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Abstract: Despite the advance in deep learning technology, assuring the robustness of deep neural
networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles,
IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments
allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them
into small embedded devices. However, how robust a compressed DNN can be has not been well
studied in addressing its relationship to other critical factors, such as prediction performance and
model sizes. In particular, existing studies on robust model compression have been focused on the
robustness against off-manifold adversarial perturbation, which does not explain how a DNN will
behave against perturbations that follow the same probability distribution as the training data. This
aspect is relevant for on-device AI models, which are more likely to experience perturbations due
to noise from the regular data observation environment compared with off-manifold perturbations
provided by an external attacker. Therefore, this paper investigates the robustness of compressed
deep neural networks, focusing on the relationship between the model sizes and the prediction
performance on noisy perturbations. Our experiment shows that on-manifold adversarial training
can be effective in building robust classifiers, especially when the model compression rate is high.

Keywords: model compression; adversarial robustness; robust compression; on-manifold perturbation

1. Introduction

Deep neural networks (DNNs) have achieved remarkable success with their powerful
performance in various domains, such as visual recognition, natural language processing,
and time-series forecasting. However, despite these achievements, the sheer size and com-
putational requirements of running DNNs can be problematic when we deploy them in
real environments, such as small IoT devices. A natural solution is to reduce the size of a
DNN without hurting its prediction performance. Recent techniques on model compres-
sion follow this direction, including weight pruning [1–5], weight quantization [6,7], and
knowledge distillation [8]. It has been reported that, using weight pruning, we can obtain
sparse weight tensors removing more than 90% of learning parameters without significant
loss in accuracy [4].

However, there are emerging concerns on the robustness of DNNs on integrating
DNN in security-critical application domains, such as autonomous vehicles, medical IoT
devices, and smart sensors. From the works of Szegedy et al. [9] and Goodfellow et al. [10],
it has been reported that a malicious adversary can generate adversarial examples, which
can incur misclassification by deep neural networks, although the adversarial examples are
perceptually similar to the original data points. Various methods have been proposed to
exploit such a vulnerability, including the fast gradient sign method (FGSM) [10], the itera-
tive FGSM methods [11–13], and the CW attack [14]. As for defense, robust optimization
techniques have been suggested, including adversarial training [10,13] and TRADES [15].

Recently, Wang et al. [16] reported that, although a pruned neural network may
preserve the prediction accuracy of the original neural network, it can be vulnerable to

Future Internet 2021, 13, 300. https://doi.org/10.3390/fi13120300 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-9347-4659
https://orcid.org/0000-0001-8415-6368
https://doi.org/10.3390/fi13120300
https://doi.org/10.3390/fi13120300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13120300
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13120300?type=check_update&version=2


Future Internet 2021, 13, 300 2 of 18

adversarial examples. Starting from this research, several studies have been conducted to
solve the robustness problem of compressed models against adversarial examples [17–19].
Their main idea is to optimize a unified objective consisting of the adversarial training
objective and the constraint for model compression.

More recently, Lee and Lee [20] introduced the robust model compression framework
that uses the proximal gradient method, knowledge distillation, and adversarial train-
ing. This line of research assumes the existence of an attacker who generates so-called
adversarial perturbations to induce incorrect classification. Such perturbations are likely
to be off-manifold, meaning that the perturbed data points are likely to be outside of the
high-density region of the data probability distribution where training and test data are
sampled.

However, in an IoT environment where data acquisition can be affected by, for ex-
ample, various types of sensor noise, it will be more critical to evaluate the robustness of
compressed DNNs with respect to on-manifold perturbations that would happen naturally
from the environment: this is the situation that we focus on in this paper. In particular,
we suggest a new robust model compression method for such an environment based on
the technique of on-manifold adversarial training [21,22]. Our technique makes use of on-
manifold adversarial examples, which can be seen as the most difficult type of noise from
the natural environment to classify correctly for a classifier. In this sense, our results can be
understood as the worst-case analysis. The contributions of this paper can be summarized
as follows:

• We investigate the robustness of compressed DNN models against natural noise
using on-manifold adversarial examples for the worst-case analysis, in particular
at the regime of highly compressed models relevant for deploying DNNs on small
embedded systems. To the best of our knowledge, there is no other work addressing
this particular issue.

• We demonstrate our idea using samples from a known probability distribution. In
this setting, we can generate on-manifold adversarial examples to their mathematical
definition. We also experiment with our idea using real data sets, where on-manifold
adversarial examples are generated using autoencoders since we do not know the true
distribution of data. In both settings, we show that on-manifold adversarial training
is effective for building robust highly compressed models.

• We also found in our experiments that on-manifold adversarial training appears to be
more efficient in using model capacity than off-manifold adversarial training.

2. Related Works
2.1. Adversarial Attacks

Szegedy et al. [9] showed that an attacker can add small perturbations to input data
to create adversarial examples that make a target deep neural network misclassify, without
being easily detectable—we call this an adversarial attack.

