
����������
�������

Citation: Trajanovski, T.; Zhang, N.

An Automated Behaviour-Based

Clustering of IoT Botnets. Future

Internet 2022, 14, 6. https://

doi.org/10.3390/fi14010006

Academic Editors: Christos

Tryfonopoulos and Skiadopoulos

Spiros

Received: 26 November 2021

Accepted: 20 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

An Automated Behaviour-Based Clustering of IoT Botnets

Tolijan Trajanovski * and Ning Zhang

School of Computer Science, University of Manchester, Kilburn Building, Manchester M13 9PL, UK;
ning.zhang-2@manchester.ac.uk
* Correspondence: tolijan.trajanovski@manchester.ac.uk

Abstract: The leaked IoT botnet source-codes have facilitated the proliferation of different IoT botnet
variants, some of which are equipped with new capabilities and may be difficult to detect. Despite
the availability of solutions for automated analysis of IoT botnet samples, the identification of
new variants is still very challenging because the analysis results must be manually interpreted by
malware analysts. To overcome this challenge, we propose an approach for automated behaviour-
based clustering of IoT botnet samples, aimed to enable automatic identification of IoT botnet variants
equipped with new capabilities. In the proposed approach, the behaviour of the IoT botnet samples
is captured using a sandbox and represented as behaviour profiles describing the actions performed
by the samples. The behaviour profiles are vectorised using TF-IDF and clustered using the DBSCAN
algorithm. The proposed approach was evaluated using a collection of samples captured from IoT
botnets propagating on the Internet. The evaluation shows that the proposed approach enables
accurate automatic identification of IoT botnet variants equipped with new capabilities, which will
help security researchers to investigate the new capabilities, and to apply the investigation findings
for improving the solutions for detecting and preventing IoT botnet infections.

Keywords: IoT botnets; malware analysis; clustering; behavioural analysis

1. Introduction

An Internet of Things (IoT) botnet is a network of IoT devices infected by botnet mal-
ware. A botnet malware is a self-propagating malware, capable of automatically identifying
and infecting vulnerable devices on the Internet. The infected devices, or bots, can be in-
structed by the botnet owner to execute numerous malicious actions, including Distributed
Denial of Service (DDoS) attacks [1], credential theft, fake social media endorsement [2], etc.
The widespread deployment of poorly secured IoT devices has resulted in unprecedented
IoT botnet propagation rates [3]. The Satory botnet is estimated to have infected 280,000 IoT
devices in just 12 h, while the Mirai botnet variants have enslaved between 800,000 and
2,500,000 IoT devices [4]. The large-scale of these botnets can be leveraged for executing
high-impact attacks, such as the infamous DDoS attack against the DNS provider Dyn [5],
which caused outages of Twitter, Reddit and Netflix.

The leaked source-codes of popular IoT botnets, such as Gafgyt and Mirai [6] have
facilitated the proliferation of different IoT botnet variants. The changes applied to the
botnet variants may be minor or significant. The minor changes include modification of
the botnet configuration settings, such as IP addresses of the command and control (C2)
and malware distribution (MD) servers, names of the botnet samples, firewall commands,
addition or removal of exploits which are not rare or unknown, etc. As significant changes,
we consider the addition of new capabilities for more effective propagation, persistence,
detection evasion, and prevention of infection remedy. Such capabilities include infection
vectors, as well as techniques for establishing persistence, evading detection, and prevent-
ing infection remedy, which have not been previously observed in other botnets. The botnet
variants equipped with new capabilities may be more challenging to detect.

Future Internet 2022, 14, 6. https://doi.org/10.3390/fi14010006 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14010006
https://doi.org/10.3390/fi14010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-4552-2297
https://doi.org/10.3390/fi14010006
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14010006?type=check_update&version=1

Future Internet 2022, 14, 6 2 of 17

To identify IoT botnet variants, it is necessary to analyse the samples captured from
IoT botnets propagating on the Internet. However, the large number of IoT botnet samples
collected by antivirus vendors makes it impossible for the malware analysts to examine
each botnet sample [7]. Although significant efforts have been made for automating the
analysis of IoT botnet samples using sandboxes [8–10], the analysis results still need to be
interpreted by malware analysts. This challenge can be overcome by grouping together
samples that exhibit similar behaviours into clusters. After the samples are clustered, the
malware analyst would need to examine only one sample per cluster to identify the distinct
capabilities of that cluster.

Over the years, multiple approaches for clustering IoT botnet samples have been
proposed. The proposed approaches use different features, such as botnet configuration
parameters [1], multidimensional features extracted from strings-based and image-based
botnet binary representations [11], Function Call Sequence Graphs (FCSG) [12], strings [13],
sizes of compressed botnet binaries [14], Trend Micro Locality Sensitive Hashes (TLSH) [15],
and a combination of static and dynamic features [16]. However, these features are extracted
or computed using static analysis and disassembly of the botnet samples. As a result, the
proposed approaches may not be effective for clustering obfuscated samples. In our recent
study [8], we observed that 38% of the samples captured by our honeypots were packed,
while 59% had encoded strings. Therefore, we argue that to identify botnet variants
equipped with new capabilities, both obfuscated and non-obfuscated samples should be
effectively clustered. Another limitation of some of the proposed approaches is that they
were evaluated using samples compiled for only one CPU architecture.

Different from the existing approaches, the approach taken in the work reported in this
paper uses behaviour profiles generated via a behavioural analysis of the botnet samples.
The approach was evaluated using both obfuscated and non-obfuscated IoT botnet samples,
compiled for different CPU architectures. The behaviour profiles are text files describing
the actions executed by the botnet samples. To identify clusters representing botnet vari-
ants, the behavioural profiles are first transformed into feature vectors using the Term
Frequency-Inverse Document Frequency (TF-IDF) method [17], and then clustered with
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [18].
The similarity between the TF-IDF vectors is measured using the cosine similarity metric.
To the best of our knowledge, and relying on our extensive literature search on published
work, no similar proposal has been made until now. In summary, this paper makes the
following contributions:

• It presents an automated approach for capturing the behaviour of IoT botnet samples.
The behaviour is recorded by tracing the system calls and capturing the network traffic.
The captured behaviour is abstracted as a set of actions executed by the samples.

• It describes the challenges that may affect the behavioural analysis of botnet samples
and the actions taken to address them.

• It presents a novel approach for automated clustering of IoT botnet samples based on
their behaviour profiles.

• It provides the evaluation of the proposed clustering approach using a collection of
samples captured from IoT botnets propagating on the Internet. The evaluation shows
that the proposed approach has successfully identified IoT botnet variants equipped
with new capabilities.

The research method used consists of literature review identifying knowledge gaps and
areas of improvement, collection of botnet samples using honeypots and a malware tracking
service, execution and behavioural analysis of the collected samples, investigation of factors
affecting the capturing of IoT botnet behaviour, investigation of methods for extracting
features from text documents, and evaluation of different algorithms for clustering the
extracted features.

Future Internet 2022, 14, 6 3 of 17

The rest of this paper is organised as follows: Section 2 describes the IoT botnet
behaviour and how it can be captured using sandboxes. Section 3 provides information on
the work related to this study. Section 4 details the proposed clustering approach and its
implementation. Section 5 presents the evaluation of the proposed approach using real-
world IoT botnet samples, and provides discussion on the key findings. Lastly, Section 6
contains final conclusions.

2. IoT Botnet Behaviour

The IoT botnet behaviour can be described as the set of actions executed by the botnet
samples. To better understand these actions, we first look at the IoT botnet operation.

