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Abstract: The Internet of connected vehicles (IoCV) has made people more comfortable and safer
while driving vehicles. This technology has made it possible to reduce road casualties; however,
increased traffic and uncertainties in environments seem to be limitations to improving the safety
of environments. In this paper, driver behavior is analyzed to provide personalized assistance and
to alert surrounding vehicles in case of emergencies. The processes involved in this research are as
follows. (i) Initially, the vehicles in an environment are clustered to reduce the complexity in analyzing
a large number of vehicles. Multi-criterion-based hierarchical correlation clustering (MCB-HCC) is
performed to dynamically cluster vehicles. Vehicular motion is detected by edge-assisted road side
units (E-RSUs) by using an attention-based residual neural network (AttResNet). (ii) Driver behavior
is analyzed based on the physiological parameters of drivers, vehicle on-board parameters, and
environmental parameters, and driver behavior is classified into different classes by implementing
a refined asynchronous advantage actor critic (RA3C) algorithm for assistance generation. (iii) If
the driver’s current state is found to be an emergency state, an alert message is disseminated to the
surrounding vehicles in that area and to the neighboring areas based on traffic flow by using jelly
fish search optimization (JSO). If a neighboring area does not have a fog node, a virtual fog node is
deployed by executing a constraint-based quantum entropy function to disseminate alert messages at
ultra-low latency. (iv) Personalized assistance is provided to the driver based on behavior analysis
to assist the driver by using a multi-attribute utility model, thereby preventing road accidents. The
proposed driver behavior analysis and personalized assistance model are experimented on with the
Network Simulator 3.26 tool, and performance was evaluated in terms of prediction error, number
of alerts, number of risk maneuvers, accuracy, latency, energy consumption, false alarm rate, safety
score, and alert-message dissemination efficiency.

Keywords: clustering; driver behavior analysis; alert message dissemination; personalized assistance;
E-RSU; fog computing

1. Introduction

In recent years, the rapid development of intelligent transportation systems (ITS)
and the Internet of things (IoT) has contributed a lot to a fast-emerging technology called
“Internet of connected vehicles” (IoCV) [1]. Vehicles are connected with each other and
with road infrastructure for better transportation and to avoid complications from traffic
congestion and road accidents. Car crashes, head-on accidents, fires, and roll-on events
can be accurately detected with the assistance of on-board sensors that are deployed in
intelligent vehicles [2]. In the broad field of accident prevention and road safety, driver
behavior analysis is prominent since a large number of accidents occur due to a lack of
attention by drivers [3,4]. In the analysis of driver behavior, it is also necessary to consider
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traffic and junction characteristics to increase accuracy [5]. Edge-assisted road side units
(E-RSUs) play a vital role in monitoring vehicles [6]. Recently, 5G wireless networks have
permitted researchers to cover an enormous number of vehicles to collect real-time data
and then analyze the behavior of the drivers [7].

Additionally, current smart systems use alert generation modules in monitoring
systems to send immediate alerts to corresponding vehicles [8]. When we look back
at the research work on driver behavior, the researchers usually followed the practice of
analyzing past events collected from both vehicular and infrastructure communication
systems and evaluating the data to compute a safety score for drivers [9]. Moreover, a
minimal number of research papers have focused on personalized recommendations for
corresponding behaviors of drivers [10]. However, intelligent recommendations are still
made on-demand to the driver on the basis of actions the driver makes [11]. To make
such recommendations, vehicles, road side infrastructure, and smart wearable devices and
sensors worn by drivers must be used to collect information on each individual vehicle’s
driver [12].

Another main challenge with connected vehicles is the computation of data; vehicles
are often not efficient at computing data and thereby offload the task to the cloud [13].
These computations have to be performed at an ultra-low latency. The conventional cloud
computing technique cannot be used as it involves transmission delay, and this might cause
delayed decisions, which would result in congestion, traffic delays, and accidents [14]. To
overcome delays, the computation process has to be distributed to a number of fog nodes
in a decentralized manner [15]. These fog nodes are responsible for computing the data for
separate regions and sending only the result to the cloud to meet reliability challenges [16].
A fog node has a processing ability higher than that of E-RSUs.

Current advancements in artificial intelligence (AI) such as machine learning, deep
learning, and deep-reinforcement learning support massive real-time data processing
and decision making [17]. The clustering of vehicles in a network reduces complexity,
resulting in reduced time consumption [18]. The assistance provided to the driver should
be generated dynamically as traffic increases [19]. The driver should be provided with
prior assistance regarding lane changes in order to avoid risks [20,21]. To explore more
effective results, a specific choice of algorithm using AI is highly required.

The major aim of this research is to reduce road casualties in an environment by
connecting vehicles and by detecting driver behavior. Driver behavior is considered in order
to provide intelligent driving assistance to the driver. An alert message is disseminated
to the surrounding vehicles that are near a vehicle presenting risks. The behavior of the
driver is detected and categorized into several classes so as to assist the driver precisely.
The common research issues encountered in this area are:

• Heterogeneous data—To analyze the behavior of drivers, many types of information
are needed, including information on drivers’ physical states (drowsy, distracted),
vehicles’ on-board information (accelerating, braking), and environmental informa-
tion (road conditions, weather conditions). Processing such data dynamically in-
creases complexity.

• Uncertainties—in real-life scenarios, there are many uncertainties in the environment
that need to be considered in order to design an efficient assistance module.

• The proposed driver behavior analysis and personalized assistance model are designed
in such a way as to overcome these issues. The major objective of this research work
is to design a novel system for detecting driver behavior and providing intelligent
assistance. The sub-objectives are listed below,

• To minimize the computational overhead during driver behavior analysis.
• To minimize latency in forwarding alert messages.
• To minimize transmission delay in offloading and maximize the resource utilization of

fog nod
• To minimize the energy consumption of fog nodes



Future Internet 2022, 14, 12 3 of 29

The main focus of this research work is to provide personalized assistance to drivers
and to alert drivers of casualties around them as a step to preventing them from harm. The
major contributions of this work are listed below.

• Vehicles in the road environment are clustered by edge-assisted road side units (E-
RSUs) using multi-criterion-based hierarchical correlation clustering (MCB-HCC) [22]
in order to reduce the complexity in handling a large number of nodes. The informa-
tion about these vehicles is processed in an attention-based residual neural network
(AttResNet) [23] to classify the vehicles on the basis of mobility.

• The driver behavior of the above classified vehicles is analyzed for several drivers,
vehicles, and environmental conditions by implementing a refined asynchronous
advantage actor critic (A3C) Algorithm. In this process, the driver’s current state is
analyzed and classified into several classes such as drowsy, distracted, in an emergency,
speeding, bad pedaling, and bad steering.

• In case of emergency situations, alert messages are disseminated to surrounding vehi-
cles of the vehicle presenting a risk, which is performed via fog nodes using a jellyfish
search optimization (JSO) algorithm [24]. An alert message is also disseminated to
nearby optimal fog nodes, and in the case that there are no fog nodes, a virtual fog
node is created dynamically by using a constraint-based quantum entropy function.

• Personalized assistance is provided to the driver on the basis of the analyzed behavior
of the driver. Assistance is provided one or more times by utilizing a multi-attribute
utility model. This assistance facilitates in preventing road casualties. All instances of
assistance are stored in a cloud server for long-term assessment of driver behavior.

The rest of the sections in the manuscript are organized as follows. Section 2 shows the
literature survey of the previous works which are relatable to the proposed work. Section 3
explains the problem statement which is identified in the previous works. Section 4 repre-
sents the proposed work methodology with corresponding mathematical representations,
pseudocode and procedure, which is followed by simulation setup, experimental results
and comparative analysis between the proposed and existing works. Finally, Section 6
describes the conclusion and future work of the proposed research.