2.1.1. White-Box Attacks Methods

In white-box threat models, one assumes that the attacker can acquire information
about the victim model, including the model architecture, weights, learning algorithms, and
hyperparameters. Szegedy et al. [9] formulated the generation of the adversarial examples
as a numerical optimization problem where the `2-norm of the perturbation is bounded
(this method is often referred to as the L-BFGS attack). Goodfellow et al. [10] suggested the
FGSM (Fast Gradient Sign Method), a faster method that can generate adversarial examples
without a numeric solver based on the linear approximation of the objective and `∞-norm
bound of perturbations.

DeepFool [23] improved the speed of finding the minimal perturbation attacks when
the number of classes is large, based on successive linearization of the classification function.
The authors in [24] suggested the JSMA (Jacobian-based Saliency Map Attack), in which
the contribution of each pixel to the classification outcome is evaluated, and a perturbation
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is generated using a minimal number of pixels: this corresponds to limiting the `0-norm of
the perturbation.

Carlini and Wagner [14] suggested a unified framework that can be used with `2, `∞,
and `0 penalties, experimenting with different loss functions so that it can generate adver-
sarial examples more efficiently. Meanwhile, Kurakin et al. [12] showed that adversarial
examples could be implemented in physical forms, showing that adversarial attack can be
a critical issue in real-world AI-based systems. Madry et al. [13] proposed an improved
attack method called the projected gradient descent (PGD) attack, which is an iterative
version of FGSM in its essence.

2.1.2. Black-Box Attack Methods

In black-box settings, the attacker is assumed to have no knowledge about the victim
model. Still, the attacker can send input points as queries to the victim and observe the
victim’s class membership or probability scores. Black-box adversarial attack methods often
rely on a surrogate model trained with the attacker’s queries and the victim’s corresponding
responses, using the transferability of adversarial examples from the surrogate to the victim
model [25–29].

2.2. Defense against Adversarial Attacks

There are various existing works on defense techniques against adversarial attacks. For
convenience, we divide them largely into four categories: heuristic-based, detection-based,
certified defense, and adversarial training. Heuristic-based methods include defensive
distillation [30], which utilizes the idea of knowledge distillation [8] to make the model
less sensitive to small perturbations in input. Another example is the logit pairing [31]
method that enforces logits for pairs of benign examples and their adversarial counterparts
to be similar.

Detection-based defenses attempt to reject adversarial examples by detecting them.
Feature squeezing [32] is a well-known method, which detects adversarial examples by
comparing the model’s prediction on the original samples with that on the transformed
samples, where the transformations exhibit invariance in normal samples. Metzen et al. [33]
used a sub-classifier for the detection of adversarial examples, and Feinman et al. [34]
detected adversarial examples based on the property that adversarial examples lie outside
of a learned manifold, using kernel density estimation and uncertainty measures.

In certified defense, Raghunathan et al. [35] suggested to jointly optimize the differen-
tiable certificate that no attack can force the error to exceed a certain threshold for a given
network and test inputs. This work has been extended to use generative methods, such as
VAE and GAN [36–38]. More recently, Zhang et al. [15] proposed a defense method named
TRADES, which combines the prediction error for the adversary with the original classifi-
cation error and provides an differentiable upper bound. This is one of the state-of-the-art
defense mechanism against adversarial attacks.

Adversarial training (AT) is based on robust optimization [39] where the training
is performed not only on the training samples but also on the worst-case adversarial
examples. The early works include FGSM-AT [11], which incorporates FGSM adversarial
examples during the training stage, PGD-AT [13], and curriculum adversarial training [40].
Recently, some studies have considered adversarial examples that lie on the data manifold.
Ilyas et al. [37] and Song et al. [41] demonstrate that it is possible to generate adversarial
examples that are the adversaries that can possibly lie on a data manifold embracing the
observed data instances through manipulating the latent variable using generative models.

In the case of defense against these on-manifold adversarial examples, Stutz et al. [21]
suggested on-manifold adversarial training and showed that on-manifold adversarial train-
ing boosts generalization. More recently, dual manifold adversarial training (DMAT) [42]
was proposed as a defense mechanism against both on-manifold adversarial examples and
off-manifold adversarial examples by combining off-manifold adversarial training and
on-manifold adversarial training.
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2.3. Model Compression

The basic idea of model compression is to zero out unimportant weight parameters in
a neural network with a certain criterion. By removing the redundant zero weights, one
can obtain a compressed model. Han et al. [1] proposed the element-wise weight pruning
method to reduce the number of parameters or connections. Recently, sparse coding has
been applied for model compression. These studies used `1 or `0 norm regularization to
find the optimal sparse weight matrix.

Louizos et al. [5] introduced the `0-norm regularizer as sparsity constraints. One can
reduce the model weight parameters in a structured manner by group-sparse coding, where
groups on a CNN can be defined filter-wise, channel-wise, or depth-wise [3,4,43,44]. In this
work, we focus on the filter-wise pruning method, which makes the weight parameters in
a form where it is relatively easier to construct reduced dense weight tensors.

2.4. Robust Model Compression

The robustness issue related to the model compression has been alerted by Wang et al. [16].
They argue that the pruned networks with high sparsity rates are more vulnerable to ad-
versarial attacks. Several studies have been conducted to accomplish adversarially robust
model compression. Ye et al. [17] and Gui et al. [18] proposed a unified framework for con-
current adversarial training and model pruning using the alternating direction method for
multipliers (ADMM).