2.1. IoT Botnet Operation

The IoT botnet operation has two main goals, botnet growth and botnet monetization.
The botnet growth is achieved by identifying and infecting vulnerable IoT devices. An IoT
botnet infection typically involves two steps: (1) exploiting a vulnerability to obtain access
to the victim device and (2) downloading and executing bot malware. The bot malware
is downloaded from a MD server configured by the botnet herder. When the malware is
executed, it connects to a C2 server and starts listening for instructions sent by the botnet
herder. After connecting to the C2 server, the bot malware usually starts self-propagating
by scanning the Internet for vulnerable IoT devices and infecting the discovered vulnerable
devices. Alternatively, it may report the discovered vulnerable devices to a loader server
which is used by the botnet herder for executing infection attacks.

In addition, the bot malware can also perform multiple actions to preserve the control
over the enslaved devices. Examples of such actions include (a) establishing persistence
on the infected device by modifying the initialisation system configuration, (b) detecting
and killing competing malware by enumerating the running processes, (c) preventing
re-infection by blocking the open port used to exploit the vulnerable service, (d) preventing
infection remedy by blocking remote access to the device, and (e) removing and hiding
infection evidence to evade detection.

Over the years, the botnet herders have monetized IoT botnets in different ways.
The most common IoT botnet monetization is through distributed DDoS attacks offered
as a service by the botnet herder. The bot malware typically supports multiple different
DDoS attack types [19]. To launch an attack, the DDoS service clients specify the target
host, one of the supported DDoS attack types and the attack duration. Other ways of
monetizing IoT botnets include crypto-currency mining [20], credential theft [21], social
media fraud [2], etc.

2.2. Capturing IoT Botnet Behaviour

The behaviour of the IoT botnet samples can be captured by executing them inside
a sandbox. A sandbox is a controlled environment comprised of one or more virtual
machines (VMs) equipped with tools for execution tracing and network traffic capturing.
The sandbox records the behaviour of a botnet sample during its execution on one of
the VMs. However, the botnet behaviour capturing through sandbox execution may be
challenged by the following factors:

1. Anti-sandbox Techniques. The sandbox execution of botnet samples may be chal-
lenged by anti-sandbox techniques. A sample equipped with sandbox detection
capability may halt its execution or hide its true behaviour if it detects that it is being
run inside a sandbox [22]. A botnet sample may be able to detect and disrupt execu-
tion tracing and traffic capturing tools to prevent the capturing of its behaviour [9].
Another anti-sandbox technique that may be used by IoT botnets is delayed execution.
For instance, a botnet sample can be configured to stay idle for two minutes after it
is executed to avoid discovery of the C2 server. To ensure a successful execution of
the botnet samples, the execution duration should not be too short, and the sandbox
should detect, avoid, and report the use of anti-sandbox techniques.

Future Internet 2022, 14, 6 4 of 17

2. IoT Botnets Heterogeneity. A botnet may infect IoT devices with different CPU
architectures or with the same CPU architecture. In our recent study of IoT botnets [8],
we identified that approximately one third of the analysed IoT botnets infected only a
single CPU architecture. To be able to capture the behaviour of the botnets infecting a
single CPU architecture, the sandbox should support the CPU architectures which are
the most targeted by IoT botnets. Furthermore, a botnet sample may require software
tools and libraries that are expected to be available on the vulnerable devices [10].
If the sandbox lacks some of the required software, the sample may fail to execute
or may execute partially. Therefore, to increase the chances for a successful sample
execution, the sandbox should provide the software tools and libraries that may be
required by IoT botnets.

3. Time of Sample Execution. It is important the botnet to be active when the sample is
executed to ensure that the sample can exhibit all its functionalities, including the C2
communication. Moreover, some IoT botnet infection attacks may include a stage-two
payload. In such case, the MD server hosting the stage-two payload must be available
during the sample execution for the infection to complete. If a sample is executed long
after it was captured, there is a high probability that the C2 and MD servers have been
suspended or their configuration has been changed [23]. Thus, the botnet samples
should be executed in the sandbox as soon as they are captured or discovered.

3. Related Work

Over the past years, multiple approaches for clustering IoT botnets and for inves-
tigating their variation have been proposed. The proposed approaches and their key
characteristics are presented in Table 1.

The authors of [1] present different schemes for classifying and tracking Mirai botnet
variants using three artefacts: the botnet configuration including the C2 settings and the
encryption key, the supported DDoS attack methods, and the dictionary of usernames
and passwords used in brute-force attacks. The artefacts are extracted automatically using
static analysis and emulation. This study, however, is only concerned with Mirai IoT botnet
variants that perform DDoS attacks.

In [14], the authors propose an automated approach for clustering IoT botnet samples
using NCD distance as a similarity measure. To achieve faster clustering, the authors
present an algorithm for efficiently constructing a phylogenetic tree by reducing the com-
pression attempts. The proposed clustering approach was evaluated using botnet samples
compiled for only one CPU architecture. An approach for clustering IoT botnet samples
using TLSH fuzzy hash as similarity measure is proposed in [15]. The authors evaluate
the performance of two clustering algorithms, k-medoids and OPTICS, and propose a new
clustering algorithm which achieves a performance superior to both k-medoid and OPTICS.
Nonetheless, the proposed clustering approach was evaluated using only non-packed and
non-encrypted samples, compiled for the ARM CPU architecture. The authors of [13]
propose an approach for clustering IoT botnet samples and investigating their underlying
correlations using strings-based similarity. The strings are extracted from the botnet binary
samples using static analysis. Natural Language Processing (NLP) techniques such as
word tokenization are then applied to process the identified strings and extract meaning-
ful words. The meaningful words are compared using a combination of the Jaccard and
overlap similarity coefficients. The ClusterONE algorithm is used to investigate corre-
lated malware samples and to identify groups of similar IoT malware implementation. A
novel approach for effective IoT botnet classification and family attribution by combining
multi-dimensional features extracted from strings-based and image-based botnet binary
representations is presented in [11]. The features are extracted automatically using Con-
volutional Neural Network (CNN) and Long Short-Term Memory (LSTM) deep learning
models. However, the approaches proposed in [11,13–15] may not effectively cluster packed
or obfuscated samples since they rely on static analysis for extracting the required features.

Future Internet 2022, 14, 6 5 of 17

Table 1. Related work concerned with the clustering of IoT botnets.

Proposed Approach Automated or Manual Operations Performed Data Used Features

[1] Automated Static analysis and
emulation DDoS IoT botnets

Configuration;
Supported DDoS attack

methods; Brute-force
dictionary

[14] Automated Compression

IoT botnet samples
from same CPU

architecture grouped in
3 clusters

NCD as similarity
measure between
binary samples

[15] Manual TLSH fuzzy hash
calculation

Non-packed ARM
botnet samples

TLSH as similarity
measure

[24] Manual Dynamic analysis Various IoT botnet
samples System calls

[12] Manual Static analysis Various IoT botnet
samples FCSG

[13] Manual Static analysis Various IoT botnet
samples

Strings-based features
(IP addresses and/or

embedded
commands/payloads)

[25] Automated Static analysis
IoT botnet samples for
multiple architectures
expect Intel and AMD

Program code

[11] Automated Static analysis Various IoT botnet
samples

Features extracted from
string-based and

image-based
representations of the

executable binaries

[26] Mixed Static analysis Honeypot logs and IoT
botnet samples

Honeypot login
sessions and executable

binaries

[16] Mixed Static and dynamic
analysis

Various Linux malware
samples

Static, dynamic and
hybrid features

A method for identifying behavioural differences between IoT botnet samples using
FCSG is proposed in [12]. The FCSG are generated from the disassembled code of botnet
samples. Therefore, the proposed method requires the botnet samples to be disassembled.
In [25], the authors propose a clustering approach based on code-level similarity for track-
ing the evolution over time of a given IoT botnet family as well as the code reuse and
functionalities borrowed among different IoT botnet families. Similar to [12], this approach
also requires the botnet samples to be disassembled. However, if a sample is packed, it
needs to be properly unpacked before it is disassembled. In addition, the unpacking of
samples packed with custom packers can be challenging and time-consuming. Thus, the
approaches presented in [12,25] may not be effective for clustering packed botnet samples.
The authors of [16] propose a clustering approach using a custom distance function that
relies on three types of features: static, dynamic and hybrid. The hybrid features are a
combination of the static and dynamic features. However, in this study, the packed samples
were discarded from the dataset since the method used for extracting static features from
the botnet samples is not effective for packed samples. Botnet families represented with
less than ten samples were also removed from the dataset.

