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Abstract: Object detection is an important task for many applications, like transportation, security,
and medical applications. Many of these applications are needed on edge devices to make local
decisions. Therefore, it is necessary to provide low-cost, fast solutions for object detection. This
work proposes a configurable hardware core on a field-programmable gate array (FPGA) for object
detection. The configurability of the core allows its deployment on target devices with diverse
hardware resources. The object detection accelerator is based on YOLO, for its good accuracy at
moderate computational complexity. The solution was applied to the design of a core to accelerate
the Tiny-YOLOv3, based on a CNN developed for constrained environments. However, it can be
applied to other YOLO versions. The core was integrated into a full system-on-chip solution and
tested with the COCO dataset. It achieved a performance from 7 to 14 FPS in a low-cost ZYNQ7020
FPGA, depending on the quantization, with an accuracy reduction from 2.1 to 1.4 points of mAP50.

Keywords: Internet of Things; object detection; YOLO; FPGA

1. Introduction

Object detection [1,2] determines if an object is present in an image. This capacity to
automatically detect objects has a wide range of applications, like transportation, medical,
and security applications [3,4]. For example, in smart cities, traffic analysis from images
determines the number of cars, persons, etc. and takes decisions to improve traffic and
public transport. Decisions made locally near the scenario under analysis are more effi-
cient [5]. Therefore, it is important to provide edge Internet-of-Things (IoT) devices with
the capacity to run complex machine learning algorithms, in particular, object detection.

The recent development of deep learning and in particular the convolutional neural
network (CNN) had a major contribution to the recent improvement of the accuracy of
object detectors, compared to other traditional machine learning algorithms [6]. The recent
state-of-the-art object detectors are all based on CNNs, which can automatically learn
complex features that are used to detect and classify objects.

There are two approaches to design object detectors using CNNs [1,7]. The two-stage
object detector follows the traditional algorithm where it first finds regions of interest and
identifies them as candidate bounding boxes. It then classifies each candidate bounding
box in a second stage. Well-known two-stage detectors are R-CNN [8], fast R-CNN [9], R-
FCN [10], faster R-CNN [11], and mask R-CNN [12]. A second approach to object detection
considers a single phase only. These algorithms integrate both regression and classification
in a single step. Common one-stage detectors are YOLO [13] with its different versions:
YOLOv2 [14], YOLOv3 [15], and YOLOv4 [16] and RetinaNet [17].

The best object detector for a particular application depends on the target requirements
in terms of speed and detection precision. Two-stage object detectors are more precise
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than one-stage detectors but are computationally more demanding [18]. Therefore, in a
distributed edge computing scenario the one-stage detectors are the preferred choice for
their lower cost with good accuracy.

Even the one-stage detectors require high computing power to achieve real-time
performance [18]. For this reason, graphics processing units (GPUs) are generally used to
deploy CNNs due to their high-performance floating-point computing. However, GPUs are
power-hungry and cannot be deployed in edge devices with reduced energy [19]. Dedicated
hardware solutions are therefore important for the successful deployment of CNN-based
object detectors on edge devices [19]. Many recent works use field-programmable gate
arrays (FPGAs) since they offer high computing power with high energy efficiency [20].
Besides, they also offer hardware flexibility, permitting a custom design for particular
constraints of the system target.

In this study, we proposed a configurable hardware core for object detection based on
YOLO. To improve the performance of the core for object detection, the YOLO algorithm
was first quantized from a floating point to a fixed point with a small precision drop in the
mean average precision (mAP).

The system was tested with Tiny-YOLOv3, a lightweight version of YOLOv3 [15].
The core was integrated into a full system-on-chip (SoC) and prototyped in a low-cost
ZYNQ7020 FPGA. The solution with 16-bit quantization achieved 7 frames per second for
416 × 416 sized images in the ZYNQ7020 with 31.5 mAP50. The 8-bit quantization solution
doubled the throughput but reduced the mAP50 by 0.7 percentage points.

The article is organized as follows. Section 2 introduces the background of CNNs
and object detection with YOLO. Section 3 describes the architecture of the object detector
accelerator. Section 4 describes the mapping process of Tiny-YOLOv3 on the proposed
architecture. Section 5 presents the results of the solution for the two fixed-point repre-
sentations and compares the proposed system with other computing platforms and other
FPGA-based object detector works. Finally, Section 6 concludes the article.

2. Background and Related Work
2.1. Convolutional Neural Networks

CNNs are mainly composed of convolutional layers. Other commonly found layers in
CNNs are pooling, batch-normalize, shortcut, routing, and upsample layers.

The input of convolutional layers is divided into C channels, where each channel is
defined as a (W×H) feature map (FM). Each kernel used in the convolution has C channels.
The number of output channels N is the same as the number of kernels used. Each value
on the output is the accumulation of the products of the input with the overlapped kernel.

CNNs use pooling layers to reduce the size of the FMs. The most common pooling
operations divide the feature map into 2× 2 regions and select either the larger (max-
pooling) or the average (average-pooling) value.

Batch-normalize layers set the average of the input values to zero and the standard
deviation to one. After that, the values are scaled and shifted using the (γ,β) parameters
also learned during training. This control of the input distribution speeds up training and
improves accuracy. For a given value y, the normalization outputs

z =
y− µ√
σ2 + ε

γ + β, (1)

where µ is the average, σ is the standard deviation, ε is the scale, and β is the batch
normalization bias. The additional ε term is used to avoid numerical errors related with
denominators too close to zero.