More recently, Sehwag et al. [19] proposed a different method that prunes weights with a
criterion based on the adversarial training objective function. Madaan et al. [45] suggested that
the vulnerability against adversary is caused by the distortion in the latent feature space, and
they developed an adversarial neural pruning method that removes vulnerable latent-features.
In the work of Lee and Lee [20], they used the proximal gradient method (PGM) and
knowledge distillation for robust model compression.

Our focus is to improve the robustness of highly compressed models against natural
noise, where we use the on-manifold adversarial examples as the samples with the largest
noise. To the best of our knowledge, no studies have addressed this setting. Table 1 com-
pares the existing robust DNN training methods and ours in the perspectives of model
compression and on/off-manifold adversarial examples.

Table 1. Comparison with other robust model training methods. Our method considers both model
compression and on-manifold adversarial robustness.

Methods Model Off-Manifold On-Manifold
Compression Perturbation Perturbation

FGSM-AT [11] X
PGD-AT [13] X
TRADES [15] X
ATMC [18] X X

HYDRA [19] X X
ANP-VS [45] X X

APD [20] X X
Stutz et al. [21] X

DMAT [42] X X
MC-AT(on) (Ours) X X

3. Background

Our robust model compression method is composed of model compression based on
sparse coding and adversarial training based on on-manifold adversarial examples. In this
section, we provide background regarding the technologies.
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3.1. Model Compression Based on Sparse Coding

Suppose that f (·; w) : Rd → RK is a classifier parametrized by the learning weight
w ∈ Rp, whose outcome is the scores indicating the likelihood of a given input to be
each of the K classes. Given a dataset {(xi, yi)}n

i=1 of n input points xi ∈ Rd and its labels
yi ∈ {1, 2, . . . , K}, we solve the following optimization problem in sparse coding [46,47],

w∗ ∈ arg min
w∈Rp

1
n

n

∑
i=1

`( f (xi; w), yi) + Ψ(w),

where `( f (xi; w), yi) = − log( f (xi; w)yi ) is the cross-entropy between the classifier’s out-
come and the labels with K classes, and Ψ : Rp → R is a (usually) convex function used
for inducing certain structure in w: a popular choice is Ψ(w) = λ‖w‖1 with λ > 0, which
induces element-wise sparsity in w∗ [1].

In model compression, the `1-norm based sparse coding has a practical issue in that it
is difficult to determine the value of the hyperparameter λ, which corresponds to a specific
compression rate. As a result, one would need to solve the above optimization problem
for several values of λ’s until he or she finds the one for the desired compression rate.
Therefore, `0-norm based sparse coding has been popular recently using Ψ(w) = λ′‖w‖0
where ‖w‖0 is the count of nonzero elements in w: in this case, the value of λ′ can be
computed during optimization to achieve a specific rate of model compression [20].

Although we can set the values of unimportant weights to zero using sparse coding,
this usually does not entail a reduction in memory usage and computation automatically.
Since sparse tensor operations are not fast on GPUs [2], it will be better for the resulting
sparse weights to have certain patterns in the locations of zero values so that we can
create dense weight tensors of reduced sizes. This is the perspective taken in the filter-wise
pruning method [4], where sparsity is induced by the unit of convolution filters. We can
write the filter-wise pruning as a general form of group-wise sparse coding based on the
`0-norm, where we can define groups of optimization variables that will be selected or
removed altogether by the mechanism:

w∗ ∈ arg min
w∈Rp

1
n

n

∑
i=1

`( f (xi; w), yi) + λ′′
G

∑
g=1

I[‖wg‖2 6=0]. (1)

Here, λ′′ > 0 is a hyperparameter controlling the sparsity of the model, I[e] represents
the indicator function whose value is 1 if the statement e is true and 0 otherwise, and wg
denotes the group subvector corresponding to the group indexed by g. This problem can be
solved efficiently using algorithms, such as the alternating direction method for multipliers
(ADMM) [17,18] and proximal gradient methods [20].

3.2. Adversarial Example

For a trained classifier f (·; w∗) with an optimal weight w∗ and an input point x, an
adversarial example [9] x′ = x + δ is a perturbed input point such that the classification
outcome of f is different between x and x′, that is,

arg maxk f (x; w∗)k 6= arg maxk f (x′; w∗)k,

where f (x; w∗)k denotes the score output for the k-th class. We often limit the size of
perturbation so that ‖δ‖ < ε for a certain norm with a small ε > 0, since otherwise the
perturbation can be noticeable.

