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Abstract: The expected huge amount of connected cars and applications with varying Quality of
Service (QoS) demands still depend on agile/flexible networking infrastructure to deal with dynamic
service requests to the control plane, which may become a bottleneck for 5G and Beyond Software-
Defined Network (SDN) based Internet of Vehicles (IoV). At the heart of this issue is the need for
an architecture and optimization mechanisms that benefit from cutting edge technologies while
granting latency bounds in order to control and manage the dynamic nature of IoV. To this end, this
article proposes an autonomic software-defined vehicular architecture grounded on the synergy
of Multi-access Edge Computing (MEC) and Network Functions Virtualization (NFV) along with
a heuristic approach and an exact model based on linear programming to efficiently optimize the
dynamic resource allocation of SDN controllers, ensuring load balancing between controllers and
employing reserve resources for tolerance in case of demand variation. The analyses carried out
in this article consider: (a) to avoid waste of limited MEC resources, (b) to devise load balancing
among controllers, (c) management complexity, and (d) to support scalability in dense IoV scenarios.
The results show that the heuristic efficiently manages the environment even in highly dynamic and
dense scenarios.

Keywords: dynamic allocation of controllers; SDN; NFV-based MEC architecture; IoV; high-density
scenarios

1. Introduction

The automotive industry has been evolved in a rapid pace and has also become
an important player for the future hyper-connected (IoT) Internet of Things and (IoV)
Vehicles [1]. As an icon of this industry, autonomous cars market is expected to reach
USD 60 billion by 2030 [2]. The higher level of vehicle automation [3] implies an increased
number of embedded sensors (e.g., radars, cameras) gathering and generating a massive
amount of data [4]. The connected cars will rely not only on traditional V2I (Vehicle
to Infrastructure) and V2V (Vehicle to Vehicle) communication modes, but also on V2X
(Vehicular to Everything) one for connecting cars and the whole Intelligent Transportation
System (ITS) to pedestrian, semaphores, as well as on cloud storage and processing for HD
map services and decision making to e.g., prevent accidents, maneuver, lane change, and
route optimization [5–9].

However, while some experiments have been carried out by players such as Waymo,
Tesla, and Uber, they are not exploring the full potential of this paradigm due to the lack
of holistic view of the ITS. In addition, decisions must be taken with very low latency in
milliseconds with high reliability, a service categorized by International Telecommunication
Union (ITU) for 5G (Fifth Generation) systems as URLLC (Ultra Reliable and Low Latency
Communication) [10–12]. Thus, it becomes clear that not only vehicles’ embedded sensors
will suffice, but also networking, computing resources, overall environment knowledge
and fast decision making also are of paramount importance to achieve the ultimate goal of
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safety and self-driving through a full autonomic approach with no human intervention on
the operation of IoV [13,14].

Recent efforts towards turning traditional and ossified VANETs (Vehicular Ad hoc
Networks) into flexible/agile ones have been initiated by the adoption of Software-Defined
Networking (SDN) to aid the management and control of vehicular networking [15–18].
SDN, originally devised in the context of data centers and wired networks, provides pro-
grammability by splitting the control and data planes. This way, network elements (data
plane) rely on the intelligence of the SDN controller (i.e., logic that govern packet forward-
ing, dropping, and other control plane functionalities) running on commodity hardware
equipment with global view to program network’s elements. Upon arrival of novel flows
at data plane, the SDN controller is in charge of defining rules to be installed in the network
elements according to management policies implemented by the operator [19,20].

A first issue with regard to the IoV scalability has been addressed by adopting multiple
SDN controllers to deal with the possible huge number of flow requests of vehicles [16,21].
These controllers are, in general, deployed on remote clouds, operator core network, or
vehicular access points, which can be 802.11p/Road Side Units (RSUs), LTE eNBs (Long
Term Evolution evolved Node B) or 5G gNBs, for example. However, even with the
possibility of positioning the controllers at access points to achieve reduced communication
delay, recent works still rely on static deployment [22]. This approach lacks processing
capabilities and depends on the distant cloud. Thus, such solutions do not integrate the
needed functionalities near the user for fast decision making. In summary, IoV faces critical
requirements, which should be jointly designed: the scalable and dynamic deployment of
SDN controllers and reduced communication latency [5].

Towards a flexible, scalable and dynamic deployment of SDN controllers, IoV sce-
narios could benefit from a highly complementary approach, namely Network Functions
Virtualization (NFV) [23–25]. NFV aims at decoupling network functions (e.g., Firewall,
MME, NAT, and load balancer) from the proprietary/dedicated hardware appliances to
run as virtualized services in a cloud-based platform using general purpose equipment’s
(COTS) [26]. More specifically, NFV can benefit SDN, for example, by virtualizing SDN
controllers as Virtualized Network Functions (VNFs), the software implementations of
network functions, executed on a centralized server pool [27]. VNFs are provisioned and
controlled through Management and Orchestration (MANO) Framework of NFV stan-
dard [28]. As far as we know, vehicular communications literature has no proposal on
the synergy between SDN and NFV in order to address dynamic provisioning of SDN
controllers in an NFV-based framework for Internet of Vehicles.

With regard latency bounds of IoV, a novel paradigm has also been recently emerged to
compound the 5G and beyond conceptual architecture aiming to bring storage/computing
capabilities requirements to the edge of the network, namely Multi-access Edge Computing
(MEC) [29]. MEC has been standardized by European Telecommunications Standardization
Institute (ETSI) since 2014 and provides cloud computing capabilities to the edge of the
network through virtualized servers or micro datacenters at the eNBs, that is, within the
operator’s the Radio Access Network (RAN). Thus, MEC framework permits subscriber to
offload tasks, faster communication of both data and control plane traffic, improving quality
of experience by reducing latency, typically required for V2X scenarios [30–34]. MEC is
mostly adopted for traditional IT cloud-based apps (e.g., video streaming, augmented
reality), but it is still less commonly used for hosting network control plane functionalities.