2. Related Work

An integrated method for overcoming the problem of road accidents occurring during
the transportation of dangerous goods was proposed in [25]. Driver behavior is analyzed
by analyzing eight indicators on the basis of the huge amount of data provided by the
operating vehicle networked control system. From that, three important indicators, (1) ac-
celeration and deceleration behavior, (2) over speed behavior, and (3) operation stability,
are introduced. The genetic algorithm-fuzzy-C mean clustering method (GA-FCM) is used
to classify 40 drivers on the basis of behavior parameters. In accordance with the results of
driving behavior, the drivers are analyzed on the basis of the indicators. Hence, the pro-
posed method combines statistical analysis and GA-FCM to analyze the behavior of drivers
in the transportation of dangerous goods. This will help the respective department train
high-risk drivers and thereby control accidents. However, only three indicators are focused
on briefly, which is not enough to classify the behavior of drivers, and the number of drivers
used for the real-time experiment of this method was not sufficient enough to analyze
driver behavior. In [26], the authors proposed a virtual soft sensor based on neuro-fuzzy
systems and principal component analysis. The authors proposed this sensor to eliminate
the need to install additional hardware in a vehicle, thereby reducing the cost of the vehicle.
On the basis of parameters such as speed, acceleration, and inertial measurements, driver
behavior is classified into three classes: drowsy, normal, and aggressive. The proposed
virtual sensor was validated by carrying out a test with five different drivers and vehicles
on two different types of road, that is highway and secondary roads, and the result showed
that the virtual sensor has better performance in classifying driver behavior. However,
there are only three classes to classify the behavior of drivers, which is not sufficient for
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differentiating driver behavior. The parameters used to classify driver behavior did not
include any health parameters, which play an important role in analyzing driver behavior.

The authors in [27] proposed a system for driver behavior analysis using a deep
convolutional neural network (DCNN) based on biological signals for real-time detection.
There are three modules used in the method. The first module is used to detect the behavior
of the driver, which is carried out by a Raspberry Pi 3 detached from the vehicle. The second
module is used to train the DCNN, and the third module is used to monitor and profile
driver behavior for supervision. Thus, the proposed system performs better than other
machine learning algorithms by analyzing driver behavior. However, the computations
are performed in the cloud, which increases latency and transmission delay. The feedback
given by this model is very limited, and no recommendations are given to the driver to
change behavior. In [28], the authors proposed an adaptive computation offloading method
(ACOM) as a framework for reducing the transmission delay and increasing the resource
utilization involved in offloading. To achieve this, a multi-objective evolutionary Algorithm
using a decomposition method is used. The algorithm provides D number of optimal
strategies to be chosen, in which the best strategy is obtained by normalizing the strategies
based on TOPSIS and MCDM. The performance of the obtained strategy was evaluated
for different parameters, and the result proved the efficiency of the proposed framework.
Nevertheless, the optimal strategy provided by the proposed method is not sufficient in
real-world scenarios because once an edge gets overloaded, it is of no use.

A mobile-based application for the analysis of driver behavior is provided in [29], and
it is used by getting inputs from a mobile camera, sensors deployed on the vehicle, and
audio input from the vehicle. The raw data of the inputs are tracked to find eye openness,
mouth openness, head yaw angle, head pitch angle, the vehicle’s position and to recognize
speech. Through this tracked information, the driver’s states of danger can be classified
into drowsiness, distraction, high pulse rate, drunk driving, aggressive driving, and stress.
Once the driver’s behavior is found to be in a dangerous state, recommendations are
generated and given to the driver. The proposed method was tested in real time, and it
enhanced driver safety and reduced the probability of road accidents. The limitations faced
in this work are that the proposed model will not be suitable in remote areas where mobile
connectivity can be disturbed. In addition, every time a new driver drives a car, he or she
has to install the application on their phone. In [30], the authors proposed an approach
to effectively increasing the spreading of information by deploying a latent edge with
high potential influence. The strategy is called the “latent-edge-influence strategy” (LEI).
Through this strategy, the highest potential influence at which an edge should be introduced
is calculated so that it will provide effective performance in spreading information. The
proposed method was compared with the degree-product strategy (DP) and eigenvector
centrality product (ECP). A monitoring and coaching strategy for reducing road accidents
caused by vehicles transporting heavy goods was proposed in [31]. Using this strategy,
the authors compared the vehicles of two companies, A and B, to calculate the increase in
performance by implementing the strategy. The time period for comparing the vehicles was
one year, in which the first eight months were considered as the baseline period in which
parameters such as harsh braking, harsh cornering, and over speeding were noted. The
next time period of four months was termed the intervention period. During this period,
Company A deployed both monitoring and coaching, whereas Company B deployed only
monitoring. By calculating the above-mentioned parameters during the intervention period
for both companies, it was proved that the proposed strategy performs better in reducing
road accidents and improving driver safety. However, the strategy uses only cameras to
detect when the driver is in a state of emergency, which will not be accurate. The parameters
used in this strategy will not be sufficient enough to differentiate the causes of accidents.
In addition, no real-time recommendations are given to the driver, which would be more
effective than coaching. In [32], the authors proposed a fuzzy cluster analysis based on
risk sensitivity and a judgment threshold for two different age groups of drivers. The risk
level was evaluated by integrating both data obtained for expert drivers and the drivers
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of the different age groups. Fisher discriminant analysis was used to classify drivers into
discriminant models. The analysis showed that the risk sensitivity and judgment threshold
are better for drivers of the younger age group, whereas the drivers of the elderly age
group ignore risks due to inefficient judgment of the threshold level. This showed that the
younger drivers adapted slowly to the driving simulation system. However, the analysis
was carried out with a low number of drivers; if it were performed under a real-world
scenario, the accuracy would be decreased, and the proposed model would not detect the
behavior of drivers, which would further affect the performance.

A hybrid convolutional neural network framework was proposed in [33] by combining
residual neural network 50, Inception version 3, and Xception. Transfer learning is used to
extract the features of drivers. These features are concatenated to obtain useful information.
The proposed framework is trained to ignore the non-distractive behavior of drivers. Ten
classes of typical driver behavior were tested, and the features were highlighted by using
class activation mapping. The result showed that the proposed framework was able to
detect distractions in driver behavior up to 97%, thereby reducing road accidents. The
proposed framework will detect only behavior indicating that drivers are distracted, but
apart from distractions, many factors cause road accidents. The proposed framework
also does not provide any recommendations to the driver. In [34], the authors proposed
a novel framework called “driver model adaptation” (DMA). A transfer learning-based
approach was developed to find the data of various drivers and to adapt the obtained data
to the dataset of a target driver. The name of this approach is dynamic time warping with
local procures analysis (DTW-LPA). Once the adaptation is completed, Gaussian mixture
regression is used to train the target driver’s model. The proposed model was validated
under various experiments with the data collected. The result showed that the proposed
framework performs well with more accuracy. It does not detect the behavior of each
driver; it uses only the data of other drivers to train the target driver model. It does not
provide any real-time recommendations to the drivers based on their behavior.

An assistant system was proposed in [35] that uses a bidirectional long short term
memory (Bi-LSTM) network to detect the turning behavior of a vehicle with derived
parameters such as lateral velocity, lateral acceleration, and heading angle and predicted
parameters such as lateral position, longitudinal position, speed, and acceleration of the
vehicle, which are predicted by using an online auto regressive integrated moving average
(ARIMA) algorithm. The next generation simulation (NGSIM) was used to validate the
proposed system, and the result showed that turning behavior was predicted at an accuracy
of 94% before initializing turning. However, the assistant system predicts only the turning
behavior of a driver, which will not reduce road accidents caused by other situations.
In [36], the authors proposed a driver behavior model based on the whale optimization
algorithm—restricted Boltzmann machine (WOA-RBM) method. A restricted Boltzmann
machine used in deep learning is used to mimic the behavior of a driver. The optimal
parameters for the RBM are determined by the whale optimization algorithm. Finally,
the output of the proposed method is used to control a vehicle by applying acceleration
and deceleration. The proposed driving model was tested and validated in MATLAB,
and the results showed that it performed better in prediction and had an accuracy of 90%.
Nevertheless, it assists only in acceleration and deceleration and does not provide any
assistance for improper handling of a vehicle. It also does not give any recommendations
to the driver based on their behavior.