A shortcut layer skips one or more layers by adding an output feature map of a
previous layer to a current layer. Routing and upsampling layers are usually associated
with objection detection [15]. The routing layer concatenates outputs from different layers
creating stacked separate output channels. The upsampling layer increases the size (width
and height) of a feature map to detect objects at different scales and obtain more information
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from features identified in the input map. The simplest upsample method consists in
repeating each value in an feature map four times in a 2× 2 square.

Many CNN models have been proposed since the success of AlexNet [20], VGG-
16 [20], and GoogLeNet [20] for image classification. These CNN networks differ mainly
in the number and sequence of layers and the number and size of kernels. Compared to
the first two CNN models, GoogLeNet introduced parallel convolutions applied to the
same input feature map (IFM), followed by concatenation. It basically allows processing
the inputs at multiple scales. Deeper and larger CNN models have followed and improved
accuracy at the cost of increased computational complexity. ResNet [20] is a deeper network
compared to its predecessors. The network model introduces for the first time the shortcut
layers to avoid the vanishing gradient problem observed during backpropagation.

Some CNN models were specifically designed for object detection. Darknet-53 [15]
is the base model of YOLOv3 that employs shortcut layers to allow a deeper network.
Darknet-53 is the backbone model of the YOLOv3 object detector. In general, YOLO models
have lightweight versions. A few lightweight versions were proposed for YOLOv3 like
Tiny=YOLOv3 based on Tiny-Darnet-53, with a reduced number of weights (from 62 to 8.8
million parameters) and computations (from 33 to 2.8 GOPS) compared to the full model.

2.2. Tiny YOLOv3

Object detectors locate and classify objects present in an image. Typically, the detectors
locate objects and draw a bounding box around it and then classify the objects as belonging
to a predefined set of classes.

YOLO and all its versions [21] are one-stage object detectors with a common model
topology based on convolutional neural networks. YOLOv3 has three different versions
for different image sizes: 320 × 320, 416 × 416, or 608 × 608. The YOLO detector extracts
features using a CNN and returns candidate bounding boxes from those features for three
different scales: 52 × 52, 26 × 26, and 13 × 13. The set of candidate bounding boxes
are filtered based on a score that depends on each class. Multiple detections of the same
object are then removed using non-maximum suppression. The final bounding box and
the classification of each object are presented over the original image.

The CNN model of YOLO has convolutional, shortcut, YOLO, upsample, and route
layers. The YOLO layer is specific for this type of detector. It applies the logistic activation
to the predictions of each bounding box. Max-pooling is not used in YOLO. Instead,
it considers convolutional layers with stride two. Batch-normalization is applied to all
convolutional layers, and all layers use the Leaky ReLU activation function, except the
layers before YOLO layers that uses a linear activation function. YOLO is able to detect
objects of different sizes using three different scales: 52 × 52 to detect small objects, 26 × 26
to detect medium objects, and 13 × 13 to detect large objects. Consequently, multiple
bounding boxes of the same object might be found. To reduce multiple detections of an
object to a single one, the non-maximum suppression algorithm is used [22].

The work proposed in this article targets tiny versions of YOLO that replace convo-
lutions with a stride of two by convolutions with max-pooling and does not use shortcut
layers. Tests were made with Tiny-YOLOv3 (see Figure 1).
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Figure 1. Tiny YOLOv3 layer diagram.

Table 1 details the sequence of layers with regards to the input, output, and kernel sizes
and the activation function used in each convolutional layer. Most of the convolutional
layers perform feature extraction. This network uses pooling layers to reduce the feature
map resolution.

Table 1. Tiny-YOLOv3 layers.

Layer # Type Input
(W × H × C)

Output
(V × U × N)

Kernel
(N × (J × K × C)) Activation

1 Conv. 416 × 416 × 3 416 × 416 × 16 16 × (3 × 3 × 3) Leaky
2 Maxpool 416 × 416 × 16 208 × 208 × 16
3 Conv. 208 × 208 × 16 208 × 208 × 32 32 × (3 × 3 × 16) Leaky
4 Maxpool 208 × 208 × 32 104 × 104 × 32
5 Conv. 104 × 104 × 32 104 × 104 × 64 64 × (3 × 3 × 32) Leaky
6 Maxpool 104 × 104 × 64 52 × 52 × 64
7 Conv. 52 × 52 × 64 52 × 52 × 128 128 × (3 × 3 × 64) Leaky
8 Maxpool 52 × 52 × 128 26 × 26 × 128
9 Conv. 26 × 26 × 128 26 × 26 × 256 256 × (3 × 3 × 128) Leaky

10 Maxpool 26 × 26 × 256 13 × 13 × 256
11 Conv. 13 × 13 × 256 13 × 13 × 512 512 × (3 × 3 × 256) Leaky
12 Maxpool 13 × 13 × 512 13 × 13 × 512
13 Conv. 13 × 13 × 512 13 × 13 × 1024 1024 × (3 × 3 × 512) Leaky
14 Conv. 13 × 13 × 1024 13 × 13 × 256 256 × (1 × 1 × 1024) Leaky
15 Conv. 13 × 13 × 256 13 × 13 × 512 512 × (3 × 3 × 256) Leaky
16 Conv. 13 × 13 × 512 13 × 13 × 255 255 × (1 × 1 × 512) Linear
17 Yolo 13 × 13 × 255 13 × 13 × 255 Sigmoid
18 Route Layer 14 13 × 13 × 256
19 Conv. 13 × 13 × 256 13 × 13 × 128 128 × (1 × 1 × 256) Leaky
20 Upsample 13 × 13 × 128 26 × 26 × 128
21 Route Layer 9 + 20 26 × 26 × 384
22 Conv. 26 × 26 × 384 26 × 26 × 256 256 × (3 × 3 × 384) Leaky
23 Conv. 26 × 26 × 256 26 × 26 × 255 255 × (1 × 1 × 256) Linear
24 Yolo 26 × 26 × 255 26 × 26 × 255 Sigmoid

This network uses two cell grid scales: (13× 13) and (26× 26). The indicated resolu-
tions are specific to the tiny YOLOv3-416 version.