In [24], the authors evaluate different algorithms for clustering IoT botnet samples
based on their behaviour represented as system calls. The system calls are captured via a
sandbox execution of the botnet samples. The features used by the clustering algorithms

Future Internet 2022, 14, 6 6 of 17

are extracted from the system call logs using the 2-g method discussed in the paper and
reduced using PCA. The similarity between feature vectors is measured using Euclidean
distance. The clustering algorithms evaluated in this study are DBSCAN, Mean-shift, and
Hierarchical clustering. The Mean-shift algorithm achieved the best performance.

The authors of [26] propose an approach for measuring the variation among IoT
botnets based on infection attacks recorded by honeypots. A list of arguments from the
executed commands is created for each attack session in which a botnet binary was created
or downloaded. The similarity between the attack sessions is measured as a Levenshtein
distance between the argument lists. To better understand the scope of the IoT botnet
infection attacks, the authors also investigate the relationship between the IP address of the
attacker and the hash of the downloaded file(s) for each attack session.

Many of the related studies propose the use of features extracted via static analysis
for clustering IoT botnets, based on the observation that the IoT malware obfuscation is
not as common as the Windows malware obfuscation. However, in our recent study [8],
concerned with the analysis of IoT botnet samples captured by honeypots, we observed
that a significant proportion of the analysed samples were obfuscated. Approximately 38%
of the analysed samples were packed, 25% of which were packed with custom packers.
In addition, string encoding, a simpler form of obfuscation, was identified in 59% of the
samples. The obfuscation can prevent the static analysis methods, such as code disassembly
and string extraction, from identifying valuable features. As a result, the obfuscated samples
may not be effectively clustered. Another limitation of the clustering using static features is
that some of the static features may differ between different CPU architectures [16].

We argue that to facilitate the identification of IoT botnet variants equipped with
new capabilities, the clustering must be effective for both obfuscated and non-obfuscated
samples. To effectively cluster both obfuscated and non-obfuscated samples, our approach
uses features extracted via behavioural analysis of the botnet samples. Similar to [24],
we record the botnet samples behaviour by tracing the system calls. However, different
from [24], the system calls in our solution are abstracted to actions and objects on which
the actions are performed. This is because the traces of system calls can vary significantly,
and the need for abstracting the system call traces in such cases was discussed in [27].
Furthermore, the behaviour profiles describing the identified actions are significantly
smaller than the system call traces, allowing a more efficient clustering of a large number
of samples.

4. The Proposed Approach

This section describes the proposed approach for an automated behaviour-based
clustering of IoT botnets. We first provide an overview of the approach and the steps it
consists of.

4.1. Overview

The proposed approach consists of four steps, as shown in Figure 1 below:

1. Obtaining IoT Botnet Samples. The IoT botnet samples are obtained from honeypots
deployed on the Internet and from URLhaus, a service for tracking malware URLs.

2. Sandbox Execution and Analysis. The obtained IoT botnet samples are executed
inside a sandbox while the botnets are actively propagating on the Internet. Their
behaviour is recorded by tracing the system calls, and by capturing the network
traffic in a network traffic capture file (pcap). Because the system call traces can vary
significantly, the captured behaviour is abstracted at higher level, as a set of actions
and objects the actions were performed on. The set of actions and corresponding
objects is identified by analysing the recorded system calls and the network traffic
capture file, respectively.

3. Creating Behaviour Profiles. A behaviour profile containing the actions identified
by the sandbox analysis is created for each sample executed in the sandbox. The
behaviour profiles are text files describing the actions performed by the sample

Future Internet 2022, 14, 6 7 of 17

and the objects on which the actions were performed. They serve as input to the
clustering algorithm.

4. Clustering. The clustering of behaviour profiles involves three steps. The behaviour
profiles are first transformed into feature vectors using TF-IDF. The pairwise similar-
ities between the behaviour profiles in the dataset are then computed as the cosine
similarity between their respective TF-IDF vectors. The computed pairwise similari-
ties are stored in a similarity matrix. Finally, the DBSCAN clustering algorithm is run
using the pairwise similarity matrix as input.

Sandbox
Execution and

Analysis

Creating
Behaviour

Profiles
ClusteringObtaining IoT

botnet samples

Figure 1. Steps comprising the proposed approach for automated behaviour-based clustering of
IoT botnets.

4.2. Obtaining IoT Botnet Samples

The IoT botnet samples are obtained from two sources, honeypots we deployed on
the Internet and URLhaus [28], a malware tracking service. The honeypots automatically
submit the botnet samples for sandbox analysis as soon as they are captured. This ensures
that the botnet is active when the captured samples are executed in the sandbox. The
URLhaus service tracks URLs of malware samples reported by malware researchers. The
URLs can be queried using specific filters such as file type. URLhaus also periodically
checks if the MD servers hosting the reported malware samples are online, as can be seen
in Figure 2. To obtain the samples from URLhaus, we implemented a program in Python
which periodically queries the service for URLs of Linux malware samples. To do so, the
program uses the file type filter to search for Linux executable files in the ELF format, and
the URL status filter to make sure the queried URLs are reachable. The program downloads
the botnet samples from the queried URLs and checks if the CPU architecture the samples
are compiled for is supported by the sandbox. Finally, it submits the supported botnet
samples for sandbox analysis.

Figure 2. URLhaus malware tracking service.

4.3. Sandbox Execution and Analysis

The IoT botnet samples are executed using the ELF DIGEST sandbox, presented in our
previous work [8]. The ELF DIGEST sandbox supports ARMv5, ARMv7, MIPS, x86 and
x64 CPU architectures, as well as older (v.3) and more recent (v.4+) Linux kernel versions.
The sandbox can detect the use of anti-sandbox techniques. To increase the chances for
a successful botnet sample execution, the VMs comprising the sandbox include software
tools and libraries that may be used by IoT botnets [8]. The botnet samples are executed for
310 s to accommodate for a potential use of delayed execution.

The on-host behaviour of the samples is recorded using the program execution trac-
ing tools systemtap [29] and strace [30], while the network traffic is captured using tcp-
dump [31]. The tracing tools record the system calls made by the botnet sample. A system
call is a request made by a program to the Linux kernel for a specific service. There are

Future Internet 2022, 14, 6 8 of 17

various system calls with different purposes [9], such as executing a program, allocating
memory, writing to disk or network socket, killing processes, etc. However, a behaviour
clustering using system call traces as input may be ineffective because the system call
traces can vary significantly, as discussed in [27]. For instance, a program may invoke the
‘read’ system call to read 256 bytes from a file at once, or may invoke the ‘read’ system
call 256 times, reading one byte per system call. Thus, the same behaviour may result
in different system call traces. We argue that the behaviour of the botnet samples can be
described more effectively at a higher abstraction level, as a set of actions and objects the
actions were performed on.