To the best of our knowledge, there is no work on dynamic resource allocation of SDN
controllers for the Internet of Vehicles leveraging on an NFV-based MEC infrastructure.
This way, Dynamic Software Defined Vehicular Multi-access Edge Computing – DSDVMEC
is propose as an autonomic extension to the ETSI MEC reference architecture along with
ETSI NFV. DSDVMEC aims at being flexible and scalable through dynamically reducing
the wasting of MEC resources due to previous allocations of SDN controllers that either
became idle or not fully utilized by current demand, but without compromising the quality
of service of ongoing flows coming from access points. In this way, DSDVMEC provides
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the IoV context with the ability to scale the infrastructure of controllers as VNFs according
to the variability of vehicle’s flow on the roads, without compromising latency due to
the proximity of SDN controllers located at the MEC. In scenarios where RSUs belong to
different operators, they could present communication limitations when not using SDN.
In addition, the absence of SDN controllers makes it difficult to have a global view of the
network. Besides, the absence of SDN controllers makes it challenging to have a global
view of the network. Due to this scenario, the highly variable demands from vehicles may
degrade system management and scalability. To this end, an autonomic SDN Allocator
is proposed as a component of the DSDVMEC in order to implement a heuristic taking
into account: (a) scalability support, (b) resource usage optimization, and (c) management
complexity of allocated controllers. In summary, the main contributions of this article are
as follows:

• We propose DSDVMEC, an autonomic extension to the ETSI MEC-NFV architecture
environment to dynamically allocate SDN controller for the Internet of Vehicles.

• An exact model to minimize the wasted resource utilization of SDN controllers in an
MEC-NFV environment.

• A heuristic algorithm to handle highly dense and dynamic scenarios in IoV aiming at
defining: (a) The required number of SDN controllers; (b) The assignment between
RSUs and controllers; and (c) The amount of resources that should be allocated to the
SDN controllers.

The remainder of this article is organized as follows. Section 2 discusses related work.
Section 3 presents the DSDVMEC architecture. Section 4 formulate an exact model and the
aSDNalloc heuristic responsible for the decision to allocate the controllers through VNFs.
Numerical analysis, show the results and summarize possible directions for future research
are presented in Section 5. Finally, Section 6 concludes this article. Table 1 is the summary
of important acronyms for this paper.
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Table 1. Summary of Important Acronyms.

Acronym Definition Acronym Definition

5G Fifth Generation NFV Network Functions Virtualization
aSDNalloc autonomic SDN allocator NFVO Network Functions Virtualization Orchestrator

CFS Customer Facing Service NSGA-II Non-dominated Sorting Genetic Algorithm II
DSDVMEC Dynamic Software Defined Vehicular Multi-access Edge Computing ONOS Open Network Operating System

DSRC Dedicated Short-Range Communications PGA Packing and genetic algorithm
eNB Evolved Node B PSO Particle Swarm Optimization
ETSI European Telecommunications Standardization Institute QoS Quality of Service
gNB Next Generation Node B RAN Radio Access Network

GWO Gray Wolf Optimizer algorithm RRH Remote Radio Head
ILP Integer Linear Program RSU Road Side Unit
IoT Internet of Things SDMN Software Defined Mobile Network
IoV Internet of Vehicles SDN Software-Defined Network
ITS Intelligent Transportation System URLLC Ultra Reliable and Low Latency Communication
ITU International Telecommunication Union V2X Vehicle-to-everything

LCMA Low-complexity controller master assignment VANET Vehicular Ad hoc Network
LTE Long Term Evolution VIM Virtualization Infrastructure Manager

MANO Management and Orchestration VNF Virtualized Network Functions
M-CORD Mobile Central Office Re-architected as a Datacenter VNFPRA VNF placement and resource allocation

MEC Multi-access Edge Computing WAN Wide Area Networks
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2. Related Work

As the deployment of a single SDN controller to manage large scale scenarios is not an
effective approach [35], distributed SDN controller architectures are unavoidable to tackle
the huge volume of signaling and traffic of future dense vehicular networks. However, a
challenge from the adoption of the distributed approach is how network devices should
be assigned to the instances of SDN controllers. Such a NP-Hard optimization problem
was initially defined as the Dynamic Controller Provisioning Problem in [36]. There exist
various goals when approaching the analysis of such problem: minimizing the statistics
collection cost, synchronization, assignment of switches to the controllers [36], minimizing
the control flows, response time, and optimize the number of SDN controllers [37–39],
maximizing the allocated resources and security [40,41]. Such goals can be seen in Table 2
and the pros/con in Table 3 also were analyzed in different contexts as discussed in the
next subsections.

2.1. WAN

Seminal work on dynamic resource allocation of SDN controllers has its origins in
the context of Wide Area Networks (WAN) [36]; such a reference presents the Dynamic
Controller Provisioning Problem, an optimization strategy to minimize the cost of gath-
ering statistics data from switches, configuration flows, synchronization, and large scale
assignment of switch to controller. The authors formulated the optimal controller provi-
sioning problem as an Integer Linear Program (ILP) and it was modeled as a Single Source
Unsplittable Flow Problem. Since it is a NP-hard problem, two heuristics were proposed
to solve it: a greedy approach based on the knapsack problem and a simulated annealing
based meta-heuristic approach.

In [38] it is proposed a solution to the assignment of master controller to switches in a
distributed SDN controller environment. While switches are connected to multiple SDN
controllers for resiliency, only a master controller can install flow rules into switches. The
master assignment strategy determines the master SDN controller for each switch. Thus, a
master controller assignment problem is formulated in order to minimize the average setup
flow latency taking into account the number of assigned master controllers along a path
and the flow arrival rate among switches. A heuristic named low-complexity controller
master assignment (LCMA) is presented to solve the problem.

2.2. Data Center

The work in [37] aims at minimizing the total cost due to the response time and
maintenance of clusters of SDN controllers. To this, a two-phase algorithm is adopted.
The goal of the first phase is to model the assignment problem as a stable matching with
transfers. The second phase turns the matchings into connections between controllers and
switches, which serves as input to a game theoretic strategy to achieve Nash equilibrium.