The first part of the network is composed of a series of convolutional and maxpool
layers. Maxpool layers reduce the FMs by a factor of four along the way. Note that layer
12 performs pooling with stride 1, so the input and output resolution is the same. In this
network implementation, the convolutions use zero padding around the input FMs, so the
size is maintained in the output FMs. This part of the network is responsible for the feature
extraction from the input image.
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The object detection and classification part of the network performs object detection
and classification at (13× 13) and (26× 26) grid scales.

The detection at a lower resolution is obtained by passing the feature extraction output
over 3× 3 and 1× 1 convolutional layers and a YOLO layer at the end.

The detection at the higher resolution follows the same procedure but uses FMs from
two layers of the network. The second detection uses intermediate results from the feature
extraction layers concatenated with upscaled FMs used for the lower resolution detection.

The combination of FMs from two different resolutions contributes to more meaning-
fulness using the information from the upsampled layer and the finer-grained information
from the earlier feature maps [15].

2.3. CNN Model Optimization

The CNN execution can be accelerated by approximating the computation at the cost
of minimal accuracy drop. One of the most common strategies is reducing the precision of
operations. During training, the data are typically in single-precision floating-point format.
For inference in FPGAs, the feature maps and kernels are usually converted to fixed-
point format with less precision, typically 8 or 16 bits, reducing the storage requirements,
hardware utilization, and power consumption [23].

Quantization is done by reducing the operand bit size. This restricts the operand
resolution, affecting the resolution of the computation result. Furthermore, representing
the operands in fixed-point instead of floating-point translates into another reduction in
terms of required resources for computation.

The simplest quantization method consists of setting all weights and inputs to the
same format across all layers of the network. This is referred to as static fixed-point (SFP).
However, the intermediate values still need to be bit-wider to prevent further accuracy loss.

In deep networks, there is a significant variety of data ranges across the layers. The in-
puts tend to have larger values at later layers, while the weights for the same layers are
smaller in comparison. The wide range of values makes the SFP approach not viable since
the bit width needs to expand to accommodate all values.

This problem is addressed by dynamic fixed-point (DFP), which consists of the attri-
bution of different scaling factors to the inputs, weights, and outputs of each layer.

Table 2 presents an accuracy comparison between floating-point and DFP implemen-
tations for two known neural networks. The fixed-point precision representation led to an
accuracy loss of less than 1%.

Table 2. Accuracy comparison with the ImageNet dataset, adapted from [24].

Model Accuracy Comparison Single Float Precision Fixed-Point Precision

CNN Model Top-1 Top-5 Top-1 Top-5

AlexNet [25] 56.78% 79.72% 55.64% 79.32%

NIN [26] 56.14% 79.32% 55.74% 78.96%

Quantization can also be applied to the CNN used in YOLO or another object detector
model. The accuracy drop caused by the conversion to fixed-point of Tiny-YOLOv3 was
determined for the MS COCO 2017 test dataset. The results show that a 16-bit fixed-point
model presented a mAP50 drop below 1.4 compared to the original floating-point model
and 2.1 for 8-bit quantization.

Batch-normalization folding [27] is another important optimization method that folds
the parameters of the batch-normalization layer into the preceding convolutional layer.
This reduces the number of parameters and operations of the model. The method updates
the pre-trained floating-point weights w and biases b to w′ and b′ according to Equation (2)
before applying quantization.



Future Internet 2021, 13, 280 6 of 20

w′ =
γ× w√
σ2 + ε

b′ = b− µ× γ√
σ2 + ε

(2)

2.4. Convolutional Neural Network Accelerators in FPGA

One of the advantages of using FPGAs is the capacity to design parallel architectures
that explore the available parallelism of the algorithm. CNN models have many levels of
parallelism to explore [28]:

• intra-convolution: multiplications in 2D convolutions are implemented concurrently;
• inter-convolution: multiple 2D convolutions are computed concurrently;
• intra-FM: multiple pixels of a single output FM are processed concurrently;
• inter-FM: multiple output FM are processed concurrently.

Different implementations explore some or all these forms of parallelism [29–33] and
different memory hierarchies to buffer data on-chip to reduce external memory accesses.

Recent accelerators, like [33], have on-chip buffers to store feature maps and weights.
Data access and computation are executed in parallel so that a continuous stream of
data is fed into configurable cores that execute the basic multiply and accumulate (MAC)
operations. For devices with limited on-chip memory, the output feature maps (OFM) are
sent to external memory and retrieved later for the next layer. High throughput is achieved
with a pipelined implementation.

Loop tiling is used if the input data in deep CNNs are too large to fit in the on-chip
memory at the same time [34]. Loop tiling divides the data into blocks placed in the on-chip
memory. The main goal of this technique is to assign the tile size in a way that leverages
the data locality of the convolution and minimizes the data transfers from and to external
memory. Ideally, each input and weight is only transferred once from external memory to
the on-chip buffers. The tiling factors set the lower bound for the size of the on-chip buffer.

