
����������
�������

Citation: Tu, Y.; Chen, H.; Yan, L.;

Zhou, X. Task Offloading Based on

LSTM Prediction and Deep

Reinforcement Learning for Efficient

Edge Computing in IoT. Future

Internet 2022, 14, 30. https://doi.org/

10.3390/fi14020030

Academic Editors: Paolo Bellavista

and Vijayakumar Varadarajan

Received: 1 December 2021

Accepted: 16 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Task Offloading Based on LSTM Prediction and Deep
Reinforcement Learning for Efficient Edge Computing in IoT
Youpeng Tu 1 , Haiming Chen 1,2,* , Linjie Yan 1 and Xinyan Zhou 1

1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
1911082218@nbu.edu.cn (Y.T.); yan.linjie@foxmail.com (L.Y.); zhouxinyan@nbu.edu.cn (X.Z.)

2 Zhejiang Provincial Key Laboratory of Mobile Network Application Technology, Ningbo University,
Ningbo 315211, China

* Correspondence: chenhaiming@nbu.edu.cn

Abstract: In IoT (Internet of Things) edge computing, task offloading can lead to additional trans-
mission delays and transmission energy consumption. To reduce the cost of resources required for
task offloading and improve the utilization of server resources, in this paper, we model the task
offloading problem as a joint decision making problem for cost minimization, which integrates the
processing latency, processing energy consumption, and the task throw rate of latency-sensitive tasks.
The Online Predictive Offloading (OPO) algorithm based on Deep Reinforcement Learning (DRL)
and Long Short-Term Memory (LSTM) networks is proposed to solve the above task offloading
decision problem. In the training phase of the model, this algorithm predicts the load of the edge
server in real-time with the LSTM algorithm, which effectively improves the convergence accuracy
and convergence speed of the DRL algorithm in the offloading process. In the testing phase, the
LSTM network is used to predict the characteristics of the next task, and then the computational
resources are allocated for the task in advance by the DRL decision model, thus further reducing
the response delay of the task and enhancing the offloading performance of the system. The experi-
mental evaluation shows that this algorithm can effectively reduce the average latency by 6.25%, the
offloading cost by 25.6%, and the task throw rate by 31.7%.

Keywords: computational offloading; resource allocation; prediction; DRL; LSTM

1. Introduction

With the rapid development of IoT and the exponential growth of device scale, tradi-
tional cloud computing [1] can no longer meet the service demand of IoT devices. In this
context, edge computing [2] technology has emerged. The essence of edge computing is
to place some small servers at the edge of the network, which is closer to the location of
user devices, and its location is between cloud servers and terminal devices. The user
can offload tasks that were originally offloaded to the cloud server to the edge server for
executing some tasks, thus reducing the delay in task delivery and improving the quality
of service of the tasks [3].

The core of edge computing is computation offloading [4], that is, offloading tasks from
terminal devices to edge servers to reduce the computational workload of terminal devices
and reduce the computational energy consumption of devices to extend their operating time.
Specifically, the offloading problem consists of two aspects: (1) whether the tasks need to be
offloaded; and (2) to which edge server the tasks are offloaded. Although the computational
offloading problem has been well studied in the cloud computing area, the computational
offloading of tasks still faces considerable challenges in the emerging edge computing
scenario. For example, additional transmission delays and energy consumption are incurred
when the number of offloading tasks is large, or in complex scenarios with multiple terminal
devices and multiple edges, the edge system can suffer from load imbalance and affect the
offloading performance if there is no reasonable mechanism of resource allocation [5].

Future Internet 2022, 14, 30. https://doi.org/10.3390/fi14020030 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14020030
https://doi.org/10.3390/fi14020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0819-093X
https://orcid.org/0000-0002-3311-1837
https://orcid.org/0000-0003-3895-1410
https://orcid.org/0000-0003-1368-8839
https://doi.org/10.3390/fi14020030
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14020030?type=check_update&version=2

Future Internet 2022, 14, 30 2 of 19

At present, researchers have conducted a lot of research on the offloading decision
problem, such as seeking the optimal solution after formulating the problem based on
traditional algorithms [6–10], maximizing the reward to make appropriate decision actions
based on reinforcement learning algorithms [11–14], etc. However, the above algorithms
do not take the dynamic and predictable nature of the task during task offloading into
account, thus they may produce unreasonable offloading decisions, resulting in degra-
dation of the task offloading performance. Traditional task offloading methods can only
optimize task offloading and resource allocation statically. Although deep reinforcement
learning methods can meet the requirement of current IoT dynamic task computing, most
algorithms only make the model converge faster and achieve better results by improving
the method during model training, while ignoring the optimization of the task inference
testing process, which still brings relatively high response delays in real scenarios. In other
words, the generation and processing of tasks in real scenarios are more correlated with time
series [15,16], so the prediction can be made by characterizing the tasks. The load of each
server can be predicted by collecting the historical data of the system [17,18], and using
the prediction method can efficiently allocate resources and make offload decisions for
tasks with limited resources, which can effectively reduce the response delay of tasks when
making the decision. To address the above problems and challenges encountered in task
offloading, this paper proposes an Online Predictive Offloading (OPO) algorithm. The algo-
rithm combines Long Short-Term Memory (LSTM) and deep reinforcement learning (DRL)
to predict task dynamic information in real-time, based on the observed edge network
condition and the server load. This algorithm aims to make offloading decisions by taking
into account the task processing delays, the task tolerance delays, and the task computation
energy consumption, and to avoid causing network congestion and server overloading,
thus minimizing the task dropped rate and reduced the computational cost of the task.
The main contributions of this paper are summarized as follows.

• Modeling the problem of computing offloading in a multi-edge, multi-device comput-
ing scenario as a nonlinear optimization problem. Moreover, the goal of task offloading
is minimizing long-term costs in terms of latency and energy consumption.

• By predicting the characteristics of tasks and edge server loads, tasks are dynamically
offloaded to the optimal edge server. In the decision model, the prediction is combined
with task decision to dynamically allocate resources for different tasks to further
reduce latency and improve service quality.

• The proposed model and method are extensively evaluated with real-world datasets.
The results reveal that the model developed in this paper can effectively reduce the
cost using the DRL algorithm with Deep Q Network (DQN) and its variants. The OPO
algorithm can maintain low task latency and task discard rate when facing large and
complex scenarios.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 gives the system model and the formulation of the problem, Section 4 gives the
framework of the model in the training and offloading phases and designs the reinforcement
learning offloading algorithm for the given objective. Section 5 presents the experimental
evaluation of the proposed method. Section 6 concludes the work of this paper.

2. Related Works

The purpose of the computing offloading is to make the best decision for the task to
improve Quality of Service (QoS), which can indirectly enhance the computing power of
the terminal device. Since real scenarios are complex and dynamic, which implies that the
system model and offloading algorithms should be sufficiently scalable. There is a lot of
existing work on computing offloading, which can be classified based on the objects of the
system model during the establishment phase or the different methods that are used in the
proposed model.

Future Internet 2022, 14, 30 3 of 19

2.1. Offloading Methods with Different Modeling Objects

According to the task type and offloading requirements, the offloading decisions
are generally classified into three categories: minimizing delay, minimizing energy con-
sumption, and minimizing system cost. Offloading strategies for minimizing delay are to
complete the task execution with the lowest time requirement. Offloading strategies for
minimizing energy consumption are to make the whole system with the lowest energy
consumption while satisfying certain delay requirements during task execution. Offloading
strategies for minimizing system cost are generally to make a trade-off between delay and
energy consumption, particularly trying to find a balance between energy consumption
and delay to meet the different user requirements of IoT applications.

