× n convolution provides a better generative capability
than the stand-alone invertible 1× 1 convolution. Since Emerging Convolution uses in-
vertible auto-regressive convolution, our proposal is, therefore, less complicated and has
faster inference than Emerging Convolution. In the CIFAR-10 benchmark, although our
model does not perform as well as Glow [29] and Emerging Convolution [35], we find it
interesting that our method gains competitive results with a small number of modifications.
The gap in performance is partially caused by the small amount of CIFAR-10 data that is
inefficient for training the well-generalized convolution.

https://github.com/horovod/horovod
https://tensorflow.org
https://tensorflow.org
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Table 2. Comparative results (bits per dimension) of proposed invertible n× n convolution compared
to RealNVP, Glow and Emerging Convolution.

Models CIFAR-10 ImageNet 32 ImageNet 64

RealNVP 3.49 4.28 3.98
Glow 3.35 4.09 3.81

Emerging Conv 3.34 4.09 3.81
Ours 3.50 3.96 3.74

5.2. Qualitative Experiments

The CelebA-HQ dataset [42] was selected to train the model using the architectures
defined in the previous section with a higher resolution (256 × 256 image sizes). The
depth of flow K and the number of levels L were set to 32 and 6, respectively. Since
high-dimensional data requires large memory, we reduced the batch size to 1 (per GPU)
and trained on eight GPUs. The qualitative experiment aims to study the efficiency of
the model when it scales up to the high-resolution images, synthesizes realistic images,
and provides the meaningful latent space. Figure 4c shows the examples of Celeb-HQ
datasets. We trained our model on 5-bit images in order to improve visual quality with a
slight trade-off of color fidelity. As shown by the synthetic images in Figure 5, our model
can generalize realistic images in high dimensional data.

Figure 5. Synthetic celebrity faces sampled from our model trained on the CelabA-HQ dataset.

6. Conclusions and Future Work

This paper has presented a novel invertible n× n convolution approach. By reformu-
lating the convolution layer, we propose to use the shift function to shift inputs instead of
kernels. We prove that our shift function is invertible and tractable in terms of calculating
the Jacobian determinant. The method leverages the shift function and the invertible
1× 1 convolution to generalize to the invertible n× n convolution. Through experiments,
our proposal has achieved state-of-the-art results in quantitative measurement and is able
to generate realistic images with high-resolution.
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There are several challenges that remain to be addressed in future work. In particular,
when the model scales up to the high-resolution images, it requires a large amount of GPU
memory during the training process, that is, the back-propagation process. Maintaining
the rotation matrix property for the invertible 1× 1 convolution when training the model
on a large dataset is also a challenging task, since the model easily falls into the non-inverse
matrix due to the stochastic gradient update of the back-propagation algorithm. That issue
is interesting work and should be improved in the future.
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