
����������
�������

Citation: Song, J.; Song, J.; Yuan, X.;

He, X.; Zhu, X. Graph

Representation-Based Deep

Multi-View Semantic Similarity

Learning Model for

Recommendation. Future Internet

2022, 14, 32. https://doi.org/

10.3390/fi14020032

Academic Editor: Eirini Eleni

Tsiropoulou

Received: 30 November 2021

Accepted: 17 January 2022

Published: 19 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Graph Representation-Based Deep Multi-View Semantic
Similarity Learning Model for Recommendation
Jiagang Song 1 , Jiayu Song 2,*, Xinpan Yuan 3 , Xiao He 4 and Xinghui Zhu 4

1 School of Computer Science and Engineering, Guangxi Normal University, Guiling 541004, China;
songjg@stu.gxnu.edu.cn

2 School of Computer Science and Engineering, Central South University, Changsha 410083, China
3 School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China; xpyuan@hut.edu.cn
4 College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China;

aac@stu.hunau.edu.cn (X.H.); zhuxh@hunau.edu.cn (X.Z.)
* Correspondence: jiayusong@csu.edu.cn; Tel.: +86-185-7491-9704

Abstract: With the rapid development of Internet technology, how to mine and analyze massive
amounts of network information to provide users with accurate and fast recommendation information
has become a hot and difficult topic of joint research in industry and academia in recent years. One of
the most widely used social network recommendation methods is collaborative filtering. However,
traditional social network-based collaborative filtering algorithms will encounter problems such as
low recommendation performance and cold start due to high data sparsity and uneven distribution.
In addition, these collaborative filtering algorithms do not effectively consider the implicit trust
relationship between users. To this end, this paper proposes a collaborative filtering recommendation
algorithm based on graphsage (GraphSAGE-CF). The algorithm first uses graphsage to learn low-
dimensional feature representations of the global and local structures of user nodes in social networks
and then calculates the implicit trust relationship between users through the feature representations
learned by graphsage. Finally, the comprehensive evaluation shows the scores of users and implicit
users on related items and predicts the scores of users on target items. Experimental results on
four open standard datasets show that our proposed graphsage-cf algorithm is superior to existing
algorithms in RMSE and MAE.

Keywords: GraphSAGE; graph embedding; collaborative filtering

1. Introduction

With the rapid development of Internet technology, mining and analyzing massive
network information has become a hot topic and a challenging problem. A recommendation
system can help users solve the problem of information overload when there is no clear
demand or a huge amount of information, and provide users with accurate and fast
business information (such as about goods, projects, services, etc.), which has became
a common interest and research hotspot of industry and academia in recent years [1].
However, there are various types of data and wide application scenarios. Recommendation
systems will encounter the challenges of cold start and sparse matrix. The collaborative
filtering technique is the most widely used method in recommendation systems, which
predicts future preferences of users by analyzing their historical behavioral data [2–4].
At present, collaborative filtering has been favored by many researchers in the field of
recommendation. The fusion of collaborative filtering technology with the recommendation
method can effectively solve the problems of cold start and sparse matrix in traditional
recommendation systems, and improve the performance and accuracy of recommendation
systems. However, data sparsity and cold start are the main problems that limit the
performance of collaborative filtering recommendation algorithms.
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The emergence of social networks has led to an increasing number of recommendation
algorithms, such as SoRec, RSTE, SocialMF, TrustMF, and so forth. These use the rich infor-
mation provided by social networks to address the recommendation problem. However,
in primitive social networks, trust relationships tend to be binary. Intuitively, this trust
relationship representation is coarse-grained due to the differences in the intensity of users’
trust in different people. In addition, the sparse trust relationships in social networks make
fewer social relationship data available [5]. In fact, many users do not have direct trust
relationships. However, they have many common neighbors who are likely to have high
levels of trust between them. Considering such indirect, implicit trust relationships when
modeling recommendation models can effectively improve the performance of recommen-
dation models. However, traditional social network-based recommendation algorithms
tend to ignore these implicit trust relationships. To model the global and local structure of
information networks, a series of graph embedding (GE) models were proposed.

