
future internet

Article

Globally Scheduling Volunteer Computing

David P. Anderson

����������
�������

Citation: Anderson, D.P. Globally

Scheduling Volunteer Computing.

Future Internet 2021, 13, 229. https://

doi.org/10.3390/fi13090229

Academic Editors: Massimo Cafaro,

Italo Epicoco and Marco Pulimeno

Received: 18 August 2021

Accepted: 31 August 2021

Published: 31 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA; davea@berkeley.edu

Abstract: Volunteer computing uses millions of consumer computing devices (desktop and laptop
computers, tablets, phones, appliances, and cars) to do high-throughput scientific computing. It can
provide Exa-scale capacity, and it is a scalable and sustainable alternative to data-center computing.
Currently, about 30 science projects use volunteer computing in areas ranging from biomedicine to
cosmology. Each project has application programs with particular hardware and software require-
ments (memory, GPUs, VM support, and so on). Each volunteered device has specific hardware and
software capabilities, and each device owner has preferences for which science areas they want to
support. This leads to a scheduling problem: how to dynamically assign devices to projects in a way
that satisfies various constraints and that balances various goals. We describe the scheduling policy
used in Science United, a global manager for volunteer computing.

Keywords: volunteer computing; high-throughput computing; scientific computing; scheduling

1. Introduction

Volunteer computing (VC) uses consumer devices, such as desktop and laptop comput-
ers, tablets, smartphones, appliances and cars, to do high-throughput scientific computing.
People can participate in VC by installing a program that downloads and executes jobs
from servers operated by science projects. About 900,000 devices are currently participating
in VC. These devices have 5 million CPU cores and 560,000 GPUs, and provide an average
throughput of over 100 PetaFLOPS.

There are currently about 30 VC projects in many scientific areas and based at many
institutions. The research enabled by VC has resulted in numerous papers in Nature,
Science, PNAS, Physical Review, Proteins, PloS Biology, Bioinformatics, J. of Mol. Biol., J.
Chem. Phys, and other top journals [1].

Most VC projects use BOINC, an open-source middleware system [2] (one major
project, Folding@home, does not use BOINC [3]). BOINC is a client/server system. Each
project operates a server, which distributes jobs. Volunteers run the client program on
their computing devices. A client can be “attached” to any set of projects. It periodically
communicates with the project servers to report completed jobs and request new ones.

Originally, BOINC volunteers had to browse the set of projects and decide which ones
to attach their clients to. More recently, BOINC has moved to a “coordinated model” in
which volunteers select science areas rather than projects. A central coordinator dynami-
cally assigns devices to projects, based on volunteer preferences and other factors. This
model has several advantages. Most notably, projects no longer must recruit volunteers,
and new projects can be assured a certain level of computing power. This reduces the
barriers to entry for new projects.

The coordinated model is implemented in a system called Science United [4]. Science
United is designed to act as a “global scheduler” in a literal sense: dividing the world’s
computing resources among the world’s computational scientists. The way it does this—its
“scheduling policy”—must satisfy certain constraints: for example, jobs with particular
RAM or GPU requirements can only be run on devices with those resources. Furthermore,
it must try to balance several possibly conflicting goals: to maximize computational

Future Internet 2021, 13, 229. https://doi.org/10.3390/fi13090229 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-3155-7883
https://doi.org/10.3390/fi13090229
https://doi.org/10.3390/fi13090229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13090229
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13090229?type=check_update&version=2

Future Internet 2021, 13, 229 2 of 13

throughput, to honor volunteer preferences, and to allocate computing power to projects
in proportion to per-project “shares”.

This paper describes global scheduling in Science United. Section 2 outlines the
architecture of BOINC. Section 3 describes volunteer preferences. Section 4 describes
the scheduling policy. Section 5 discusses the implementation and results, and Section 6
proposes future work.

2. The Architecture of BOINC
2.1. BOINC Projects

Each science project using BOINC operates its own server, using the BOINC server
software. The server dispatches jobs and provides a web interface for project administrators
and volunteers.

The BOINC computing model assumes a highly heterogeneous resource pool [5]. Jobs
are submitted not for specific executables but for abstract “meta-apps” that can include
any number of concrete “app versions”. Each app version has:

• A “platform”: Windows/Intel, Mac OS on Intel or Apple Silicon, Linux on Intel or
ARM, Android/ARM, and so on.

• A set of additional hardware requirements, such as a GPU of a particular vendor and
model, or a particular CPU feature such as SSE3.

• A set of additional software requirements, such as a minimum GPU driver version, or
the availability of a VM hypervisor such as VirtualBox.

• A description of the processor usage, such as the number of CPUs or the usage
(possibly fractional) of a GPU.

For example, a project might have an Autodock meta-app, comprising several versions
of Autodock for different platforms and GPUs. Many projects have meta-apps containing
dozens of app versions. Some projects (like GPUGrid.net [6]) have only GPU applications;
others (like LHC@home [7]) have only VM applications. Thus, a particular volunteer device
may be able to run jobs for some projects and not others.

When the BOINC scheduler dispatches a job to a client, it selects an app version to
run the job with. It tries to use available resources, and it tries to choose the fastest version
based on data from previous jobs.

Jobs have storage and RAM requirements and are dispatched only to qualifying
devices. They also have a FLOPs estimate and a deadline. The BOINC scheduler estimates
the runtime on a device, and dispatches jobs only to devices that are likely to complete the
job by the deadline.

Because of these factors, it’s possible that, at a particular time, a project has many
queued jobs but none that can be dispatched to a particular device.

Job submissions at a project may change over time. Some projects have an unbounded
stream of jobs. Others may be sporadic: they might have large bursts of work, followed by
weeks or months of inactivity.