A few CNN accelerators have been proposed in the context of YOLO. Wei et al. [35]
proposed an FPGA-based architecture for the acceleration of Tiny-YOLOv2. The hardware
module implemented in a ZYNQ7035 achieved a performance of 19 frames per second
(FPS). Liu et al. [36] also proposed an accelerator of Tiny-YOLOv2 with a 16-bit fixed-point
quantization. The system achieved 69 FPS in an Arria 10 GX1150 FPGA. In [37], a hybrid
solution with a CNN and a support vector machine was implemented in a Zynq XCZU9EG
FPGA device. With a 1.5-pp accuracy drop, it processed 40 FPS.

A hardware accelerator for the Tiny-YOLOv3 was proposed by Oh et al. [38] and
implemented in a Zynq XCZU9EG. The weights and activations were quantized with an
8-bit fixed-point format. The authors reported a throughput of 104 FPS, but the precision
was about 15% lower compared to a model with a floating-point format. Yu et al. [39]
also proposed a hardware accelerator of Tiny-YOLOv3 layers. Data were quantized with
16 bits with a consequent reduction in mAP50 of 2.5 pp. The system achieved 2 FPS in a
ZYNQ7020. The solution does not apply to real-time applications but provides a YOLO
solution in a low-cost FPGA. Recently, another implementation of Tiny-YOLOv3 [40] with
a 16-bit fixed-point format achieved 32 FPS in a UltraScale XCKU040 FPGA. The accelerator
runs the CNN and pre- and post-processing tasks with the same architecture. Recently,
another hardware/software architecture [41] was proposed to execute the Tiny-YOLOv3 in
FPGA. The solution targets high-density FPGAs with high utilization of DSPs and LUTs.
The work only reports the peak performance.

This study proposes a configurable hardware core for the execution of object detectors
based on Tiny-YOLOv3. Contrary to almost all previous solutions for Tiny-YOLOv3 that
target high-density FPGAs, one of the objectives of the proposed work was to target low-
cost FPGA devices. The main challenge of deploying CNNs on low-density FPGAs is the
scarce on-chip memory resources. Therefore, we cannot assume ping-pong memories in all
cases, enough on-chip memory storage for full feature maps, nor enough buffer for the full
output map. Previous works on high-density FPGAs assumed enough on-chip memory to
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implement weight memory ping-pong and to store full feature maps and therefore cannot
be mapped on low-density FPGAs.

The work proposed in this article modifies the architecture designed in [40] so that it
can be mapped to low-density FPGAs. New addressing mechanisms to support feature
map tilling, optimization of cores to improve DSP utilization, and multiple DMAs to take
advantage of multiple memory controller ports were the main hardware modifications.

3. Hardware Core for Object Detection with YOLO

Figure 2 presents the detailed architecture of the proposed core for the execution of
the CNN base network of tiny versions of YOLO.

Core Core Core Core

Weight

memory

Weight

memory

Weight

memory

Core Core Core Core

Weight

memory

Core Core Core Core

IFM

IFM

IFM

DMA DMA

M
U

X

DMA

OFM

OFM

OFM

Figure 2. Block diagram of the proposed accelerator of the CNN network of Tiny-YOLO.

The architecture uses direct memory access (DMA) to read and write data from the
main external memory. Bypassing the CPU for the memory accesses frees the CPU to
execute other tasks during data transfers.

The data from the main memory are stored in distributed on-chip memories. There
are three sets of memories in the architecture: one for input feature maps, one for output
feature maps, and another for weight kernels and biases. The memories include a set of
address generators that send data in a particular order to the cores to be processed.

The computing cores are organized in a two-dimensional matrix to enable intra- and
inter-parallelism, as discussed in Section 2.4. Cores in the same line receive the same input
feature map but different kernels. Cores in the same column receive the same kernels
but different input feature maps.

The results from each core line are written into output memory buffers and then
transferred back into main memory through the DMA.

The dataflow of the accelerator is divided into three phases: memory read, compute, and
memory write, as is presented in Figure 3.
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IFM

Write AGU

Read AGU

Cores

Weight

Memory

Write AGU

Read AGU

OFM

Write AGU

Read AGU

Memory Read Computation Memory Write

Figure 3. Dataflow execution of the accelerator.

In the memory read phase, the data are transferred from the main memory to the IFM
memories. In this phase, the read operations from the main memory and the writes to the
memories are controlled by external address generator units (AGUs).

The compute phase sends the IFM and the weights from on-chip memories for compu-
tation, computes the layers in the custom cores, and writes the result in the OFM memories.
In this phase, all the internal AGUs control the reads from the IFM memories, the operations
at the cores, and the writes to the OFM memories.

In the memory write part, the data from the OFM memories are transferred back to the
main memory. An external AGU controls the read accesses to the OFM memories and the
write transfers to the main memory.

This architecture allows the pipelining of consecutive dataflows. The execution of
a second dataflow starts after the memory read phase of the first dataflow is completed.
At this point, the accelerator executes the memory read phase of the second dataflow and
the compute phase of the first dataflow simultaneously.

3.1. Address Generator

The on-chip memories are controlled by AGUs. Each group of memories is controlled
by a pair of AGU groups: one for the external accesses and another for the internal accesses.
All the cores for computation also use a AGU to generate control signals.

An address generator unit can access the memories in a nested loop pattern, which is
described by Algorithm 1.