To identify the actions performed by a botnet sample, the sandbox performs be-
havioural and network analyses on the recorded system calls and the captured network
traffic, respectively. The behavioural and network analyses are performed automatically,
after the sample execution is finished. The behavioural analysis can identify actions such as
reading, writing, and removing files, executing programs and shell commands, loading of
kernel modules, use of persistence techniques, changes made to the firewall configuration,
etc. The network analysis can identify DNS queries, HTTP requests, port scanning and
C2 communication.

4.4. Creating Behaviour Profiles

After the two analyses performed by the sandbox are finished, a behaviour profile
containing the identified actions is created for each botnet sample. The behaviour profile is
a text file describing the actions executed by the botnet sample. An action is described as a
pair of action and the object on which the action was performed, as can be seen in Table 2.

Table 2. Actions comprising the behaviour profiles.

Action Object

read/write file
execute program/shell command + argument(s)

HTTP request URI
DNS query domain

connects to C2 server domain:port/IP:port + protocol
scans port port number + protocol
persistence persistence technique

firewall change firewall configuration
loaded kernel module

The files and programs are described using their absolute paths. The recorded ex-
ecutions of programs and shell commands also include the execution arguments. The
URIs of the HTTP requests made by a botnet sample are reported in the behaviour profile.
The URI capturing can help identify: (1) vulnerability exploitation over HTTP; (2) C2
communication over HTTP; and (3) stage-two payloads, as shown in Listing 1.

Listing 1. URIs of captured HTTP requests.

1 %\begin{lstlisting }[language=html]
2 %\ caption{URIs of captured HTTP requests .\ label{listing1 }}
3 1) /login.cgi?cli=aa%20aa%27; wget %20 http ://176.123.4.234/ Dlinkrep.sh%20-O

%20 -%3E%20/ tmp/kh;Dlinkrep.sh%20/ tmp/kh%27$
4 2) /YouWorkForYama/BBC.php?key=key1&option=port
5 3) /wrgjwrgjwrg246356356356/n7

The C2 servers are described as a triplet of IP address, port and protocol or domain,
port and protocol. A persistence technique is presented as the change made to the system
to ensure the bot malware will continue running after a reboot or a power-cycle. The
persistence techniques typically involve scheduling the botnet malware execution using
cron or modifying the initialisation system configuration to execute the malware at system
start-up. The changes to firewall configuration vary from disabling the firewall completely

Future Internet 2022, 14, 6 9 of 17

to altering the firewall rules to allow or block connections on specific port. The loaded
kernel modules are described using absolute paths. An excerpt from a behaviour profile is
shown in Listing 2. The behaviour profiles serve as input to the clustering algorithm.

Listing 2. Behaviour profile excerpt.

1 scans port 23 tcp
2 scans port 80 tcp
3 C2 tcp 185.132.53.104:1024
4 wrote to /dev/misc/watchdog
5 executed /tmp/UnHAnaAW.arm
6 firewall /bin/sh , [sh, -c, iptables -I OUTPUT -p tcp --source -port 22 -j DROP

]

4.5. Clustering

The behaviour-based clustering of IoT botnet samples implies identifying groups of
botnet samples with similar behaviour profiles. Thus, to cluster the samples it is necessary
to measure the similarity between the behaviour profiles. Since the behaviour profiles are
text documents, their similarity can be measured by transforming them into feature vectors
and measuring the similarity between their feature vector representations.

We considered two techniques for vectorising text documents, namely, TF-IDF and
Doc2Vec. The TF-IDF is a statistic which reflects how important a word is to a document
in a corpus of documents. It is computed by multiplying the TF and IDF metrics. The TF
indicates how often a word appears in a document, while IDF reflects how common or rare
a word is across the corpus. Doc2Vec, also known as paragraph2vec, computes a feature
vector for every document in a corpus, irrespective to its length. It expands the Word2Vec
technique [32], used for vectorising words, with another vector referred to as paragraph
ID [33]. To select the more feasible of the two techniques for vectorising the behaviour
profiles, we investigated the characteristics of the behaviour profiles and identified that
they are relatively short, with an average length of 221 characters. A study investigating
the effectiveness of text similarity measuring techniques on short-length text documents
indicates that Doc2Vec may have poor performance for short-length documents [34]. Thus,
we used TF-IDF to vectorise the behaviour profiles.

To cluster the TF-IDF vectors, it is necessary to select a metric for measuring the
similarity between a pair of TF-IDF vectors. The botnet samples may execute different
number of actions, resulting in behaviour profiles with different lengths. The length of the
behaviour profiles in the corpus varies in the range from 221 characters to 21,418 characters.
Thus, the similarity between behaviour profiles should be computed irrespective of their
length. Considering this requirement, we selected the cosine similarity metric for measuring
the similarity between the TF-IDF fectors, since it measures the cosine of the angle between
the vectors, and not their magnitude.

Because there is no prior knowledge about the botnet samples comprising the dataset,
the number and the shape of the clusters cannot be identified beforehand. Therefore, we
clustered the TF-IDF vectors using the DBSCAN algorithm which does not require the
number of clusters to be specified beforehand. The DBSCAN algorithm performs well
with arbitrary shaped clusters and is robust to outliers. The vectorisation of the behaviour
profiles, the computation of the cosine similarity matrix, and the DBSCAN clustering were
performed using the Python implementation of TF-IDF, cosine similarity, and DBSCAN,
provided by the scikit-learn machine learning framework [35].

5. Findings and Discussion

This section describes the evaluation of the proposed approach and presents the
clustering results along with the key findings.

Future Internet 2022, 14, 6 10 of 17

5.1. Dataset

The dataset consists of 1311 samples captured from active IoT botnets on the Internet.
As shown in Table 3, the samples are compiled for the x86, MIPS and ARM CPU architec-
tures. Approximately 60% of the obtained samples are packed, 9.5% of which are packed
with a custom packer, as can be seen in Table 4. The samples were successfully executed
and analysed in the sandbox, and a behaviour profile was created for each sample. The
effectiveness of the sandbox execution and analysis was validated by investigating the
created behaviour profiles. The number of recorded actions per behaviour profile vary
from 10 to 504, indicating that the behavioural analysis of the samples was successful.

Table 3. CPU architecture per number of IoT botnet samples.

CPU Architecture Number of Samples

X86 302
MIPS 510
ARM 499

Table 4. Packer used per number of IoT botnet samples.

Packer Used Number of Samples

none 536
default UPX packer 700

custom packer 75

5.2. DBSCAN Parameter Tuning

The DBSCAN clustering algorithm takes two parameters, the maximum distance
between two samples for them to be considered neighbours, referred to as epsilon (eps), and
the minimum number of samples required to define a cluster. The Python implementation
of DBSCAN, provided by the scikit-learn framework, assigns the samples cluster labels in
the range from 0 to N − 1, where N is the number of identified clusters. The outliers are
labelled as −1.