A driving safety field (DSF) model was proposed in [37] to predict pedestrians and
to avoid the collision of vehicles and pedestrians. This model consisted of five blocks.
The first block is an input block that gathers information on pedestrians, vehicles, and
the road environment. The second block is for pedestrian trajectory prediction, in which
a dynamic Bayesian network (DBN) is used to predict the intention of pedestrians. The
third block is for vehicle trajectory prediction, in which the vehicle is assumed to travel at
a constant velocity and invariant yaw angle. The fourth block is used to assess risk, and
the fifth block provides a pedestrian risk value. A Monte-Carlo experiment was used to
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simulate the vehicle driving process, and the result showed that the proposed model could
be implemented in autonomous vehicles to make decisions for safe driving. However, it
does not predict the risk of collision caused by adjacent vehicles, which will also lead to
accidents, and it does not provide any recommendations to the driver.

The authors in [38] proposed an adaptive cruise control method for analyzing the
behavior of adjacent vehicles while lane changing to avoid collisions. First, parameters
such as the acceleration and velocity of an adjacent vehicle are estimated. After this, the
trajectory of the adjacent vehicle is predicted. Risk assessment and risk minimization are
carried out by the proposed method. The method was evaluated in a real-time situation,
and the performance of each stage of the method was analyzed. The result showed that the
method reduces collisions, thereby improving driver safety. However, it does not give any
recommendations to the driver based on speed, braking, and control of steering. In [39], the
authors proposed a risk prediction method used during lane changes. The physiological
information of the driver is obtained from sensors fixed on the driver. The hidden Markov
model (HMM) is used to reduce the driving risk with the information obtained from the
sensors. Physiological information such as ECG factors and eye movement factors are
evaluated before predicting the driver’s risk. The dynamic factors of vehicles such as
average speed and acceleration are also evaluated to reduce false input data. The proposed
method was tested in MATLAB, and the result showed that this method predicted the
driver’s risk more accurately. The Table 1 above represented the research gaps in the state-
of-the-art works in which parameters, Algorithm, and limitations of the existing works
are given.

Table 1. Research Gaps in Previous Works.

References Objective
Input Parameters Algorithm/Setup

Used
Features Extracted/

Working Limitations
Physiological Vehicular Environment

[25] Behavior
analysis × � ×

Genetic
algorithm-fuzzy-C

mean clustering
(GA-FCM)

Acceleration and
deceleration
Over speed
Operational

stability

Lack of consideration
of adequate

information results in
inefficient behavior

identification

[26] Behavior
analysis × � ×

Neuro-fuzzy
system with

principal
component

analysis (FIS-PCA)

Speed
Acceleration

Inertial
measurements

Driver is classified as
drowsy without

considering physical
information, which

increases false alarm
rate.

[27] Behavior
analysis � × �

Deep convolutional
neural network

(DCNN)

Heart rate
Blood pressure
Driver action

Feedback provided by
this model is very

limited, and latency is
high as processing is
performed in cloud.

[28] Edge
offloading - - -

Multi-objective
evolutionary

algorithm based
decomposition

(MOEA/D)

Generates optimal
solutions to

increase resource
utilization and
reduce delay

Not suitable for
large-scale, real-time

environment in which
increased computation
results in overloading.

[29] Behavior
analysis � � × Smartphone

mobile application

Forehead color
Head movements
Vehicle position

Speed
Speech input

This assistance gets
disturbed due to

connectivity problems
in remote areas, and

installation of
application is required

for new drivers.
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Table 1. Cont.

References Objective
Input Parameters Algorithm/Setup

Used
Features Extracted/

Working Limitations
Physiological Vehicular Environment

[30] Edge
offloading - - -

Latent-edge-
influence strategy

(LEI)

Effective
performance in

spreading
information based
on SIR information

Potential influence
calculated for

deployment of latent
edge is not sufficient

as it does not consider
communication delay.

[31] Driver
monitoring × � � Analysis of

variance (ANOVA)

Harsh breaking
Harsh cornering
Over speeding

Harsh conditions
cannot be identified

accurately as this
approach uses only

camera sensor.

[32] Risk
evaluation × � × Fuzzy cluster

analysis (FCA)

Velocity
Brake pedal

Wheel steering
Longitudinal
acceleration

Risk assessment is
based on age group

only; lack of
consideration of
driver’s physical

information provides
inaccurate results.

[33] Behavior
analysis × � ×

Hybrid
convolutional

neural network
framework

combining residual
neural network 50,
Inception version 3,

and Xception

Face expressions
Eye movement
Hand gestures
Speech features

Distracted behavior of
driver is detected

using only image and
audio inputs, but there

are other physical
factors that contribute

to distraction.

[34] Driver model
analysis × � ×

Dynamic time
warping with local
procures analysis

(DTW-LPA)

Steering angle
Front wheel angle

Driver model
adaptation technique

does not consider
driver behavior

during uncertain
situations

[35] Behavior
analysis × � ×

Auto regressive
integrated moving
average (ARIMA)

Lateral velocity
Lateral acceleration

Heading angle

This system predicts
only turning intention,

which will not fully
reduce road casualties.

[36] Behavior
analysis × � �

Whale
optimization

algorithm-
restricted

Boltzmann
machine

(WOA-RBM)

Road geometry
Weather condition

Speed
Energy

Model is based on
acceleration and

deceleration of vehicle
but does not consider
steering properties.

[37]

Collision
avoidance
and risk

assessment

× � ×
Advanced

adaptive cruise
control system

Position
Speed

Provides collision
control and risk

assessment only in
cut-in situations.

[38]

Behavior
analysis and

risk
prediction

� � × Hidden Markov
model (HMM)

ECG data
Eye movement

data
Vehicle speed and

dynamics

Risk prediction
accuracy does not

consider traffic
conditions, which
reduces accuracy.

3. Problem Statement

Driver behavior analysis and vehicle motion prediction are the major aspects of road
safety provisioning. Many research works have been focused on road safety and accident
prevention for Internet of connected vehicle (IoCV) environments. However, the existing
work focus on either behavior analysis or motion prediction for accident detection. In
particular, driver behavior is analyzed only by detecting vehicle parameters and road
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information. Recommendations to the driver based on their behavior are not provided
accurately, and there are more delays. Additionally, the following research problems in
driver behavior analysis are encountered.

• High false-alarm rate: Due to limited consideration of parameters from the driver and
surroundings, the prediction of accidents is not accurate and leads to high traffic con-
gestion in both urban and rural areas and re-routing of nearby vehicles. For accurate
driver-behavior detection, driver health parameters (pulse rate, EEG rate, respiration
rate, and heart rate), vehicle-motion-detection parameters (speed, longitudinal acceler-
ation, yaw angle rate, gyroscope, and magnetometer), and surrounding factors (traffic
density, accidents, weather conditions, and pedestrians) are required. Lack of these
important factors affects accuracy.

• Lack of optimal assistance for drivers: Recommendations are provided to the driver
only on the basis of vehicle motion detection, which is not sufficient enough to assist
drivers. The state of driving is not analyzed to give recommendations to drivers. To
overcome this, driver states such as drowsiness, distraction, and emergency should
be detected.

• High latency: In the existing works, latency is observed in two fields. Computing
tasks in a cloud environment increases time consumption and thereby increases the
probability of accidents occurring. Even when computations are carried out in an edge
server, the higher number of vehicles in a real-time scenario makes it time consuming.

A clustering method for grouping vehicles on the basis of behavior was proposed
in [40]. Integrating a deep learning algorithm with clusters, the authors proposed a location
prediction algorithm to localize vehicles in the future. Roads are considered as small
portions to easily locate vehicles; hence, long-term predictability is possible. Stacked auto-
encoding is used to predict the location of vehicles, which are mapped to the road. The
result of a simulation showed that the proposed method is accurate in prediction. It can
help vehicles select better routes and reduce traffic congestion. The major problems faced
in this research work were:

• Clustering can be performed effectively, however, if the number of samples increases,
scaling issues will occur.

The stacked auto-encoder may work perfectly with a training set but fail miserably
when samples run out. It is more sensitive to input errors different from those in the training
set, which could cause massive errors in an auto encoder, and it might have to be retrained
from scratch. It focuses only on the quantity of information rather than the quality.

Research solutions: The efficiency of the clustering can be improved by using multi-
criterion-based hierarchical correlation clustering (MCB-HCC). AttResNet is used to focus
on the quality of the information and to avoid retraining the network.