2.2. The BOINC Client

The BOINC client runs on volunteer devices. Versions of the BOINC client are available
for all major computing platforms.

The volunteer can specify a set of “computing preferences” that control when comput-
ing and file transfers can be carried out, how many CPUs can be used, how much RAM
and storage can be used, and so on.

Each device is modeled as a set of “processing resources”, each possibly with multiple
instances. The types of processing resources currently recognized by BOINC are CPUs,
NVIDIA GPUS, AMD GPUs, and Intel GPUs. The client maintains a queue of jobs, each of
which uses a subset of the processing resources. The client runs jobs in a way that (a) tries
to fully utilize the available processing resources; (b) tries to meet the deadlines of jobs;
and (c) respects limits on RAM usage based on the working-set size of jobs. It runs jobs at
low process priority to minimize impact on system performance.

Future Internet 2021, 13, 229 3 of 13

A client can be “attached” to one or more projects. It maintains estimates of the
duration of the remaining jobs for each processing resources. When this falls below a
threshold, it selects one of the attached projects and issues a “scheduler RPC” to its server,
requesting jobs for one or more resources. The reply to this RPC includes, for each job,
URLs of the app version’s files and the job’s input files. The client fetches these files and
adds the jobs to the queue. The scheduler RPC and file transfers all use HTTP so that the
client can function behind firewalls.

When the client is attached to a project, it caches the app version files so that these in
general are downloaded only once. There is also a provision for caching job input files that
are used by multiple jobs. Thus, each project has a “disk footprint” on the device; this may
be many GB.

2.3. Account Managers

Instead of attaching a client directly to projects, a volunteer can attach it to an interme-
diate called an “account manager” (AM). This allows a level of indirection between clients
and projects. The BOINC client periodically (typically once per day) issues an “account
manager RPC” to the AM. The RPC reply contains a list of projects to which the client
should attach. The client then communicates with those projects to get and report jobs; see
Figure 1.

Future Internet 2021, 13, x FOR PEER REVIEW 3 of 13

jobs; and (c) respects limits on RAM usage based on the working-set size of jobs. It runs
jobs at low process priority to minimize impact on system performance.

A client can be “attached” to one or more projects. It maintains estimates of the du-
ration of the remaining jobs for each processing resources. When this falls below a thresh-
old, it selects one of the attached projects and issues a “scheduler RPC” to its server, re-
questing jobs for one or more resources. The reply to this RPC includes, for each job, URLs
of the app version’s files and the job’s input files. The client fetches these files and adds
the jobs to the queue. The scheduler RPC and file transfers all use HTTP so that the client
can function behind firewalls.

When the client is attached to a project, it caches the app version files so that these in
general are downloaded only once. There is also a provision for caching job input files
that are used by multiple jobs. Thus, each project has a “disk footprint” on the device; this
may be many GB.

2.3. Account Managers
Instead of attaching a client directly to projects, a volunteer can attach it to an inter-

mediate called an “account manager” (AM). This allows a level of indirection between
clients and projects. The BOINC client periodically (typically once per day) issues an “ac-
count manager RPC” to the AM. The RPC reply contains a list of projects to which the
client should attach. The client then communicates with those projects to get and report
jobs; see Figure 1.

Figure 1. BOINC’s account manager architecture.

The AM architecture was originally introduced to support web sites that let users
browse and select projects: Gridrepublic, BAM!, and GRCPool [8–10]. We extended the
architecture to support Science United, in which users do not explicitly select projects.

The account manager RPC request message includes a detailed description of the
device: its processing resources, software versions, and so on. It also includes a list of the
projects to which the client is attached, and for each project, the amount of recent compu-
ting carried out and whether recent scheduler RPCs failed to return work; see Section 4.5.

The RPC reply message includes a list of projects to which the client should attach.
Each project descriptor can include a flag telling the client to finish any queued jobs for
that project and then detach from it. The descriptor can also include flags for each pro-
cessing resource, indicating whether the client should request jobs for that resource from
the project. Thus, an account manager can control precisely how the device’s processing
resources are allocated to projects.

3. Science United
In BOINC’s original model, a project recruits volunteers by publicizing itself and cre-

ating web pages describing its research. Volunteers survey available projects, and attach
their clients to one or more.

Figure 1. BOINC’s account manager architecture.

The AM architecture was originally introduced to support web sites that let users
browse and select projects: Gridrepublic, BAM!, and GRCPool [8–10]. We extended the
architecture to support Science United, in which users do not explicitly select projects.

The account manager RPC request message includes a detailed description of the
device: its processing resources, software versions, and so on. It also includes a list of the
projects to which the client is attached, and for each project, the amount of recent computing
carried out and whether recent scheduler RPCs failed to return work; see Section 4.5.

The RPC reply message includes a list of projects to which the client should attach.
Each project descriptor can include a flag telling the client to finish any queued jobs for that
project and then detach from it. The descriptor can also include flags for each processing
resource, indicating whether the client should request jobs for that resource from the project.
Thus, an account manager can control precisely how the device’s processing resources are
allocated to projects.

3. Science United

In BOINC’s original model, a project recruits volunteers by publicizing itself and
creating web pages describing its research. Volunteers survey available projects, and attach
their clients to one or more.

The intention of this model was to create a “free market” in which scientists compete
for computing power by promoting themselves and their research, and volunteers decide,
based on their personal values and interests, which projects to support. The goal was that
VC would divide computing power among scientists based on the aggregated knowledge

Future Internet 2021, 13, 229 4 of 13

and values of the public. This was inspired by the Iowa Political Stock Market, which used
an analogous approach to predicting election results, with the viewpoint that “Markets
allocate scarce resources to their most valued use” [11].