Graph embedding models embed large-scale information networks into a
low-dimensional space, where a low-dimensional feature vector represents each network
node. This low-dimensional feature vector effectively preserves the structural information of
the information network and can be applied in various graph-based machine learning tasks,
such as node classification, clustering, link prediction and visualization. The GraphSAGE
model is an inductive learning framework that can efficiently generate unknown vertices
embedding by using the attribute information of vertices [6,7]. It is used to derive the user
trust relationships from the original social network that hold both local and global informa-
tion of the social network [8–10], and a graph-embedded model-based collaborative filtering
recommendation algorithm is proposed. Intuitively, the low-dimensional feature representa-
tion of user nodes in social networks can be learned through graph embedding and can be
integrated into traditional social network-based recommendation algorithms to address the
problems of coarse granularity. However, few research efforts have considered integrating
graph embedding techniques into traditional social network-based recommendation algo-
rithms to improve the performance of traditional social network-based recommendation.

The Method. This paper proposes a collaborative filtering recommendation algorithm
based on a graph embedding model to address the problems of traditional social network-
based recommendation algorithms. First, the graph embedding model technique is used
to learn the low-dimensional feature representation of users in social networks. This low-
dimensional feature representation of users simultaneously preserves the social network’s
global and local structural information, that is, the first-order and second-order trust
between users. Then, a fine-grained trust relationship between users is inferred based
on the low-dimensional feature representation of the users. Finally, the rating weights of
trusted and similar users on the target item are averaged to predict the users’ ratings of
the target item. Experimental results on four benchmark datasets show that the graph
embedding model-based collaborative filtering algorithm outperforms the traditional
collaborative filtering algorithm.

Contributions. The main contributions of this paper are listed as follows.

• To overcome the challenges of cold start, we propose a novel GraphSAGE based col-
laborative filtering recommendation method, called GraphSAGE-CF. This paper tries
to integrate GraphSAGE with a collaborative filtering technique for recommendation
systems;

• A GraphSAGE based user embedding method is developed to learn low dimensional
feature representation of global and local structures of users in social networks. Then,
the implicit trust relationship between users can be measured;

• We conduct comprehensive experiments on four commonly used benchmark datasets.
The experimental results demonstrate that our method outperforms the state-of-the-art.

Roadmap. The rest of this paper is organized as follows: in Section 2, the existing
research related to our work is reviewed. In Section 3, the problem of recommendation and
the related notions are formulated. In Section 4, the collaborative filtering algorithm based
on the graph embedding model is proposed and the details of this method are discussed.
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In Section 5, the comprehensive experiments are discussed. We conclude this paper in
Section 6.

2. Related Work
2.1. Collaborative Filtering

The collaborative filtering recommendation algorithm is the most widely used recom-
mendation method. It was proposed by Goldberg et al. [11] in 1992, was applied to news
filtering in 1994, and has become one of the most popular recommendation algorithms in
the corporate world [12]. There are three main categories of collaborative filtering-based
recommendation methods—user-based collaborative filtering [13], item-based collabora-
tive filtering [14,15], and matrix factorization based collaborative filtering algorithms [16].
The core of the user-based collaborative filtering algorithm is to first identify users with
high similarity to the target users by their preferences, predict the target users’ ratings of
the items of interest based on the ratings of the similar users, and recommend the series of
items with the highest ratings to the users. The idea of the item-based collaborative filtering
algorithm is similar, and recommendations are made by calculating the similarity between
items. The matrix decomposition-based collaborative filtering algorithm represents the
user’s item rating information in the form of a matrix. It represents the user and the
item in the low-dimensional space through the matrix decomposition operation, which
portrays the correlation between household items as the inner product of the user’s item
vectors. However, in many cases, it may encounter problems such as low recommendation
performance, cold start, and long tail, which are caused by the highly sparse and uneven
distribution of data [17,18].

The most widely used recommendation technique is the collaborative filtering rec-
ommendation algorithm. It mines the user’s hidden preferences from the user’s historical
activity records and makes recommendations based on the user’s hidden preferences. Col-
laborative filtering algorithms are mainly divided into three categories—memory-based
collaborative filtering recommendation algorithms, model-based collaborative filtering
algorithms and hybrid recommendation algorithms. Matrix-based recommendation al-
gorithms have received a lot of attention in the industry because of their scalability and
predictive ability in handling large scale data. PMF, SVD++, NMF, MMMF and NPCA are
typical matrix-based recommendation algorithms.