The authors in [41] proposed an offloading method for carrying out the computations
of connected vehicles at an ultra-low latency by deploying multi-access edge computing
servers along with road side units (RSU’s). The selection of MEC servers by fast moving
vehicles is carried out by a deep Q learning algorithm, which will solve the frequent
handover problems. The centralized management of the vehicular network is taken care of
by a software-defined network.

The result of a simulation showed that the proposed method has better performance
and adaptation than the older offloading methods. The issues faced in this paper were
as follows.

• When higher requirements are put forward for timely task processing, which involves
a large number of computations, task offloading faces obstacles.

• Even though the offloading is performed with ultra-low latency, the offloading quality
(i.e., storage, deadline delay constraints, and energy efficiency) is not good and should
be improved.

• Lack of environmental factors leads to mobile edge server failure, so offloading accu-
racy is decreased.
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Research solutions: Physical and virtual fog deployment in IoCV environments can
reduce response time and latency. The deployment of servers for the highest potential
influence will increase the quality of offloading.

A driver behavior model that analyzes the behavior of drivers was proposed in [42]. It
measures information such as vehicle data, environmental data, and socio-demographic
data. A Gaussian mixture model-universal background model (GMM-UBM) is used to
construct an individual model for each drive to store individual behavior profiles. The
drivers are given scores based on an analysis performed by the model. The scores are
given with respect to the score of the safest driver, which is considered from the historical
records of the drivers or by calculating the average normal distribution of all the drivers.
Based on the scores, the drivers will get recommendations to mimic the behavior of the
safest driver. Through this method, risky drivers can adopt better driving behavior, thereby
reducing the risk of road accidents. However, this method has several problems, which are
mentioned below.

• A different level of connectivity for longer tests with more vehicles within other
networks cannot be calculated.

• The data library is not sufficient because it does not have more trajectory data in
addition to other types of data describing driver situations, particularly weather
conditions and driving behavior, and real-time updating of the data library should
be implemented.

• The health parameters of drivers are not considered, and they are important in emergencies.

Research solutions: Driver behavior can be analyzed by considering driver health
parameters, vehicle motion detection parameters, and surrounding factors. The driver
analysis is performed by a refined asynchronous advantage actor critic (A3C) algorithm.
An intelligent driver assistant was proposed that accompanies the driver by providing
real-time audio-visual alerts in [43]. The proposed system uses both road accident risk map
analysis and on-board telemetry, which are integrated based on fuzzy logic. The on-board
telemetry system monitors the driver by collecting data such as speed, bad pedaling, and
bad steering. The proposed system analyzes a certain amount of accident data through
various parameters and estimates the road risk level, thereby identifying which road is
riskier than the other. Through this proposed method, the efficiency of the driver gets
improved. The drawbacks of this approach are below.

The assistance given by the car is very limited as it does not give any real-time warnings.

• Regarding drivers not only having the risk of an accident for a particular road section
but also sub-section or intersection, such details are not given.

• Environment characteristics such as weather conditions are not observed in the road
accident risk map analysis but do have an impact on road accidents

Research solutions: Personalized assistance can be provided in real-time on the basis
of the current state of the driver. Assistance is provided one or more times through a multi-
attribute utility model. This model is accurate and reduces the latency in giving assistance.

A beaconless approach for data communication between two vehicles was proposed
in [44] to overcome the wastage of bandwidth caused by beacon packets. The packets
to be transmitted are rescheduled on the basis of the forwarding probability, which is
decided by factors such as distance, angular orientation, moving direction, and buffer
delay. Among the rescheduled packets, the highest priority packet is transmitted first.
Hence, the rebroadcasting of packets is saved. The results of a simulation showed that the
proposed system is better in performance metrics such as reachability and average delay.
This research work has disadvantages as follows.

• Fuzzy logic is not always accurate; hence, the results are based on assumption. This
increases the number of rules for each vehicle to check to make decisions, which is
time consuming for the vehicle.

• If there are no neighboring vehicles, the data packets are sent to road side units, and
selfish nodes should be identified to eliminate unnecessary packet drops.
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• Research solutions: The jellyfish search optimizer can be used to select risky vehi-
cles, which will increase the accuracy. All alert messages are stored in the cloud for
further assistance

4. Proposed Work

In this research work, we concentrate on driver behavior analysis, generating alert
messages to the surrounding vehicles, and also assisting the driver. For that, a novel three
layered architecture for driver behavior analysis and a personalized assistance system are
designed as shown in Figure 1. The proposed work is organized in three layers as follows.

• Layer 1 (connected vehicles): This layer consists of intelligent connected vehicles that
have onboard sensors to collect information such as speed, longitudinal acceleration,
yaw angle rate, gyroscope information, and magnetometer information. The drivers
inside the vehicles are deployed with smart wearable sensors to gather information
such as pulse rate, EEG rate, respiration rate, and heart rate. The collected data are
sent to the upper layers through communication technologies. Layer 1 also includes
edge-assisted road side units (E-RSUs) to speed up the process.

• Layer 2 (fog computing): This layer consists of distributed fog nodes, which are
responsible for monitoring and handling separate regions in Layer 1. The nodes are
connected to an E-RSU and have a computation ability greater than it.

• Layer 3 (cloud server): This is the uppermost layer in the architecture and consists of a
cloud server that continuously collects and maintains the information provided by
Layer-1 and Layer-2 devices.

All of these layers are combined and work to analyze driver behavior and provide
personalized assistance to the driver. For that, this work presents multiple contributions
that are explained as follows.

4.1. Cluster-Based Vehicle Motion Detection

In IoCV, vehicles are connected to each other through V2V communication. To dif-
ferentiate each vehicle, each has a unique vehicle ID. Similarly, the E-RSU for each road
segment have their own unique ID. Roads are considered as road segments to extract the
geographical information accurately. The vehicles in an environment are represented as
V = {V1, V2, V3 . . . Vn}. Vehicles travel on the road for a particular time period, and E-RSUs
that the vehicle passes are R= {R1, R2, R3 . . . Rn}. This information, along with factors
such as velocity, speed, latitude and longitude, and the moving direction of the vehicle, are
used to form non-overlapping clusters of vehicles from which vehicles will be classified
on the basis of mobility. The clustering is performed by E-RSU using MCB-HCC in which
the correlation between two vehicles is determined by the distance of correlation. This
distance is computed on the basis of the dimensionality of correlation of each vehicle. The
covariance matrix HV of vehicle V1 can be formulated as follows.

HV1 =
1∣∣NNj(V1)

∣∣ · ∑
Q∈NNj(V1)

(
Q−Q

)
·
(
Q−Q

)T (1)

Here, j belongs to a set of vehicles, and HV1 of vehicle V1 with respect to j is created by
the j nearest neighbor of V1

(
NNj(V1) ). Q Is the centroid of NNj(V1). The dimensionality

of correlation µV1 of vehicle V1 can be computed as follows.

∑u
i=1 egi

∑d
i=1 egi

≥ γ (2)

Here, u is the lowest number of eigenvalues egi, and γ refers to the percentage of the
total variance. The matrix of correlation similarity is represented as follows.

ŜV1 = EV1B̂V1ET
V1 (3)
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In Equation (3), EV1 denotes the eigenvector matrix of vehicle V1 and B̂V1 is the
eigenvalue matrix formed by the following

êgi =

{
0, i f i ≤ µV1
1, otherwise

(4)

The local distance of correlation of vehicle V1 to vehicle V2 can be formulated as follows.

locDV1(V1, V2) =
√
(V1−V2)T ·ŜV1·(V1−V2) (5)

Here, locDV1(V1, V2) is the Euclidean distance between V1 and V2, in which ŜV1 is
taken as weight. However, locDV1(V1, V2) is equal to the distance between vehicle V2 and
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the correlation hyperplane of the neighbors of V1. If V2 is present in the hyperplane of V1,
then we have the following.

locDV1(V1, V2) = 0 (6)

The dimensionality of correlation between two vehicles V1 and V2 is indicated as
µ(V1, V2), and the distance of correlation between two points, V1 and V2, is denoted
as follows.