The proposals in [42] provide load balancing among SDN controllers. They are divided
into centralized and decentralized approaches. However, centralized one is not feasible
to be deployed in real environments, since it has limitations inherent to its architecture:
single-point of failure and system bottleneck. On the other hand, the distributed approach
is scalable, stable and more suitable for real environments. Its execution is divided into
two phases: distributed startup and regionally balanced migration. In the initialization
phase, switches are randomly assigned to a set of controllers. The second phase uses two
variables: threshold and effluence. For this purpose, the number of output flows from the
switch determines the weight of a switch, whereas the sum of all the weights of all switches
assigned to a controller determines its weight at the time of measurement. In this way,
the threshold is calculated using a factor that gives weight to past measurements, which
is lesser than the weight of the current measurement multiplied by the average weight
of all controllers. The authors adopted the term “effluence” to represent the result of the
threshold multiplied by a factor greater than 1. If the controller load is less than or equal
to the threshold, the controller is defined as being available to receive switches. However,
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if the load is greater than the effluent then the controller is considered as overloaded and
the switches must be assigned to other controllers marked as available. This work also
presents how the solution would be implemented using the OpenFlow protocol.

The authors in [43] propose a heuristic approach to achieve an approximate solution
within an acceptable time duration for the positioning of VMs in a balanced way consid-
ering the occupied and available servers resources (CPU, memory, and disk), intending
to maximize the service rate and the index that determines the balance between VMs.
The proposed heuristic uses a packing and genetic algorithm (PGA) based on Tetris and
NSGA-II.

2.3. Wired Network

The maximization of existing resources is proposed in [40] without the need to allocate
or release new resources through an approach based on switch migration. The proposal
is modeled using Markov Chains and the algorithm has four stages: (1) the initialization,
where the switches are assigned to existing controllers; (2) Next, it is selected a switch
among the ones allocated to a specific controller. A count down timer is associated with
this switch. When the timer expires, the switch will migrate to a neighbor controller. Before
migration, its current controller will broadcast messages to all other controllers about the
migration decision. The system status is updated with regard to the switches’ utilization
assigned to the controllers. (3) While the controller is waiting for the expiration of the count
down timer, if messages from its neighbors arrive indicating it is a destination for future
migrations, it will reset its count-down timer, as well as recalculates the switches’ utilization
and returns to the stage 2. (4) If the count-down timer expires, the switch will be migrated
and the controller will broadcast messages to all other controllers, and return to stage 2. The
proposal considers the monitoring of the CPU usage, memory, and bandwidth resources.
The controller capacity is defined as amount of flows between controller and switch.

In [41] the authors devise a dynamic scheduling strategy for SDN controllers in order
to maximize the security against attacks consisting of fake rules insertions into switches
in a multi-controller environment. The proposal aims to avoid out of service due to
network inoperability in scenarios of extreme conditions. The proposed security-aware
and distributed [44] architecture is referred to as Mcad-SA, where M controllers are picked
randomly out of the total N controllers at regular time intervals or upon a notification
arrival at the scheduler. Since the probability of successful simultaneous attacks to the
majority of controllers is low, controllers with similar flow rules are considered benign,
while the others will be shut down. The optimization problem is formulated so as to
guarantee (1) a reasonable switch cost by considering a threshold on total switch times of
the set of current running controllers for each scheduling; and (2) the number of controllers
is bounded by an upper value to avoid degradation of the QoS due to excessive delays
incurred by the decision phase on rules’ similarity if a large number of controllers were
scheduled. As it is an NP-hard problem, the authors proposed a heuristic algorithm, MaxSG,
which is composed of three steps: First, it assigns controller to switch, constrained by a
maximum number of controllers in order to minimize the time for distribution of flow rules
to switches. Next, the controllers are randomly selected and verification is conducted to
guarantee the heterogeneity in terms of choosing controllers hosted by different machines,
as well as distinct controllers’ flavors (e.g., PoX, Floodlight, etc.). The previous step is then
repeated until all selected controllers have been analyzed. Thus, the heuristic aims to use
different flavors of controllers deployed in distinct machines to avoid insertion of fake flow
rules, since a bug of a controller will not affect the others and also an attack to a machine
will not compromise the others.

In [39] a multiple mapping approach between switches and controllers is proposed.
A switch must be allocated to more than one controller in order to ensure resilience in
a controller failure scenario. Therefore, the work aims to minimize the total time of
configuration flows in the network considering the resilience constraint. This work models
the controller response time through queuing theory. The authors assume that the proposed
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approach provides stability to the analyzed environment, because if a controller fails, the
switches linked to it did not suffer from delays, considering that other controllers will
assume the task of assigning control flows, which does not happen in an environment
where the switches are allocated to a single controller.

A dynamic controller association mechanism based on flow characteristics is proposed
in [45] to reduce the resource utilization and traffic overhead. The mechanism is split into
two stages. First, it is employed a fast algorithm based on greedy set coverage algorithm
aiming at associating controllers to switches. Next, due to the unbalanced results of
associations between controllers and switches from previous stage, migrations of switches
are carried out through a coalitional game strategy to achieve the near-optimum association
between controllers and switches.

2.4. Mobile Networks

The authors in [46] present a novel meta-heuristic named Gray Wolf Optimizer algo-
rithm (GWO), which is based on Particle Swarm Optimization (PSO). This approach aims to
solve the problem of dynamic allocation of SDN controllers, which is modeled as a problem
of multiple backpacks, in the context of Software Defined Mobile Network (SDMN). To this
end, GWO was inspired by the behavior of gray wolf packs to find a solution to a given
problem. Thus, like the pack, the algorithm was divided into four groups: alpha, beta,
delta, and omega. The first is the leader and represents the best solution. Beta and delta
represent, respectively, the second and third best solutions and the remaining members are
defined as omega. When the pack finds a prey, it creates a circle around it and gradually
decreases the size of the circle until the prey cannot move, this behavior is abstracted to
find the optimal solution to the problem. Initially, the GWO algorithm generates a random
population and iteratively updates the population calculating the cost and defining the
members of the wolf groups. To improve the performance of the algorithm and in order
to avoid optimal locations, the chaotic map technique is used to generate deterministic
random sequences. Assuming that each group is a set of controllers and switches, it was
necessary to run two instances of GWO nested. The first level determines the best number
of controllers for each group and the second level identifies the best connections between
switches and controllers. The best solution between the two levels is to use the least amount
of controllers connected to the switches.