SoRec [19] first proposed a social recommendation model based on the shared repre-
sentation of user feature matrix, which laid a solid foundation for subsequent researchers
to carry out research on collaborative filtering algorithms based on matrix decomposi-
tion. Based on different ways of constructing social information, TrustMF, a social rec-
ommendation model based on the relationship between trust and trusted, was proposed
by Yang et al. [20]. TrustMF models trusting and trusted behaviors from the perspective
of trust relationship generation, while SoRec models them only from the mathematical
perspective, and the matrix decomposition process does not have any practical meaning.
Ma et al. [21] also proposed a recommendation model RSTE for weighted social information
that takes into account the preferences of trusted friends. A new social recommendation
model based on a trust propagation mechanism in social networks, SocialMF [22], was
proposed by Jamali et al. Similar to SocialMF, Ma et al. [23] proposed a social regularized
recommendation model, SoReg, which argues that trust relationships and friend relation-
ships are two different behaviors; a trust relationship is related to similar interests and
hobbies among users, while a friend relationship is based entirely on real life social rela-
tionships. This information is added to the original SVD++ [24] to propose the TrustSVD
model [25].

In traditional collaborative filtering algorithms, the extreme sparsity of the user-item
rating matrix seriously affects the performance of the collaborative filtering algorithm.
For example, it is difficult for the collaborative filtering-based recommendation algorithm
to find other users with similar interests based on the user’s rating information when the
user’s rating information is scarce or missing. This paper uses the graph embedding model
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to improve the traditional user-based collaborative filtering algorithm. This is especially to
further integrate fine-grained user trust relationships based on the user-based collaborative
filtering algorithm and to consider explicit and implicit trust between users to alleviate the
data sparsity and cold start problems in the traditional collaborative filtering algorithm.

2.2. Graph Embedding

Graph embedding is a graph representation learning method that maps high-dimensional
vectors to a low-dimensional space. The main objective of graph embedding is to achieve
the following two aspects: the learned embedding vectors in the low-dimensional space can
reconstruct the original graph structure, and the learned embedding vectors can support the
inferential analysis of the graph. Depending on the object of embedding, graph embedding can
be divided into two categories—embedding of the whole graph and embedding of nodes or
edges in large-scale graphs. Graph embedding techniques fall into three main categories—matrix
decomposition-based graph embedding methods [26–31], random wander-based graph
embedding methods [32–34], and deep learning-based graph embedding methods [35–37].

2.2.1. Matrix Decomposition-Based Graph Embedding Method

The idea of the matrix decomposition based method is to represent the association in-
formation between nodes in a graph by means of a matrix, and the association moments of
the graph by means of a matrix decomposition method. The array is dimensionally reduced
to generate a low-dimensional vector for each node. Depending on the different properties
of the matrix, matrix decomposition methods can be divided into two categories: Graph
Laplacian Eigenmap Factorization and Node Proximity Matrix Factorization [38]. If similar
pairs of nodes are mapped into a more distant vector space during graph embedding, Graph
Laplacian Eigenmap Factorization gives the pair a larger penalty value. Typical Graph
Laplacian Eigenmap Factorizations include LE [26], CGE [29], and Isomap [39].Through ma-
trix decomposition methods, node Proximity Matrix Factorization incrementally simulates
graph similarity in a low-dimensional space.

2.2.2. Graph Embedding Method Based on Random Wandering

The random wander-based graph embedding method uses different random wander
strategies to obtain local or global information of the graph, generate a sequence of nodes,
and generate a reduced dimensional embedding of the corresponding nodes by the Skip-
Gram algorithm. Based on different graph structures, the random wandering methods can
be divided into two categories: random wandering in homogeneous networks and random
wandering in heterogeneous networks. Random wandering in homogeneous networks
contains Node2vec [33] and so on. Random wandering in heterogeneous networks contains
Metapath2vec [34] and so on.

2.2.3. Deep Learning Based Graph Embedding Method

The inability of shallow models to capture highly nonlinear structures usually results
in the failure to generate optimal solutions. As a result, a large number of neural network
computations are applied to graph data analysis to improve the shortcomings of shallow
models. Typical deep learning-based graph embedding techniques include SDNE [35],
DNGR [36], and GraphSAGE [37]. SDNE is a deep autoencoder that obtains the final
embedding vector through a highly nonlinear function and an optimized objective function
that effectively maintains the first- and second-order similarity of the network. DNGR is
effective in maintaining the first- and second-order similarity of the network by combining
random roaming and the depth autoencoder approach solves the problem whereby tradi-
tional linear dimensionality reduction methods cannot maintain the non-linear structure
of graphs. GraphSAGE is a framework for inductive learning that can efficiently generate
embeddings of unknown vertices using the attribute information of the vertices. The core
idea is to generate the embedding vector of a target vertex by learning a function that
aggregates the representation of neighbor vertices. It consists of three main steps: 1. sam-
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pling each vertex of the graph using a similar breadth-first traversal; 2. aggregating the
information embedded in the neighbor vertices with an aggregation function; 3. using a
nonlinear activation function to obtain the embedding vector of each vertex of the graph.