The free market model did not work as intended. Most volunteers “locked in” to a
few projects and did not seek out new ones [12]. Additionally, in spite of the prospect of
cheap computing power, relatively few scientists created BOINC projects. In retrospect
this is understandable. In the free-market model, creating a project is risky: there’s a
substantial investment [13], with no guarantee of any return, since no one may volunteer.
The model requires that projects publicize themselves, demanding resources and skills
(media relations, web design, outreach) that are not readily available to most scientists.
Volunteers demand a steady supply of jobs, and the computing needs of many research
groups are sporadic.

To address these problems, we developed a “coordinated model” for BOINC-based
volunteer computing. The client/server technology remains the same, but the volunteer
interface is new. Instead selecting projects, volunteers now select the science areas they
want to support. This aligns with the motivations of most volunteers: support of science
goals has been shown to be the major motivation for participation in VC [12].

A central “coordinator” then assigns volunteer devices to projects; this assignment
can change over time. The coordinator is called “Science United” [4]. New volunteers
go to the Science United web site. As part of the signup process, they register their
science-area preferences. They can also express preference for research locations—countries
or institutions.

The volunteer downloads the BOINC client from Science United and installs it. Science
United is an account manager. When the client first runs, it connects to Science United and
obtains a list of projects to attach to, based on the volunteer’s preferences and other factors.
This assignment can change over time; a volunteer may compute for a project that did not
exist when they first registered.

Science United maintains a set of “vetted” BOINC projects, and it knows the science
area and geographical attributes of each project. New BOINC projects can apply to be
included in this list.

Science United’s coordinated model has several advantages over the free-market model:

• Volunteers do not need to browse projects; in fact, they need not even be aware of the
existence of projects.

• Projects do not need to publicize themselves, or to operate a web site.
• Scientists can apply to Science United to have prospective BOINC projects pre-vetted.

At that point they can be guaranteed a certain amount of computing throughput,
depending on their science area, their location, and what types of computing devices
their applications can use. Thus the risk in creating a project is reduced.

• Science United acts as a unified brand for VC. Publicity campaigns (mass media,
social media, co-promotions, etc.) can refer to this brand, rather than the brands of
individual projects, thus allowing more effective promotion.

• Projects with sporadic computing needs do not risk losing volunteers.

3.1. Science-Area and Location Preferences

As a basis for Science United volunteer preferences, we have defined a system of
“keywords” for describing the nature and origin of jobs. There are two keyword categories:
“science area” and “location” (the geographical and institutional location of the job submit-
ter). Keywords form a hierarchy: each level N + 1 keyword is a child of a single level N
keyword.

The set of keywords and the hierarchy can change over time. When a new keyword
is added, the initial setting is “maybe” for all volunteers. Volunteers are notified of the
new keyword.

Examples of BOINC projects and their associated keywords are shown in Table 1.

Future Internet 2021, 13, 229 5 of 13

Table 1. Examples of BOINC projects and their keywords.

Project: Rosetta@home

Science area: Biology and medicine, Disease research, Protein research; COVID-19 and virology

Location: Americas, United States, University of Washington

Project: Einstein@Home

Science area: Astronomy, Gravitational waves, Pulsars

Location: International, Albert Einstein Institute for Gravitational Physics

Project: Climateprediction.net

Science area: Earth sciences, Climate research

Location: Europe, United Kingdom, Oxford University

3.2. Keyword Preferences

When a volunteer registers with Science United, they specify preferences for science
areas and locations. A set of preferences maps keywords to {yes, no, maybe}. “No” means
do not run jobs with that keyword. “Yes” means preferentially run jobs with that keyword.
The user interface shows top-level keywords and lets the user drill down to lower levels;
see Figure 2.

Future Internet 2021, 13, x FOR PEER REVIEW 5 of 13

submitter). Keywords form a hierarchy: each level N+1 keyword is a child of a single level
N keyword.

The set of keywords and the hierarchy can change over time. When a new keyword
is added, the initial setting is “maybe” for all volunteers. Volunteers are notified of the
new keyword.

Examples of BOINC projects and their associated keywords are shown in Table 1.

Table 1. Examples of BOINC projects and their keywords.

Project: Rosetta@home
Science area: Biology and medicine, Disease research, Protein research; COVID-19 and virology

Location: Americas, United States, University of Washington
Project: Einstein@Home

Science area: Astronomy, Gravitational waves, Pulsars
Location: International, Albert Einstein Institute for Gravitational Physics

Project: Climateprediction.net
Science area: Earth sciences, Climate research

Location: Europe, United Kingdom, Oxford University

3.2. Keyword Preferences
When a volunteer registers with Science United, they specify preferences for science

areas and locations. A set of preferences maps keywords to {yes, no, maybe}. “No” means
do not run jobs with that keyword. “Yes” means preferentially run jobs with that key-
word. The user interface shows top-level keywords and lets the user drill down to lower
levels; see Figure 2.

Figure 2. The Science United user interface for specifying preferences.

Active Science United volunteers selected on average 4.8 “yes” keywords and 0.83
“no” keywords out of 25 science keywords and 41 location keywords. A total of 87% of
the keyword preferences are for science areas; the remainder are for location. The most
common “yes” science area keywords are Astronomy (68.8% of volunteers) and Biology

Figure 2. The Science United user interface for specifying preferences.

Active Science United volunteers selected on average 4.8 “yes” keywords and 0.83 “no”
keywords out of 25 science keywords and 41 location keywords. A total of 87% of the
keyword preferences are for science areas; the remainder are for location. The most
common “yes” science area keywords are Astronomy (68.8% of volunteers) and Biology

Future Internet 2021, 13, 229 6 of 13

and Medicine (67.1%). The most common common “no” keyword is Mathematics and
Computer Science (8.0%). Among location keywords the most “yes” keywords are America
(7.12%) and Europe (7.0%), and the most common “no” keyword is China (4.3%).