Algorithm 1 Address generator pattern.
addr = start
for i ∈ {1, . . . , iterations} do // Outer loop

for p ∈ {1, . . . , period} do // Inner loop
addr += incr

end for
addr += shift

end for

A duty input sets the number of period cycles for which the address is incremented.
So, if period = 3 and duty = 2, the address is only incremented in two of the three period
cycles. A delay input sets an initial latency of clock cycles between enabling run and
actually starting the address generation.

The start, iterations, period, incr, and shift signals are configured via software.
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A pattern with more nested loops is achieved by chaining multiple AGUs. Each
additional chained address generator unit adds a set of iter, period, shift, and incr configu-
rations.

The AGU for the internal access of the IFMs memories uses three chained simple
AGUs since the access pattern required for the convolution has six nested loops.

The external address generation also requires the offset and ping-pong configura-
tions. The offset is the address space between each starting address to read or write
from/to the main memory. The ping-pong enables the buffers to work as two independent
halves: one half is used in a phase to read and the other to write. They switch in the next
phase execution.

3.2. Architecture of the Computing Core Unit

Each computing core receives as input the feature map values, biases, and weights
from the on-chip memories. The core outputs the computation result to an OFM memory.
The core can be configured to compute multiple IFM channels in parallel using multiple
MACs (nMAC parameter). This parallelism requires multiple words of IFM data and
kernel weights.

The core supports multiple functions that can be selected during runtime. This runtime
configuration allows the acceleration of multiple types of layers.

The convolution function takes the outputs of the several MAC blocks and adds
them together. The result of the convolution can be used as-is or be subject to either
leaky or sigmoid non-linear activation. The non-linear activations are implemented for the
fixed-point format. The core shifts the final result according to the quantization format
being used. For the convolution and maxpool function, each computed convolutional
result is compared to the previous convolution results of the same 2× 2 maxpool region.
The maxpool function can be used in standalone mode using directly one of the words
from the IFM data.

To exemplify the versatility of the core, the configurability of the core to run the
Tiny-YOLOv3 layers presented in Table 1 is presented in Table 3.

Table 3. Custom core configurations for Tiny-YOLOv3 layers.

Tiny-YOLOv3 Layers Maxpool Bypass Leaky Sigmoid Bias

(1–2);(3–4);(5–6);(7–8) 1 0 1 x 1
9;11;13;14;15;19;20;22 0 0 1 x 1
10;12 1 1 x x x
(16–17);(23–24) 0 0 0 1 1

The layers 1 to 8 can be computed in convolutional + maxpool pairs. These layers
disable the convolution bypassing and activate the maxpooling. All convolutional layers
have leaky activation.

The layers 10 and 12 are maxpool only. These layers bypass the convolution, ignoring
all convolution specific configurations.

The 16–17 and 23–24 layers are convolutional + YOLO pairs. These layers can be
computed together since the convolution has linear activation, and the YOLO layer consists
in performing sigmoid activation to the input feature maps. So, these two layer types can
be combined into a convolution with sigmoid activation. Note that only part of the YOLO
layer output channels is activated.

The remaining layers perform convolution with leaky activation. All convolutional
layers in the neural network use bias.

The custom computational core is controlled by an AGU. The AGU period controls
the number of operations required to obtain one result. For example, a maxpool requires a
period of 2× 2 = 4, while a convolution with a 3× 3× 16 kernel takes a 3× 3× 16/nMAC
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period. Note the division since nMAC input channels are computed in parallel. The number
of final outputs for a phase execution is defined by the iterations of the address generator.

3.3. Configuration Parameters of the Accelerator

Table 4 presents the configuration parameters of the accelerator.

Table 4. Configuration parameters of the object detector accelerator.

Parameter Description

nCols Inter-FM parallelism factor

nRows Intra-FM parallelism factor

nMACs Inter-convolution parallelism factor

DDR_ADDR_W Main memory address width

DATAPATH_W Computation data width

MEM_BIAS_ADDR_W Bias memory address size

MEM_WEIGHT_ADDR_W Weight memory address size

MEM_TILE_ADDR_W IFM memory size

MEM_ADDR_W OFM memory size

The number of weight memories for kernels used in the design is defined by the nCols
parameter. The number of IFM memories used for the input feature maps is defined by the
nRows parameter. The number of cores of the computing array is nCols × nRows.

The nMACs parameter defines the number of MACs in each core.
The DDR_ADDR_W parameter sets the main memory address width.The DATAP-

ATH_W parameter determines the data width used for computation input and output.
The parameters MEM_BIAS_ADDR_W, MEM_WEIGHT_ADDR_W, MEM_TILE_ADDR_W,

and MEM_ADDR_W define the dimensions for the bias, weight, and the IFM and OFM
memories, respectively.

3.4. Software API

The proposed accelerator has a C++ API that enables runtime configuration by a
CPU. The main class CODCore has an attribute for the memory base address of the core in
the system. Besides the constructor, the class has the run(), done(), and clear() methods.
The run() method signals the execution of a dataflow phase in the accelerator. The done()
checks for a run() completion. The clear() method resets all configurations.

The main class contains three objects, each from a different class. Each class contains
methods to configure specific cores in the architecture. The CDma class has methods for
the DMA configurations. The CRead class has methods for the AGUs associated with
the weights and biases memories. The CComp class contains objects from classes that in
turn control the AGUs associated with the IFM memories, custom computing cores, and
OFM memories. The custom core configurations are also configured with methods from
this class.

4. Running Tiny-YOLOv3 in the Accelerator

This section details the development of the Tiny-YOLOv3 application to execute
efficiently on the proposed architecture.