Although an adversarial example has constraints on the magnitude of the perturbation,
it lacks constraints to remain in the data manifold, a subspace that embraces the observed
examples well [21]. For this reason, we denote the adversarial examples as off-manifold
adversarial examples. Here we introduce two popular methods for generating adversarial
examples, namely FGSM [10] and PGD [13].
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3.2.1. Fast Gradient Sign Method

The fast gradient sign method (FGSM) [10] is one of the early white-box adversarial
attack methods designed to quickly find the perturbation direction in a single step so that
the loss function of the target classifier increases. When the dimension of input is large,
changing each feature of x by a minimum value ε yields a perturbation δ, ‖δ‖∞ = ε. This
change can have a significant impact when we calculate the linear product wTx of x with
the model weight vector w. Taking a first-order approximation of the target classifier’s loss
function `( f (x; w), y) to the real training example x with a small perturbation δ gives

`( f (x + δ; w), y) ≈ `( f (x; w), y) +∇x`( f (x; w), y)Tδ,

and we maximize the right-hand side for δ bounded by the `∞ norm ball of radius. This
maximization of the right-hand side is exactly the same as follows:

δ = ε ∗ sign(∇x`( f (x; w∗), y)),

where w∗ is the weight vector of trained target classifier. Finally, we obtain adversarial
examples by adding the adversarial perturbation to the input.

x′ = x + ε ∗ sign(∇x`( f (x; w∗), y)) (2)

As the FGSM method takes only a single step to find adversarial examples, it is
relatively faster than other iterative adversarial attack methods. However, this is not
a sophisticated attack method since there is no process of minimizing the perceptual
difference between the adversarial example x′ and the original input x.

3.2.2. Projected Gradient Descent

The projected gradient descent (PGD) method [13] is a powerful white-box method,
which is a multi-step variant of FGSM. FGSM only can generate weak perturbation since
it attempts to find optimal perturbation δ only in a single step gradient, whereas PGD
can find a more powerful and effective adversary by optimizing the loss maximization
problem. PGD iteratively optimizes the perturbation for n steps with a small step size of α
to find more effective optimal perturbation in `∞ norm ball. In each iteration, it projects
trained adversarial examples in each iteration to ε neighbor of the original input x. The
PGD method is defined as follows:

x0 = x, xt+1 = Π(xt + α sgn(∇x`( f (xt + δ; w), y)), ‖δ‖∞ ≤ ε,

where ε is the bound for `∞-norm of the perturbation δ, Π refers to the projection operation
to `∞-norm ball, and 0 < α < ε is the step size. PGD aims to find the neighborhood of the
original vector that maximizes the loss of the target model while maintaining the size of the
perturbation as minimal as possible by solving the constrained optimization problem. This
is a more sophisticated approach compared to FGSM, which does not have optimization
steps for finding a proper perturbation.

3.3. Adversarial Training

Adversarial training [10] is the most extensively studied defense mechanism to en-
hance the robustness of a DNN model against adversarial attacks based on robust opti-
mization. The goal of robust optimization is to find a stable solution up to a certain level
of uncertainty in data. To explain, let U be the uncertainty set, f (x; w) denote the target
classifier, and δ denote the adversarial perturbation. The assumption in adversarial training
is that the perturbations to the data can be drawn from U, and the adversarial perturbations
are worst-case. Among the feasible solutions, the optimal solution would be the one with
the minimum loss given the worst-case realization of perturbations.
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Therefore, robust optimization problems are usually formed in min-max problems, in
which the objective is minimized with respect to the worst-case of perturbations. In the case
of FGSM-AT, their approach is to combine both normal and adversarial examples before
each training step, so that model can be trained for both normal instances and adversarial
examples for robust optimization. On the other hand, PGD-AT directly perturbs the input
instances and solves the min-max objective, which follows the robust optimization problem.

3.3.1. FGSM Adversarial Training

At every training iteration in FGSM-AT, it generates adversaries with FGSM, and
it trains the target classifier by combining the training data with generated adversarial
examples. Let f (x; w) denote the trained target classifier and w is the parameter of the
classifier. The objective function of FGSM adversarial training is as follows:

α`( f (x; w), y) + (1− α)`( f (x′; w), y),

where `( f (x; w), y) denotes the cross-entropy loss function, and x′ is the adversarial exam-
ple of the original input x generated by (2). α > 0 corresponds to a constant that adjusts
the weight of the loss term for the original input and the adversarial example loss term,
where α is generally set to 0.5. Even though the FGSM adversarial training is a simple and
effective defense method, it is known that the model produced by FGSM-AT is vulnerable
to adversarial examples generated by different attack methods, such as PGD.

3.3.2. PGD Adversarial Training

Adversarial training can be described as a robust optimization problem in the follow-
ing form,

min
w

E(x,y)

[
max

δ:‖δ‖∞≤ε
`( f (x + δ; w), y)

]
. (3)

In PGD-AT [13], the authors indicated a potential issue of FGSM-AT that the inner
maximization in (3) may not be optimized adequately due to the use of a linearized objective
function in the construction of FGSM adversarial examples. PGD-AT replaces FGSM with
PGD for generating adversarial examples as the solution for the inner maximization
problem. It has been shown by Madry et al. [13] that this is a better choice, resulting in
more robust classifiers against adversarial attacks.

3.3.3. TRADES

TRADES [15] is a more recent robust training method against adversarial attacks. It
considers the trade-off between the robustness against adversarial examples and prediction
accuracy on natural samples. The basic idea of this approach is to decompose the robustness
error into the natural classification error and the boundary error. The objective consists
of the natural loss term for empirical risk minimization and regularization for robustness
against adversarial examples. Here, the regularization term tends to push the decision
boundary of the classifier away from the inputs by minimizing the distance between the
prediction of the natural example f (x) and the prediction of the adversarial example f (x′).

min
w

E(x,y)

[
`( f (x; w), y) + β max

δ:‖δ‖∞≤ε
`
(

f (x; w), f (x′; w)
)]

, x′ = x + δ, (4)

where β > 0 is a balancing parameter, As in PGD-AT, TRADES generates the worst-case
perturbation δ with PGD.