3.3. Project and Job Keywords

Each project has an associated set of keywords describing its science areas and location.
The set of project keywords can change over time, reflecting changes in the project’s workload.

Science United enforces volunteer preferences at the project level. If a project has
a keyword for which a volunteer has specified “no”, the volunteer’s devices are not
attached to that project. In the future we plan to support projects whose jobs have differing
keywords; see Section 6.4.

4. The global Volunteer Computing Scheduling Problem

The central function of Science United is to divide computing power among projects.
It does this by assigning volunteer devices to projects. These assignments can change each
time the device issues an AM RPC (typically once per day). This section discusses the
factors in the assignment policy, and describes the current policy.

4.1. Platforms and Processing Resources

Recall from Section 2.1 that each device supports one or more “platforms” (Win-
dows/x64, Mac/x64, Linux/ARM, etc.) and has a set of “processing resources”, including
a CPU and possibly one or more GPUs of various vendors (NVIDIA, AMD, Intel). In addi-
tion, a device may have virtualization software (VirtualBox) installed. This information is
conveyed to Science United in account manager RPC requests.

Recall also that each BOINC project has a set of “app versions”, each of which runs on a
particular platform, uses a specific set of processing resources, and may require VirtualBox.
Projects export this information through a Web RPC. Science United periodically imports
this from all projects.

4.2. Project Shares

Science United allows projects to be allocated different amounts of computing re-
sources. For example, we currently allocate more computing to COVID-related projects.
This mechanism works as follows.

Let M(P) denote the maximum possible rate of computing (measured in FLOPS)
for a project P, given Science United’s current resource pool. M(P) is determined by P’s
keywords and applications. P can use a device D only if P’s keywords are compatible with
the preferences of D’s owner, and it can use D’s processing resources (CPU and GPUs) only
if it has appropriate applications. Thus M(P) can vary widely between projects.

In Science United, each project P has a “share” S(P). Shares are assigned administra-
tively (see Section 6.3), and may change over time. Roughly speaking, S(P) determines
how much computing is available to P compared to other projects with similar M(P), over
a time scale on the order of one week.

4.3. Resource Usage Accounting

Science United does accounting of processing resource usage. This serves several
purposes: it provides a basis for enforcing project shares, it gives an estimate of the system-
wide throughput, and it provides basis for volunteer incentive such as graphs of work
carried out recently, work milestones, and so on.

BOINC has a system for estimating the FLOPs performed by completed jobs. It
is “cheat-resistant”: it is difficult to get credit for computation not actually performed.
However, the system is based in part on job replication, and credit for a job may not be
granted until a replica of the job is completed, which could take weeks. This makes it
unsuitable for Science United’s purposes.

Future Internet 2021, 13, 229 7 of 13

Instead, Science United uses a quantity called “estimated credit” (EC), which is
maintained by the BOINC client on a per-job and per-project basis, based on the runtime of
jobs and the peak FLOPS of the processors they use. EC is a cruder estimate than credit,
and it is not cheat-resistant. However, it accumulates continuously, with no need to wait
for job completion or validation.

The AM RPC request message includes a list of currently attached projects and their
CPU and GPU EC totals; these are used to update accounting records.

Science United maintains a database of historical accounting data. It maintains daily
records (CPU and GPU EC and processing time, and number of jobs succeeded and failed)
for each user and project, and in total. Once per day it adds these to the total for each entity,
and creates a new daily record.

4.4. Share-Based Prioritization

Science United enforces project shares by prioritizing projects that have used less
than their share of resources recently. It maintains, for each project P, its average rate of
computing over the last week, denoted A(P). This is measured in FLOPS, based on the
estimated credit described above (in other words, the time each CPU and GPU was used,
times the peak FLOPS of the processor). We let

A f rac(P) = A(P)/ ∑
projects Q

A(Q) (1)

Afrac(P) is the fraction of total computing carried out by P. Similarly, let

S f rac(P) = S(P)/ ∑
projects Q

S(Q) (2)

Sfrac(P) is P’s fraction of the total share. Then, let

E(P) = A f rac(P)/S f rac(P) (3)

E(P) represents the excess computing that P has received, relative to its share, over the
last week. It is used to prioritize projects in the assignment algorithm (see below). At any
point, computing resources are preferentially assigned to projects P for which E(P) is least.

This model handles both continuous and sporadic workloads well. For a project P
with sporadic workload, E(P) will usually be near zero. When P generates a burst of work,
it will have priority over the continuous-workload projects, and the work will get carried
out quickly.

When a computer is assigned to a project, there is a delay of up to a day (the client
polling period) until its computation is reported to Science United. Hence, the same project
(the one for which E(P) is least) would be assigned to all hosts during that period. To avoid
this, when we assign a computer to P we increment A(P) by an estimate of the computing
(measured in EC) the computer will do in one day. Once per day A(P) is reset based on the
accounting history.

4.5. Preventing Device Starvation

Can a project P supply jobs that use a processing resource R on a device D? This is
central to the global scheduling problem, but it is not a simple question. We define:

Usable(P, D, R): this predicate is true if P has an app version for D’s platform that uses
R, and D has virtualization software if needed by the app version. This may change over
time as P adds and removes app versions.

If Usable(P, D, R) holds, it means that P can potentially supply jobs to D that use
R. However, it does not mean that P can supply such jobs right now. P’s server may be
temporarily down, or it may not have jobs that use R, or its jobs that use R may have
keywords disallowed by the user’s preferences, or its jobs may require a different GPU
driver version than the one on D, and so on.