We evaluated the effectiveness of the DBSCAN clustering for identifying botnet vari-
ants equipped with new capabilities using a fixed value for the minimum number of
samples per cluster, and different values for the eps parameter. We chose two as the mini-
mum number of samples for defining a cluster because it may be possible that only two, or
even only one sample of an IoT botnet variant has been captured by the honeypots or the
security researchers. By selecting two as the minimum number of samples per cluster, the
DBSCAN algorithm will be able to identify IoT botnet variants represented by only two
samples in our dataset. The variants represented by only one sample would be labelled as
outliers. The eps parameter was varied in the range between 0.2 and 0.9 at 0.1 intervals.
The number of clusters and outliers for each eps value used in the evaluation is shown in
Table 5. As can be seen from Figure 3, varying the eps parameter had significant effect on
the number of clusters and outliers identified by DBSCAN. With the smallest eps value in
the range, 0.2, DBSCAN identified 186 clusters and 226 outliers, while with the greatest eps
value in the range, 0.9, the algorithm identified only two clusters and four outliers. As part
of the evaluation, we investigated the effect the different eps values had on the degree of
difference between the behaviour profiles of samples belonging to different clusters and
within the same cluster. In doing so, we manually read the behaviour profiles and noted
the observed differences.

The clustering with eps values smaller than 0.6 resulted in larger number of clusters
and very fine-grained differences among the behaviour profiles assigned to different
clusters. The fine-grained differences include different domain names, different C2 IP
addresses and/or ports, different names of the executed files, different IP addresses of
MD servers, different commands for disabling the firewall, etc. We also observed different

Future Internet 2022, 14, 6 11 of 17

combinations of ports scanned or blocked/opened in the firewall, from the set of ports
associated with widely exploited IoT vulnerabilities. These minor differences may be
due to different botnet configuration parameters or slight changes in the botnet source-
code. Because of this, the clustering based on such differences may not be beneficial for
identifying botnet variants equipped with new capabilities. A significant difference that
can be an indicator of a new capability could be, for instance, a unique set of scanned ports,
including ports which are not associated with known infection vectors. On the other hand,
the clustering with eps values greater than 0.6 resulted in significantly different behaviour
profiles being assigned to the same cluster. In other words, samples presumably belonging
to different IoT botnet variants were assigned to the same cluster.

Therefore, we identified the clustering with eps = 0.6 as the most effective for identify-
ing botnet variants equipped with new capabilities. The behaviour profiles within each
cluster described the same behavioural patterns and capabilities, with minor differences
which do not indicate that the cluster comprises more than one botnet variant. The distinct
behavioural characteristics of the clusters are discussed in the following subsection.

0

20

40

60

80

100

120

140

160

180

200

220

240

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
eps

number of clusters number of outliers

Figure 3. Effect of varying the eps parameter on the number of clusters and outliers.

Table 5. Number of clusters and outliers for different eps values.

Min. Number of Samples eps Number of Clusters Number of Outliers

2 0.2 186 226
2 0.3 115 135
2 0.4 51 91
2 0.5 27 58
2 0.6 19 40
2 0.7 17 30
2 0.8 11 19
2 0.9 2 4

5.3. Results

The identified clusters, their unique behavioural characteristics, and the number of
samples per cluster are shown in Table 6. Most of the samples, or 90%, were assigned to
cluster 0. These samples exhibited behaviour very similar to the documented analyses
of the leaked botnet and exploit source-codes [6]. We refer to such behaviour as generic
IoT botnet behaviour. The generic IoT botnet behaviour typically includes the following
actions: scanning for open ports associated with vulnerabilities commonly exploited by IoT
botnets; exploiting the discovered vulnerable services using public exploits included in the

Future Internet 2022, 14, 6 12 of 17

leaked IoT botnet source-codes; querying domain(s); connecting to C2 server(s); removing
bash history and logs; disabling the firewall or blocking specific port(s); preventing watch-
dog from rebooting the device; etc. The dominant number of samples with generic IoT
botnet behaviour supports the common belief that most of the IoT botnets are operated by
cybercriminals with basic technical skills, who typically apply minor changes to the leaked
IoT botnet source-codes [36].

We also inspected the behaviour profiles identified as outliers and observed that the
actions described by each outlier behaviour profile differed significantly from those of the
clusters and the other outliers. We assume that the behaviour profiles identified as outliers
represent botnet variants, equipped with new capabilities, which are represented by a single
sample in our dataset. An excerpt from an outlier behaviour profile is shown in Listing 3.
The distinct behavioural characteristics of this outlier are a persistence technique involving
a unique shell-script code which has not been observed in other variants, and the use of
multiple configuration files downloaded as a rar archive during the initial infection stage.

Listing 3. Excerpt from an outlier behaviour profile.

1 cnc tcp 23.253.46.64:80
2 wrote to /etc/init.d/rorqefvqgc
3 wrote to /etc/cron.hourly/gcc.sh
4 wrote to /lib/libudev.so
5 dns question ww.search2c.com
6 http request /config.rar
7 dns question aa.hostasa.org
8 wrote to /usr/bin/rorqefvqgc
9 executed /usr/bin/rorqefvqgc

As can be seen from Table 6, the identified clusters exhibited new infection capabilities,
and used unique techniques for establishing persistence, evading detection, and preventing
infection remedy. The cluster 1 samples scanned a unique set of ports which have not
been seen in other botnets, indicating a potential exploitation of unknown or less known
vulnerabilities. The samples comprising cluster 9 exploited multiple vulnerable web
services which are not typically exploited by IoT botnets, indicating that the variant may
be infecting both IoT devices and Linux servers. The clusters 14, 16, and 18 used unique
techniques for establishing persistence on an infected device. The cluster 2 samples sent a
unique HTTP request, presumably to authenticate with an MD server. The authentication
with an MD server may be a new capability aimed to prevent the discovery of the MD server
and the botnet samples. The clusters 4,5, and 8 used unique HTTP requests to download
stage-two payloads, presumably to avoid detection. The samples comprising clusters
12 and 18 used techniques for evading detection and preventing infection remedy which
have not been observed in other variants. The cluster 12 samples executed a command
which removed the traces of the stage-two payload execution, replaced the ls tool used for
listing directory contents on Linux, and modified the user accounts to prevent remote access
to the device. The cluster 18 samples replaced the ps, lsof, and netstat tools, used for getting
information about running processes and open connections, as well as the sshd program
which enables remote access to the device via SSH. The unique behavioural characteristics
of the clusters can also indicate some of their monetization capabilities, such in the case of
the clusters 14 and 17 which downloaded Python libraries used in cryptocurrency mining.

5.4. Comparison with Mean-Shift Clustering

We also evaluated the effectiveness of the Mean-shift clustering algorithm for iden-
tifying botnet variants with new capabilities from our sample collection. Mean-shift is a
centroid-based algorithm which does not require prior knowledge of the number of clusters.
In our evaluation, we used the Python implementation of the algorithm provided by the
scikit-learn framework [37]. We configured the algorithm to automatically estimate the
bandwidth used in the RBF kernel using the ’estimate_bandwidth’ function. Because the
Mean-shift algorithm requires the input data to be dense, we converted the sparse matrix

Future Internet 2022, 14, 6 13 of 17

produced by the TfidfVectorizer to a dense one. The Mean-shift algorithm identified 66
clusters, 48 of which contain only one sample.

Table 6. Unique behavioural characteristics and number of samples per cluster.