Shu et al. [19] studied the fine-grained task offloading problem in edge computing
for low power IoT systems and proposed a lightweight and effective offloading scheme
for multi-user edge systems to minimize the execution time by offloading the most appro-
priate IoT tasks to the edge servers. Guo et al. [20] consider the scenario where multiple
terminal users offload repetitive computational tasks to network edge servers and share
computational results among these servers. They designed optimal fine-grained collab-
orative offloading strategies that utilize data caching to minimize task execution delays
at the terminal. Ali et al. [21] proposed a federated RL-based channel resource allocation
framework for the fifth generation (5G) networks, which suggested collaborating learning
estimates for faster learning convergence. Ali et al. [22] made extensive research efforts on
developing beyond sixth generation (6G) wireless networks, which aimed at bringing ultra-
reliable low-latency communication services. Zhao et al. [23] found it difficult to achieve a
balance between high resource consumption and high communication costs and proposed
a local computing offloading method that minimizes the total energy consumption con-
sumed by the terminal devices and edge servers by jointly optimizing the task offloading
rate, the CPU frequency of the system, the allocated bandwidth of the available channels,
and the transmission power of each device at each time slot. Vu et al. [24] proposed an
edge computing network architecture that enables edge nodes to share computational
and radio resources, to minimize the total energy consumption of terminal users while
satisfying the latency requirements of the tasks. Yuan et al. [25] proposed a cloud-edge
computing system that includes the terminal layer, edge layer, and cloud layer. Based
on this, a profit-maximizing collaborative computing offloading and resource allocation
algorithm is designed to minimize the system cost and ensure that the response time of
the tasks is satisfied. Alqerm et al. [26] addressed the resource allocation problem in Edge-
IoT systems through developing a novel framework named DeepEdge, which allocated
resources to the heterogeneous IoT applications with the goal of maximizing users’ Quality
of Experience (QoE).

2.2. Offloading Methods with Different Problem Solving Strategies

In problem solving, some scholars use traditional methods. Thai et al. [6] proposed
a generic architecture for cloud edge computing with both vertical and horizontal ser-
vice computing nodes, formulated as a mixed-integer nonlinear programming problem,
proposed an approximation algorithm to iteratively obtain the optimal solution using a
branch-and-bound method to minimize the system computation and communication costs.
Cui et al. [7] made a trade-off between energy consumption and latency to meet the user
requirements of different IoT applications, formalized the problem as a constrained multi-
objective optimization problem, and found the optimal solution by an improved fast elite
non-dominated ranking genetic algorithm. Gu et al. [8–10] solved the joint optimization
problem with nonconvexity after transforming it into a convex optimization problem.

With the increasing number of terminal devices and edge devices, the heterogeneity
of the network becomes complex. At the same time, Social Internet of Things [27] and
massive Internet of Things were derived from the traditional Internet of Things. The in-
cumbent Internet of Things suffered from poor scalability and elasticity in communication,
computing, caching and control problems. The recent advances in DRL algorithms can

Future Internet 2022, 14, 30 4 of 19

potentially address the above problems of IoT systems. Chen et al. [28] did a compre-
hensive survey and provided a state-of-the-art literature review on a wide variety of IoT
applications enabled by DRL algorithms. Therefore, some researchers combine neural
networks and reinforcement learning in dealing with task offloading problems to explore
unknown complex dynamic IoT environment information to make decisions.

Huang et al. [29] proposed a distributed algorithm based on deep learning into the
advantage of multiple parallel neural networks to generate optimal solutions without man-
ual labeling of data. Tang et al. [30] formulated a task offloading problem to minimize the
long-term resource consumption and proposed a reinforcement learning distributed algo-
rithm where each device can give task decisions without knowing the offloading decisions
of other devices. Jang et al. [31] proposed a method, making it possible to simultaneously
perform knowledge transfer and policy model compression in a single training process on
edge devices with considered their limited resource budgets. The training time elapsed for
edge policy training with this method is reduced significantly compared with edge policy
training from scratch. Gong et al. [32] defined a total cost function as the weighted sum of
task delay and energy consumption, and they transform the initial problem into a convex
optimization problem, which was solved by an atom action generation technique and adap-
tive aggregation parameter update strategy. Chen et al. [33] considered the communication
of terminal devices in an ultradense LAN, where users can select multiple base stations
for task offloading to maximize utility performance, reducing the energy consumption
of tasks in the computational queue and the channel queue between terminals and base
stations, breaking the bottleneck in the high-dimensional space, and achieving the optimal
policy based on the DQN algorithm in the case of unknown network dynamic environment.
Similarly, the design goal of Song et al. [34] is to optimize resource utilization, energy
consumption, and network latency by predicting user behavior using a variant of the DQN
algorithm to solve the problem. Zou et al. [35–37] both used the improved Actor-Critic
(AC) algorithm in the Deep Deterministic Policy Gradient (DDPG) algorithm to solve the
offloading decision policy to balance the workload of the edge server and the final task
was reduced in terms of energy consumption and computation time. Chen et al. [38,39]
based on Monte Carlo Tree Search (MCTS) and Deep Neural Network (DNN) algorithm,
the proposed algorithm spreads the high-dimensional decision space to each layer of the
Monte Carlo tree and makes the policy search tend to the space with higher reward, which
improves the search efficiency and reduces the scope of the search space.

3. System Model

The model in this paper is built on a multi-terminal, multi-edge network scenario,
in which the set of terminal layer devices are denoted byM = {1, 2, . . . , M}. On each
MD (Mobile device), there exists a task queue and a computation queue, where the task
queue stores the tasks to be decided for offloading and the computation queue processes
the tasks that are executed locally. Additionally, the set of edge layer servers are denoted
by N = {1, 2, . . . , N}. Multiple computation queues are included in each edge server for
parallel computation of transmission queue offload tasks. Figure 1 shows an illustration
of EC system with a mobile device and an edge node. In the following, we first present
the task model and the task offloading decision, respectively. Then, we introduce the
computation, communication model and prediction model.

Future Internet 2022, 14, 30 5 of 19

Figure 1. An illustration of EC system with a mobile device and an edge node.

3.1. Task Model

For any MD, the tasks generated in different time slots are identified by T = {1, 2, . . . , T}.
The arrival time and data size of the tasks are used from real-world collected IoT data.
For each arriving task, it is first stored in the corresponding MD task cache queue, and then
the decision model gives where the task will be offloaded to be executed. For t ∈ T
time slot, the new task generated by the terminal device m ∈ M is denoted as λm(t) =(

Dt
m, ρt

m, τt
m,max

)
. Dt

m denotes the size of the task data size, ρt
m denotes the computational

resources required per bit for this type of task, and τt
m,max denotes the maximum tolerated

delay of the task, i.e., the new task generated in time slot t will be thrown when the task
has not been completed in time slot t + τt

m,max − 1.

3.2. Decision Model

When the terminal device m has a new task λm(t) in time slot t, the decision model
has to give the offloading scheme. The binary variable xt

m ∈ {0, 1} is used to indicate
whether the current task is offloaded, xt

m = 0 indicates that the task is executed on the
MD, and xt

m = 1 indicates that the task will be offloaded to an edge server for execution.
yt

m,n ∈ {0, 1} represents the edge server to which the task is offloaded for execution, when
yt

m,n = 1, the task is offloaded to the edge server n ∈ N for execution, otherwise yt
m,n = 0.