Future Internet 2021, 13, 229 8 of 13

If these conditions hold, and P is the only attached project, R is “starved”, i.e., the
client has no jobs that use it. To maximize throughput, we want to avoid this situation.

Science United does not know about these factors, so it cannot directly know whether
P can currently supply the needed jobs. Instead, it learns this from the BOINC client. The
client keeps track of (a) projects for which the last scheduler RPC failed; and (b) (project,
resource) pairs for which the last scheduler RPC requested work for the given resource, but
none was returned. This information is included in the AM RPC request.

We then define:
Usable_now(P, D, R): this predicate is true if (a) Usable(P, D, R) is true, and (b) the most

recent scheduler RPC from D to P succeeded and returned jobs using R.
Science United tries to attach D to projects that can use all its processing resources

immediately, i.e., for which Usable_now(P, D, R) holds. However, it also must attach projects
for which Usable(P, D, R) holds but Usable_now(P, D, R) does not, because the conditions
that caused R to be unusable may be temporary. P’s server may come back up, or new jobs
may be submitted. The only way for Science United to detect this is to attach D to P and let
it request work for R. This will typically happen at least once per day: when a scheduler
RPC fails, or fails to return jobs, the client uses exponential backoff with a maximum delay
of one day.

4.6. Goals of the Scheduling Policy

The Science United scheduling policy has several goals:

• To honor volunteer keyword preferences by preferentially assigning projects with the
volunteer’s “yes” keywords.

• To allow projects to be allocated different shares of the resource pool (see above).
• To maximize total throughput. For example, if a host has a GPU, it should be assigned

at least one project that can supply jobs that use the GPU.
• To limit the number of attachments per device. Each attachment has a disk-space

overhead; the client caches applications files for the project, which may include large
VM image files.

These goals may conflict. For example, suppose a project P1 has a large share may and
keywords with few “yes” preferences, while project P2 has a small share and keywords
with lots of “yes” preferences. If we give P1 lots of computing, volunteers will notice that
they’re not computing for the science areas they requested. The policy must balance these
conflicting goals.

4.7. The Project Assignment Algorithm

BOINC clients using Science United periodically (once per day) issue an AM RPC. The
request message includes a list of currently attached projects, with account and scheduler
RPC failure information for each one as described in Section 4.5.

The reply message includes a list of projects. Some of these are currently attached
projects flagged as “outgoing”: this instructs the client to finish existing jobs for the project,
then detach from it. For each of the other projects, the reply includes a list R(P) of processing
resources that the client should use for P.

With these factors in mind, here is a sketch of the project assignment algorithm
currently used by Science United:

First, we discard projects P that cannot be used because either (a) P has a keyword for
which the volunteer has a “no” preference; or (b) Usable(P, D, R) is false for all processing
resources, i.e., P does not have app versions that can use the device.

For each remaining project we compute a “score” S(P) which is the weighted sum of
several components:

S(P) = C1K − C2E(P) + C3V (4)

where

Future Internet 2021, 13, 229 9 of 13

• K is the number of project keywords for which the volunteer has a “yes” pref-
erence. Projects with such keywords will be preferred over projects with only
“maybe” preferences.

• E(P) is the project’s allocation balance see Section 4.4.
• V is one or zero depending on whether the device has VirtualBox installed and the

project has a VirtualBox app version that can run on the device. This preferentially
assigns devices with virtualization capability (which are relatively scarce) to projects
that require it.

C1, C2 and C3 weight these components, reflecting a balance between conflicting goals.
They have been chosen empirically; currently C2 is 01 and the others are one.

We then compute a set A of projects to include in the reply This is carried out as
follows. For each processing resource R, we find the highest-scoring project P for which
Usable_now(P, D, R) is true. We add P to A, and include R in the resource list for P. If
there are projects that have a higher score than P, and for which Usable(P, D, R) is true, we
similarly add them to A.

The ability to specify the processing resources used by a project is important in some
cases. For example, suppose the highest-scoring project P can only use the CPU, and the
device also has a GPU. The scheduler can assign a lower-scoring project and have it use
only the GPU, giving P full use of the CPU.

If the client is currently attached to a project not in A, we add it to A and set the
“outgoing” flag, telling the client to finish existing jobs and detach from the project.

5. Implementation and Status

Science United was launched in 2017. Currently (August 2021) it has about 4100 active
volunteers and 5800 computers, of which 4100 have usable GPUs. Averaged over the
last month, these computers process 160,000 jobs per day and have a throughput of
400 TeraFLOPS.

The scheduling policy described in Section 4 has evolved over time and has been in
its current form for two years. It seems to satisfy the goals listed in Section 4.6: project
throughputs are stable and reflect shares, device starvation is rare, and no volunteers have
complained about preferences not being respected.

Figures 3 and 4 show recent throughput histories for CPU and GPU, respectively.
Projects such as Rosetta@home appear only in the CPU graph because they have no GPU
app versions.

Future Internet 2021, 13, x FOR PEER REVIEW 9 of 13

𝑆ሺ𝑃ሻ = 𝐶ଵ𝐾 − 𝐶ଶ𝐸ሺ𝑃ሻ + 𝐶ଷ𝑉 (4)

where
• K is the number of project keywords for which the volunteer has a “yes” preference.

Projects with such keywords will be preferred over projects with only “maybe”
preferences.