In [47] is proposed a VNF placement and resource allocation (VNFPRA) problem.
The authors devise as solutions two algorithms: a mixed integer program problem and
a genetic based heuristic. Both solutions aim at reducing the overall placement and
resource costs. The authors assume that just one VNF is not enough to meet the demands
of all users’ requests. Therefore, the replication of VNFs in other MEC nodes in the
neighborhood is analyzed. A central controller with a global view of the network is used,
which is responsible for deciding the optimal route for requesting VNFs. The results of
the simulations indicate performance gains compared to solutions that already exist in
the literature.

The authors in [48] propose an architecture for the automatic allocation of VNFs
using important technologies and frameworks in an IoV scenario (M-CORD, XOS, ONOS,
OpenStack, and OpenAirInterface). An algorithm for decision making regarding elasticity
was devised based on VNF resources utilization as a parameter.

In [49] an extension of the MEC-NFV architecture for the allocation of SDN controllers
is proposed. A testbed was implemented using OpenStack and Tacker to provide and
manage the controller’s life cycle. The main difference between [49] and this proposal is
in the strategy adopted to decide the resources to be allocated to SDN controllers. In this
proposal, the resources of each controller vary according to demand, whereas in [49] the
controllers have the same amount of resources, changing only the number of controllers. In
this proposal, a heuristic and an exact model are being demonstrated to optimize allocated
resources on SDN controllers.
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Table 2. Some of the Dynamic SDN controller assignment efforts in the literature.

Reference Objective Modeling Strategy Scenario Evaluation

Bari et al. [36] Minimize flow setup time
and communication overhead

Single Source Unsplittable
Flow Problem

Integer Linear Program WAN Simulation

Wang et al. [37] Minimize the total cost
caused by response time and
maintenance on the cluster of

controllers

Stable matching problems
with transfers

- DC Simulation

Suh et al. [38] Minimize the average flow
setup latency

- Integer Nonlinear
Programming

WAN Simulation

Sridharan et al. [39] Minimize flow setup time - - Traditional Network Numerical analysis

Ye et al. [40] Maximize control resource
utilization

Switch Migration Problem Markov Chain Traditional Network Prototype

Qi et al. [41] Maximise security - - Traditional Network Simulation

Gao et al. [42] - - Linear Programming DC Simulation

Wenting et al. [43] Maximize the service rate for
virtual machine placement

Bin packing problem - DC Simulation

Li et al. [45] Minimize control resource
consumption and control

traffic overhead

Resource optimization
problem

Graph Theory Traditional Network Simulation

Farshin et al. [46] - Multi Knapsack Problem Markov Chain Software-Defined Mobile
Networking

Simulation

Kiran et al. [47] Minimize the overall
placement and resource cost

VNF placement and resource
allocation problem

Mixed Integer Program MEC Network Simulation

Mehmood et al. [48] - - - 5G Testbed

Sabino et al. [49] - - - 5G-MEC Testbed

Liu et al. [50] Maximizing bandwidth
efficiency and enhancing

system scalability

Coding-Assisted Broadcast
Scheduling Problem

Memetic Algorithm SDN Vehicular Networks Simulation

Dai et al. [51] - Cooperative Temporal Data
Dissemination Problem

Classical Knapsack Problem SDN Heterogeneous
Vehicular Networks

Simulation
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Table 2. Cont.

Reference Objective Modeling Strategy Scenario Evaluation

Proposed solution Minimize wasted resources
considering load balancing

between controllers,
management complexity, and

scalability

Bin Packing Problem Linear Programming IoV Simulation

Table 3. Comparative of pros and cons between this proposal and previous works.

Reference Pros Cons

Bari et al. [36] The first work using Integer Linear Program to optimal
controller provisioning problem.

The switches may be assigned randomly among the activated
controllers.

Wang et al. [37] Since the proposal relies on the controller’s worst response
time, it will be possible to check if the designation choice meets

the latency restrictions of the applications.

After matching, the strategy is that no switch will change its
controller, which may not be useful in a context of high

variability.

Suh et al. [38] Consider the configuration time of switches with several
controllers.

The proposal was not designed to be executed in real-time.

Sridharan et al. [39] Two different approaches are proposed that aim to guarantee
resilience considering the flow setup time.

It is assumed that all controllers have the same capacity.

Ye et al. [40] It considers different imbalance metrics to maximize the use of
resources.

It does not consider the change in the number of controllers.

Qi et al. [41] Assume that when using different types of controllers, there is
an increase in security.

Disregards the consequences of employing different controllers
in the same architecture, such as increasing management

complexity and limiting communication between controllers.

Gao et al. [42] The proposal aims to divide the network into several parts
with each part assigned to a controller.

Each part of the network is not necessarily balanced and the
task of reconfiguration is complex.

Wenting et al. [43] Employed heuristics to achieve an approximate optimal
solution with acceptable time duration.

Did not compare the idealized model with the proposed
heuristic.

Li et al. [45] When employing fog, the latency between device and
controller is reduced.

The vehicle relay communications ignore interference.
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Table 3. Cont.

Reference Pros Cons

Farshin et al. [46] It uses bio-inspired computing for making of dynamic
dynamic allocation of controllers.

It does not consider controllers with different capacities.

Kiran et al. [47] It minimizes the resource cost and overall placement. Considered just one controller for the entire architecture
generating a single point of failure.

Mehmood et al. [48] Created a testbed to assess the dynamic allocation of VNFs in
view of their use through technologies from the 5G scenario.

No exact model, only an algorithm was proposed to optimize
the use of allocated resources.

Sabino et al. [49] The creation of a testbed for 5G and MEC in the context of IoV
for dynamic allocation of SDN controllers.