Cluster Unique Behavioural Characteristics No. of Samples

0 generic IoT botnet behaviour 1180

1 scanned a unique combination of ports not seen in other botnets 4

2 unique HTTP request not associated with exploits; presumably a
technique for authenticating with an MD server 2

3 created a unique set of directories and copied the botnet binary to
the directories 2

4 downloaded and executed a stage-two payload using a unique
HTTP request 3

5 downloaded and executed a stage-two payload using a unique
HTTP request 2

6 downloaded multiple botnet samples compiled for different CPU
architectures; loaded a kernel module 7

7 replaced the rm,tftp, and kill Linux programs 2

8 downloaded and executed a stage-two payload using a unique
HTTP request; replaced /dev/tty

37

9 exploited multiple vulnerable web services which are not typically
exploited by IoT botnets 3

10 created and wrote to files using encoded filenames, presumably to
hinder analysis 2

11 obtained a list of malicious URLs, presumably used for botnet
propagation 4

12
modified and added user accounts; downloaded and executed
a stage-two payload using a unique command aimed to remove
infection traces; replaced the ls tool

2

13 performed multiple DNS queries for google domains 3

14 downloaded multiple files; created a service for crypto-mining
purposes and used several unique persistence techniques 2

15 installed UPnP plug and play service; modified /etc/hosts 2

16 used unique persistence techniques in which the botnet sample is
run with arguments 2

17
downloaded a unique set of multiple different Python libraries,
typically used for crypto-mining, and stored them in a uniquely
named directory

3

18
used unique persistence techniques with multiple runlevels;
loaded kernel modules; replaced the ps, lsof, sshd and netstat
programs

9

outliers each outlier exhibited unique behavioural characteristics 40

To evaluate the effectiveness of Mean-shift, we compared the clusters it identified
with the clusters found by DBSCAN. We refer to the clusters identified by Mean-shift as
Mean-shift clusters and to the clusters identified by DBSCAN as DBSCAN clusters. To
ease the comparison, we consider the clusters identified by Mean-shift which contain only
one sample as outliers. The number and size of the clusters identified by Mean-shift are
similar to those of the clusters identified by DBSCAN, as can be seen in Tables 6 and 7,
respectively. Like DBSCAN, the Mean-shift algorithm also identified one large cluster, i.e.,

Future Internet 2022, 14, 6 14 of 17

cluster 0, and several small clusters. Furthermore, Mean-shift identified 48 outliers, labelled
as cluster −1 in Table 7, while DBSCAN identified 40 outliers. The clusters identified
as cluster 0 by both algorithms are comprised of samples which exhibited generic IoT
botnet behaviour. Fifteen of the 17 small Mean-shift clusters labelled as clusters 1–17 in
Table 7, were also identified by DBSCAN. These 15 small clusters represent IoT botnet
variants equipped with new capabilities. The samples comprising them exhibited unique
behavioural characteristics per cluster. The Mean-shift clusters 3 and 12 were not identified
by DBSCAN. Instead, the samples comprising these clusters were assigned to the DBSCAN
cluster 0. We examined the behaviour profiles of these samples, and found that they
describe generic IoT botnet actions, such as establishing persistence using cron, removing
bash history and disabling firewall. Therefore, we believe that these samples should have
been assigned to the Mean-shift cluster 0, since they exhibited generic IoT botnet behaviour.

On the other hand, the DBSCAN clusters 8, 9 and 11, shown in Table 6, were not identi-
fied by Mean-shift. Despite sharing the same behavioural patterns and capabilities, each of
the three samples comprising the DBSCAN cluster 9 was classified as an outlier by Mean-
shift. We consider this classification inaccurate because an outlier is expected to represent
an IoT botnet variant with distinct behavioural characteristics. The samples comprising
the DBSCAN clusters 8 and 11 were assigned to the Mean-shift cluster 0, although they
exhibited unique behavioural characteristics per cluster, as shown in Table 6. In addition,
Mean-shift classified as outliers six samples that exhibited generic IoT botnet behaviour
and should have been assigned to the Mean-shift cluster 0. These observations show that
despite identifying many of the IoT botnet variants equipped with new capabilities, the
Mean-shift algorithm is less effective compared to the DBSCAN algorithm.

Table 7. Clusters identified by the Mean-shift algorithm.

Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 −1

No. of Samples 1193 9 7 11 3 3 4 3 2 2 2 2 12 2 2 2 2 2 48

5.5. Comparison with Hierarchical Clustering

In addition to the Mean-shift clustering, we also evaluated the effectiveness of the
Agglomerative Hierarchical clustering for identifying IoT botnet variants with new capabil-
ities from our dataset. We decided to evaluate the Agglomerative Hierarchical clustering
since it is typically better at identifying small clusters than the Divisive Hierarchical clus-
tering. We used the Python implementation of the Agglomerative clustering algorithm
provided by scikit-learn which requires the linkage criterion and the number of clusters to
be specified [38]. Using the cosine similarity matrix as input, we investigated the clusters
identified with each of the following linkage criterions: ‘single’, ‘average’, and ‘complete’.
The number of clusters was set to 59, which is the number of clusters and outliers identified
by DBSCAN, and is close to the number of clusters and outliers identified by Mean-shift, 65.

Using the ‘complete’ and ‘average’ linkages, the Agglomerative algorithm successfully
recognised most of the IoT botnet variants equipped with new capabilities. However, it
also identified multiple small clusters comprised of samples which exhibited generic IoT
botnet behaviour. The differences between the behaviours of these small clusters are minor,
and do not indicate that the clusters represent IoT botnet variants equipped with new
capabilities. This limitation makes the Agglomerative clustering using the ‘complete’ and
‘average’ linkages less effective compared to the DBSCAN clustering.

Using the ‘single’ linkage, the Agglomerative algorithm identified the same clusters as
the DBSCAN algorithm. The identified clusters, shown in Table 6, include one large cluster
comprised of samples with generic IoT botnet behaviour, along with multiple small clusters
and outliers representing IoT botnet variants equipped with new capabilities. Therefore,
using the ‘single’ linkage, the Agglomerative clustering is equally effective for identifying
IoT botnet variants equipped with new capabilities as the DBSCAN clustering.

Future Internet 2022, 14, 6 15 of 17

5.6. Comparison with AVClass Classification

Some of the related studies have evaluated the clustering effectiveness using the labels
assigned to malware samples by different antivirus engines. A clustering is considered as
effective if all samples within a single cluster are assigned the same label. An antivirus label
typically indicates a malware class the sample belongs to. However, a malware sample may
not be detected by all antivirus engines. Furthermore, a malware sample can be assigned
different labels by different antivirus engines. In the case of the latter, it is necessary to
identify the most likely malware class the sample belongs to. This can be achieved using
AVClass.

AVClass [39] is a tool which uses the labels assigned from different antivirus engines
to identify the most likely malware class the sample belongs to. It takes as an input
a JSON report containing the results from the scans performed by the online antivirus
scanner VirusTotal. VirusTotal [40] is an online service for scanning files using more than
60 different antiviruses simultaneously. The VirusTotal report contains the labels assigned
to the malware sample by the different antivirus vendors. One limitation of AVClass is
that it may unable to identify the most likely malware class if there is a lack of decisive
antivirus labels.

We used the API provided by VirusTotal to scan each sample from our dataset and
to obtain the scan results. After scanning the samples, we used AVClass to identify the
most likely malware class of each sample. We then investigated the malware classes of the
samples per cluster and identified two cases: (a) when all samples within the cluster were
assigned the same class, we refer to such clusters as pure and (b) when the samples within
a cluster were assigned different classes, we refer to such clusters as mixed.