CD(V1, V2) = (µ(V1, V2), D(V1, V2)) (7)

Algorithm 1: Distance of correlation

Initialize Vehicles (V)
Determine Covariance matrix HV
Compute dimensionality correlation of V1 and V2
Calculate B̌V1 from êgi ;
Eigenvector matrix of V1 be EV1;
The dimensionality of correlation of V1 is µV1;
Calculate B̌V2 from êgi ;
Eigenvector matrix of V2 be EV2;
The dimensionality of correlation of V2 be µV2;
Compute locDV1(V1, V2)// Euclidean distance
For each strong eigenvector V2i ∈ EV2do

If V2i
TV2i −V2i

T EV1 B̌V1ET
V1V2i > ∆2 then

Adjust (EV1, B̌V1, V2i , µV1);
µV1 = µV1 + 1;

For each strong eigenvector V1i ∈ EV1 do
If V1i

TV1i −V1i
T EV2 B̌V2ET

V2V1i > ∆2 then
Adjust (EV2, B̌V2, V1i , µV2);
µV2 = µV2 + 1;

CD(V1, V2) = (µ(V1, V2), D(V1, V2))
CD = max(µV1, µV2);
Return (CD, Deucid(V1, V2));

The Algorithm 1, is for computing the correlation distance between two vehicles V1
and V2 is described in, in which the eigenvalue matrix, dimensionality of correlation,
and eigenvector matrix of both vehicles are computed to derive the distance of corre-
lation CD as output. Computation of correlation distance to articulate the relationship
between the behaviors of the two vehicles to form clusters. The higher the value of
CD, the more the vehicles are related, which means that V1 and V2 can form a cluster.
CD(V1, V2) ≤ CD(Va, Vb) is possible when the following condition is satisfied.

µ(V1, V2) < µ(Va, Vb). (8)

This means that the dimensionality of correlation of V1 and V2 should be lower than
the dimensionality of correlation of Va and Vb.

µ(V1, V2) = µ(Va, Vb), D(V1, V2) ≤ D(Va, Vb) (9)

Here, D(V1, V2) and D(Va, Vb) represents the distance between respective vehicles.
The reachability of correlation can be expressed as follows.

CRλ(Vn, V1) = max(CD(Vn, Vm), CD(Vn, V1)) (10)

Here, CRλ(Vn, V1) denotes the reachability of vehicle V1 from Vn. Vm is the λ nearest
neighbor of Vn. The pseudo code for MCB-HCC is provided above from which the vehicles
are formed as a cluster.
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Pseudo code: MCB-HCC (=, j, λ, γ, ∆)

For each V1 ∈ = do
Compute B̌V1, EV1;

// queue priority qp is arranged to CRλ

For each V1 ∈ = do
V1.CR = ∞;
Insert V1 into qp;

While qp 6= φ do
Vnqp.next();
Vm λ nearest neighbor of Vn;
For each V1 ∈ qp do

new cr = max(CD(Vn, Vm), CD(Vn, V1));
qp.update(V1, new_cr );

The information obtained from the clusters of vehicles is used to train AttResNet.
These features are represented as ( f1; . . . .; fz) which can be formulated as follows.

fwhole = [ f1; . . . .; fz] (11)

The equations can be computed as follows.

ε = ρ(B fwhole + w) (12)

ϑ = ε⊗ fwhole
= [at1 ∗ f1; . . . ; atz ∗ fz]

(13)

Here, B and w are weights, ρ indicates a sigmoid function, and ⊗ denotes feature-wise
multiplication. However, ϑ indicates a weighted vector that is let into the regression layer
for the purpose of mobility prediction. Here, the sigmoid function is utilized to achieve
higher performance. Figure 2 depicts the structure of AttResNet, which consists of an
attention layer, noise layer, dense layer, residual layer, and drop-out. In the attention
module, the attention value (atv) depicts the importance of a feature ( fv) from the available
features ( fwhole). The normal distribution of noise in the noise layer is N(0, 0.04). Over-
fitting is eliminated by utilizing the drop-out layer. The dense layer uses SELU activation,
which can be expressed as follows.

SELU(p) = δ

{
p, i f p > 0
εep − ε i f p ≤ 0

(14)

The loss function for the purpose of training the model can be formulated as follows:

L =
1
N

N

∑
v=1

(qv − q̂i)
2 + γ

M

∑
u=1

(θu)
2 (15)

Here, the total number of samples is N. The true classification value is denoted as q,
and the predicted value is denoted as q̂.

The AttResNet model predicts the motion of a vehicle not only by simply classifying
vehicles but by interacting with the features by inferring the complexity. From a deep
analysis, E-RSU classifies vehicles on the basis of mobility into three classes: high moving,
medium moving, and safe moving. Then, this data are set to Layer 2 for further analysis.
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4.2. Driver Behavior Analysis and Prediction

Make a decision regarding alert generation and personalized assistance. The A3C
Algorithm takes heterogeneous data of input such as pulse rate, EEG rate, respiratory
rate, and heart rate, which are collected from smart wearable sensors. These inputs are
normalized to reduce the redundant data and the normalized data are considered for
analysis of driver behavior. In addition, considering vehicle information such as speed,
longitudinal acceleration, yaw angle rate, position, and moving direction from on-board
sensors and surrounding factors such as traffic density, accidents, and weather condition.
These factors are taken as state (ξ) attributes for which the driver’s current state, i.e., drowsy,
distracted, in an emergency, speeding, bad pedaling, and bad steering, is detected as an
action (∀). The current state is accurately detected by achieving the optimal policy. The
proposed Algorithm consists of two entities, an actor network and critic network. The actor
network focuses on achieving the optimal policy, whereas the critic network criticizes the
performance of the actor network to increase its efficiency. The actor network is represented
as πθ(∀|ξ) , and the critic network is expressed as Cπ

φ (ξ), in which φ is a parameter of the
critic network. The approximated Q function can be formulated as follows:

Qπ(ξ, ∀) ≈ $′ + ζCπ
(
ξ ′
)
≈ $′ + ζCπ

φ

(
ξ ′
)

(16)

Here, $ is the reward function for each action taken by the actor network, ξ ′ indicates
the next state, and ζ is the discount factor. The advantage function can be formulated
as follows.

ADπ(ξ, ∀) = Qπ(ξ, ∀)− Cπ(ξ) ≈ $′ + ζCπ
φ

(
ξ ′
)
− Cπ

φ (ξ) (17)

Though A3C is a policy gradient approach, the critic network is trained on the basis of
the value-based approach, which can be represented as follows.

Once the E-RSU classifies vehicle into high moving and normal moving, the fog node
triggers the A3C Algorithm to determine the current state of the driver in order to:

Cπ(ξ) = E∀∼π(∀|ξ)Eξ ′∼p(ξ ′ |ξ,∀)
[
$′ + ζCπ

(
ξ ′
)]

(18)
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The target value is computed for each update by utilizing present approximation,
which can be expressed as follows.

x = $′ + ζCπ
φ

(
ξ ′
)

(19)

The pseudo code for the proposed A3C Algorithm is presented below, in which the
working process for a single step is explained in a brief manner.

Algorithm A3C: Pseudo code

C∗φ − critic network, πθ − actor network, η − critic scaling loss, β− batch size, SGD optimizer
Randomly initialize φ, θ;
Utilize π(θ) to obtain roll-out size of β;
Advantage estimation is computed for each transition (tr ) using Equation (17)
Target formulation using Equation (19)
Critic loss calculation:

L = 1
β ∑

tr

(
x(tr)− Cπ

φ

)2

Critic gradient computation:
∇critic = ∂L

∂φ

Actor gradient computation:
∇actor = 1

β ∑
tr
∇θ logπθ(∀|ξ)ADπ(tr)

Calculate gradient descent using ∇actor + η∇critic

Table 2 represents the normal range of input parameters for the purpose of driver
behavior analysis and detection, which are used to classify the current state of the driver.
For instance, if the EEG rate of the driver is below 8 Hz, then the driver is found to be in
drowsy state; a variation in the physiological features of the driver results in an emergency
state being detected, the state of distraction is detected with the help of a camera installed
inside the vehicle. Speeding is detected from vehicle speed with respect to traffic conditions.
Bad pedaling refers to improper usage of the accelerator and brakes, which can be detected
from the angle measured from the yaw angle rate. Likewise, these parameters contribute
to the detection of the driver’s current state. Driver behavior is analyzed in a periodical
manner having a small interval of time. Figure 3 depicts the working of the A3C algorithm
for the purpose of analyzing driver behavior. The states are given as input to the A3C
algorithm to provide output with six types of classes in which drowsiness occurs due to
continuous driving for a long period. Drivers are distracted due to abnormal activities or
any events (i.e., accidents) occurs on the road. Partial conscious driving results in speeding,
bad steering, and bad pedaling. Emergency situations are identified based on speed and
steering behavior.