4. Methodology

Our main objective is to train a compressed DNN model robust to natural noise in
data. This is a critical consideration for deploying DNNs in small embedded devices in IoT
environments, where a small model size is desirable due to limited computation resources,
and sensor noise occurrence can be relatively frequent.
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However, it is not an easy task to model the noise distribution in observations without
strong assumptions, for example, that noises are approximately normally distributed [48],
and such an assumption may not be appropriate in all data: also, prior knowledge about
the noise distribution is often not available [49]. To deal with this issue, we propose using
on-manifold adversarial examples (abbreviated as adv-on, to be defined later) as the noise
samples with the largest deviation. We use adv-on for two purposes:

• To evaluate the robustness of compressed DNN models against natural noise.
• To improve the robustness of a compressed DNN model based on sparse coding with

adversarial training.

This makes a clear distinction of our work from the existing literature [17–20] on
robust model compression where the robustness has been considered against (regular)
adversarial examples. As discussed in Stutz et al. [21], the regular adversarial examples
(generated by, for example, FGSM or PGD as discussed earlier) are likely to deviate from
the data manifold—the subspace that includes natural samples well. In this sense, we
regard the regular adversarial examples as off-manifold (we denote them by off-manifold
adversarial examples, adv-off).

4.1. On-Manifold Adversarial Examples

An on-manifold adversarial example (denoted by adv-on) x′ is a perturbed version of
a natural sample x that causes misclassification of the classifier, as discussed in Section 3.2.
Unlike a regular adversarial example, x′ resides on the data manifold—in this sense, we can
consider x′ as a natural example with noise large enough to induce incorrect classification.
Adv-on’s can be formally defined as follows [21]:

Definition 1 (On-Manifold Adversarial Example). Suppose that P is the probability distri-
bution of data points (x, y) where x ∈ Rd is an input and y ∈ {1, 2, . . . , K} is the corresponding
true label. For a trained target classifier f : Rd → {1, 2, . . . , K}, an on-manifold adversarial
example x′ of x satisfies f (x′) 6= y and P(Y = y|X = x′) > P(Y = y′|X = x′) for all
y′ ∈ {1, 2, . . . , K} \ {y}.

The definition requires that the adv-on x′ induces misclassification of the classifier f ,
but it still belongs to the original class y with respect to the data distribution P. Despite the
clearness of the definition, it is not straightforward to apply it for the creation of adv-on’s
since the data distribution P(X, Y) is typically unknown.

To circumvent the issue, we make use of the variational auto-encoder (VAE) [50]
trained on natural samples. In short, the idea is to add perturbations in the latent space and
then to use the decoder to generate realistic on-manifold adversarial examples. We describe
our method in two cases. In the first case, we know P(Y|Z) where Y ∈ {1, 2, . . . , K} is the
class label and Z is the random variable describing the latent space of the VAE. The second
case is for real datasets where we have no access to P(Y|Z), and therefore we estimate it by
an auxiliary classifier. The overall process is depicted in Figure 1.
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Figure 1. The process of generating on-manifold adversarial examples. We separate the cases based
on whether we have information on the true P(Y|Z) or not.

4.1.1. Case One: Simulation Data

In the case of simulation, we can define the data distribution, in particular, P(Y|X) to
check the Definition 1. As we like to make our procedure for case one as a basis for case two
below, we assume that we know P(Y|Z) instead of P(Y|X), where Z is the random variable
belonging to the latent space between an encoder E and a decoder D (to be described more
in detail later). Using Baye’s rule and the transformation of random variables through
X = D(Z), we can establish the following connections:

P(Y = y|Z) = P(Z|Y = y)P(Y = y)
P(Z)

=
P(Z|Y = y)det(∇XD−1(X))P(Y = y)

P(Z)det(∇XD−1(X))

≈ P(D−1(X)|Y = y)det(∇XD−1(X))P(Y = y)
P(D−1(X))det(∇XD−1(X))

=
P(X|Y = y)P(Y = y)

P(X)
= P(Y = y|X)

(5)

where P(X) = P(D−1(X))det∇XD−1(X) is the result of transformation of the random
variable X = D(Z) [51], and det∇XD−1(X) is the determinant of the Jacobian of D−1

regarding X. In the approximation (the second line), we assumed thatD−1(X) ≈ E(X) = Z.
The connection in (5) allows us checking the Definition 1, in particular if a perturbed point
x′ = D(z′) belongs to the manifold of Y = y in the space of Z, that is,

P(Y = y|z′) > P(Y = y′|z′), ∀y′ 6= y, and f (D(z′)) 6= y. (6)

For simulation, we define P(X|Y = y) to be a two-dimensional multivariate Gaussian
distribution for each of the four classes y ∈ {1, 2, 3, 4}. To map the latent samples z ∈ R2

to the input space (we define the input space to be sixteen-dimensional), we use a simple
auto-encoder composed of two fully connected layers in the encoder E and the decoder D.
The auto-encoder is trained to minimize the reconstruction error of the latent samples z
(we used 17,500 samples in the experiments):

min
wE ,wD

Ez

[
‖EwE(DwD (z))− z‖2

2

]
.
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With the trained decoder, we can generate on-manifold adversarial examples accord-
ing to the Definition 1 using (6) (we used 70,000 generated adv-on examples as simulation
data in the experiments). After generating the simulation dataset, we split the dataset ran-
domly into trainset with 60,000 instances and testset with 10,000 instances. We separately
generate on-manifold adversarial trainset and testset. Figure 2 shows the distribution of
sampled latent vectors and the on-manifold vectors, respectively.