• E(P) is the project’s allocation balance see Section 4.4.
• V is one or zero depending on whether the device has VirtualBox installed and the

project has a VirtualBox app version that can run on the device. This preferentially
assigns devices with virtualization capability (which are relatively scarce) to projects
that require it.
C1, C2 and C3 weight these components, reflecting a balance between conflicting

goals. They have been chosen empirically; currently C2 is 01 and the others are one.
We then compute a set A of projects to include in the reply This is carried out as

follows. For each processing resource R, we find the highest-scoring project P for which
Usable_now(P, D, R) is true. We add P to A, and include R in the resource list for P. If there
are projects that have a higher score than P, and for which Usable(P, D, R) is true, we sim-
ilarly add them to A.

The ability to specify the processing resources used by a project is important in some
cases. For example, suppose the highest-scoring project P can only use the CPU, and the
device also has a GPU. The scheduler can assign a lower-scoring project and have it use
only the GPU, giving P full use of the CPU.

If the client is currently attached to a project not in A, we add it to A and set the
“outgoing” flag, telling the client to finish existing jobs and detach from the project.

5. Implementation and Status
Science United was launched in 2017. Currently (August 2021) it has about 4100 ac-

tive volunteers and 5800 computers, of which 4100 have usable GPUs. Averaged over the
last month, these computers process 160,000 jobs per day and have a throughput of 400
TeraFLOPS.

The scheduling policy described in Section 4 has evolved over time and has been in
its current form for two years. It seems to satisfy the goals listed in Section 4.6: project
throughputs are stable and reflect shares, device starvation is rare, and no volunteers have
complained about preferences not being respected.

Figures 3 and 4 show recent throughput histories for CPU and GPU, respectively.
Projects such as Rosetta@home appear only in the CPU graph because they have no GPU
app versions.

Figure 3. CPU throughput of the top 10 projects in 2020. The top two projects, which do COVID
research, have larger allocation shares.

Figure 3. CPU throughput of the top 10 projects in 2020. The top two projects, which do COVID
research, have larger allocation shares.

Future Internet 2021, 13, 229 10 of 13
Future Internet 2021, 13, x FOR PEER REVIEW 10 of 13

Figure 4. GPU throughput of the top 10 projects in 2020.

Science United is implemented in PHP. It uses a MySQL database to store volunteer
and project information, accounting data, and so on. The Science United source code is
distributed under the LGPL v3 license and is available on Github.

SU required some modifications to the BOINC client, such as the starvation monitor-
ing described in Section 4.5. These changes were introduced in the 7.16 client release.

6. Future Work
6.1. Throughput Guarantees

In some HTC systems, a job submitter can be guaranteed a minimum throughput
over a given period of time with high probability. Can we offer analogous guarantees with
VC resources?

The performance of a pool of volunteer computers varies over time, in terms of both
throughput and job latency. However, with a large resource pool, these quantities change
slowly, and we can establish the statistics of this change. For example, given the total
throughput T at a given time, we could find a T0 < T such that total throughput will remain
above T0 for a week with a given confidence level.

Similarly, given the Science United resource pool and a particular set of projects and
shares, the throughput of a project should remain fairly constant over time. These
throughputs can be manipulated, within limits, by changing shares.

How can we predict, given a particular set of project shares, how much throughput
each project will get? This depends on many factors: app versions, keywords, the project
assignment algorithm, and so on. It’s unlikely that it can be determined analytically. In-
stead, we plan to implement an emulator that does a trace-based simulation of the entire
Science United system and predicts the throughput of each project. Using this emulator
we will be able to compute a mapping from project shares to project throughput, and to
find project shares for which a particular project achieves a given throughput. This will
provide a basis for guaranteeing throughput to projects over fixed periods.

Such guarantees would be project-level. Can we provide performance guarantees to
a particular job submitter within a project that serves multiple job submitters? This is more
complex but it may be possible. The BOINC server software allocates resources among
computing job submitters within the project [2]. It’s possible that the combination of a
project-level allocation and a submitter-level allocation can provide performance guaran-
tee to individual job submitters.

6.2. Minimizing Project Churn
Each time is attached to a client, the client must download a possibly large set of files.

If the a project is detached and attached repeatedly, this may imposed a large network
load at both server and client. It may be desirable to modify the scheduling algorithm to
minimize this “project churn”. If a project has a large disk footprint on a client, we might

Figure 4. GPU throughput of the top 10 projects in 2020.

Science United is implemented in PHP. It uses a MySQL database to store volunteer
and project information, accounting data, and so on. The Science United source code is
distributed under the LGPL v3 license and is available on Github.

SU required some modifications to the BOINC client, such as the starvation monitoring
described in Section 4.5. These changes were introduced in the 7.16 client release.

6. Future Work
6.1. Throughput Guarantees

In some HTC systems, a job submitter can be guaranteed a minimum throughput
over a given period of time with high probability. Can we offer analogous guarantees with
VC resources?

The performance of a pool of volunteer computers varies over time, in terms of both
throughput and job latency. However, with a large resource pool, these quantities change
slowly, and we can establish the statistics of this change. For example, given the total
throughput T at a given time, we could find a T0 < T such that total throughput will remain
above T0 for a week with a given confidence level.

Similarly, given the Science United resource pool and a particular set of projects
and shares, the throughput of a project should remain fairly constant over time. These
throughputs can be manipulated, within limits, by changing shares.

How can we predict, given a particular set of project shares, how much throughput
each project will get? This depends on many factors: app versions, keywords, the project
assignment algorithm, and so on. It’s unlikely that it can be determined analytically.
Instead, we plan to implement an emulator that does a trace-based simulation of the entire
Science United system and predicts the throughput of each project. Using this emulator we
will be able to compute a mapping from project shares to project throughput, and to find
project shares for which a particular project achieves a given throughput. This will provide
a basis for guaranteeing throughput to projects over fixed periods.