Specifically, in the sampling phase, Graph Sage first selects a point, then randomly
selects the first-order neighbors of this point, and then randomly selects their first-order
neighbors with these neighbors as the starting point. For example, in the following figure,
we want to predict node 0, so first, first-order neighbors 2, 4, and 5 of node 0 are randomly
selected, and then first-order neighbors 8 and 9 of node 2 are randomly selected; first-order
neighbors of node 4 are randomly selected and first-order neighbors of nodes 5, 13, 15 are
shown in Figure 1.
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Figure 1. GraphSage detailed process.

In the aggregation stage, Graph Sage directly extracts the subgraph from the whole
graph, starting from the most edge node, updating the nodes layer by layer inward to gen-
erate the target node embedding. Specifically, first aggregate the 2-hop neighbor features,
generate one-hop neighbor embedding and then aggregate one-hop neighbor embedding
to generate target node embedding, so as to obtain two-hop neighbor information. Graph
Sage also analyzes the properties of aggregation functions and proposes that aggregation
functions need to meet the following conditions: (1) Aggregation functions need to adapt to
the number of aggregation nodes—no matter the number of aggregated nodes, aggregation
is performed. The dimensions of the feature vectors obtained after the operation must be
the same; (2) The aggregation function needs to have permutation invariance—the order of
the obtained feature vectors should be independent of the input order of the data; (3) Ag-
gregate functions must be differentiable. Therefore, Graph Sage provides several applicable
aggregation functions– average aggregation, pooling aggregation, LSTM aggregation.

In this paper, GraphSAGE is used to learn the embedding representation of user nodes
in a social network and is combined with a traditional collaborative filtering algorithm.

The graph embedding technique embeds a large-scale information network into a
low-dimensional vector space, where each node in the information network is represented
by a low-dimensional feature vector. This low-dimensional feature vector representation
preserves the structural information of the information network. The network embedding
technique has a wide range of applications in machine learning tasks such as node classifi-
cation, clustering, link prediction, and visualization. Typical graph embedding techniques
include DeepWalk, Graph Factorization, and GraphSAGE.

Graph Factorization uses a matrix decomposition model to learn embedded representa-
tions of large-scale networks. However, the objective function of the matrix decomposition
used in Graph Factorization is not designed for networks and therefore cannot preserve
information about the global structure of information networks. Moreover, the Graph
Factorization model is only applicable to directionless information networks. DeepWalk
learns embedded representations of information networks by using a random wander
algorithm. However, the DeepWalk model does not clearly describe which properties
of the preserved information network. In addition, the DeepWalk model expects nodes
with similar neighbor structures to have similar low-dimensional feature representations
and does not take into account the relationships between low-dimensional feature vectors
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between nodes with direct linking relationships.The DeepWalk model is only applicable
to unweighted networks. GraphSAGE learns large-scale information networks through
objective functions that preserve the local and global structure of the large-scale information
network. In addition, GraphSAGE uses an edge-sampling strategy to address limitations
in the classical stochastic gradient descent algorithm. GraphSAGE models are applica-
ble to large-scale homogeneous information networks, including undirected/directional,
weighted, and unweighted information networks. In addition, the representation of node
features learned from the GraphSAGE model simultaneously preserves first-order and
second-order similarity between nodes.

Given the efficiency of the GraphSAGE model, this paper uses the GraphSAGE model
to learn the embedded representation of user nodes in social networks and to integrate the
embedded representation of user nodes in social networks into a traditional collaborative
filtering recommendation algorithm.

3. Problem Definition
3.1. Recommend Formal Description of the Problem

The co-filtering algorithm mainly uses the user-item scoring matrix to predict the
user’s rating of an item. The user-item scoring matrix consists of a set of M users and a
set of N items. Each item rui in R is the rating of item i by user u. The scoring data γui can
take any real number, but normally the scoring data are an integer and γui ∈ {0, 1, 2, 3, 4, 5},
where a value of 0 means that the user has not rated this item.