4.1. Storage Data Format

The data storage format implemented in the embedded software influences the loops
for convolution. To reduce the number of loops for data access during convolution, the data
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are stored in memory in a ZXY format instead of the original XYZ format. Figure 4 presents
a scheme of both formats for a 4× 4× 3 input feature map.

Figure 4. Data storage formats.

The XYZ format stores the values by column and row of each feature map. In ZXY
format, the data are stored by channel first. Figure 4 also highlights the values used to
compute the first pixel of a convolution output. The XYZ format disperses the input values
in nine groups of three contiguous values. This format requires three loops to iterate across
all values: one loop to iterate across the values in each FM row, one loop to iterate across
the rows of an FM, and one to iterate across different FMs. The ZXY format stores the input
values in three groups of nine contiguous values each. This format requires two loops to
access all values: one loop to iterate across all rows and one loop to iterate, in each row,
across all values and channels.

4.2. CNN Acceleration

The first eight layers of the network can be executed in convolutional+maxpool layer
pairs. To minimize data transfers, each IFM tile is read from the main memory once, and
the corresponding OFM tile is computed for all kernels. With this strategy, all the kernels
are loaded from memory for the same set of IFM tiles.

Most configurations stay the same across the complete convolutional and maxpool
layers execution. The common configurations are set at the start of the function. Note that
all the dataflow phases are configured. The variable configurations are mostly related to
updating the data pointers for reading and writing data to/from main memory.

The limitations of the on-chip memory buffers require the use of tiling for the IFMs.
Figure 5 presents a diagram of the tiling strategy used for the application.

Figure 5. Data tiling diagram.
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The tiling implemented divides the IFM into blocks of four rows, Tile_W + 2, columns
and C channels. The two extra columns per tile are used as padding to maintain the pattern
for convolution on the tile edges. The padded columns are not represented in Figure 5 for
readability purposes. Since there are nRows memories to store IFM tiles, the same amount
of IFM tiles are transferred from the main memory.

With the data in ZXY format, each DMA burst reads C ×(Tile_W + 2) contiguous
values. Each IFM tile starts two rows after the start of the previous tile. After each DMA
burst, the shift configuration updates the pointer to the main memory from the end of
the tile row to the start of the next tile row. The memory for IFM tiles operates whenever
possible in a ping-pong fashion: the half of the OFM memory used to write data from the
main memory toggles between two consecutive datapath phase executions.

The memory for weights is read in sequence. The kernels are read 2× Tile_W times,
one per each convolution done over an IFM tile. After each convolution, the internal AGU
points back to the initial address.

The starting address both for reading weights and biases memories is updated accord-
ing to each set of kernels being used for convolution.

The IFM tile configurations for the Compute phase are constant since the accelerator
only operates over one set of IFM tiles at a time. The internal AGU that controls the memory
accesses is configured to generate a five-loop pattern.

The inner-most loop iterates over the values in the same row across all channels for a
total of ker_side× C/nMACs. Like the memories for weights, the memories for IFM values
output nMACs values in the same word. The execution of these two loops performs a
single convolution.

The third and fourth loops generate the pattern for the 2× 2 maxpool. The third loop
offsets the address to perform the convolution in the next column (C/nMACs addresses
added). The fourth loop offsets the address to start in the next row (adding (Tile_W + 2)×
C/nmACs to the address) and one column to the left (subtracting 2× C/nMACs).

The fifth loop generates the pattern to move across the Tile_W/2 output 2× 2 squares
of the IFM tile by adding offsetting the address two columns (2×C/nMACs) to the left.

The custom core takes ker_side× ker_side× C/nMACs iterations for each convolution,
for a total of 2× Tile_W convolutions per IFM tile. The convolution result and bias values
are shifted to comply with the DFP quantization.

The remaining convolutional layers of Tiny-YOLOv3 are accelerated in isolation (only
the convolutional layer) or combined with a YOLO or upsample layer.

Figure 6 presents the tiling format for the remaining convolutional layers. After layer
8, the IFMs are either 26× 26 or 13× 13 and therefore Tile_W = W.

Figure 6. Data tiling diagram after layer 8.

The main difference in configurations happens for the memories of the IFM tiles in
the memory read phase.

The convolutional layers 16 and 23 are paired and executed with the YOLO layers 17
and 24, respectively, in the same datapath configuration. The convolutional layers 16 and 23
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have linear activation and the YOLO layer operations are equivalent to performing sigmoid
activation to selected input channels. Combining both layers consists of performing a
regular convolutional layer with sigmoid activation.

The convolutional layer 19 is paired with the following upsample layer. Figure 7
summarizes the upsampling process from the OFM tile calculated by the regular convolu-
tional configuration.

Figure 7. Upsampling after convolution diagram.

The maxpool layers 10 and 12 are accelerated in isolation. Figure 8 presents a diagram
for the input and output tiles used in each configured dataflow.

Figure 8. Input and output tiles for the maxpool layer dataflows.

The first dataflow reads the complete layer input into the IFM tile memories. Each
memory has a 2 ×W × C IFM tile. Each dataflow performs maxpooling over a 2× 2× C
input block and outputs a 1× 1× C output block. Each output block is written to the main
memory at the end of the dataflow configuration.

5. Results

This section presents the results of the proposed configurable object detector accelera-
tor running the Tiny-YOLOv3 algorithm. Two different configurations of the architecture
were implemented and tested in the SoC of the low-cost ZYNQ7020 FPGA. The configura-
tions differ in the datapath size (8 and 16). The ZYNQ7020 SoC FPGA is a cost-optimized
device targeting high-performance IoT devices. The accelerator was implemented in the
programmable logic of the ZYNQ FPGA and integrated with the processing system that
contains an ARM processor present in the ZYNQ architectures.
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5.1. FPGA Resource Utilization

To illustrate the configurability of the accelerator, we implemented several designs
with a different number of cores and determined the occupation of FPGA resources (see
results in Table 5).