Such guarantees would be project-level. Can we provide performance guarantees to a
particular job submitter within a project that serves multiple job submitters? This is more
complex but it may be possible. The BOINC server software allocates resources among
computing job submitters within the project [2]. It’s possible that the combination of a
project-level allocation and a submitter-level allocation can provide performance guarantee
to individual job submitters.

6.2. Minimizing Project Churn

Each time is attached to a client, the client must download a possibly large set of files.
If the a project is detached and attached repeatedly, this may imposed a large network
load at both server and client. It may be desirable to modify the scheduling algorithm to

Future Internet 2021, 13, 229 11 of 13

minimize this “project churn”. If a project has a large disk footprint on a client, we might
want the client to remain attached, with a zero resource share, so that files do not need to
be downloaded again the next time the project is attached.

6.3. Project Vetting and Allocation

Science United must make two administrative decisions: which projects to vet (i.e., to
include in Science United), and what shares to assign to projects. Our current policy is to
vet projects for which:

• The project is non-commercial.
• The project’s computing is directed toward a scientific or technical goal (broadly

interpreted to include things such as mathematics and cryptography).
• The project follows various security practices, such as application code-signing on

secure offline machines.

Project shares might be influenced by the extent to which the project’s leadership is
scientifically qualified (as demonstrated, e.g., by publications). In practice, we generally
give all projects equal shares; in the COVID era we have given larger shares to projects
doing COVID-related research.

In the future, we may establish a committee, including representatives of scientific
and volunteer communities, to make these decisions.

6.4. Diverse Projects

Some projects have applications in multiple science areas or run jobs on behalf of
multiple institutions; we call these “diverse” projects. The current Science United design
does not handle such situations well, because keywords are at the project level. If a project
P has 1% of jobs with keyword K, and a volunteer has a “no” preference for K, they will not
be able to run the other 99% of P’s jobs.

With a few changes, Science United can handle diverse projects correctly. First, diverse
projects must associate keywords with individual jobs, as part of the submission process.
For example, if a job is submitted by a cancer researcher at UC Berkeley, its keywords
would include “cancer research” and “UC Berkeley”. The project would maintain the
fraction of recent jobs with each keyword, and export this data to Science United.

Then, if a volunteer has a “no” preference for keyword K, Science United would
exclude a project only if its job fraction for K is one. Volunteer preferences are then enforced
by the project’s BOINC job dispatcher. For each of the job’s keywords, if the volunteer
specified “yes”, the job is preferentially sent; if “no”, the job is not sent.

6.5. Supporting a VC “Test Drive”

By eliminating the need for projects to recruit volunteers, Science United reduces the
barrier to entry for scientists wanting to use VC. However, the effort to set up a BOINC
server and get vetted by Science United is still significant. We would like to provide a
mechanism whereby a scientist can immediately—in a few minutes—begin processing a
significant number of jobs using volunteered computers. We have designed a mechanism
for providing “test drives” of this sort.

This is based on a “BOINC app library”: a repository of versions of trusted, widely-
used applications (such as Autodock [14]) for various platform/coprocessor combinations.
The BOINC client periodically downloads information about this set of app versions. An
attachment to a project can be flagged as “untrusted”, in which case the client only allows
the project to use app versions from the BOINC app library.

Science United volunteers can agree to be “test-drive resources”, meaning that they’re
willing to run jobs for unvetted job submitters, but only using apps from the library.

A scientist can “test-drive” BOINC by creating a server and registering it with Science
United (but not going through the vetting process). The Science United scheduler will
attach test-drive devices to such projects in untrusted mode, providing the scientist with a
limited amount of computing, for a limited time, and with a limited set of applications.

Future Internet 2021, 13, 229 12 of 13

7. Related Work

OurGrid [15] is a system for volunteer computing which differs from BOINC in that
there is no distinction between volunteers and job submitters. Resource allocation is based
on a “network of favors” model: the more computing a user provides to others, the more
is available to them. OurGrid was deployed on a small scale (100s of nodes) and is no
longer maintained.

“Grid Computing” is the sharing of distributed organizational resources such as
cluster nodes. Resource allocation in many grid systems is based on Virtual Organizations
(VOs) [16]. A VO typically corresponds to a scientific community. Institution providing
resources to a grid can associate them with a VO. This is related to the Science United
model in the sense that the provider of computing resources (a university or research lab in
this case) can limit their use to a particular science area or project.

Open Science Grid (OSG) [17] is a system for sharing high-throughput computing
resources among institutions, based on HTCondor [18]. OSG has been used for a number
of large computing projects including LHC and LIGO. Resource allocation in OSG uses a
combination of approaches: resources can be allocated to a VO, or they can be managed
by XSEDE [19], a system for allocating American HPC resources in which scientists can
apply for or buy allocations. OSG is analogous to Science United but its task is simpler in
some respects; its resources are primarily cluster nodes so it does not have to deal with the
extreme heterogeneity of consumer devices, and it can assume that nodes are trusted and
highly available.

8. Conclusions

Volunteer computing aspires to aggregate the power of the world’s consumer com-
puting resources and divide it among the world’s computational scientists. In doing so
there are many challenges: technical, organizational, political, and marketing. In this paper
we have addressed one of these issues: how to schedule the assignment of devices to
projects in a way that maximizes computing throughput while at the same time respecting
volunteer preferences for the types of research they want to support.

Our solution to this problem is embodied in a system called Science United. This
system significantly reduces the barriers to entry for prospective new science projects,
by eliminating the need to recruit volunteers and by providing an a priori guarantee of
computing power. We hope that this leads to a broader adoption of volunteer computing
in the scientific community, and in turn to an expansion of the volunteer pool.