The tasks considered in this model are atomic level tasks, i.e., the tasks are not subdividable,
each offloaded task can be executed in only one edge server, and the tasks offloaded to the
edge server for execution are constrained by ∑n∈N yt

m,n = 1, m ∈ M, t ∈ T , xt
m = 1.

3.3. Computational Model
3.3.1. Terminal Layer Computing Model

In the MD model, two kinds of queues are included: the task queue, in which newly
generated tasks but not yet assigned decisions are stored, and the task computation queue,
which is used to output the computation results of tasks. It is specified that only one task
can enter the queue for processing in a time slot.

The task generated by the t time slot must wait until the computation queue is free to
execute the computation, i.e., wait for the previous task to complete its execution, and its
waiting delay τt

m,wait can be expressed by Equation (1).

τt
m, wait =

[
max

t′∈{0,1,...,t−1}
lcomp
m

(
t′
)
− t + 1

]+
(1)

Future Internet 2022, 14, 30 6 of 19

where lcomp
m (t) denotes the completion time slot of the task (completing the task or being

discarded). When the task is processed in the computation queue, there is a processing
delay. Suppose that the processing capacity (bits/s) of the MD is f device

m , then the processing
delay τt

m,exe of the task in the computational queue can be expressed by Equation (2).

τt
m, exe =

Dt
mρt

m

f device
m

(2)

Therefore, we can find the completion time slot lcomp
m (t) of task λm(t) by the above

equation as shown in Equation (3).

lcomp
m (t) = min

{
t + τt

m, wait + τt
m, exe , t + τt

m,max
}

(3)

t + τt
m, wait + τt

m, exe denotes the time slot when the task execution is completed and
t + τt

m,max denotes the maximum tolerated time slot of the task. The total processing delay
τt

m,MD of task λm(t) on the MD can be expressed by Equation (4).

τt
m,MD = min

{
τt

m, wait + τt
m, exe , τt

m,max
}

(4)

At the same time, this paper considers the energy consumption of MD in processing
tasks, which consists of two parts: (1) task computation energy consumption expressed
as the product of computation power and computation time, and (2) task waiting energy
consumption, expressed as the product of waiting power and time. Therefore, the energy
consumption Edevice

m required for the task to be executed locally is shown as follows.

Edevice
m = Pexe

m τt
m, exe + Pwait

m τt
m, wait (5)

3.3.2. Edge Layer Computing Model

Since the computational resources of the edge server are much larger than those of the
MD, the task can be immediately entered into the computational queue for execution when
the task offloaded by the MD arrives, so the waiting delay of the task is not considered on
the edge server. For the task λm(t) generated by device m in time slot t, it is denoted by
λm,n(t) on the edge server. Assume that the current processing capacity (bits/s) allocated
by the edge node for processing the task is f EC

n . Then, the processing latency τt
m,n, exe of the

task at the edge layer can be expressed as:

τt
m,n, exe =

Dt
mρt

m

f EC
n

(6)

Similar to terminal layer computing, the completion time slot lcomp
m,n (t) for edge layer

tasks λm,n(t) can be expressed as:

lcomp
m,n (t) = min

{
t + τt

m, wait + τtran
m,n + τt

m,n, exe , t + τt
m,max

}
(7)

The total delay τt
m,nEC of task λm,n(t) on edge server n can be expressed as

τt
m,nEC = min

{
τt

m, wait + τtran
m,n + τt

m,n, exe , τt
m,max

}
(8)

where τt
m, wait denotes the waiting delay in the local model, τtran

m,n denotes the transmission
delay, τt

m, wait + ttran
m,n + τt

m,n, exe denotes the time slot required for a task to be offloaded
from the endpoint to the edge server and executed to completion, and τt

m,max denotes the
maximum tolerated delay.

Future Internet 2022, 14, 30 7 of 19

The energy consumption Eedge
m,n incurred when tasks are offloaded to the edge server

for execution can be expressed as

Eedge
m,n = Pwait

m τt
m, wait + Ptran

m,n τtran
m,n + Pexe

m,n τt
m,n, exe (9)

where Pwait
m τt

m, wait ,Ptran
m,n τtran

m,n ,Pexe
m,n τt

m,n, exe , respectively, denote the waiting energy con-
sumption, transmission consumption, and edge node computation consumption of the
task, respectively.

3.4. Communication Model

Tasks consume bandwidth resources and incur transmission delays only when they
are offloaded to the edge server for execution. The offloading of the MDs task at time
slot t is xt

all =
[
xt

1, xt
2, xt

3 · · · xt
m
]
, for the bandwidth occupied when offloading the task

is Bt
all =

[
Bt

1, Bt
2, Bt

3 · · · Bt
m
]T, and the task is subject to the bandwidth constraint when

offloading, i.e., xt
all · Bt

all ≤ Bmax. According to Shannon’s formula, we can find the
transmission rate.

rm,n = Bt
m log2

(
1 +

Ptran
m,n g
σ2

)
(10)

where g is the channel gain and σ2 denotes the power of additive Gaussian white noise.
Thus, the transmission delay and transmission energy consumption of the task can be
derived from Equations (11) and (12).

τtran
m,n =

Dm(t)
rm,n

(11)

Etran
m,n = Ptran

m,n τtran
m,n (12)

In summary, the overall model of the system is a trade-off between the time delay and
energy consumption of the task computation to create a minimization cost problem (13),
and the solution goal is to minimize the total cost of the tasks generated in the system
over time.

C =
N

∑
n=1

M

∑
m=1

(
α
(
τt

m,MD + τt
m,nEC

)
+ β

(
(1− xm(t))Edevice

m + xm(t)ym,n(t)Eedge
m,n

))
min lim

T→∞

1
T

T

∑
t=1

C

s.t. C1 : xt
m ∈ {0, 1}

C2 : yt
m,n ∈ {0, 1}

C3 : ∑
n∈N

yt
m,n = 1, ∀m ∈ M, t ∈ T , xt

m = 1

C4 : τt
m,MD, τt

m,nEC ≤ τt
m,max

C5 : f device
m ≤ f device

max

C6 : ∑
n∈N

f EC
n ≤ f EC

max

C7 : 0 ≤ Ptran
m,n ≤ Pmax

C8 : ∑
n∈M

xt
all · B

t
all ≤ Bmax, ∀t ∈ T

(13)

The constraints C1–C3 indicate that the generated task can only select one computing
node for computational processing; C4 indicates that the total processing delay of the task,
whether it is processed locally or offloaded to an edge node for processing, should not
exceed the maximum tolerated delay of the task; C5–C6 indicate that the computational

Future Internet 2022, 14, 30 8 of 19

resources allocated for the task are not allowed to exceed the maximum processing capacity
of the node; C7–C8 indicate that the transmission power of the task cannot exceed the
maximum transmission power, and the bandwidth occupied by all offloaded tasks in the
same time slot should not exceed the maximum bandwidth resource. Table 1 lists the
important notations used in this paper.

Table 1. Table of main notations.