The absence of a robust strategy for the allocation of SDN
controllers.

Liu et al. [50] Employed a memetic algorithm to efficiently solve the CBS
problem in an SDN-Based Vehicular Networks context.

Did not consider distributed SDN controllers for tolerance
failure.

Dai et al. [51] The heuristic proposed is able to improve overall system
performance by adaptively distributing broadcast tasks of each

request among multiple interfaces.

It does not consider controllers in edge computing.

Proposed solution It considers the use of several controllers with different
capacities being allocated dynamically in the face of demand

fluctuation.

It disregarded the positioning of the controllers.
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The work in [50] aims at maximizing bandwidth efficiency and enhancing system scal-
ability by an SDN-based service architecture for heterogeneous vehicular communication
environments.They formulate a novel problem of Coding-assisted Broadcast Scheduling
(CBS) considering vehicular caching and network coding.

In [51] is proposed an SDN-based architecture to enable unified management on
heterogeneous network resources, formulated the cooperative temporal data dissemination
problem and heuristic algorithm, which synthesizes dynamic task assignment, broadcast
efficiency, and service deadline into priority design.

3. DSDVMEC Architecture

The ETSI began the standardization of MEC, originally named as Mobile Edge Com-
puting, in 2014 with the aim of creating an open environment to bring processing, network-
ing, and storage to the network edge, thus reducing the latency for applications execution
issued by mobile end-users. In 2016, the Mobile term was renamed to Multi-access aiming
to embrace heterogeneous networking (e.g., WiFi and Fixed accesses). Due to its physical
decentralization and high incurred costs of still limited computing resources with logically
centralized management (Figure 1), there is a need to enhance the system with autonomic
functionalities targeting to reduce the idle and underutilized resources, which is crucial for
the wide acceptance and deployment of MEC as a supportive infrastructure for Internet of
Vehicles. To this end, this article proposes the DSDVMEC (see Figure 2), where multiple
SDN controllers are dynamically deployed via VNFs in an MEC infrastructure with the goal
of granting reduced delays for SDN control signaling once backhaul latency is eliminated,
as well as optimizing the MEC management and control operations to efficiently serve the
end-users in densely and highly demanding IoV scenarios.

eNB

RSU

RSU

MEC-NFV

RSU

Flow-rule

VIM

NFVI

SDN 

Controllers

ME apps

DSDVMEC

architecture

Nf-Vi

Or-Vi

Am2

Am3

Am4

Am5

Am1

A
m

6

Monitor

Aggregator

Autonomic

Manager

Vi-Vnfm

Nf-Vi

Figure 1. Scenario of IoV.

DSDVMEC dimensions the allocated resources as VNFs that run the SDN controllers
and their allocations depend on the amount of requests from vehicles which are periodically
monitored. This way, it is proposed an autonomic module in charge of self-management of
the architecture through orchestration and resource optimization regarding the VNFs. To
reduce the integration complexity and overload of existing functional blocks of the ETSI
MEC reference architecture with NFV support [52], the autonomic module consists of three
new functional blocks, namely, monitor, aggregator, and autonomic manager, besides four
reference points, described as follows:

(1) Monitor: This block collects periodically the utilization of resources (CPU, memory,
bandwidth, and storage) at Virtualization Infrastructure Manager (VIM) and the number
of flows in controllers through an SDN monitoring application. (2) Aggregator: It is re-
sponsible for analyzing and summarizing the gathered data (e.g., the number of entrance
flows interferes in the number of vehicles attached to eNBs and RSUs). The purposes of
these actions are two-fold: correct errors during the collect phase and organize the data
that serve as input to the heuristic-based decision making. (3) Autonomic Manager: It
decides on the number of required controllers to meet a demand and also define which
infrastructures will be assigned to the controllers as well as the computational resources to
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be allocated to those controllers. Upon taking the decisions, this module checks whether
existing controllers could be reused. This aims to avoid unnecessary operations for creat-
ing/releasing controllers. Next, it is also verified whether further controllers to meet the
demand are necessary. At the end of the creation process, the assignment of infrastructure
to controllers is carried out. Thus, the unstable time of the environment, i.e, the time
between the demand arrival and the controllers assignment, is minimized. As the final step,
the controllers not assigned to any infrastructure are released. The interaction between the
autonomic module and the MEC-NFV reference architecture (Figure 2) occurs by means of
the Monitor functional block, which gathers data from the VIM through the Am1 reference
point and from the MEC applications through the Am2 reference point. In our proposal,
MEC applications correspond to SDN controllers along with their applications provisioned
by means of VNFs. Next, the data are sent to the Aggregator Module via Am3 reference
point, that in turn, at the end of data treatment are delivered to the Autonomic Manager
through Am4 reference point. The decisions taken by the Autonomic Manager with regard
the creation/releasing of VNFs are transmitted through Am5 reference point to the VIM.

On the other hand, the assignment of communication infrastructures (eNBs and RSUs)
to SDN Controllers is accomplished by an SDN application named Designator, which
receives the decision taken by the Autonomic Module through the Am6 reference point.
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Figure 2. DSDVMEC architecture.

The decision and assignment/deployment process can be observed in Figure 3. It
starts with the Monitor sending Req. Reg. Flux message requesting data about the flow-
rules of SDN applications via Rest API. These applications forward the requests to the
corresponding controllers using the Northbound Interface, which in turn request the
infrastructure services using OpenFlow as the Southbound protocol to reply by sending
back a Resp. Reg. Flux Message.

Then, the message Req. Stat. MEC is sent to the VIM indicating the request to use the
computational resources of VNFs hosting the SDN controllers. The response message Resp.
Stat. MEC is sent back to the Monitor.