Social network information is usually represented as a directed social relationship
graph G = (U, E), where U is the set of users and the set of edges E represents the social
trust relationship between users. tuv ∈ [0, 1] represents the trust weight between user u
and user v. Tuv = 0 means that no trust relationship has been established between user
u and user v. The social network information is usually represented as a directed social
relationship graph G = (U, E), where U is the set of users and the set of edges E represents
the social trust relationship between users. The trust relationships between all users form
the trust relationship matrix T.

The purpose of the social network-based recommendation system is to use the user-
item scoring matrix and social network information to predict user u’s rating of item i and
thus recommend items that the user may be interested in.

3.2. User-Based Collaborative Filtering Recommendation Algorithm

The user-based collaborative filtering algorithm assumes that similar users have
similar preferences, and the procedure is: (1) find users similar to the current active
users by some kind of similarity metric; (2) use the weighted average of similar users’
ratings of the target item to predict the current active users’ ratings of the target item.
Adopting appropriate metrics to calculate the similarity between users is key to user-
based collaborative filtering algorithms. Typical similarity metrics include cosine similarity,
Pearson’s correlation coefficient, and adjusted cosine similarity. For example, according to
the cosine similarity metric, the similarity between users u, v is defined as:

sim(u, v) = cos(u, v) = ∑i γui × γvi√
∑i γ2

ui ×
√

∑i γ2
vi

, (1)

where i is the item that users u, v have jointly rated.
After the user-based collaborative filtering algorithm calculates the similarity between

users according to some similarity metric, it finds the set of users that are most similar to
the currently active users. Then, predict user u’s rating of item j according to Equation (2).

γR
uj = γ̄u +

∑v∈D sim(u, v)× (γvj − γ̄v)

|∑v∈D sim(u, v)| , (2)



Future Internet 2022, 14, 32 7 of 17

where γ̄u denotes the average rating of user u for all rated items,γ̄v denotes the average
rating of user v for all rated items, and D denotes the set of users most similar to user u.

Finally, the user-based collaborative filtering algorithm recommends the K items with
the highest prediction scores to the current user.

4. Collaborative Filtering Algorithm Based on Graph Embedding Model

Traditional collaborative filtering recommendation algorithms suffer from severe data
sparsity and cold start problems. Social network-based collaborative filtering algorithms
assume that friends have common interest preferences, and usually improve traditional
collaborative filtering algorithms by exploiting the explicit trust relationship between users
in social networks. However, traditional collaborative filtering algorithms based on social
networks have the following problems: (1) the trust relationships between users in social
networks are coarse-grained, that is, only 0 or 1 can be used to indicate the trust level
between users; (2) only explicit trust relationships are considered, while implicit trust
relationships are ignored. Explicit trust relationships for the observable, trust relationships
with direct connections, it captures the local structure of the social network information.
In addition, many users do not have a direct trust relationship, but they have many common
neighbors and are likely to have a high level of trust between them. Even if two users
do not establish a direct trust relationship, if they have a similar neighbor structure, it
is likely that there is a strong trust relationship between these two users. In this paper,
the trust relationship observed by the social network is referred to as first-order trust and
the trust relationship derived from the neighbor structure is referred to as second-order
trust. The second-order trust relationship captures information about the global structure
of the social network. Considering both explicit first-order trust relationships and implicit
second-order trust relationships when modeling a recommendation model can effectively
improve the performance of the recommendation model.

Therefore, in this paper, the GraphSAGE model is used to derive the user trust re-
lationships from the original social network that hold both local and global information
of the social network, and a graph-embedded model-based collaborative filtering recom-
mendation algorithm is proposed. In the following, we first describe the process by which
the GraphSAGE model learns the low-dimensional embeddings of a node that preserves
both local and global information, and then explain in detail the model of the collaborative
filtering recommendation algorithm based on the graph embedding model.

4.1. GraphSAGE

As a classic algorithm of the graph embedding model, GraphSAGE proposes an
algorithm framework that can easily obtain the embedding of new nodes. Its basic idea is
to learn how a node’s information is aggregated through the characteristics of its neighbor
nodes. After learning the aggregation function, use the known characteristics and neighbor
relationships of each node to quickly obtain the embedding of the new node.

Select Aggregator

Mean Aggregator. Since the neighbors of the nodes in the graph are irregular and dis-
ordered, it is necessary to construct an aggregate function that is symmetric, that is, changes
the order of inputs but the output of the function remains the same, while having high
expressive power.

hk
v ← σ(W ·MEAN({hk−1

v } ∪ {hk−1
u , ∀u ∈ N(v)})). (3)

Once the vector representation of the node is generated, the mean aggregator splices
the kth-1st layer vectors of the target node and the neighbor node, and then averages each
dimension to obtain the result and conducts a nonlinear transformation to generate the k-th
layer vector representation of the target node.