Notation Definition

M Set of terminal layer devices
N Set of edge layer servers
T Set of time slots for task generation

λm(t) Task generated by terminal device m at time slot t
λm,n(t) Task of device m are offloaded to edge node n

xt
m Device m offloading its task in time slot t while xt

m = 1, Otherwise, xt
m = 0

yt
m,n The task is offloaded to the edge server while yt

m,n = 1, Otherwise, yt
m,n = 0

τt
m, wait Terminal layer device waiting delay in the task queue

τt
m, exe Terminal layer device processing delay in the computation queue

τt
m, MD Total time delay of the task generated by terminal devices m at time slot t
Pexe

m Processing power of the task generated by terminal devices m at time slot t
Pwait

m Waiting power of the terminal devices m
Edevice

m Energy consumption of the device m
τt

m,n, exe Processing delay in the computation queue of the Edge server n
τt

m,nEC Total time delay of the edge server n
Ptran

m,n Transmission power of the device m offload to edge server n
τtran

m,n Transmission delay of the device m offload to edge server n
Pexe

m,n Processing power of the edge server n
Eedge

m,n Energy consumption of the edge sever n
α, β The trade off weight between energy consumption and delay in the system cost

3.5. Prediction Model
3.5.1. Task Prediction Model

In computational offloading systems, a decision process is required after task gen-
eration, and there will be a certain time delay from task generation to give a decision.
Although task generation is a dynamic and random process, considering the long-term
nature of the task, it will have a strong correlation with time.

Therefore, based on the history of user devices, we can predict the tasks that will
be generated in the next network time slot of user devices, and load the service pack-
ages in advance before the real tasks are coming (e.g., allocate the best computation
nodes in advance through the decision model). For example, for any MD with task data
Dt ∈ {D1, D2, · · ·DT} , taking D1, D2, · · ·Dt−1 as the input sequence, into the trained LSTM
prediction model to predict the next time slot task data D∼t . Therefore, the optimization
goal of the prediction model is |Dt − D∼t | ∝ 0, i.e., to improve the accuracy of task data
feature prediction as much as possible.

As shown in Figure 2, in a real scenario, we can predict the information of the future
task by the prediction model, and determine the decision and allocate computing resources
for the task. When the real task arrives, if the error between the real task and the predicted
task is within the allowed threshold, the task is directly offloaded and computed according
to the assigned decision information. Otherwise, the offloading decision is given using
the decision model and the information of the new task is added to the historical data as
training samples. By training the LSTM network, the weights and biases of each gate in the
network are updated to improve the accuracy of the prediction model.

Future Internet 2022, 14, 30 9 of 19

Figure 2. Flow chart of task prediction.

3.5.2. Load Prediction Model

In an edge computing system, wrong offloading decisions may lead to load imbalance
if the server load is not considered. The monitoring system on the edge server records
system data and performance metrics, such as CPU occupancy, network usage, and current
execution of tasks. We can use the logged data to predict the future server load. We refer to
the load model in the literature [30] to predict the edge server load level (the number of idle
queues on the edge nodes) using historical records. The output value H∼t is obtained from
the trained LSTM load prediction model by using H1, H2, · · ·Ht−1 as the input sequence
in the edge server historical load sequence Ht ∈ {H1, H2, · · ·HT}. h∼t ∈ H∼t is used as the
predicted idle server, which can be preferentially selected as the offload computing node
when training the DRL. As shown in Figure 3, in the DRL training process, the actions are
selected by the agent through a certain probability, i.e., the action with the largest Q value is
selected with ε probability, and the action is selected randomly with 1− ε probability. In this
paper, when the original agent selects a random action, the size comparison between a
random value σ and the probability ε is used to determine whether it is a Random Action or
a Prediction Action, so as to avoid falling into a local optimum. By giving the pre-selected
action (idle server in the actual scenario) through Prediction Action, it can reduce the
number of explorations by the agent and improve the convergence speed of the algorithm.

Figure 3. Illustration of offloading decision.

Future Internet 2022, 14, 30 10 of 19

4. Model Solving
4.1. Overall Framework

In the model of DRL, the prediction model is combined with the deep reinforcement
learning model. In this section, we introduce the model training phase, the model inference
phase, and give the algorithm design for solving the model specifically.

4.1.1. Model Training Phase

The goal of DRL is to maximize the total reward by making the optimal action in
each decision. DRL typically uses ε-greedy strategies for exploration and exploitation.
Exploration is the random selection of any action with probability in expectation of a higher
reward, otherwise, exploitation is the action with the largest action estimate. This stochastic
strategy can fully explore the environment state, but it requires a long period of extensive
exploration and low data utilization. In the model of this paper, action selection describes
the offloading decision of the task, which simply means that the action space is known
whether the task is to be executed locally or offloaded to one of the servers on the edge.
When the agent performs stochastic exploration, as shown in Figure 4, this paper uses
LSTM to predict the load of the edge server to give an optimal action, i.e., the optimal
server at the next time slot is predicted by the historical load situation, and the offloading
to the optimal server is done directly in this state to obtain a higher reward and also to
effectively avoid the edge server load imbalance.

Figure 4. Illustration of model training phase.

4.1.2. Offloading Decision Phase

Each MD generates different types of tasks at different time slots. When a new task is
generated, there is a response delay of the system to the task’s decision request, i.e., the
system gets the task information from the task queue before it can put the task information
into the decision model to make a decision. For a task, there is a response delay of the
system and a waiting delay in the queue between the generation of a task and giving a
decision. As shown in Figure 5, the edge system can process the data from MD and store
the processed records. Based on the historical records, the feature information of the next
arriving task can be predicted by LSTM, and the predicted information will be given to the
reinforcement learning decision model, which is proposed to make an offloading scheme
for the predicted task. When the real task arrives, if the error between the real task and
the predicted task is within the allowed range, the offloading decision of the task is given
directly; otherwise, the decision is made according to the real task using the decision model.
By predicting the information of the task, it can predict the target computation node of the
task and effectively reduce the response and waiting delay of the task in the system.

Future Internet 2022, 14, 30 11 of 19

Figure 5. Illustration of offloading decision phase.

4.2. Algorithm Design

In this paper, we use the deep reinforcement learning algorithm DQN (Deep Q Net-
work) and its variants based on the combination of reinforcement learning and deep
learning to design a task offloading decision algorithm. A typical DQN model is composed
of agent, state, action, and reward, and the policy is generated as a mapping π : S→ A of
states to actions to obtain a reward R, rt(st, at) denotes the reward that can be obtained by
choosing action at in state st, and Rγ

0 = ∑T
(t=0) γtrt(st, at) is the long-term reward, where

T → ∞, γ ∈ [0, 1], rt ∈ R, st ∈ S, at ∈ A.
In traditional Q-learning, each state-action pair can be easily stored into the Q-table

because the state space and action space are discrete and have small dimensions. However,
when the state space and action space dimensions are large, as described in this paper, it is
difficult to put all state-action pairs into Q-table. To solve this problem, the DQN model
in DRL combines deep neural networks and Q-learning algorithms, and it transforms the
Q-table tables into the Q-networks and uses neural networks to fit the optimal Q-functions.
DQN relies mainly on the following key techniques.