(a) (b)

Figure 2. (a) Simulated latent samples; (b) On-manifold adversarial examples in the latent space. The
distribution of simulated latent vectors (a) and the distribution of generated on-manifold adversarial
examples with the simulation dataset (b). Each color represents a different class. The same number of
examples (17,500 examples) are sampled from each of the four classes. We observe that on-manifold
adversarial examples sit near the true decision boundary.

4.1.2. Case Two: Real Data

In general, we know neither P(Y|X) nor P(Y|Z) for the given dataset. However, our
discussion in case one above indicates that we can follow a similar procedure if we have a
good estimate of P(Y|Z).

For this purpose, we train a variational auto-encoder (VAE) [50] using a given dataset
in a regular setting to reduce the reconstruction error in the input space. Let us call the
encoder and the decoder of the VAE as E andD, respectively. Then, using the connection (5),
we train an auxiliary classifier fz = P̂(Y|Z) on the latent representation z = E(x) of the
input points x and the original labels. Assuming P̂(Y = y|Z) ≈ P(Y = y|X), we can check
Definition 1 using (6) as in the previous case.

4.2. Model Compression with On-Manifold Adversarial Training

Our proposal method is to combine the sparse coding technique for model com-
pression (discussed in Section 3.1) and the PGD adversarial training (Section 3.3) using
on-manifold adversarial examples (Section 4.1). Our purpose is to train compressed DNN
models robust to natural noise: in particular, we are interested in a high-compression
regime to produce models suitable for small computation devices.

To run our method, denoted by MC-AT(on), we prepare an on-manifold dataset
{(xi, yi)}m+n

i=1 . First, we generate n on-manifold adversarial examples by manipulating the
latent vector z. Then, we select on-manifold adversarial examples by checking Definition 1.
Finally, we combine selected m on-manifold adversarial examples and n original train-
ing examples.

Using this data, we can formulate MC-AT(on) as the following `0-norm based sparse
coding problem:

MC-AT(on): min
w∈Rp

1
m + n

m+n

∑
i=1

`( f (xi; w), yi) + λ‖w‖0, (7)
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where λ > 0 is a hyperparameter controlling the sparsity of the model. Algorithm 1
describes the overall process of MC-AT(on) algorithm based on the proximal gradient
descent algorithm [20].

Algorithm 1 Model compression by the on-manifold adversarial training algorithm

Require: target classifier f with weight vector w, latent classifier fz, VAE consists of encoder
E and decoder D, train dataset {(xi, yi)}n

i=1 where xi ∈ Rd, η for `∞ norm bound of
perturbation ;
Pre-train target classifier f : minw E(x,y)[`( f (x; w), y)]
Train VAE: minwE ,wD Ez

[
‖EwE(DwD (z))− z‖2

2
]

Train latent classifier fz: minwz E(x,y)[`( f (E(x); wz), y)]
Initialize on-manifold adversarial dataset: Madv-on ← ∅
for all (xi, yi) ∈ {(xi, yi)}n

i=1 do
Compute a latent vector: zi ← E(xi)
Compute a perturbation: ζi ← arg maxζi

`( f (D(zi + ζi); w), yi) s.t. ‖ζi‖∞ ≤ η

Add perturbation to the latent vector: z′i ← zi + ζi
Generate an on-manifold adversarial example: x′i ← D(z′)
if f (x′i) 6= yi and fz(z′i) = yi then

insert (x′i , yi) to Madv-on
end if

end for
Madv-on ← Madv-on ∪ {(xi, yi)}n

i=1
Apply MC-AT(on) with (7)

4.3. Computational Cost

We also conduct computational cost analysis on Algorithm 1. Hua et al. [52] analyzed
the computational cost of robust training. In the case of PGD adversarial training, let PN
denote the perturbation generation with N step by solving maxδ:‖δ‖∞≤ε `( f (x + δ; w), y).
The result of the computational complexity of adversarial training is about N times the
normal DNN training. However, in our case, if we let the computational cost of training the
target classifier, VAE, and latent classifier be T before crafting the latent perturbation, the
total cost of training would be 3T. After that, we craft on-manifold adversarial examples
with N steps. Therefore, the total cost of generating an on-manifold adversary is 3T + N,
whereas PGD adversarial training is T× N. The adversarial training time can be improved,
for example, using techniques in [53] or in [54].

5. Experiments
5.1. Datasets and Models

To investigate the effectiveness of our proposed method, we conducted experiments
with different datasets. Details on the dataset and the target classifier for each dataset are
described below.