Pooling Aggregator. The pooling aggregator performs a nonlinear transformation on
the neighbor representation vector of the target vertex, followed by a pooling operation to
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splice the result with the representation vector of the target vertex, and finally a nonlinear
transformation to obtain the kth level representation vector of the target vertex.

hk
N(v) = max({σ(Wpoolhk

ui
+ b), ∀ui ∈ N(v)}), (4)

hk
v = σ(Wk · CONCAT(h(vk− 1), hk−1

N(u))). (5)

LSTM Aggregator. LSTM is more expressive than simple averaging operations; how-
ever, since the LSTM function is not symmetric with respect to the input, it requires a
disorder operation on the neighbors of the vertices when used.

4.2. Collaborative Filtering Algorithm Based on Graph Embedding Model

An embedded representation of user nodes learned by the GraphSAGE model cap-
tures both the local and global structure of the social network. Based on the embedded
representation of the user nodes, the trust between users is defined as:

SIMuv =
hT

u · hv

‖hu‖2‖hv‖2
. (6)

Compared to the original trust relationships in social networks, the user trust level
obtained by Equation (6) is not only fine-grained and dense, but also captures both explicit
first-order trust relationships and implicit second-order trust relationships between users of
social networks. In other words, if there is no explicit trust relationship between the users,
but the users have similar neighborhood structure; the user trust Suv calculated according
to Equation (6) captures the second-order trust relationship between the users.

Likewise to the memory-based collaborative filtering algorithm, after computing the
trust relationship between users according to Equation (6), Equation (7) is used to calculate
the prediction score of user u for item j.

γT
uj = γ̄u +

∑v∈L SIMuv × (γvj − γ̄v)

|∑v∈L SIMuv|
, (7)

where γ̄u denotes the average rating of user u on all rated items, γ̄v denotes the average
rating of user u on all rated items, γv j denotes the rating of user v on item j, and H denotes
the set of users that user u trusts the most. Note that, as shown in Equation (2), in the
classical user-based collaborative filtering algorithm, sim(u, v) denotes the similarity be-
tween users computed from user rating data, while in Equation (7), SIMuv denotes the user
trust derived from the social network structure, which captures the explicit first-order trust
relationship between social network users and the implicit second-order trust relationship.

The final rating of the item is influenced by both similar users and trusted users.
Therefore, the weighting parameter is used to balance the two influences, that is, the final
predicted rating of item j by user u is defined as:

γuj = αγR
uj + (1− α)γT

uj, (8)

where γR
uj denotes the predicted score of user u for item j based on the influence of similar

users with similar scoring data, calculated according to Equation (2); γT
uj denotes the

predicted score of user u for item j based on the influence of trusted users, calculated
according to Equation (7). The two parts of the score are integrated by the weighting
parameter α, which constitutes the final prediction score of user u on item j.

In summary, the framework of the collaborative filtering algorithm based on graph
embedding is shown in Figure 2.
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Figure 2. Framework of graph embedding model based collaborative filtering algorithm.

5. Experiment

In order to verify the performance of the GraphSAGE collaborative filtering recommen-
dation algorithm, a comparison analysis with other popular recommendation algorithms is
performed on a real dataset. In addition, the proposed GraphSAGE co-filtering algorithm
is called “GraphSAGE-CF”.

5.1. Dataset

Four real world datasets were selected for experimental comparative analysis. The pub-
lic benchmark dataset Yelp2 contains users, businesses, and rating information across
11 metropolitan areas in four countries. Two subsets of public benchmark dataset Yelp2
(https://www.yelp.com/dataset (accessed on 15 January 2022)), North Carolina(NC)
and Wisconsin (WI), were selected as the experiment datasets. The NC dataset includes
225,580 rating records, 22,737 users and 12,502 items, and 111,394 trust social relations.
The WI dataset includes 80,643 rating records, 8386 users and 4593 items, and 34,099
trust social relations. The Epinions dataset includes user trust relationships, ratings
and item categories, which is crawled from the popular social network website Epin-
ions (www.epinions.com (accessed on 15 January 2022)). This dataset contains 764,352
rating records, 18,088 users and 261,649 items, 355,813 trust relationships. The LastFM
(https://grouplens.org/datasets/hetrec-2011/ (accessed on 15 January 2022)) dataset con-
tains 1874 users and 2828 items, 71,411 rating records and 25,174 relations of trust. Some of
their important properties are summarized in Table 1. A brief introduction of them follows.