Table 2. Input Parameters.

Feature Type Feature Name Range

Physiological Pulse rate 50–110 (ppm)
EEG rate 8–13 Hz

Respiratory rate 12–20 (bpm)
Rhythm Yes
Q wave 0.15

ST elevation 0.13
ST depression 0.16

Vehicular Speed 40–80 km
Longitudinal acceleration 0.1–0.22 m/s2

Yaw angle rate 20
◦
/s–27

◦
/s

Position (Latitude, Longitude)
Moving direction (North, South)

Environmental Traffic density 15 vehicles/Km
Accidents 4 incidents till now

Weather condition Sunny
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4.3. Alert Message Dissemination for Selective Regions

The decision to disseminate alert messages is based on the current state of the driver,
which is analyzed as the driver behavior [45]. The messages are disseminated to relay
vehicles by implementing the JSO Algorithm on the variation in the normal range of
longitudinal acceleration. Bad steering refers to inappropriate usage of steering, which is
detected by sudden changes in the orientation of the basis of mobility, moving direction,
and mutual distance. For all selected vehicles, a fog node sends an alert message to protect
the environment. Further, the algorithm is used to detect the optimal fog node closer to the
location that is in need of this information to alert the region. The jellyfish search works
similar to the nature of jellyfish, which select a location for hunting food on the basis of
quantity. Alert messages are disseminated on the basis of the direction of the corresponding
risky vehicle, which is found as follows.

md =
1

nv
∑ mdi =

1
nv

∑(l∗ − atli) = l∗ − atσ (20)

Here, nv is the total population around the vehicle; l∗ is the current best location, at
denotes the attraction factor, and σ denotes the mean location of all vehicles. The difference
between l∗ and σ is dl, which can be formulated as follows.

dl = δ× α× r f (0, 1) (21)

Here, the distance of ±α δ is formed as the region of likelihood that messages will be
disseminated, in which α refers to the standard deviation and can be expressed as follows.

α = randλ(0, 1)× σ (22)

Therefore,
dl = δ× r f (0, 1)× rλ(0, 1)× σ (23)
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This can be modified as follows.

dl = δ× r(0, 1)× σ (24)

where
at = δ× r(0, 1) (25)

Hence,
md = l∗ − δ× r(0, 1)× σ (26)

The new position of each jellyfish is computed as follows.

li(t + 1) = li(t) + r(0, 1)×md (27)

Equation (30) can be modified as follows.

li(t + 1) = li(t) + r(0, 1)× l∗ − δ× r(0, 1)× σ (28)

Here, the distributive coefficient δ > 0 is related to md. The JSO performs two types of
dissemination; one is passive, and the other is active. In passive dissemination, a message
is disseminated only to vehicles in that particular cluster. In active dissemination, the
message is disseminated to other vehicles on the basis of objective functions. The update
location function of passive dissemination can be formulated as follows.

li(t + 1) = li(t) + ρ× r(0, 1)× (Lu − Ll) (29)

Here, Lu refers to the upper limit, and Ll refers to the lower limit. The motion
coefficient ρ > 0 is linked to the motion of vehicles. In active dissemination, a fog node
selects another relay fog node to disseminate messages to the vehicles in order to alert the
vehicles about a risk. A fog node q is selected as the relay node only if the risky vehicle
moves closer to its region. The exploitation of the search space can be represented as,

s = li(t + 1)− li(t) (30)

where,
s = r(0, 1)× dir (31)

dir =
{

lq(t)− li(t) i f f (li) ≥ f
(
lq
)

li(t)− lq(t) i f f (li) < f
(
lq
) (32)

Therefore,
li(t + 1) = li(t) + s (33)

Here, the objective function of l is indicated as f . The switch between passive and
active dissemination is controlled by a control mechanism. Initially, passive dissemination
is carried out, and after a threshold time, active dissemination is started. The control
mechanism comprises two values, i.e., constant Co and control function Ct, which takes a
value between 0 and 1. Control function Ct can be formulated as follows.

Ct =

∣∣∣∣(1− t
maxtimes

)
× (2× r(0, 1)− 1)

∣∣∣∣ (34)

Vehicles are initialized by using a logistic map and can be represented as follows.

li+1 = ϑli(1− li) (35)

The boundary constraint for the selection of relay nodes can be formulated as follows.{
l′ i,dim = (li,dim − Lu,dim) + Ll(dim), i f li,dim > Lu,dim
l′ i,dim = (li,dim − Ll,dim) + Lu(dim), i f li,dim < Ll,dim

(36)
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Here, li,dim is the location of the ith vehicle in dim, which is updated as l′ i,dim once
the boundary constraint is satisfied. If there is no fog node in the region to be alerted, a
virtual fog node is deployed through a constraint-based quantum entropy function to alert
the vehicles in that region. The constraint for the deployment of the virtual fog node is
expressed as follows.

F(p|q)$
def
= F(pq)$F(q)$ (37)

where p and q are probabilities of entropy measures of fog deployment, and $ represents
the reward function of each virtual fog deployment. By doing so, the alert messages are
disseminated to the surrounding vehicles and to the vehicles in the nearest area to optimize
the traffic flow. Figure 4 illustrates the overall flow of alert message dissemination to the
relay vehicles.

4.4. Tri-State-Aware Personalized Assistance

Each individual driver is precisely assisted on the basis of their behavior in order to
avoid dangerous situations. The precise assistance is based on the past, present, and future
behavior of the driver. The vehicle’s current location from the GPS present in the on-board
system is used for generating precise recommendations. For instance, if the driver’s current
state is found to be drowsy, then the location of the vehicle is obtained to assist the driver
in taking a break at a nearby hotel or coffee shop. In the case that the vehicle is located in a
remote area and there are no nearby locations, the recommendation will be to take a short
break or to have a short nap. Assistance is provided one or more times in accordance with
the current state of the driver with the multi-attribute utility model.

For example, if the current state of the driver is detected as drowsy and distracted, the
model will assist, such as recommending having a cup of coffee and driving attentively.
These recommendations are provided through the audio system of the vehicle; thus, the
driver will be aware thereby preventing road accidents. The proposed model is significant
in decision making in which the precise recommendation is provided based on the number
of attributes in a certain period of time. This decision making is carried out to overcome
false recommendations given under uncertain conditions. Here, recommendations are
provided in both certain and uncertain situations. The utility function that represents
the state is calculated for all attributes (a), and a decision regarding a recommendation
is provided by leveraging the additive independence property which can be expressed
as follows.

a(y1, y2, . . . , yn) = a1(y1) + a2(y2) + . . . + an(yn) (38)

Here, n = 1, 2 . . . 6 indicates the number of attributes, and the expectation (E) of
obtaining assistance based on attributes can be represented as follows.

E[a(y1, y2, . . . , yn)]= E[a1(y1)] + E[a2(y2)] + . . . . + E[an(yn)] (39)

Preference toward assistance for n number of attributes can be obtained as follows.

a(y1, y2, . . . , yn) =
n

∑
i=1

hiai(yi) (40)

Here, hi is the constant of normalization for normalizing a and ai in the range of
(0, 1). This assistance, along with the driver’s preference and style, will get stored in the
cloud for more accurate assistance. This is further used to update the A3C algorithm and
AttResNet model.
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5. Experimental Results

In this section, an experimental analysis of the proposed driver behavior analysis and
personalized assistance (DBA-PA) is carried out. It comprises several sub-sections, namely
simulation setup, use case, comparative analysis, and research highlights. The potentiality
of the proposed research work in improving road safety and reducing road accidents is
analyzed in an elaborative manner.