Upon receiving the data, the Monitor forwards them to the aggregator for processing.
Next, the Autonomic Manager runs the optimization heuristic to decide on resource allo-
cation to controllers based on the data received from the Aggregator. After the heuristic
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execution, detailed in the next section, the message Req. Creat.VNF to the VIM with the
goal of creating new controllers along with their optimized corresponding computational
resources. At the end of the process, the message Resp. Creat.VNF is sent to the Autonomic
Manager. In the sequel, the message Req. Sol. Assig is sent to the SDN application, Desig-
nator, which is responsible to effectuate the assignment of communication infrastructures
(eNb and RSUs) to the SDN controllers. The Autonomic Module receives the message Resp.
Sol. Assig. when the allocation is concluded. Finally, the Autonomic Manager solicits to the
VIM the exclusion of the controllers not assigned to infrastructures via message Req. Del.
NFV. By doing the exclusions at the end of whole process, the latency of flow-rules due to
assignments are reduced since previous ongoing flows of such excluded controllers have
already been switched to the new ones.
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Figure 3. Sequence diagram for heuristic decision and assignment/deployment of SDN controllers.

4. Problem Formulation

In the proposed architecture depicted in Figure 1, the vehicular connectivity to the
infrastructure is achieved through access points such as (IEEE 802.11p/DSRC) RSUs but
is extensible to small cell or RRH (Remote Radio Head). For the sake of modeling, we
considered that all RSUs have the same coverage and the MEC servers are located at
the gNB. Each RSU is directly connected to the gNB site through a one-hop high-speed
connection, forming an arrangement. The mobile core is not shown in Figure 1 for modeling
purposes, our system considers reliable RSUs connections, but our architecture allows
switching the connectivity to gNB when vehicles have both interfaces. Both RSUs and gNB
are openflow-enabled, whereas the SDN controllers are instantiated at the MEC server.

We assume that there is sufficient capacity in the existing controllers to meet vehicle
requests and that vehicles must first request content through an access point in order to
acquire services. Considering there is no flow-rule to handle the request, the RSU issues
a packet-in message to an SDN controller at the MEC to acquire a flow-rule. Then, the
controller responds by sending a flow-mod message to the RSU to install a new entry in
its flow-table. The Monitor periodically monitors the number of requests from the RSUs,
Dj, and decides upon the assignment of RSUs to SDN controllers in order to balance the
vehicular traffic/requests.
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Furthermore, the RSUs will be connected to its arrangement’s gNB through Ethernet
links to reduce 5G connectivity costs. Let M be the set of RSUs; then each RSU j is
responsible for receiving requests from vehicles, while Dj is the number of all requests
from each vehicle to the RSU j. In this way, Yi is a binary variable representing whether
or not the controller i from N is picked. The controller capacity i is defined as Ci and the
number of requests Dj from vehicles to RSUs assigned to a controller should not surpass
the capacity Ci. Besides, a resource reservation factor of 0 ≤ ω ≤ 1 is granted to avoid
overloading controllers during resizing periods. Table 4 defines the notations used in this
letter. Figure 4 shows the flowchart of proposed model optimization approach.

Minimize :
N

∑
i=1

(1−ω) · Ci ·Yi −
M

∑
j=1

Dj (1)

S.T :
M

∑
j=1

Dj · Xij ≤ (1−ω) · Ci ·Yi, ∀i ∈ N, (2)

N

∑
i=1

Xij = 1, ∀j ∈ M, (3)

Xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M, (4)

Yi ∈ {0, 1}, ∀i ∈ N. (5)
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Figure 4. Flowchart of proposed model optimization approach.
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Table 4. Notations.

Symbol Definition

i, N Index, set of VNF controllers.

j, M Index, set of RSUs.

ω Resource reservation factor

Xij Binary, Xij = 1 if controller i is assignment to RSU j;0, otherwise.

Yi Binary, Yi = 1 if controller i is chosen; 0, otherwise.

Ci Capacity of each VNF controller i

Dj Number of requests of vehicles to each RSU j

V List of resource capacity templates

The objective function defined in Equation (1) aims to minimize the number of wasted
resources; Constraint (2) ensures that the sum of the requests assigned to the controller
does not exceed its capacity. Constraint (3) defines that an RSU is assigned to only one
controller. Constraints (4) and (5) define the binary variables.

Heuristic

This section describes the proposed heuristic implemented by the Autonomic Manager
named aSDNalloc - autonomic SDN allocator. aSDNalloc allocates dynamically compu-
tational resources to VNFs that run SDN controllers and applications. This solution is of
fundamental importance to DSDVMEC since it reduces the amount of idle resources allo-
cated to the controllers deployed in an MEC-NFV environment, which is not a resourceful
data center. aSDNalloc was designed to run in shortest possible time without sacrificing
the quality of the obtained solution. Since the execution time may directly impact on the
response time for the infrastructure requests to the SDN controllers, aSDNalloc decision
is based on three perspectives that must be taken into consideration by the heuristic, as
described below:

• How many controllers should be required to meet the vehicular demand without
incurring in overload or underutilization of their resources?

• How many computational resources (CPU, memory, bandwidth, storage) should be
allocated to the SDN controllers?

• Which infrastructures (eNBs and RSUs) should be assigned to the SDN controllers?

The aSDNalloc was conceived based on the bin packing problem, since there is a need
to reduce the number of required bins. In the context of SDN allocation, it means that the
objective function will minimize the amount of allocated VNFs to meet the demand from
communication infrastructures. This way, a heuristic takes the decision on the suitable
number of controllers. aSDNalloc considers four input parameters, as described below:

1. List of resource capacity templates: a list: V = v1, v2, ..., vn represents the capacities
for each template describing the computational resources created in the MEC in order
to allocate SDN controllers. This list aims to provide the necessary information for
the heuristic to decide about the most suitable set of resources so that controllers
can adequately support each infrastructures’ demand. As an example, consider the
input [x, z] meaning that the template x has the capacity to meet a demand z. Thus,
aSDNalloc can group a set of n infrastructures by assuming that the demand of such
set must be less or equal than the capacity z.

2. List of requests by RSU: D = d1, d2, ..., dm is a set of all RSUs, eNBs and their corre-
sponding demands to be supported by the SDN controllers. This input is described as
[a, t], where a is the infrastructure identifier and t its respective number of requests.