Table 1. Statistics of Evaluation Datasets.

Property NC WI Epinions LastFM

# Users 22,737 8386 18,088 1874
# Items 12,502 4593 261,649 2828

# Ratings 225,580 80,643 764,352 71,411
Density of relations 0.0793% 0.2093% 0.0161% 2.0286%

# social relations 111,394 34,099 355,813 25,174

5.2. Evaluation Metric

In this paper, we use the widely used evaluation metrics in recommendation algo-
rithms: root mean squared error (RMSE) and mean absolute error (MAE) to evaluate the
performance of recommendation algorithms.

https://www.yelp.com/dataset
www.epinions.com
https://grouplens.org/datasets/hetrec-2011/
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RMSE =

√
∑(i,j)∈Rtest

|rij − r̂ij|2

|Rtest|
(9)

MAE =
∑(i,j)∈Rtest

|rij − r̂ij|
|Rtest|

, (10)

where rij denotes the actual score value, r̂ij denotes the score value predicted by the system,
and |Rtest| denotes the number of records in the test dataset. the smaller the RMSE and
MAE values, the better the recommendation performance of the recommended algorithm.

5.3. Settings

To validate the effectiveness of the recommendation algorithm proposed in this paper,
the following comparison method is selected.

• Baseline1 uses the average of all scored items scored by the current active users as the
predicted scores of the target items by the current active users;

• Baseline2 The user-based collaborative filtering algorithm finds users with similar
interests to the current active users based on their historical ratings, and then uses the
weight of similar users’ ratings on target items to predict the average of the current
active users’ ratings on target items;

• PMF [40] was proposed by Mnih and Salakhutdinov, which can be considered a
probabilistic extension of the SVD model. PMF learns the implicit feature vector of
users and items from the user-item rating matrix and uses the inner product of the
implicit feature vector of users and items to predict the missing items in the user-item
rating matrix;

• TrustSVD [25] proposes an advanced SVD++ algorithm. Based on the original SVD++,
it takes both explicit trust relationship and rating information of users into model
construction;

• DeepCoNN [41] proposes a parallel framework by jointly using the users’ feedbacks,
two parallel neural networks are used to deal with users’ and items’ information
synchronously.

The user–item scoring matrix is randomly partitioned five times, with 80% of the data
extracted each time as the training set and the remaining 20% as the test set. The final run
takes the average of the algorithm’s results across the five test sets. For fair comparison,
the parameters of different algorithms are set with reference to the corresponding literature
or experimental results of the comparison algorithms, and the optimal performance of each
comparison algorithm is obtained under these parameter settings. In Baseline2, the cosine is
used to calculate the similarity between users; in PMF, the hidden feature vector dimension
is 10 and the regularization factor λu = λv = 0.001; in GraphSAGE-CF, the cosine is used
to calculate the similarity between users.

The experiment was run on a quad-core Intel(R) Core(TM) i5-7400H CPU with
3.00 GHz main frequency, 8 GB RAM, Window10 operating system and J2SE1.8.

5.4. Performance Comparison

In order to filter out trust relationships with weak trust, the trust threshold δ is set,
and trust relationships between users with trust strength less than δ are filtered out. On the
Epinions and LastFM datasets, the confidence thresholds δ = 0.95 and δ = 0.8, respectively,
the number of neighbors N = 20, and the integration parameters α = 0.5 and 0.7, respectively,
were set. On the NC and WI datasets, the confidence thresholds δ = 0.95 and δ = 0.8 and the
integration parameters α = 0.9 and 0.8, respectively, were set. All comparison algorithms
were performed on four datasets. The experimental results on each dataset are shown in
Table 2, Table 3, Table 4 and Table 5, respectively.
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Table 2. Performance comparison on the Epinions Dataset.

Competitor RMSE MAE

Baseline1 1.432 1.142
Baseline2 1.311 1.034

PMF 1.201 0.903
TrustSVD 1.135 0.867

DeepCoNN 1.113 0.859
GraphSAGE-CF 1.091 0.841

Table 3. Performance comparison on the LastFM Dataset.

Competitor RMSE MAE

Baseline1 1.143 0.879
Baseline2 1.037 0.794

PMF 0.923 0.723
TrustSVD 0.887 0.685

DeepCoNN 0.863 0.674
GraphSAGE-CF 0.842 0.668

Table 4. Performance comparison on the NC Dataset.