Funding: This research was funded by National Science Foundation, grant number 1664190.

Data Availability Statement: Not applicable, the study does not report any data.

Acknowledgments: The main ideas in this paper arose from a conversation with Mislav Malenica.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Publications by BOINC Projects. 2020. Available online: https://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects

(accessed on 30 August 2021).
2. Anderson, D.P. BOINC: A Platform for Volunteer Computing. J. Grid Comput. 2020, 18, 99–122. [CrossRef]
3. Pande, V.S.; Baker, I.; Chapman, J.; Elmer, S.P.; Khaliq, S.; Larson, S.M.; Rhee, Y.M.; Shirts, M.R.; Snow, C.D.; Sorin, E.J.; et al.

Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers
2003, 68, 91–109. [CrossRef] [PubMed]

4. Science United. Available online: https://scienceunited.org (accessed on 30 August 2021).
5. Anderson, D.P.; Reed, K. Celebrating Diversity in Volunteer Computing. In Proceedings of the 2009 42nd Hawaii International

Conference on System Sciences, Waikoloa, HI, USA, 5–8 January 2009.
6. Buch, I.; Harvey, M.J.; Giorgino, T.; Anderson, D.P.; de Fabritiis, G. High-throughput all-atom molecular dynamics simulations

using distributed computing. J. Chem. Inf. Mod. 2010, 50, 397–403. [CrossRef] [PubMed]
7. Giovannozzi, M.; Harutyunyan, A.; Høimyr, N.; Jones, P.L.; Karneyeu, A.; Marquina, M.A.; McIntosh, E.; Segal, B.; Skands, P.;

Grey, F.; et al. LHC@Home: A Volunteer computing system for Massive Numerical Simulations of Beam Dynamics and High

https://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://doi.org/10.1007/s10723-019-09497-9
http://doi.org/10.1002/bip.10219
http://www.ncbi.nlm.nih.gov/pubmed/12579582
https://scienceunited.org
http://doi.org/10.1021/ci900455r
http://www.ncbi.nlm.nih.gov/pubmed/20199097

Future Internet 2021, 13, 229 13 of 13

Energy Physics Events. In Proceedings of the 3rd International Particle Accelerator Conference (IPAC 2012), New Orleans, LA,
USA, 20–25 May 2012; p. 505.

8. Gridrepublic. Available online: http://gridrepublic.org/ (accessed on 30 August 2021).
9. BAM! Available online: http://bam.boincstats.com/ (accessed on 30 August 2021).
10. Gridcoin. The Computation Power of a Blockchain Driving Science and Data Analysis. 2018. Available online: https://gridcoin.

us/assets/img/whitepaper.pdf (accessed on 30 August 2021).
11. Forsythe, R.; Nelson, F.; Neumann, G.R.; Wright, J. Anatomy of an Experimental Political Stock Market. Am. Econ. Rev. 1992, 82,

1142–1161.
12. Nov, O.; Arazy, O.; Anderson, D. Technology-Mediated Citizen Science Participation: A Motivational Model. In Proceedings of

the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011), Barcelona, Spain, 17–21 July 2011.
13. Kondo, D.; Bahman, J.; Malecot, P.; Cappello, F.; Anderson, D. Cost-Benefit Analysis of Cloud Computing versus Desktop Grids.

In Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, Rome, Italy, 23–29 May 2009.
14. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4:

Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [CrossRef] [PubMed]
15. Brasileiro, F.; Araujo, E.; Voorsluys, W.; Oliveira, M.; Figueiredo, F. Bridging the High Performance Computing Gap: The OurGrid

Experience. In Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, Rio de Janeiro,
Brazil, 14–17 May 2007.

16. Foster, I.; Kesselman, C.; Tuecke, S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Int. J. High Perform.
Comput. Appl. 2001, 15, 200–222. [CrossRef]

17. Pordes, R.; Petravick, D.; Kramer, B.; Olson, D.; Livny, M.; Roy, A.; Avery, P.; Blackburn, K.; Wenaus, T.; Würthwein, F.; et al. The
Open Science Grid. In J. Phys. Conf. Ser.; 2007; Volume 78, p. 012057. [CrossRef]

18. Thain, D.; Tannenbaum, T.; Livny, M. Distributed Computing in Practice: The Condor Experience. Concurr. Comput. Pract. Exp.
2005, 17, 323–356. [CrossRef]

19. Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G.D.; et al.
XSEDE: Accelerating Scientific Discovery. Comput. Sci. Eng. 2014, 16, 62–74. [CrossRef]

http://gridrepublic.org/
http://bam.boincstats.com/
https://gridcoin.us/assets/img/whitepaper.pdf
https://gridcoin.us/assets/img/whitepaper.pdf
http://doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pubmed/19399780
http://doi.org/10.1177/109434200101500302
http://doi.org/10.1088/1742-6596/78/1/012057
http://doi.org/10.1002/cpe.938
http://doi.org/10.1109/MCSE.2014.80

	Introduction
	The Architecture of BOINC
	BOINC Projects
	The BOINC Client
	Account Managers

	Science United
	Science-Area and Location Preferences
	Keyword Preferences
	Project and Job Keywords

	The global Volunteer Computing Scheduling Problem
	Platforms and Processing Resources
	Project Shares
	Resource Usage Accounting
	Share-Based Prioritization
	Preventing Device Starvation
	Goals of the Scheduling Policy
	The Project Assignment Algorithm

	Implementation and Status
	Future Work
	Throughput Guarantees
	Minimizing Project Churn
	Project Vetting and Allocation
	Diverse Projects
	Supporting a VC “Test Drive”

	Related Work
	Conclusions
	References