• Simulation dataset: the simulation data described in Section 4.1.1, in which on-
manifold adversarial examples have been generated based on known data distri-
bution. The simulation dataset consists of 70,000 instances with 16-dimensional inputs
belonging to four different classes. We used the modified LeNet5 [55] as the classi-
fier, which consists of two convolutional layers with max-pooling (5× 5 kernel size;
32, 64 channels for simulation dataset; 64, 128 channels for MNIST), and two fully
connected layers.

• MNIST [56]: the dataset for handwritten zip-code digit classification problem, origi-
nally intended for the faster distribution of physical mail in the US post offices—the
images were taken with low-resolution (28× 28) camera sensors. This dataset consists
of 70,000 grey-scale images, and the train/test split ratio is 6 : 1. For the target classifier,
we used the same model as in the simulation dataset with three fully connected layers.
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• Fashion-MNIST [57] (FMNIST): FMNIST consists of 10 different categories of fashion
product images. It also includes 70,000 grey-scale images, and the train/test split ratio
is 6 : 1. We used a CNN with three convolutional layers (4× 4 kernel size; 32, 64,
128 channels) and three fully connected layers.

• CIFAR-10 [58]: CIFAR-10 consists of 60,000 RGB-color images, and the train/test split
ratio is 5 : 1. For the classifier, we used ResNet-18 [59].

• UCI human activity recognition [60] (HAR): HAR dataset consists of nine embedded
sensors and data from accelerometers and gyroscopes in smartphones. The task of
the dataset is to classify six different human activities with the sensor data received
from smartphones. There is a total of 10,299 instances, and we used a train/test
split ratio of 7 : 3. For the classification problem, we adopted a one-dimensional
convolutional neural network model with three convolutional layers and three fully
connected layers.

5.2. Methods

We compared model compression methods in five different training settings: regular
model compression with no adversarial training ((1), denoted by MC(regular)); model
compression with off-manifold adversarial training ((3), denoted by MC-AT(off)); on-
manifold adversarial training ((7), denoted by MC-AT(on)); dual adversarial training ((3)
and (7), denoted by MC-AT(dual)); and TRADES ((4), denoted by MC-TRADES).

In the case of MC-AT(dual), it is similar to Lin et al. [42], incorporating both off-
manifold adversarial examples and on-manifold adversarial examples during training. We
pre-trained target classifiers with the original trainsets before applying robust model com-
pression methods. The optimization of each model compression method with adversarial
training has been done with the proximal gradient method [20].

5.3. Robustness of Compressed Models on On-Manifold Test Data

We investigate the robust optimization with adv-on, which we consider as the worst-
case of natural noise that can enhance the robustness of model compression.

Figure 3 shows the robustness results in terms of the prediction accuracy on the
original test and adv-on test datasets. The grey vertical lines indicate the compression
rate values for which the compressed models will have at least 90% of the uncompressed
reference models obtained by MC(regular). The results support our hypothesis at high
compression ratios over 70% (the area marked with blue background color in the plots):
MC-AT(on) has an average performance improvement of 33.76% on adv-on test data
compared to the MC(regular).

Compared to MC-TRADES, our MC-AT(on) showed 23.68% higher average accuracy
on adv-on test. In addition, at high compression ratios over 70%, MC-AT(on) reached
26.24% higher average accuracy than MC-AT(off), and 10.74% higher than MC-AT(dual).
Interestingly, in the case of the HAR dataset, which is an IoT sensor dataset containing a
relatively large amount of noise, only MC-AT(on) and MC-AT(dual) worked properly in
the adv-on test.

Table 2 shows the comparison of robustness at the compression rates where the
reduced models exhibit at least 90% of the reference models (also indicated with grey
vertical lines in Figure 3). In particular, for the combined test composed of natural test and
adv-on test data, MC-AT(on) consistently showed the highest performance compared to
the other robust model compression methods.

From the above results, we can conclude that MC-AT(on) can produce highly com-
pressed DNN models robust to natural noise.
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Figure 3. The test results on five datasets (simulation dataset, MNIST, FMNIST, CIFAR-10, and HAR) tested with the
original testset and adv-on testset according to the model sparsity rates. The color of each line indicates the different model
compression method. The light gray dotted-vertical lines indicate the optimal compression rate at the maximum point that
regularly compressed models maintain above 90% of the original accuracy. We can confirm that MC-AT(on) effectively
handles the test accuracy of original examples and on-manifold adversarial examples in all five dataset, especially with high
model compression ratios.
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Table 2. Accuracy results on five datasets at a sparsity ratio where the original test accuracy is maintained above 90% of the
pre-compressed models. The original accuracy denotes the accuracy result of MC(regular) without model compression on
the original testset. In all five datasets, MC-AT(on) showed the highest combination test accuracy results.