Sixteen of the nineteen clusters identified by DBSCAN, shown in Table 6, are pure,
seven of which were assigned the class ‘linux’, six the class ‘mirai’, and one cluster was
assigned the class ‘python’. However, the classes assigned by AVClass may not be helpful
for identifying botnet variants. For instance, the distinction between ‘linux’ and ‘mirai’
classes is unclear since Mirai is a type of Linux malware. We investigated the behaviour
profiles of the samples comprising one of the ’mixed’ clusters and observed samples with
identical behaviour profiles which have been assigned different malware classes. This may
be a result of malware classification performed by some antivirus vendors using only static
features. Therefore, we believe that the clustering evaluation based on labels assigned by
antivirus vendors may not be effective in the case of IoT malware.

6. Conclusions

In this paper, we proposed a novel approach for automated behaviour-based clustering
of IoT botnets. The proposed approach enables automatic identification of IoT botnet vari-
ants equipped with new capabilities, and thus overcomes the need to manually investigate
the IoT botnet samples for new botnet variants to be identified. The paper also presents
an approach for capturing the behaviour of the botnet samples, the challenges that may
affect it, and the actions applied to overcome the challenges. The captured behaviours of
the samples are first profiled as sets of actions executed by the samples, then vectorised
using TF-IDF, and finally clustered with the DBSCAN algorithm.

The effectiveness of the proposed clustering approach was validated using a collection
of botnet samples captured from IoT botnets propagating on the Internet. The DBSCAN
algorithm successfully identified multiple IoT botnet variants which exhibited new infection
capabilities, and used unique techniques for establishing persistence, evading detection,
and preventing infection remedy. We also evaluated the effectiveness of the Mean-shift
and the Agglomerative Hierarchical clustering algorithms, and found that Mean-shift is
less effective than DBSCAN, while the Agglomerative clustering using ‘single’ linkage is
equally effective as DBSCAN. Furthermore, we investigated the malware classification of
the collected samples performed by different antivirus vendors, and found that it may not
help the identification of IoT botnet variants.

Future Internet 2022, 14, 6 16 of 17

The benefits of the automatic identification of IoT botnet variants equipped with new
capabilities are twofold. First, it enables malware analysts to keep apace with the evolution
of IoT botnets. Second, it allows security researchers to investigate the new capabilities, and
to apply the investigation findings for improving the solutions for detecting and preventing
IoT botnet infections. In addition, the clustering results show that approximately 90% of the
samples collected in this study exhibited generic IoT botnet behaviour associated with the
leaked IoT botnet source-codes, which may be an indicator of the effect the leaking of botnet
source-codes has on the reported increase in the number of IoT botnet samples collected
daily by antivirus vendors. In the future, we plan to expand the proposed approach by
adding support for Android malware.

Author Contributions: Conceptualization, N.Z.; data curation, T.T.; formal analysis, T.T.; investi-
gation, T.T. and N.Z.; software, T.T.; methodology, T.T. and N.Z.; supervision, N.Z.; validation, T.T.;
visualization, T.T. and N.Z.; writing—original draft, T.T.; writing—review & editing, N.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: We have made the collection of behaviour profiles of the IoT botnet
samples used in this study available at https://drive.google.com/file/d/1VgYmrnLX0VSBoErUJk7
txJuR3MfeRBdV/view?usp=sharing (accessed on 18 December 2021).

Acknowledgments: We gratefully acknowledge the financial support by the University of Manchester
in this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Y.; Wang, H. Tracking Mirai variants. Virus Bull. 2018, 10, 1–18.
2. Paquet-Clouston, M.; Bilodeau, O.; GoSecure Inc. Attacking Linux/Moose 2.0 Unraveled an Ego Market. Available online:

https://www.botconf.eu/wp-content/uploads/2016/11/PR08-MOOSE-BILODEAU-PAQUET-CLOUSTON.pdf (accessed on 19
December 2021).

3. Elovici, Y.; Shabtai, A.; Breitenbacher, D.; Bohadana, M.; Mathov, Y.; Meidan, Y.; Mirsky, Y. N-BaIoT—Network-Based Detection
of IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

4. Secplicity. IoT Botnets Are Evolving—How Big Can They Get? Available online: https://www.secplicity.org/2018/02/20/iot-
botnets-evolving-big-can-get/ (accessed on 19 December 2021).

5. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Computer 2017, 50, 80–84. [CrossRef]
6. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Arbor, A.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Arbor,

A.; et, al Understanding the Mirai Botnet. Usenix Secur. 2017, 317, 54–61. [CrossRef]
7. McAfee. McAffee Labs Threat Report 06.21. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-

threats-jun-2021.pdf (accessed on 19 December 2021).
8. Trajanovski, T.; Zhang, N. An Automated and Comprehensive Framework for IoT Botnet Detection and Analysis (IoT-BDA).

IEEE Access 2021, 9, 124360–124383. [CrossRef]
9. Cozzi, E.; Graziano, M.; Fratantonio, Y.; Balzarotti, D. Understanding Linux Malware. In Proceedings of the 2018 IEEE Symposium

on Security and Privacy (SP), Francisco, CA, USA, 20–24 May 2018; pp. 161–175. [CrossRef]
10. Le, H.V.; Ngo, Q.D. V-Sandbox for Dynamic Analysis IoT Botnet. IEEE Access 2020, 8, 145768–145786. [CrossRef]
11. Dib, M.; Torabi, S.; Bou-Harb, E.; Assi, C. A Multi-Dimensional Deep Learning Framework for IoT Malware Classification and

Family Attribution. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1165–1177. [CrossRef]
12. Kawasoe, R.; Han, C.; Isawa, R.; Takahashi, T.; Takeuchi, J. Investigating behavioral differences between IoT malware via

function call sequence graphs. In Proceedings of the ACM Symposium on Applied Computing, Virtual Event, 22–26 March 2021;
pp. 1674–1682. [CrossRef]

13. Torabi, S.; Dib, M.; Bou-Harb, E.; Assi, C.; Debbabi, M. A Strings-Based Similarity Analysis Approach for Characterizing IoT
Malware and Inferring Their Underlying Relationships. IEEE Netw. Lett. 2021, 3, 161–165. [CrossRef]

14. He, T.; Han, C.; Isawa, R.; Takahashi, T.; Kijima, S.; Takeuchi, J.; Nakao, K. A Fast Algorithm for Constructing Phylogenetic
Trees with Application to IoT Malware Clustering. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2019; Volume 11953,
pp. 766–778. [CrossRef]

15. Bak, M.; Papp, D.; Tamas, C.; Buttyan, L. Clustering IoT Malware based on Binary Similarity. In Proceedings of the IEEE/IFIP
Network Operations and Management Symposium 2020: Management in the Age of Softwarization and Artificial Intelligence,
NOMS 2020, Budapest, Hungary, 20–24 April 2020. [CrossRef]

https://drive.google.com/file/d/1VgYmrnLX0VSBoErUJk7txJuR3MfeRBdV/view?usp=sharing
https://drive.google.com/file/d/1VgYmrnLX0VSBoErUJk7txJuR3MfeRBdV/view?usp=sharing
https://www.botconf.eu/wp-content/uploads/2016/11/PR08-MOOSE-BILODEAU-PAQUET-CLOUSTON.pdf
http://doi.org/10.1109/mprv.2018.03367731
https://www.secplicity.org/2018/02/20/iot-botnets-evolving-big-can-get/
https://www.secplicity.org/2018/02/20/iot-botnets-evolving-big-can-get/
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.1016/j.religion.2008.12.001
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf
http://dx.doi.org/10.1109/ACCESS.2021.3110188
http://dx.doi.org/10.1109/SP.2018.00054
http://dx.doi.org/10.1109/ACCESS.2020.3014891
http://dx.doi.org/10.1109/TNSM.2021.3075315
http://dx.doi.org/10.1145/3412841.3442041
http://dx.doi.org/10.1109/LNET.2021.3076600
http://dx.doi.org/10.1007/978-3-030-36708-4_63
http://dx.doi.org/10.1109/NOMS47738.2020.9110432