Table 5. Resource utilization of the accelerator for 8-bit datawidth, four MACs per core, and different
numbers of cores.

Cores LUTs BRAMs DSPs

13× 8 33,346 120 208

13× 4 20,356 112 104

13× 2 13,656 108 52

8× 8 20,746 80 128

8× 4 12,698 72 64

4× 8 10,588 48 64

4× 4 6528 40 32

The configurations with more lines of cores were more expensive since each line adds
an output buffer. For example, configurations 8× 4 and 4× 8 have the same number of
cores, but the former needs more BRAMs and LUTs.

All configurations assume the same size for the on-chip memories to store IFMs and
weights. If memory is available, these can be increased, which may improve the execution
time. So, the occupation of BRAMs in Table 5 represents a minimum, assuming 32 KBytes
of memory for each IFM buffer and 8 KBytes of memory for each weight memory.

The last two configurations (4× 8 and 4× 4) could be implemented, for example,
in a smaller ZYNQ7010 SoC FPGA, which shows the scalability of the architecture to
lower-density FPGAs.

The configuration with 13 lines of cores is usually preferred since the size of the
feature maps considered by YOLO are multiples of 13. The other configurations can be
used, but there will be a degradation in performance efficiency since in some iterations of
the algorithm, some cores are not used. For example, running a feature map of size 26 in
the architecture configured with eight lines of cores would need four iterations, and in the
last iteration only two lines of cores would be running.

The accelerator was mapped into the ZYNQ7020 FPGA with quantizations of 8- and
16-bit. The 16-bit configuration was mainly considered for state-of-the-art comparison.
Table 6 presents FPGA resource utilization of the accelerator for both configurations.

Table 6. Resource utilization in a ZYNQ7020 FPGA.

Resource ZYNQ7020

Datapath 16 8

LUTs 27,454 33,346

36kB BRAMs 120 120

DSPs 208 208

In the low-cost ZYNQ7020 FPGA, the design is mainly constrained by the number
of DSPs and BRAMs. The high utilization ratio of these hardware modules influences
the operating frequency due to routing. Since a single DSP can implement two 8 × 8
multiplications, the 8-bit solution doubles the number of MACs. It is possible to reduce
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the number of BRAMs of the 8-bit solution, but a higher number of BRAMs increases the
number of layers that can benefit from the ping-pong technique of memories. Therefore,
both solutions use the same number of memories.

5.2. Performance of the Accelerator

The Tiny-YOLOv3 was executed in the proposed accelerator with the configurations
referenced in Table 5 but with full on-chip memory; that is, the on-chip memory to cache the
input feature maps was maximized for all configurations (see the configuration parameters
in Table 7).

Table 7. Configuration parameters for the accelerator.

Parameter Accelerator

Architecture A1 A2 A3 A4 A5 A6 A7 A8

nCols 8 4 2 8 4 8 4 4

nRows 13 13 13 8 8 4 4 13

nMACs 4

DDR_ADDR_W 32

DATAPATH_W 8 16

MEM_BIAS_ADDR_W 3

MEM_WEIGHT_ADDR_W 14

MEM_TILE_ADDR_W 15 15 15 15 15 16 16 15

MEM_TILE_EXT_ADDR_W 15

All architectures were synthesized with a clock frequency of 100 MHz and tested with
Tiny-YOLOv3 (see the performance results in Table 8 and Figure 9).

The most efficient solutions use 13 cores per column, since the size of feature maps are
a multiple of 13. The A6 and A5 configurations use the same number of cores, but A6 is
faster since the lower number of cores per column improves the efficiency. Both A8 and A2
architectures have the same number of cores, but architecture A8 is for 16-bit quantization.
The 8-bit architecture is slightly faster and consumes fewer resources at the cost of 0.7 pp
in accuracy.

Table 8. Tiny-YOLOv3 execution times on the proposed architecture with different configurations of
the core matrix.

Arq A1 A2 A3 A4 A5 A6 A7 A8

Exec. (ms) 68 135 268 129 259 246 492 140
FPS 14.7 7.4 3.7 7.8 3.9 4.1 2.0 7.1

FPS/core 0.14 0.14 0.14 0.12 0.12 0.13 0.13 0.14
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Figure 9. The number of cores versus frames per second of each configuration of the architecture.
The graphs indicate the configuration as number of lines of cores and number of columns of cores).

Table 9 presents the Tiny-YOLOv3 network execution times on multiple platforms:
Intel i7-8700 @ 3.2 GHz, GPU RTX 2080ti, and embedded GPU Jetson TX2 and Jetson Nano.
The CPU and GPU results were obtained using the original Tiny-YOLOv3 network [42] with
floating-point representation. The CPU result corresponds to the execution of Tiny-YOLOv3
implemented in C. The GPU result was obtained from the execution of Tiny-YOLOv3 in
the Pytorch environment using CUDA libraries.

Table 9. Tiny-YOLOv3 execution times on multiple platforms.