5.1. Simulation Setup

The proposed DBA-PA model was experimented on with an integration of simulation
tools, that is, a simulation of urban mobility (SUMO) version 0.19.0 which is a traffic
simulation based on microscopic, all the information such as number of the lane, position
etc.., are simulated using SUMO [46] and of an objective modular network (OMNET++)
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version 4.6, in which the prior tool is used as a traffic simulator and the latter tool is used
as a network simulator. The SUMO tool is an open-source environment in which any
one can implement and run their own algorithms, there are several outputs are generated
for every execution of simulation. The main reason of taking SUMO tool is, it extends
simulation model to consumption of fuel, and emission of noise model which supports
SUMO for dense traffic scenarios. The OMNET++ also an open-source simulation time
used for modeling of network which exploits discrete C++ simulator. The OMNET is
reusable simulation tool and also construct network in hierarchical form that also allows
simulations based on embeddings, the embeddings improve the memory management
capability. The experiment was carried out by constructing a VANET network with one
cloud node, four fog nodes, four E-RSU nodes, and one hundred vehicles. Table 3 presents
the simulation parameters used in the experiment.

Table 3. Simulation Parameters.

Parameters Description

Network parameters

Area of simulation 2450 * 2450 m
Simulation time 400 s

Number of cloud nodes 1
Number of fog nodes 4
Number of E-RSUs 4
Number of vehicles 100

Mobility model Random way point
Range of transmission 210–260 m

Type of traffic Traffic control interface model
Total number of packets 8000 (approx.)

Size of packet 512 bytes
Transport protocol TCP

Rate of transmission 250 Mbps

Algorithm Parameters

MCB-HCC

j 20
λ 20
γ 0.85
∆ 0.05

AttResNet

N 0.04
Optimizer Adam

β1 0.91
β2 0.993
ε 10−8

Learning rate 0.0001
Drop rate 0.2
Batch size 32

A3C

Discount factor 0.97
Optimizer Stochastic gradient descent
Buffer size 5 × 104

Learning rate 1 × 10−4

Batch size 32
Soft update factor 1 × 10−3

JSO

nv 100
maxiter 10,000
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5.2. Comparative Analysis

In this sub-section, the proposed DBA-PA model is evaluated through an extensive
comparison of the proposed model with other existing approaches in terms of motion
prediction error, number of alerts, number of risk maneuvers, vehicle-motion-detection
accuracy, driver-behavior-detection accuracy, assistance accuracy, latency, false alarm rate,
safety score, and efficiency of alert message dissemination.

5.2.1. Impact of Motion Prediction Error

The motion prediction error refers to the error rate that emerges in predicting the
motion of moving vehicles. Figure 5 is a comparison of the motion prediction error of
the proposed DBA-PA model and DMPC [2] and TIP [35]. The motion prediction error
increased as the number of moving vehicles increased. The motion prediction accuracy
of the proposed model was high due to the implementation of MCB-HCC, in which the
vehicles are clustered by the E-RSUs, which reduces the complexity in computation of the
motion prediction process carried out by the AttResNet. The existing approaches lack in
scalable computation of motion prediction.
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5.2.2. Impact of Number of Alerts

The assistance to the driver is to be provided whenever necessary, but improper
analysis of driver behavior and inefficient recognition of states of danger result in an
increased number of alerts to drivers, which further leads to discomfort.

Figure 6 is a comparison of the number of alerts of the proposed DBA-PA model and
MADBA [29] and IDA [43] with respect to the number of vehicles. The number of alerts
increased as the number of vehicles increased. The proposed model had a low number of
alerts, which means that it is efficient in precisely identifying states of danger to assist the
driver. This is possible due to the efficient analysis of driver behavior performed using
A3C from a heterogeneous amount of data and providing alerts in accordance with it. The
existing approaches lack in terms of proper detection of states of danger, which affects the
performance of these approaches.
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5.2.3. Impact of Assisted Risk Maneuvers

Risk maneuvering is defined as the process of overcoming a state of risk with the
help of the assistance provided by the system. It is an important metric for measuring
the efficiency of the model in terms of detection and providing assistance. Figure 7 is a
comparison of the number of assisted risk maneuvers with the proposed DBA-PA model
and other existing approaches with respect to the number of vehicles. The number increased
as the number of vehicles increased. For instance, when the number of vehicles was
60, the number of the proposed DBA-PA model reached 17, whereas, for MADBA and
IDA, the number was reduced at 14 and 12, respectively. This was due to the efficient
personalized assistance provided by implementing the multi-attribute utility model in
which the assistance is provided for more than one identified risk state at a time. The
existing approaches lack precise generation of assistance, which limits the efficiency of
these approaches.
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5.2.4. Impact of Vehicle-motion Detection Accuracy

The detection of vehicle motion is a significant process executed to accurately analyze
driver behavior in order to identify states of danger. Figure 8 depicts the accuracy of
vehicle-motion detection with the proposed DBA-PA model and other existing approaches
with respect to vehicle speed.
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The vehicle-motion detection accuracy decreased as the vehicle speed increased. For
example, when the vehicle was travelling at a speed of 80 Km/h, the detection accuracy of
the proposed model was around 96%, whereas that of DMPC and TIP approached 89% and
84%, respectively. This is due to the formation of MCB-HCC and classification of vehicles
based on mobility in each cluster with E-RSUs and AttResNet, for which mobility detection
is based on velocity, speed, location, and direction. The lack of proper detection of vehicle
mobility affects the performance of the existing approaches. In TIP method, Bi-LSTM was
implemented to detect the behavior of vehicles based on lateral velocity, lateral acceleration
and heading angle. However, Bi-LSTM takes more time for classification, and it is not able
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to train huge amount of data that increases the complexity in real time environment which
decreases the vehicle motion detection accuracy of this method when compared with the
proposed DBA-PA method.

5.2.5. Impact of Driver-behavior Detection Accuracy

The accuracy of detecting driver behavior is defined as a measure for accurately
detecting the behavior of the driver and classifying the driver’s current state based on
analysis. Figure 9 is a comparison of the accuracy of the proposed DBA-PA model and that
of MADBA and HCF [31] with respect to the number of vehicles. The accuracy decreased
as the number of vehicles increased; this was due to the overhead caused by the higher
number of vehicles. The proposed DBA-PA model had comparatively higher accuracy
than the other existing approaches due to an increase in the scalability of detection from
classifying the driver’s current state based on MCB-HCC and A3C. The existing approaches
lack in terms of considering an increased number of vehicles in the driving environment,
which results in reduced accuracy due to scalability issues.
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5.2.6. Impact of Assistance Accuracy

The assistance accuracy is referred to as a measure for assisting the driver based on
the detected behavior of the driver. For a system said to be efficient, the assistance accuracy
should be high. Figure 10 is a comparison of the assistance accuracy of the proposed
DBA-PA model with other existing approaches with respect to the number of risky drivers.
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The assistance accuracy decreased as the number of risky drivers increased. The
accuracy of the DBA-PA model in assisting was comparatively higher than the other
approaches due to the generation of precise assistance to the drivers. This is carried out by
using the multi-attribute utility model, in which the provided assistance is also based on the
current location of the vehicle. Assistance is generated one or more times for drivers based
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on detecting the current state multiple times to reduce the possibility of road accidents. The
existing approaches provided only limited assistance, which is not appropriate for many
real-time situations.