Dataset Sparsity Original Accuracy Method

Test Accuracy (%)

Original Adv-On
Combination
(Original &

Adv-On)
Adv-Off

Simulation 95% 97.20%

MC(regular) 96.93 56.50 76.72 16.32
MC-AT(on) 96.98 88.00 92.49 17.34
MC-AT(off) 92.69 79.50 86.09 23.45

MC-
AT(dual) 95.30 80.00 87.65 25.45

MC-TRADES 95.96 79.50 87.73 46.68

MNIST 95% 99.07%

MC(regular) 98.49 57.98 78.24 79.67
MC-AT(on) 97.31 72.90 85.11 93.51
MC-AT(off) 11.35 2.70 7.02 14.16

MC-
AT(dual) 94.74 57.42 76.08 93.47

MC-TRADES 97.68 70.47 84.07 91.19

FMNIST 90% 90.63%

MC(regular) 86.62 2.49 44.55 25.39
MC-AT(on) 86.51 95.61 91.06 17.29
MC-AT(off) 40.65 26.66 33.65 67.50

MC-
AT(dual) 82.93 91.02 86.98 37.31

MC-TRADES 83.14 36.80 59.97 67.88

CIFAR-10 70% 84.28%

MC(regular) 78.41 16.53 47.47 51.04
MC-AT(on) 69.57 49.54 59.56 45.21
MC-AT(off) 49.74 38.48 44.11 45.58

MC-
AT(dual) 71.32 43.79 57.55 64.95

MC-TRADES 75.99 22.86 49.43 68.12

HAR 95% 90.97%

MC(regular) 87.78 0.00 43.89 27.09
MC-AT(on) 89.75 40.52 65.14 27.30
MC-AT(off) 63.22 0.00 31.61 41.16

MC-
AT(dual) 73.33 40.52 56.92 52.62

MC-TRADES 87.51 0.00 43.76 65.53

5.4. Robustness of Compressed Models on Off-Manifold Adversarial Test Data

Figure 4 shows our evaluation of the five robust model compression methods against
the adv-off test data. Since the goal of our study is to present a model compression method
that can enhance the robustness against noises that may exist on the data manifold, which
embraces observed data well, we briefly describe the adv-off test results. Overall, MC-
TRADES showed improved robustness against adv-off on average from 7.82% to 13.06% at
high compression rates (70% or more) compared to other methods.

From the results, MC-TRADES and MC-AT(dual), which are model compression
methods with adversarial training that consider adv-off, showed robustness against noise
that left the manifold, that is, adv-off. Therefore, it can be said that MC-TRADES and MC-
AT(dual) methods are more valid for model compression for robustness against adv-off
when compared with other methods.
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Figure 4. The off-manifold adversarial test results on five datasets (simulation dataset, MNIST, FMNIST, CIFAR-10, and
HAR) according to model sparsity rates. The colors of each line indicates the different model compression method. Overall,
in the high compression ratio section, MC-TRADES shows the most stable performance in overall datasets, and MC-AT(dual)
shows more stable accuracy compare to MC-AT(off) in the high compression ratio section of 70% or more.

6. Discussion

Our results show that MC-AT(on) can improve the robustness of compressed DNNs
against noise-induced perturbations that may exist when collecting real-world data. The re-
sults of MC-AT(on) showed better robustness against on-manifold perturbations compared
to other model compression methods in on-manifold adversarial tests. In particular for the
combined accuracy on both the original test and on-manifold adversarial test, MC-AT(on)
showed the highest in all five datasets, meaning that compressing a model with MC-AT(on)
can develop an optimal compressed model with robustness against noises that reside on a
data manifold that embraces the observed data instances.

However, our results are based on the two approximations, namely in (5) and in the
use of an auxiliary classifier P̂(Y|Z) to approximate the unknown distribution P(Y|Z).
Although the assumptions are not unlikely, the quality of approximation may vary depend-
ing on several factors, such as the dimension and number of data points, the variance of
the noise, and the quality of the en/decoders. Therefore, it can be dangerous to blindly
apply our proposed method, especially when these factors of one’s application data are
different from our experiment settings.

On the other hand, our results also indicate that knowledge of the sensor’s noise
characteristics would help to improve the classification performance when learning small
neural networks. Therefore, it will be desirable for the manufacturers to provide such infor-
mation and the experimenters to perform extended data analysis on the noise component
in the collected IoT data.

It was a rather unexpected discovery in the HAR dataset experiment that MC-AT(on)
was able to produce a more robust model against noise when the model is highly com-
pressed. This indicates that model compression, in general, reducing model complexity,
may help overcome noise in data. We think this subject deserves proper investigation in
the future.

Another type of research that can be conducted in connection to this work is energy
efficiency. In the work of Han et al. [1], they argue that deep model compression can
improve the energy efficiency when computing the compressed deep neural networks.
Recently, hardware, such as the graphics processing unit (GPU) or tensor processing unit
(TPU), is attracting attention as an essential element for developing and learning artificial
intelligence models, which require significant power consumption. Moreover, the robust
training of DNNs tends to require more computation. Therefore, further research in this
direction will be desired from the sustainability perspective.

7. Conclusions

In this work, we proposed a robust model compression method based on sparse coding
and on-manifold adversarial training, called MC-AT(on). Our results indicate that MC-
AT(on) can produce highly compressed DNN models robust to natural noise represented by
on-manifold adversarial perturbations. Our implementation is available as an open-source
at https://github.com/sanglee/MC-ATON (accessed on 22 November 2021).

https://github.com/sanglee/MC-ATON
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