Deep Q Network (DQN): There are two neural networks with the same structure
but different parameters in DQN, i.e., the target network Q̃

(
s′, a′; θ̃

)
and the main network

Q(s, a; θ). When iteratively updating the network, the algorithm first uses the target
network to generate the target Q-value as the label f (t), and uses the loss function Loss(θ)
to update the parameters of the main network. After the introduction of the target network,
the target Q value generated by the target network remains constant in time j, which can
reduce the correlation between the current Q value and the target Q value and improve
the stability of the algorithm. The target network will update the parameters θ̃ with the Q
network parameters θ every certain step.

f (t) =
{

r(t), if episode terminates at step j + 1
r(t) + γ maxa′

{
Q̃
(
s′, a′; θ̃

)}
, otherwise

(14)

Loss(θ) = (f (t)−Q(s, a; θ))2 (15)

Replay Memory: In order to break the correlation within the data, DQN uses the
experience replay method to solve this problem. After interacting with the environment,
the agent is stored in the replay buffer in the form of (st, at, rt, st+1). When executing
valuation updates, the agent randomly selects a small set of experience tuples (st, at, rt, st+1)
from the replay buffer at each time step, and then the algorithm updates the network
parameters by optimizing the loss function, using experience replay can not only make
training more efficient, but also reduce the problem overfitting that generated by the
training process.

Double DQN: Double DQN is proposed to solve the overestimation problem. DQN
takes the maximum value with max each time, and the difference between this maximum

Future Internet 2022, 14, 30 12 of 19

value and the weighted average value introduces an error, which will lead to overestimation
after a long time accumulation. The Double DQN is composed of two networks, QA and
QB, and it utilizes these two networks to proceed the state valuation and the action output
alternatively. That is, one network is used to select out the action, and the other network
is used to update the Q value according to the selected action. The Double DQN makes
the learning process more stable and reliable by separating the two steps of selecting the
action corresponding to the Q value and evaluating the Q value corresponding to the action,
which eliminates the overestimation brought by the greedy algorithm and obtains a more
accurate Q estimation. Instead of finding the label value of parameter update directly from
the target network, Double DQN finds the action corresponding to the maximum Q value
in QA and then uses this selected action to compute the target value of parameter update
in QB.

QA(s, a)← QA(s, a) + ρ

[
r + γ max

a′
QB(s′, a′

)
−QA(s, a)

]
(16)

QB(s, a)← QB(s, a) + ρ

[
r + γ max

a′
QA(s′, a′

)
−QB(s, a)

]
(17)

Dueling DQN: Compared with DQN, Dueling DQN considers the Q network into two
parts, the first part is only related to the state S, and the specific action A to be adopted has
nothing to do with this part is called the value function part, noted as Vπ(s), the second
part is related to both the state S and action A, this part is called the action advantage
function, noted as Aπ(s, a), the final value function can be expressed as

Qπ(s, a) = Aπ(s, a) + Vπ(s) (18)

This equation cannot identify the role of Vπ(s) and Aπ(s, a) inside the final output.
In order to reflect this identifiability, the action dominance function is generally to be the
individual action dominance function minus the average of all action dominance functions
in a state, which can ensure that the relative ordering of each action dominance function in
that state remains unchanged, and can narrow the range of Q values, remove the redundant
degrees of freedom, and improve the stability of the algorithm. The combination formula
used in practice is as follows.

Q(s, a; θ, α, β) = V(s; θ, β) +

(
A(s, a; θ, α)− 1

|A|∑a′
A
(
s, a′; θ, α

))
(19)

4.2.1. Decision Model Elements

(1) Agent
In the model, each MD is considered as an agent (equivalent to a scheduler) that selects

the next action according to the current state of the environment and improves the ability
of the agent to make decisions by continuously interacting with the environment. The goal
of the agent is to make the optimal action in any state, thus minimizing the total cost in the
edge computing system.

(2) State
At the beginning of each time slot, each agent observes the state of the environment,

which includes the properties of the MD task, the waiting queue state, the transmission
queue state, bandwidth information, and the real-time load of the edge nodes, all the states
are closely related to the action to be selected by the agent.

sm(t) =
(

λm(t), τt
m, wait , τtran

m,n , Bt, qedge
m (t− 1), H(t)

)
(20)

where H(t) denotes the historical load level on each edge node and qedge
m (t− 1) is the edge

node state information for time slot t− 1.

Future Internet 2022, 14, 30 13 of 19

(3) Action
Based on the current state, the agent first decides whether the newly generated task

needs to be offloaded for computation, i.e., xt
m; if it needs to be offloaded, it chooses which

server to offload, i.e., yt
m; and also chooses the appropriate transmission power when

offloading the transmission, i.e., pt
m.

a =
(
xt

m, yt
m, pt

m
)

, A = {0, 1}1+N+1 (21)

(4) Reward
After observing the state at time slot t, the agent takes an action according to the policy

and then receives a reward at time slot t + 1 while updating the scheduling policy network
to make an optimal decision in the next time slot. The goal of each agent is to maximize its
long-term discounted reward by optimizing the mapping from states to actions so that the
agent tends to make optimal decisions in its continuous interaction with the environment.
The reward function is shown below, and the detailed design is described in Section 4.2.2.

E

 T

∑
(t=0)

γtrt(st, at)

 (22)

4.2.2. Design of the Reward Function

The reward function is generally designed according to the objective function of the
system model, which minimizes the total cost of processing delay and energy consumption
by making optimal offloading decisions. In the model of this paper, tasks may exceed the
limits of tolerated delay regardless of whether they are offloaded or not. These tasks are
considered as unsuccessful tasks, but also consume the corresponding resources. In order
to reduce the number of tasks thrown in the whole system and to minimize the cost of the
system, a reasonable reward function must be designed.

For MDs that only consider saving local energy consumption, offloading is preferred.
If all MDs offload the tasks, the edge server will be overloaded and the idle state of MDs is
also a waste of computational resources, so the execution delay and energy consumption of
tasks need to be considered at the same time. When a task completes successfully without
exceeding a given tolerance delay, a corresponding reward is given; when a task exceeds
its tolerance delay, the task is considered as discarded and penalized. With such a design,
the action is rewarded whether the task is executed locally or on the edge server, as long as
it is completed within the specified time. In this paper, for a task to be executed only if it is
completed within the specified time and consumes the least amount of energy, the shorter
the execution delay, the greater the reward the task receives, and the least cost of the whole
system. In order to be consistent with the objective in the model of this paper, we use
negative rewards. When the system objective function is at the minimum level, the DRL
can get the maximum reward. Based on the above considerations, the reward function is
designed as follows.

rt(st, at) = −[(αT + βE)− pt] (23)

where pt is the penalty for the corresponding task dropped.
The structure of the DRL algorithm in this paper is based on the combination of DQN

parameter update improved Double DQN and neural network structure improved Dueling
DQN algorithm, and then the LSTM prediction algorithm is migrated to DRL decision
algorithm. In this paper, we propose an Online Predictive Offloading (OPO) algorithm
based on the deep reinforcement learning algorithm to solve the modeling problem, and the
specific process of model training is shown in Algorithm 1.

In the algorithm, lines 8–14 with probability 1 − ε select a random action or LSTM
predict action a, and lines 21–25 are network parameter updates referencing the Double
DQN update method.

Future Internet 2022, 14, 30 14 of 19

Algorithm 1 Online Predictive Offloading Algorithm.