5.2.7. Impact of Latency

Latency is a significant factor that affects the efficiency of the behavior analysis and
assistance generation system. Latency in providing assistance results in delayed assistance,
which is not useful as there are many uncertainties in driving environments. Assistance
must be provided with ultra-low latency for reducing casualties in the driving environment.
Figure 11 is a comparison of the latency of the proposed DBA-PA model and MADBA
and D-QLOA [41] with respect to the number of vehicles. It can be seen that the latency
increased as the number of vehicles increased. The proposed method had low latency
compared with the other existing approaches due to the computation of driver behavior
and assistance generation in the fog layer. The existing approaches perform computations
in a cloud server, which introduces latency in assisting, thereby affecting performance.
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Figure 12 is a comparison of the latency of the proposed DBA-PA model and FC-
IOV [7] and ACOM [28] with respect to the number of fog nodes. The latency decreased as
the number increased.
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The proposed DBA-PA model had very low latency compared with the other ap-
proaches. This is due to the computation of behavior analysis performed using E-RSU and
fog nodes. The E-RSU performs clustering and motion prediction with which the behavior
analysis and prediction are carried out with ultra-low latency. The execution of clustering
along with the computation of driver behavior in the fog layer reduces the latency to a
very low value. For instance, the latency associated with the proposed model when five
fog nodes were deployed was around 4 s, which is very low. Further, the deployment
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of virtual fog nodes in the case that there are no fog nodes reduces latency to a greater
extent. The existing approaches also perform computation in fog layers, but the lack of
consideration for large numbers of vehicles in the environment introduces latency, which
affects the proficiency of these approaches.

5.2.8. Impact of False Alarm Rate

The false alarm rate is due to the inaccurate detection of driver behavior and assistance
provided to the driver; this further results in increased distress and panic to the driver.
Figure 13 depicts the evaluation of the false alarm rate for the proposed DBA-PA model
and other existing approaches with respect to number of vehicles. The false rate increased
as number of vehicles increased. DBA-PA had a low rate of false alarms due to the precise
detection of driver behavior and generation of personalized assistance to the driver based
on behavior. For instance, the rate for DBA-PA was around 5% when there were 100
vehicles in the environment, whereas the other existing approaches had an increased rate of
false alarms up to 15%. These approaches detect driver behavior by considering a limited
number of parameters, which contributes to the inefficiency of these approaches.
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5.2.9. Impact of Safety Score

The safety score is the measure of overall safety contributed by the system. It is a
significant measure in calculating the quality of an approach in improving the safety of
drivers and the environment.

Figure 14 is a comparison of the safety score of the proposed DBA-PA model and other
existing approaches with respect to the number of vehicles. The score for DBA-PA was high
compared with the other existing approaches because it contributed to improved safety
for both the driver and environment. Driver safety is improved by providing accurate
assistance, and the environmental safety is improved by implementing alert message
dissemination, which is performed when the driver is detected as being in an emergency
state. The existing approaches do not concentrate on environmental safety, which results in
a reduced safety score.

5.2.10. Impact of Alert-Message-Dissemination Accuracy

The accuracy of alert message dissemination is a measure of how accurately alert
messages are disseminated to surrounding vehicles. Figure 15 is the evaluation of the
accuracy of the proposed DBA-PA model and EAC [13] and DADB [45] with respect to the
number of emergency events. DBA-PA had a higher dissemination efficiency than the other
approaches due to the optimal selection of surrounding vehicles both within the cluster
and in the next region made in order to disseminate the alert messages. The dissemination
is performed by using JSO Algorithm, which effectively disseminates the messages. If the
next relay region does not have fog coverage, a virtual fog node is placed whose constraints
are stated by the constraint-based quantum entropy function, thereby ensuring effective
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dissemination. The existing approaches had very low efficiency in terms of dissemination
due to the lack of knowledge of surrounding vehicles.
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From Figures 5–15, the proposed DBA-PA model was evaluated in terms of various pa-
rameters, and it was found that it outperformed the existing approaches through significant
highlights, which are stated in the next section.

5.3. Research Highlights

• The complexity involved in computing driver behavior dynamically is reduced by
performing with MCB-HCC, which is carried out by E-RSUs. Then, the mobility of
vehicles in each cluster is predicted by AttResNet, by which the vehicles are classified
into three classes of mobility.

• Driver behavior is analyzed on the basis of mobility, in which the behavior of a driver is
analyzed by executing A3C from several physiological features of the driver, vehicular
features, and environmental features of the surrounding environment. Here, driver
behavior is detected accurately and classified into several states.

• Alert messages are disseminated if the driver is found to be in a state of emergency,
which is performed by the JSO Algorithm, in which the messages are disseminated in
order to ensure safety to other surrounding vehicles both within the cluster and in a
nearby region.

• Personalized assistance is provided to the driver on the basis of the detected current
state, which is executed by the multi-attribute utility model. The assistance is provided
by utilizing the current location information of the vehicle, and assistance is provided
for one or more detected driver states. Instances of assistance are stored in a cloud
server for training purposes.
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5.4. Limitation and Discussion

This sub-section describes the performance discussion and limitation of the proposed
DBA-PA method. Figures 5–15 illustrates the efficient performance of the proposed DBA-
PA method in terms of various performance metrics. Motion prediction error (4.8%) is
reduced by efficient clustering using MCB-HCC. Low number of alerts (10) is achieved
by performing analysis of driver behavior using A3C Algorithm. A high number of risk
maneuvers (24) is attained by efficient personalized assistance. Vehicle motion detection
accuracy (95.2%) is increased by efficient clustering by MCB-HCC and vehicle classification
using AttResNet by considering multiple criteria such as velocity, location, direction and
speed. Increase of driver behavior detection accuracy (95.7%) by classification of driver’s
current state using A3C Algorithm. Improving the assistance accuracy (95.7%) by providing
assistance using multi-attribute utility model. This also increases the safety score (0.75).
Latency based on number of vehicles (13 s) and fog nodes (4 s) are reduced by performing
generation of assistance and analysis of driver behavior in the fog layer. False alarm rate
(6%) is reduced due to accurate detection of driver behavior. Alert message dissemination
efficiency (95.7%) is increased by performing efficient dissemination of messages using JSO
algorithm. However, this proposed DBA-PA method has addressed security issues during
efficient communication between V2V and V2X. Table 4 describes the time complexity
analysis for the proposed jelly fish search optimization algorithm and other algorithms
which were implemented in the previous works.

Table 4. Analysis of Time Complexity.

Algorithms Time Complexity Description

ACO Algorithm [19] O(n2) n represents iterations

Genetic Algorithm [25] O(gnm)
g denotes generation, n denotes size

of population and m denotes the
individuals’ size

WO Algorithm [36] O(N*D) N denotes population and D denotes
dimension

JSO Algorithm O(n) n denotes the position

6. Conclusions and Future Work

In this paper, road safety in the VANET environment is improved in terms of mini-
mizing latency, maximizing availability of resource, reducing computation overhead, and
reducing delay during transmission by using the DBA-PA model. Initially, in Layer 1,
E-RSUs implement MCB-HCC to form clusters of vehicles which initially computes the
correlation distance between the vehicles and form as clusters to reduce the computational
overhead in processing driver behavior. Then, the E-RSUs execute AttResNet to predict
the motion of vehicles in each cluster by using input features such as vehicular features,
environmental features, and physiological features. This information is passed to Layer
2 to analyze driver behavior. The fog node in Layer 2 analyzes driver behavior analysis
by using the A3C Algorithm based on several physiological features of drivers, vehicular
features, and environmental features of the surrounding environment. Driver behavior is
classified into several states for which assistance is generated. If the current state of the
driver is found to indicate an emergency, then an alert message is disseminated by the
JSO Algorithm, where dissemination is performed for surrounding vehicles within the
cluster and in neighboring regions. If a neighboring region has no fog coverage, a virtual
fog node is deployed by using a constraint-based quantum entropy function. Personalized
assistance is provided to the driver by using the multi-attribute utility model, in which
the location characteristics of the vehicle are utilized, and assistance is provided for one
or more detected driver states. From the above processes, the proposed work achieves
safety ITS environment. The proposed DBA-PA model was experimented on by integrating
OMNET++ and SUMO simulation tools; SUMO acts as a traffic simulator, and OMNET++
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acts as a network simulator. The proposed model was evaluated by comparing it with
other existing approaches in terms of motion prediction error (4.8%), number of alerts
(10), number of risk maneuvers (24), vehicle-motion-detection accuracy (95.2%), driver-
behavior-detection accuracy (95.7%), assistance accuracy (95.7%), latency (13 s) with respect
to more number of vehicles and (4 s) with respect to more number of fog nodes, false alarm
rate (6%), safety score (0.75), and alert-message-dissemination efficiency (95.7%). In the
future, the proposed DBA-PA model will be improved in terms of security by implementing
message encryption between V2V and V2X communication and leveraging blockchain
technology for improved safety.
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