Software Version Platform CNN (ms) FPS

Floating-point CPU (Intel i7-8700 @ 3.2 GHz) 819.2 1.2
Floating-point GPU (RTX 2080ti) 7.5 65.0
Floating-point eGPU (Jetson TX2) [43] - 17
Floating-point eGPU (Jetson Nano) [43] - 1.2
Fixed-point-16 ZYNQ7020 140 7.1
Fixed-point-8 ZYNQ7020 68 14.7

The Tiny-YOLOv3 on desktop CPUs is too slow. The inference time on an RTX 2080ti
GPU showed a 109 speedup versus the desktop CPU. Using the proposed accelerator,
the inference times were 140 and 68 ms, in the ZYNQ7020. The low-cost FPGA was 6X
(16-bit) and 12X (8-bit) faster than the CPU with a small drop in accuracy of 1.4 and 2.1
points, respectively. Compared to the embedded GPU, the proposed architecture was
15% slower. The advantage of using the FPGA is the energy consumption. Jetson TX2
has a power close to 15 W, while the proposed accelerator has a power of around 0.5 W.
The Nvidia Jetson Nano consumes a maximum of 10 W but is around 12× slower than the
proposed architecture.

5.3. Comparison with Other FPGA Implementations

The proposed implementation was compared with previous accelerators of Tiny-
YOLOv3. We report the quantization, the operating frequency, the occupation of FPGA
resources (DSP, LUTs, and BRAMs), and two performance metrics (execution time and
frames per second). Additionally, we considered three metrics to quantify how efficiently
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the hardware resources were being used. Since different solutions usually have a different
number of resources, it is fair to consider metrics to somehow normalize the results before
comparison. FSP/kLUT, FPS/DSP, and FPS/BRAM determine the number of each resource
that is used to produce a frame per second. The higher these values, the higher the
utilization efficiency of these resources (see Table 10).

Table 10. Performance comparison with other FPGA implementations.

[38] [39] [41] [40] Ours

Device ZYNQZU9EG ZYNQ7020 VirtexVX485T US XCKU040 ZYNQ7020

Dataset Pedestrian signs COCO dataset

Quant. 8 16 18 16 16 8

Freq. (MHz) - 100 200 143 100 100

DSPs - 120 2304 832 208 208

LUTs - 26 K 49 K 139 K 27.5 K 33.4 K

BRAMs - 93 70 384 120 120

Exec. (ms) 9.6 532.0 - 24.4 140 68

FPS 104 1.9 - 32 7.1 14.7

FPS/kLUT - 0.07 - 0.23 0.26 0.44

FPS/DSP - 0.016 - 0.038 0.034 0.068

FPS/BRAM - 0.020 - 0.083 0.058 0.116

The implementation in [39] is the only previous implementation with a Zynq 7020
SoC FPGA. This device has significantly fewer resources than the devices used in the other
works. Our architecture implemented in the same device was 3.7X and 7.4X faster, depend-
ing on the quantization. For the same 16-bit quantization, the FPS/kLUT, FPS/DSP, and
FPS/BRAM metrics of the proposed architecture were 3.5×, 2×, and 3× better, respectively.
This shows that besides allowing smaller data quantizations, the architecture also improves
the utilization efficiency of the FPGA resources for the same ZYNQ7020.

Compared to [40], the proposed work was slower and less efficient in terms of BRAMs
but more efficient in terms of LUT and similarly efficient in terms DSP. The lower BRAM
efficiency has to do with the fact that BRAM contents (weights and activations) are shared
by multiple cores. An architecture with more cores has a higher FPS throughput, and
each BRAM feeds more cores, which increases its utilization efficiency. However, this
work used only a quarter of the resources, ran in a low-cost FPGA, and used the LUTs
more efficiently. The work [38] used 8-bit quantization to increase the throughput at the
cost of accuracy. Besides, it ran in a high-density FPGA not appropriate for IoT and only
considered a limited target dataset. The number of resources was also not reported.

The work in [41] did not provide the performance of the architecture, only the occupied
resources. The solution had a high utilization of LUTs and considered a quantization of 18
bits. This quantization takes advantage of the size of DSP multipliers (18× 25) and BRAMs
(can be configured with 72 of datawidth). However, it does not match the external memory
bandwidth (usually 32 or 64 bits). This mismatch complicates data transfer.

6. Conclusions and Future Work

This study described the design of a configurable accelerator for object detection
with YOLO in low-cost FPGA devices. The system achieved 7 and 14 FPS running the
Tiny-YOLOv3 neural network with precision scores of 31.5 and 30.8 mAP50 in the COCO
2017 test dataset (close to 32.9 of the original model with floating-point), for 16- and 8-bit
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quantizations, respectively. Given the drastic simplification achieved with the fixed-point
representation, this accuracy loss is acceptable.

The configurability of the accelerator allows tailoring the design of the architecture for
different FPGA sizes and Tiny-YOLO versions, as long as the CNN only uses the layers
supported by the accelerator. The tested design was implemented with 16- and 8-bit
fixed-point representation of weights, bias, and activations, but other quantization sizes
can be considered.

The results are very promising, considering that a low-cost FPGA was utilized and
that the solution is at least 6X faster than a state-of-the-art CPU. To improve the throughput
of the object detection in IoT devices, two research directions can be followed. At the
algorithmic level, model reduction with negligible accuracy loss is fundamental. Tiny
models were a step towards this, and they keep improving. Otherwise, the high computing
requirements of the backbone CNN of object detectors limit its applicability to edge devices.
Quantization is another fundamental aspect since it also determines the computational
requirements. In the case of the FPGA where the datapath of the computing units can
be customized, this is a major optimization aspect. Finally, hardware-oriented algorithm
optimizations benefit from a more efficient hardware design. An integrated algorithm–
hardware development provides better solutions.
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