3. ω: Threshold for the maximum utilization of VNFs. It aims to avoid resource star-
vation due to excessive utilization of computational resources, which could degrade
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the QoS. Thus, aSDNalloc allows the definition of the amount of allocated resources
that should be utilized to support a demand. For example, in a case where ω = 0.9,
90% of the resources can be used, while 10% will correspond to a reservation to grant
QoS and amortize the demand due to the vehicle mobility among communications
infrastructures.

4. β: defines a multiplier for the infrastructure load in order to determine the minimum
capacity of the controller to meet a demand. This parameter aims at reducing the
number of SDN controllers, hence, diminishing the management complexity for the
environment. To this end, a hypothetical example where β = 10 should be interpreted
in the following way: In the case of there is no already allocated controller with
available resources to meet the demand of a certain infrastructure, a new controller
should be created with a minimum capacity 10 times greater than the demand for
that infrastructure.

The pseudo-code is shown in Algorithm 1. aSDNalloc first assigns to dmax the RSU
with the greatest number of requests from the list D, and to gwasted the controller with the
largest wasted capacity from list G (lines 3–4). Then, it checks whether gwasted has enough
spare capacity for supporting the number of requests from dmax. If this condition is satisfied,
the RSU is assigned to the controller, which is inserted in its list G (lines 5–6). Otherwise,
a new controller is created. To identify how many resources should be allocated to the
new controller, the smallest resource v′ is removed from the templates list V′ (lines 7–11).
Then, aiming at creating a controller with a minimum of β times the capacity required
to serve dmax RSU, v′ is compared with (dmax · β)(line 12). The β parameter is a demand
multiplier that aims to reduce the number of allocated controllers. Finally, a new controller
gv′ is created considering both the template v′ and the number of reserved ω resources, as
well as the assigned dmax (lines 13–14). These steps are repeated until there are no RSUs to
be assigned.

Algorithm 1 Proposed Algorithm - aSDNalloc
Input: List of requests by RSUs, D

List of resource capacity templates, V
Demand multiplier, β
Amount of resource reservation, ω

Output: List of controllers with their resource capacity and respective assigned RSUs, G
1: G = Ø
2: while R 6= Ø do
3: dmax ← maxrequest(D)
4: gwasted ← maxwasted(G)
5: if gwasted > dmax then
6: G ← G ∪ assignment(gwasted, dmax)
7: else
8: G ← G ∪ gwasted
9: V′ = V

10: while V′ 6= Ø do
11: v′ ← min(V′)
12: if v′ > dmax · β then
13: gv′ ← create(v′, ω)
14: G ← G ∪ assignment(gv′ , dmax)
15: break
16: end if
17: end while
18: end if
19: end while

In order to illustrate the idea behind the proposed heuristic, Figure 5 shows a simple
example using the aSDNalloc. The first step consists on removing the greatest demanding
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infrastructure from the list, which in turn must be allocated to a controller with an idle
capacity greater or equal to this infrastructure, but respecting the constraint ω. If there
is no such controller that meets these requirements, then, suitable resources from the list
of capacities are assigned to the VNF in charge of executing the SDN controller. It is
necessary to take into account that the minimum capacity must be greater than or equal
to the infrastructure demand multiplied by the value of β. The abovementioned step is
repeated until there is no infrastructure to be assigned to VNFs. It is possible to observe
that in the third iteration the RSU with three requests is designated to the VNF-2, which
had already assigned itself the RSU with five requests and had four units of idle resources.
At the end of the iteration the VNF-1 remained with two idle resources and with the same
amount in reserve before the adopted ω. VNF-2, on the other hand, had one resource
unit idle and another unit in reserve before the value defined for ω. Last, it is checked
the wasted capacity for all VNFs currently executing controllers in order to identify any
underutilization of controllers. To this, a comparison among utilized capacity, wasted
capacity, and the list of capacities is carried out. That way, since all infrastructures have
already been assigned, then it is needed to identify if there is any overprovisioned VNF. In
the affirmative case, resource reallocation must be done. The quality of obtained solution is
determined by the summation of controllers’ idle capacity, which consists in achieving the
value 0 (zero) if the solution is optimal. Thus, the closer to zero, the better the quality of
the solution provided by aSDNalloc.
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5. Experimental Analysis

We conducted numerous analyses taking into account two approaches, the analytical
model using solver IBM ILOG CPLEX and heuristic written in Python. Two VANETs
scenarios were defined: The first employed 50, 100, and 150 RSUs. It aimed at comparing
the results of analytical model with the heuristic approach. The second is a high-density
scenario with 5000, 10,000, and 15,000 RSUs, which, due to the intractable time required by
the analytical model, considered only the heuristic.

The first and second scenarios adopted 500 and 10,000 distinct vehicle density in-
stances, respectively. Each instance represents a new RSUs monitoring process carried out
by the Monitor module, with each vehicle being responsible for a request, and the sum of
the requests determining the RSU demand. Similarly to [53], vehicle mobility is considered
in our experiments by means of scenarios with different vehicle densities.

The main goal of this experiment is to verify the applicability of using such heuristic
for real-time decision-making in high-density scenarios. For both scenarios, the parameter
β assumed the values 1, 10, 50, and 100. The RSU coverage radius was set to 250 m.
Considering the capacity of the controller as ∼7500 requests per second [37], we adopt
the templates capacities as 100, 500, 1000, 2000, 4000, 8000, 10,000, 12,000, and 15,000. The
vehicles’ density was chosen randomly within the interval [0, 250] vehicles/km as in [53].
For all experiments, the resource reservation parameter ω is set to 10%, and the graphs
plotted with a confidence interval of 95%.
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5.1. Wasted Resources

The first two analyses depicted in Figure 6 and Table 5 aim to verify how efficient
the heuristic is through comparing it with the exact model and the efficiency of heuristics
in a high-density scenario, respectively. Figure 6 illustrates that with the values of β = 50
and 100, there is an increase in wasted resources, but a reduction on the number of SDN
controllers.

Adopting β = 1, the heuristic approach allocated more resources to controllers than
the exact model. However, as the number of RSUs increases, the heuristics become more
efficient, at worst-case less than 15% of resources wasted. In dense scenarios, the heuristic
outcome improves, having analyzed in all cases less than 1% of wasted resources. It is
noteworthy that all results in Table 5 had the CI variation less than 0.02%.