1: Input: Input different tasks in each time solts
2: Output: Optimal offloading decision and total cost
3: Initialize QA,QB and s
4: Initialize replay memory D to capacity N;
5: for episode = 1, M do
6: Initialize sequence s, and preprocessed sequence
7: for t = 1, T do
8: With probability 1 − ε select a random action or LSTM predict action
9: Generate another random number σ

10: if σ > ε then
11: at = Random Action Selection(st)
12: end if
13: if σ < ε then
14: at = Prediction Action Selection(st)
15: end if
16: Otherwise select a by a∗=argmaxaQA(s, a) or b∗=argmaxaQB(s, a)
17: Execute action at and receive rt and st+1
18: Store (st, at, rt, st+1) into D
19: Randomly sample a mini-batch of experience from D
20: Preform a gradient descent step on Loss(θ) with respect to the network parame-

ters
21: Choose a, based on QA(s, •) and QB(s, •), observe r, s′

22: if UPDATE(A) then
23: QA(s, a)← QA(s, a) + ρ

[
r + γ maxa′ QB(s′, a∗)−QA(s, a)

]
24: else if UPDATE(B) then
25: QB(s, a)← QB(s, a) + ρ

[
r + γ maxa′ QA(s′, b∗)−QB(s, a)

]
26: end if
27: end for
28: end for
29: Repeat

5. Experimental Evaluation
5.1. Experimental Setup

In this paper, we use a dataset from Google Cluster [40], which includes information
about the arrival time, data size, processing time, and deadline of the tasks. These tasks
include not only big tasks such as big data analysis and real-time video processing, but
also small tasks such as image processing in virtual reality. Each type of task processing
density, task processing time and the size of data volume are related. Therefore, we
preprocess the raw data according to the characteristics of the data and make the data size
compatible with the established model by normalization and denormalization. Referring
to the corresponding literature [30,41], the main parameter settings are given in Table 2.

Table 2. Simulation parameters.

Parameter Value

f device
m 2.5 GHz
f EC
m 41.8 GHz
Bt

m 10 MHz
Pexe

m 5 Watt
Pwait

m 0.2 Watt
Ptran

m,n 2 Watt
Pexe

m,n 10 Watt

Future Internet 2022, 14, 30 15 of 19

5.2. Task Prediction Experiment

In a stable real edge computing scenario, the tasks generated by terminal devices are
highly correlated with time and have a certain continuity and regularity. Generally, a T
times history window is used to predict the task at T + 1 times. In the experiments, we set
the history window to 50 and set different thresholds for the optimization target |Dt − D∼t |.
The experimental results are shown in Figure 6. When the threshold value is set small,
the LSTM prediction model describes the historical data volume with higher accuracy and
can fully explore the changing pattern of the data volume, however, it will introduce a
larger prediction overhead, such as will increase the training time of the LSTM model.

(a) (b)

Figure 6. Effect of threshold size on LSTM prediction task features. (a) Threshold size = 0.5 M;
(b) Threshold size = 0.1 M.

5.3. Training Process of LSTM & DRL

When performing training on the DRL offload decision model, it takes a longer time
to explore and select the better result due to the initial random selection action of the agent.
In this paper, we propose to predict the server load based on the edge server record history
data. Based on the prediction results, the server predicted to be non-idle is selected with
a certain probability as the offload choice for the next moment. This solution allows the
agent to effectively avoid selecting servers with high loads, thus reducing task processing
latency and task dropping rates. In this paper, we propose to use LSTM for load prediction
and compare the impact of decisions with load prediction (LSTM & DRL) and without load
prediction (DRL) on offloading performance. As can be seen in Figure 7, the traditional
DRL is significantly slower than the LSTM & DRL for load prediction in the early stages of
training decision making. As the number of training increases and the historical data keeps
increasing, the LSTM & DRL can effectively make predictions about the load, and based
on the prediction results, the agent can make full use of the best strategy that has been
explored. Therefore, after certain training, the average delay, energy consumption, and the
number of task throw volumes can be reduced rapidly by using LSTM for load prediction.

5.4. Performance Comparison

In this paper, the proposed OPO algorithm is compared with DQN, Double DQN,
and Dueling DQN benchmark methods, and the following performance metrics are used:
the average delay, energy consumption, and the number of task throw volume to verify
the performance advantages of the proposed algorithm. The experimental results are
shown in Figure 8. Five edge servers and 50 terminal devices are used for simulation
experiments, and it can be obtained that the proposed algorithm significantly outperforms
the other benchmark methods in all the above three performance metrics. This is because a
combination of predictive and decision methods to deal with complex scenarios can make
excellent use of the characteristics of the tasks and the load on the edge servers.

Future Internet 2022, 14, 30 16 of 19

(a) (b) (c)

Figure 7. training process of LSTM & DRL. (a) Average Delay; (b) Tasks Costs; (c) Number of
Dropped Tasks.

(a) (b) (c)

Figure 8. Comparison of different DRL algorithms. (a) Average delay; (b) tasks costs; (c) number of
dropped tasks.

5.5. Impact of the Tasks Number

Previous studies have proved that the task arrival rate has a large impact on the system
state due to the random generation of tasks. In this paper, we use data from real scenarios
for data streams, so unlike traditional schemes that use task arrival rates to judge the system
state, this paper uses different time slots to verify the impact of the number of tasks on the
system cost, average task delay, and task discard rate. Specifically, we set the time slots
in the dataset to T = 100, 200, 500, 1000, and compare the performance of DQN, double
DQN, dueling DQN, and OPO under different time slots. The experimental results are
shown in Figure 9. The OPO algorithm has similar trends in various performance metrics
as the conventional scheme in a short period. However, as the running time of the system
increases (i.e., the number of tasks increases), OPO reduces at least 6.25% of the average
latency, 25.6% of the offloading cost, and 31.7% of the task drop rate compared to other
algorithms in terms of cost, average latency, and task dropped rate.

(a) (b) (c)

Figure 9. Impact of tasks number on offloading decision. (a) Average delay; (b) tasks costs; (c) tasks
dropped rate.

5.6. Impact of the Learning Rate

In this paper, we also study the convergence of the proposed algorithm at different
learning rates (denoted as lr). As can be seen in Figure 10, when lr = 0.001, the algorithm
is able to achieve a relatively fast convergence rate and a small convergence cost. As the
learning rate decreases (i.e., below 0.0001), the convergence is slower and takes longer to

Future Internet 2022, 14, 30 17 of 19

reach a better value. When the learning rate is larger, the convergence cost increases and
may even be higher than that of the stochastic strategy.

(a) (b) (c)

Figure 10. Impact of tasks number on offloading decision. (a) Average delay; (b) tasks costs;
(c) number of dropped tasks.

5.7. Simulation of Real-Time Decision

The newly generated tasks have to find the best computational nodes and allocate
suitable resources through the decision model. The tasks generate queuing delay and
decision response delay in the cache queue from generation until the decision information
is derived. Through the LSTM prediction model, the next incoming task is predicted based
on the historical data of the task and enters the decision model to propose an offloading
scheme for its assignment. In the experiments, we select the first 500 tasks for comparison.
The experimental results are shown in Figure 11. It can be seen that at the beginning of the
experiment, the tasks can choose good compute nodes because the cache queue and the
edge server system are relatively idle, but as time goes by, the number of tasks increases
the task stacking in the cache queue, which leads to an increase in the queuing delay of
the tasks. Based on the prediction model, when the task is generated, the actual value of
the task is compared with the predicted value, and when the error meets the set threshold,
the task can be directly offloaded for computation according to the proposed assignment,
otherwise, it waits to enter the decision model for reassignment. In the long run, task based
prediction can effectively reduce the decision latency of tasks.

(a) (b)

Figure 11. Diagram of real-time simulated decison results. (a) Total delay; (b) total costs.