Future Internet 2022, 14, 6 17 of 17

16. Carrillo-Mondéjar, J.; Martínez, J.; Suarez-Tangil, G. Characterizing Linux-based malware: Findings and recent trends. Future
Gener. Comput. Syst. 2020, 110, 267–281. [CrossRef]

17. Qaiser, S.; Ali, R. Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. Int. J. Comput. Appl. 2018,
181, 25–29. [CrossRef]

18. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN Revisited. ACM Trans. Database Syst. 2017, 42, 1–21. [CrossRef]
19. Margolis, J.; Oh, T.T.; Jadhav, S.; Kim, Y.H.; Kim, J.N. An In-Depth Analysis of the Mirai Botnet. In Proceedings of the 2017

International Conference on Software Security and Assurance (ICSSA), Altoona, PA, USA, 24–25 July 2017; pp. 6–12. [CrossRef]
20. Unit42-Palo Alto Networks. Muhstik Botnet Attacks Tomato Routers to Harvest New IoT Devices. Available online: https://unit4

2.paloaltonetworks.com/muhstik-botnet-attacks-tomato-routers-to-harvest-new-iot-devices/ (accessed on 19 December 2021).
21. Sicato, J.C.S.; Sharma, P.K.; Loia, V.; Park, J.H. Vpnfilter malware analysis on cyber threat in smart home network. Appl. Sci. 2019,

9, 2763. [CrossRef]
22. Skuratovich, S. Defeating Sandbox Evasion: How to Increase Successful Emulation Rate in Your Virtualized Environment. Virus

Bull. 2018, 1–5. Available online: https://blog.checkpoint.com/wp-content/uploads/2016/10/DefeatingSandBoxEvasion-VB201
6_CheckPoint.pdf (accessed on 19 December 2021).

23. Abuse.ch. IoT Botnets Takedown Statistics. Available online: https://urlhaus.abuse.ch/statistics/#avg_takedown (accessed on
19 December 2021).

24. Hoang, D.K.; Tho Nguyen, D.; Vu, D.L. IoT Malware Classification Based on System Calls. In Proceedings of the 2020 RIVF
International Conference on Computing and Communication Technologies, RIVF 2020, Ho Chi Minh, Vietnam, 6–7 April 2020;
[CrossRef]

25. Cozzi, E.; Vervier, P.A.; Dell’Amico, M.; Shen, Y.; Bilge, L.; Balzarotti, D. The Tangled Genealogy of IoT Malware. In Annual
Computer Security Applications Conference; ACM: New York, NY, USA, 2020; pp. 1–16. [CrossRef]

26. Lingenfelter, B.; Vakilinia, I.; Sengupta, S. Analyzing Variation among IoT Botnets Using Medium Interaction Honeypots. In
Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, Las Vegas, NV,
USA, 6–8 January 2020; pp. 761–767. [CrossRef]

27. Bayer, Ulrich and Comparetti, Paolo and Hlauschek, Clemens and Krügel, Christopher and Kirda, E. Scalable, Behavior-Based
Malware Clustering. NDSS 2009, 9, 8–11.

28. URLhaus. Top Malware Hosting Networks. Available online: https://urlhaus.abuse.ch/statistics/ (accessed on 19 December 2021).
29. SystemTap. Available online: https://sourceware.org/systemtap/ (accessed on 19 December 2021).
30. Strace. Available online: https://man7.org/linux/man-pages/man1/strace.1.html (accessed on 19 December 2021).
31. TCPDump. Available online: https://www.tcpdump.org/manpages/tcpdump.1.html (accessed on 19 December 2021).
32. Church, K.W. Emerging Trends: Word2Vec. Nat. Lang. Eng. 2017, 23, 155–162. [CrossRef]
33. Thijs, B. Using neural-network based paragraph embeddings for the calculation of within and between document similarities.

Scientometrics 2020, 125, 835–849. [CrossRef]
34. De Boom, C.; Van Canneyt, S.; Bohez, S.; Demeester, T.; Dhoedt, B. Learning Semantic Similarity for Very Short Texts. In

Proceedings of the 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015, Atlantic, NJ, USA, 14–17
November 2015; pp. 1229–1234. [CrossRef]

35. Hao, J.; Ho, T.K. Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. J. Educ.
Behav. Stat. 2019, 44, 348–361. [CrossRef]

36. Angrishi, K. Turning Internet of Things(IoT) into Internet of Vulnerabilities (IoV): IoT Botnets. arXiv 2017, arXiv:1702.03681.
37. Scikit-Learn. Mean-Shift Clustering Algorithm. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.

cluster.MeanShift.html (accessed on 19 December 2021).
38. Scikit-Learn. Agglomerative Clustering Algorithm. Available online: https://scikit-learn.org/stable/modules/generated/

sklearn.cluster.AgglomerativeClustering.html (accessed on 19 December 2021).
39. Sebastián, M.; Rivera, R.; Kotzias, P.; Caballero, J. AVclass: A Tool for Massive Malware Labeling. Research in Attacks, Intrusions,

and Defenses; Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J., Eds.; Springer International Publishing: Cham, Switzerland,
2016; pp. 230–253.

40. Virustotal. Available online: https://virustotal.com (accessed on 19 December 2021).

http://dx.doi.org/10.1016/j.future.2020.04.031
http://dx.doi.org/10.5120/ijca2018917395
http://dx.doi.org/10.1145/3068335
http://dx.doi.org/10.1109/ICSSA.2017.12
https://unit42.paloaltonetworks.com/muhstik-botnet-attacks-tomato-routers-to-harvest-new-iot-devices/
https://unit42.paloaltonetworks.com/muhstik-botnet-attacks-tomato-routers-to-harvest-new-iot-devices/
http://dx.doi.org/10.3390/app9132763
https://blog.checkpoint.com/wp-content/uploads/2016/10/DefeatingSandBoxEvasion-VB2016_CheckPoint.pdf
https://blog.checkpoint.com/wp-content/uploads/2016/10/DefeatingSandBoxEvasion-VB2016_CheckPoint.pdf
https://urlhaus.abuse.ch/statistics/#avg_takedown
http://dx.doi.org/10.1109/RIVF48685.2020.9140763
http://dx.doi.org/10.1145/3427228.3427256
http://dx.doi.org/10.1109/CCWC47524.2020.9031234
https://urlhaus.abuse.ch/statistics/
https://sourceware.org/systemtap/
https://man7.org/linux/man-pages/man1/strace.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html
http://dx.doi.org/10.1017/S1351324916000334
http://dx.doi.org/10.1007/s11192-020-03583-6
http://dx.doi.org/10.1109/ICDMW.2015.86
http://dx.doi.org/10.3102/1076998619832248
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://virustotal.com

	Introduction
	IoT Botnet Behaviour
	IoT Botnet Operation
	Capturing IoT Botnet Behaviour

	Related Work
	The Proposed Approach
	Overview
	Obtaining IoT Botnet Samples
	Sandbox Execution and Analysis
	Creating Behaviour Profiles
	Clustering

	Findings and Discussion
	Dataset
	DBSCAN Parameter Tuning
	Results
	Comparison with Mean-Shift Clustering
	Comparison with Hierarchical Clustering
	Comparison with AVClass Classification

	Conclusions
	References