Table 5. Average capacity utilization in high density scenario.

Solution Number of RSUs

5000 10,000 15,000

Alloc-1 99.34 99.42 99.46

Alloc-10 99.98 99.99 99.99

Alloc-50 99.95 99.98 99.99

Alloc-100 99.95 99.97 99.98
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Figure 6. Capacity utilization.

5.2. Load Balancing

We considered the expression ∆Di f = ∆max − ∆min [54] to verify the load balancing of

the proposed solution, where ∆ =
(

capacity−load
capacity

)
, ∆max is the biggest difference, and ∆min

the smallest one. Results vary in the range [0, 1], the closer to 0, the better the result, while
the opposite, that is, the value 1, corresponds to the worst load balancing case. Table 6
shows that the heuristic becomes more efficient regarding both resource allocation and load
balancing as vehicle density increases regardless of the value adopted for the β parameter
in the first scenario.

In the high-density scenario (Table 7), the result was 0.02 in the worst-case and 0.00 in
the best-case, the same behavior of the first scenario. This result shows that the proposed
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solutions are not only efficient in allocating resources, but also promote load balancing
between allocated SDN controllers.

Table 6. ∆Di f for first scenario.

Solution Number of RSUs

50 100 150

Model 0.02 0.01 0.38
Alloc-1 0.13 0.09 0.08

Alloc-10 0.12 0.05 0.03
Alloc-50 0.49 0.27 0.24
Alloc-100 0.49 0.27 0.19

5.3. Management Complexity

As more controllers are required, the more complex the environment management
becomes. For example, considering the scenario with 15,000 RSUs, a huge amount of flows
will require synchronization among controllers, which may cause packet flooding and,
consequently, the degradation of applications and network performance. Therefore, the β
parameter plays a crucial role in avoiding an unnecessary allocation of SDN controllers
and an increase of such complexity and synchronization overhead.

Table 7. ∆Di f for high-density scenarios.

Solution Number of RSUs

5000 10,000 15,000

Alloc-1 0.02 0.01 0.01
Alloc-10 0.00 0.00 0.00
Alloc-50 0.00 0.00 0.00
Alloc-100 0.00 0.00 0.00

It is worth mentioning that the increased number of controllers does not necessarily
related to an increase in wasted resources as evidenced by the result presented by the
model for 150 RSUs, where there was a reduction in the number of controllers compared
to the experiment with 100 RSUs. This behavior is the result of the number of templates
providing different capacities to the controllers as shown in Figure 7.

For the high-density scenario evaluation shown in Figure 8, the number of controllers
changed significantly with the scale increase. However, the heuristic is more efficient, kept
the percentage of wasted resources low, adopting templates with higher capacities, and
higher values for β, consequently, the number of controllers will reduce.

5.4. Scalability

Considering the dynamic aspect of the VANET environment, it is essential to under-
stand the trade-off between the required time to deploy the SDN controllers into the MEC
and the effectiveness of the achieved solution for both the exact model and the heuristic. As
shown in Figure 9, as the scenario increases from 50 to 150 RSUs, the exact model becomes
intractable, as it requires more than 1.09× 105 ms to obtain the optimum solution. On the
other hand, as shown in Figure 10, in a scenario with 15,000 RSUs, the heuristic requires
less than 5.04× 103 ms for β = 1. In addition, as the parameter β increases to 100, the time
reduces to 3.03× 102 ms. The results show that to decrease the heuristic execution time,
it’s necessary to adopt β with higher values, aiming at reducing the number of template
selection tasks for the controllers. However, in the specific case of β set to 50 and 100 with
15,000 RSUs the values are similar. This fact can be explained by the number of drivers
created, considering that more time is required to process the heuristic by creating new
drivers than assigning RSUs to existing drivers.
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Figure 7. Numbers of allocated controllers.
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Figure 8. Numbers of allocated controllers in high-density scenario.

5.5. Limitations and Future Research Directions

In this work, the positioning problem of SDN controllers in IoV was not addressed,
the choice of which RSUs will host which controller impacts the latency between the RSUs
and the controllers, consequently, the time in which the flow-in is generated by the RSUs
and the flow-rule is sent by the controller back to RSU. Although the results obtained by the
heuristic evaluation are promising, the study still lacks evaluations with scenarios using
real vehicular traces. We intende to evaluate our proposal with such real traces in future
works. When adopting architectures that employ multiple controllers, one point to be
considered is the communication necessary for synchronization between these controllers.
One way to deal with this problem would be with east-westbound communication present
in some controllers such as ONOS and OpenDaylight. It is also worth to mentioning that
the increase in the number of controllers directly impacts the volume of control traffic. All
abovementioned issues will be addressed in our future works.
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Figure 9. Average of time execution.
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Figure 10. Average of time execution in high-density scenario.

6. Conclusions

In this article, we proposed a Dynamic Software Defined Vehicular Multi-Access
Edge Computing solution in order to provide an agile and flexible architecture capable
of meeting the requirements of applications in the context of the Internet of Vehicles. To
this end, an MEC-NFV framework was devised to deploy dynamically SDN controllers as
VNFs at the edge of the network. In addition, an exact model and the aSDNalloc heuristic
were proposed to dynamically allocate SDN controllers for highly dense and dynamic
IoV scenarios. The proposed heuristic provides a satisfactory tradeoff between reducing
the complexity of the network infrastructure management and the volume of resources
allocated to the VNFs that run SDN controllers. Bearing in mind that as the number of
controllers is reduced, in order to reduce the complexity of managing the environment,
the quality of the solution will get worse due to the increase of idle resources. aSDNalloc
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obtained execution times less than 103 ms in highly dense scenarios with 15,000 RSUs
and managed to reduce wasted resources to less than 1%. The next steps will be the
implementation of a testbed for more accurate validation of the heuristic and the use of the
remote cloud to allocate controllers responsible for inter-domain communication.
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