6. Conclusions

In this paper, we study the computational offloading problem in edge computing by
considering task latency, energy consumption, and discard rate. We model the offloading
problem with the optimization objective of minimizing long-term cost by jointly optimizing
the above metrics. The model is solved by combining the prediction method of LSTM
networks and the decision method of DQN. By combining the advantages of Double DQN
and Dueling DQN, an OPO algorithm based on deep reinforcement learning is proposed
to improve the accuracy and stability of the model convergence. The training speed and

Future Internet 2022, 14, 30 18 of 19

training accuracy of the DRL model are improved by using the prediction capability of
LSTM. In the actual inference process, the offloading decision delay of the task is reduced by
proposing a good offloading decision for the task in advance. According to the experiment
results, the OPO algorithm can provide a better offloading decision solution for the task
offloading decision problem in a real IoT environment. However, the experimental results
of the method in this paper are derived based on simulation techniques. In future research,
we will consider migrating the method to an experimental tested, and then combining the
latest algorithms and techniques to improve the performance of the OPO algorithm in real
IoT applications scenarios.

Author Contributions: Data curation, Y.T. and L.Y.; Formal analysis, Y.T.; Funding acquisition, H.C.
and X.Z.; Project administration, H.C.; Software, H.C.; Visualization, Y.T.; Writing—original draft,
Y.T.; Writing—review & editing, H.C., L.Y. and X.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (NSFC)
grant number 62002183. This research was funded by Ningbo Natural Science Foundation grant
number 2021J090. This research was funded by Ningbo Natural Science Foundation grant number
202003N4087.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aslanpour, M.S.; Gill, S.S.; Toosi, A.N. Performance Evaluation Metrics for Cloud, Fog and Edge Computing: A Review,

Taxonomy, Benchmarks and Standards for Future Research. Internet Things 2020, 12, 100273. [CrossRef]
2. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
3. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.

[CrossRef]
4. Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [CrossRef]
5. Kuang, L.; Gong, T.; OuYang, S.; Gao, H.; Deng, S. Offloading Decision Methods for Multiple Users with Structured Tasks in

Edge Computing for Smart Cities. Future Gener. Comput. Syst. 2020, 105, 717–729. [CrossRef]
6. Thai, M.T.; Lin, Y.D.; Lai, Y.C.; Chien, H.T. Workload and Capacity Optimization for Cloud-Edge Computing Systems with

Vertical and Horizontal Offloading. IEEE Trans. Netw. Serv. Manag. 2020, 17, 227–238. [CrossRef]
7. Cui, L.; Xu, C.; Yang, S.; Huang, J.Z.; Li, J.; Wang, X.; Ming, Z.; Lu, N. Joint Optimization of Energy Consumption and Latency in

Mobile Edge Computing for Internet of Things. IEEE Internet Things J. 2018, 6, 4791–4803. [CrossRef]
8. Gu, Q.; Wang, G.; Liu, J.; Fan, R.; Fan, D.; Zhong, Z. Optimal Offloading with Non-Orthogonal Multiple Access in Mobile Edge

Computing. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates,
9–13 December 2018; pp. 1–5. [CrossRef]

9. Mukherjee, M.; Kumar, V.; Kumar, S.; Matamy, R.; Mavromoustakis, C.X.; Zhang, Q.; Shojafar, M.; Mastorakis, G. Computation
Offloading Strategy in Heterogeneous Fog Computing with Energy and Delay Constraints. In Proceedings of the IEEE International
Conference on Communications (ICC), Online, 7–11 June 2020; pp. 1–5. [CrossRef]

10. Wu, Y.; Shi, J.; Ni, K.; Qian, L.; Zhu, W.; Shi, Z.; Meng, L. Secrecy-Based Delay-Aware Computation Offloading via Mobile Edge
Computing for Internet of Things. IEEE Internet Things J. 2019, 6, 4201–4213. [CrossRef]

11. Meng, H.; Chao, D.; Guo, Q. Deep Reinforcement Learning Based Task Offloading Algorithm for Mobile-Edge Computing
Systems. In Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence, Chegndu, China,
12–15 April 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 90–94. [CrossRef]

12. Huang, L.; Bi, S.; Zhang, Y.J.A. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-
Edge Computing Networks. IEEE Trans. Mob. Comput. 2020, 19, 2581–2593. [CrossRef]

13. Yan, P.; Choudhury, S. Optimizing Mobile Edge Computing Multi-Level Task Offloading via Deep Reinforcement Learning. In
Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; IEEE: New York,
NY, USA, 2020; pp. 1–7. [CrossRef]

14. Huang, L.; Feng, X.; Zhang, C.; Qian, L.; Wu, Y. Deep Reinforcement Learning-based Joint Task Offloading and Bandwidth
Allocation for Multi-user Mobile Edge Computing. Digit. Commun. Netw. 2019, 5, 10–17. [CrossRef]

15. Kumar, R.; Kumar, P.; Kumar, Y. Time Series Data Prediction using IoT and Machine Learning Technique. Procedia Comput. Sci.
2020, 167, 373–381. [CrossRef]

http://doi.org/10.1016/j.iot.2020.100273
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/JPROC.2019.2922285
http://dx.doi.org/10.1016/j.future.2019.12.039
http://dx.doi.org/10.1109/TNSM.2019.2937342
http://dx.doi.org/10.1109/JIOT.2018.2869226
http://dx.doi.org/10.1109/GLOCOM.2018.8647179
http://dx.doi.org/10.1109/ICC40277.2020.9148852
http://dx.doi.org/10.1109/JIOT.2018.2875241
http://dx.doi.org/10.1145/3325730.3325732
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/ICC40277.2020.9149024
http://dx.doi.org/10.1016/j.dcan.2018.10.003
http://dx.doi.org/10.1016/j.procs.2020.03.240

Future Internet 2022, 14, 30 19 of 19

16. Abdellah, A.R.; Mahmood, O.A.K.; Paramonov, A.; Koucheryavy, A. IoT Traffic Prediction Using Multi-step Ahead Prediction
with Neural Network. In Proceedings of the 2019 11th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), Dublin, Ireland, 28–30 October 2019; pp. 1–4. [CrossRef]

17. Gao, J.; Wang, H.; Shen, H. Machine Learning Based Workload Prediction in Cloud Computing. In Proceedings of the 2020 29th
International Conference on Computer Communications and Networks (ICCCN), Online, 3–6 August 2020; pp. 1–9. [CrossRef]

18. Sonmez, C.; Tunca, C.; Ozgovde, A.; Ersoy, C. Machine Learning-Based Workload Orchestrator for Vehicular Edge Computing.
IEEE Trans. Intell. Transp. Syst. 2021, 22, 2239–2251. [CrossRef]

19. Shu, C.; Zhao, Z.; Han, Y.; Min, G.; Duan, H. Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and
Latency-Optimal Approach. IEEE Internet Things J. 2020, 7, 1678–1689. [CrossRef]

20. Guo, H.; Liu, J. Collaborative Computation Offloading for Multiaccess Edge Computing Over Fiber–Wireless Networks. IEEE
Trans. Veh. Technol. 2018, 67, 4514–4526. [CrossRef]

21. Ali, R.; Zikria, Y.B.; Garg, S.; Bashir, A.K.; Obaidat, M.S.; Kim, H.S. A Federated Reinforcement Learning Framework for
Incumbent Technologies in Beyond 5G Networks. IEEE Netw. 2021, 35, 152–159. [CrossRef]

22. Ali, R.; Ashraf, I.; Bashir, A.K.; Zikria, Y.B. Reinforcement-Learning-Enabled Massive Internet of Things for 6G Wireless
Communications. IEEE Commun. Stand. Mag. 2021, 5, 126–131. [CrossRef]

23. Zhao, T.; Zhou, S.; Song, L.; Jiang, Z.; Guo, X.; Niu, Z. Energy-optimal and Delay-bounded Computation Offloading in Mobile
Edge Computing with Heterogeneous Clouds. China Commun. 2020, 17, 191–210. [CrossRef]

24. Vu, T.T.; Huynh, N.V.; Hoang, D.T.; Nguyen, D.N.; Dutkiewicz, E. Offloading Energy Efficiency with Delay Constraint
for Cooperative Mobile Edge Computing Networks. In Proceedings of the 2018 IEEE Global Communications Conference
(GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

25. Yuan, H.; Zhou, M. Profit-Maximized Collaborative Computation Offloading and Resource Allocation in Distributed Cloud and
Edge Computing Systems. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1277–1287. [CrossRef]

26. Alqerm, I.; Pan, J. DeepEdge: A New QoE-Based Resource Allocation Framework Using Deep Reinforcement Learning for Future
Heterogeneous Edge-IoT Applications. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3942–3954. [CrossRef]

27. Amin, F.; Ahmad, A.; Sang Choi, G. Towards Trust and Friendliness Approaches in the Social Internet of Things. Appl. Sci. 2019,
9, 166. [CrossRef]

28. Chen, W.; Qiu, X.; Cai, T.; Dai, H.N.; Zheng, Z.; Zhang, Y. Deep Reinforcement Learning for Internet of Things: A Comprehensive
Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1659–1692. [CrossRef]

29. Huang, L.; Feng, X.; Feng, A.; Huang, Y.; Qian, L.P. Distributed Deep Learning-based Offloading for Mobile Edge Computing
Networks. Mob. Netw. Appl. 2018, 1–8. [CrossRef]

30. Tang, M.; Wong, V.W. Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems. IEEE Trans. Mob.
Comput. 2020, 1. [CrossRef]

31. Jang, I.; Kim, H.; Lee, D.; Son, Y.S.; Kim, S. Knowledge Transfer for On-Device Deep Reinforcement Learning in Resource
Constrained Edge Computing Systems. IEEE Access 2020, 8, 146588–146597. [CrossRef]

32. Gong, Y.; Wang, J.; Nie, T. Deep Reinforcement Learning Aided Computation Offloading and Resource Allocation for IoT. In
Proceedings of the 2020 IEEE Computing, Communications and IoT Applications (ComComAp), Beijing, China, 5–8 November 2020;
pp. 1–6. [CrossRef]

33. Chen, X.; Zhang, H.; Wu, C.; Mao, S.; Ji, Y.; Bennis, M. Optimized Computation Offloading Performance in Virtual Edge Computing
Systems Via Deep Reinforcement Learning. IEEE Internet Things J. 2019, 6, 4005–4018. [CrossRef]

34. Song, S.; Fang, Z.; Zhang, Z.; Chen, C.L.; Sun, H. Semi-Online Computational Offloading by Dueling Deep-Q Network for User
Behavior Prediction. IEEE Access 2020, 8, 118192–118204. [CrossRef]

35. Zou, J.; Hao, T.; Yu, C.; Jin, H. A3C-DO: A Regional Resource Scheduling Framework Based on Deep Reinforcement Learning in
Edge Scenario. IEEE Trans. Comput. 2021, 70, 228–239. [CrossRef]

36. Liu, L.; Feng, J.; Pei, Q.; Chen, C.; Ming, Y.; Shang, B.; Dong, M. Blockchain-Enabled Secure Data Sharing Scheme in Mobile-Edge
Computing: An Asynchronous Advantage Actor–Critic Learning Approach. IEEE Internet Things J. 2021, 8, 2342–2353. [CrossRef]

37. Fu, F.; Kang, Y.; Zhang, Z.; Yu, F.R.; Wu, T. Soft Actor–Critic DRL for Live Transcoding and Streaming in Vehicular Fog-Computing-
Enabled IoV. IEEE Internet Things J. 2021, 8, 1308–1321. [CrossRef]

38. Chen, J.; Chen, S.; Wang, Q.; Cao, B.; Feng, G.; Hu, J. iRAF: A Deep Reinforcement Learning Approach for Collaborative Mobile
Edge Computing IoT Networks. IEEE Internet Things J. 2019, 6, 7011–7024. [CrossRef]

39. Chen, J.; Chen, S.; Luo, S.; Wang, Q.; Cao, B.; Li, X. An Intelligent Task Offloading Algorithm (iTOA) for UAV Edge Computing
Network. Digit. Commun. Netw. 2020, 6, 433–443. [CrossRef]

40. Yuan, H.; Tang, G.; Li, X.; Guo, D.; Luo, L.; Luo, X. Online Dispatching and Fair Scheduling of Edge Computing Tasks: A
Learning-Based Approach. IEEE Internet Things J. 2021, 8, 14985–14998. [CrossRef]

41. Chen, J.; Xing, H.; Xiao, Z.; Xu, L.; Tao, T. A DRL Agent for Jointly Optimizing Computation Offloading and Resource Allocation
in MEC. IEEE Internet Things J. 2021, 8, 17508–17524. [CrossRef]

http://dx.doi.org/10.1109/ICUMT48472.2019.8970675
http://dx.doi.org/10.1109/ICCCN49398.2020.9209730
http://dx.doi.org/10.1109/TITS.2020.3024233
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1109/TVT.2018.2790421
http://dx.doi.org/10.1109/MNET.011.2000611
http://dx.doi.org/10.1109/MCOMSTD.001.2000055
http://dx.doi.org/10.23919/JCC.2020.05.015
http://dx.doi.org/10.1109/GLOCOM.2018.8647856
http://dx.doi.org/10.1109/TASE.2020.3000946
http://dx.doi.org/10.1109/TNSM.2021.3123959
http://dx.doi.org/10.3390/app9010166
http://dx.doi.org/10.1109/COMST.2021.3073036
http://dx.doi.org/10.1007/s11036-018-1177-x
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/ACCESS.2020.3014922
http://dx.doi.org/10.1109/ComComAp51192.2020.9398891
http://dx.doi.org/10.1109/JIOT.2018.2876279
http://dx.doi.org/10.1109/ACCESS.2020.3004861
http://dx.doi.org/10.1109/TC.2020.2987567
http://dx.doi.org/10.1109/JIOT.2020.3048345
http://dx.doi.org/10.1109/JIOT.2020.3003398
http://dx.doi.org/10.1109/JIOT.2019.2913162
http://dx.doi.org/10.1016/j.dcan.2020.04.008
http://dx.doi.org/10.1109/JIOT.2021.3073034
http://dx.doi.org/10.1109/JIOT.2021.3081694

	Introduction
	Related Works
	Offloading Methods with Different Modeling Objects
	Offloading Methods with Different Problem Solving Strategies

	System Model
	Task Model
	Decision Model
	Computational Model
	Terminal Layer Computing Model
	Edge Layer Computing Model

	Communication Model
	Prediction Model
	Task Prediction Model
	Load Prediction Model

	Model Solving
	Overall Framework
	Model Training Phase
	Offloading Decision Phase

	Algorithm Design
	Decision Model Elements
	Design of the Reward Function

	Experimental Evaluation
	Experimental Setup
	Task Prediction Experiment
	Training Process of LSTM & DRL
	Performance Comparison
	Impact of the Tasks Number
	Impact of the Learning Rate
	Simulation of Real-Time Decision

	Conclusions
	References