Competitor RMSE MAE

Baseline1 1.478 1.208
Baseline2 1.403 1.124

PMF 0.923 1.062
TrustSVD 1.174 0.904

DeepCoNN 1.133 0.886
GraphSAGE-CF 1.093 0.867

Table 5. Performance comparison on the WI Dataset.

Competitor RMSE MAE

Baseline1 1.298 1.035
Baseline2 1.207 0.947

PMF 0.923 0.898
TrustSVD 0.957 0.758

DeepCoNN 0.928 0.726
GraphSAGE-CF 0.891 0.714

From Tables 2–5, it can be observed that the performance of Baseline1 algorithms
is poor, which is due to the fact that they do not take into account the differences in
items and are non-personalized methods. Except for GraphSAGE-CF, PMF outperforms
other comparison methods, again validating the effectiveness of the matrix decomposition
method. On four datasets, the recommendation accuracy of the proposed collaborative
filtering recommendation algorithm based on a graph embedding model is higher than
the other comparison algorithms, validating the effectiveness of the proposed algorithm in
this paper. On Epinions, LastFM, NC and WI datasets, the improvement of the proposed
algorithm in this paper is 2.38%, 2.63%,2.60% 3.14% compared with the optimal results in
DeepCoNN, respectively, using RMSE as the reference index. Based on the above rating
prediction error, RMSE and MAE, the recommendation methods are compared on the
Epinions, LastFM, NC and WI datasets. We have the following main findings:

• PMF consistently outperforms Baseline1 and Baseline2. Because Baseline1 only uses
the average of all scored items scored by the active users as the predicted scores of
the target items, Baseline2 uses the weight of similar users’ ratings on target items
to predict the average of the active users’ ratings; At the same time, PMF learns the
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implicit feature vector of users and items from the user–item rating matrix and uses
the inner product of the implicit feature vector of users and items;

• TrustSVD obtains a much better performance than PMF. Both methods take the SVD
algorithm into model construction. However, TrustSVD uses an advanced SVD++
algorithm and takes direct trust relationship and rating information into the model
construction;

• DeepCoNN performances are better than TrustSVD, PMF, Baseline1, and Baseline2.
The reason is that DeepCoNN is based on two parallel neural networks, which further
indicate the power of neural network models in social recommendations;

• Our proposed technique, GraphSAGE-CF, outperforms all the baseline methods.
Compared with the above methods, our model learns low dimensional feature rep-
resentation of the global and local structures of users in social networks to assist the
rating prediction.

5.5. Influence of Parameter α

In the GraphSAGE-CF algorithm, the integration parameter α has a significant impact
on the recommended performance. A larger α value means that the prediction scores are
more heavily weighted by user ratings and rely more on scoring data in GraphSAGE-CF.
Conversely, a smaller α value means that the predictive scores in GraphSAGE-CF are more
dependent on the social network. In Epinions and NC, α is set to 0.9. In LastFM and WI, α
is set to 0.4. in addition, the number of neighbors N is set to 5 in Epinions; the number of
neighbors N is set to 5. In this section, a sensitivity analysis of the integration parameter α is
performed through a set of experiments. The experimental results are shown in Figures 3–6.
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Figure 3. The Impact of parameter α on Epinions.
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Figure 4. The Impact of parameter α on LastFM.
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Figure 5. The Impact of parameter α on NC.
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Figure 6. The Impact of parameter α on WI.

It can be seen from Figures 3–6 that the RMSE first decreases with increasing α in
four datasets, and then gradually increases after reaching the minimum value. In addition,
in Epinions, GraphSAGE-CF performs best when α is near 0.6; in LastFM, it performs best
when α is around 0.7; in NC, it performs best when α is 0.8 and in WI it performs best when
α is about 0.9. The results indicate that the prediction scores derived from both the scoring
data and the social network data contribute to the final prediction scores and are more
dependent on the prediction scores derived from the scoring data.

5.6. Influence of Parameter δ

Weakly trusting user trust relationships are filtered out and a small number of strongly
trusting user trust relationships are fused in the GraphSAGE-CF. Conversely, a smaller
value of δ means that a large number of user trust relationships with relatively low trust-
worthiness are fused in GraphSAGE-CF. In this section, a sensitivity analysis of the trust
threshold δ is performed through a set of experiments. In Epinions and NC, δ is set to 0.8,
0.85, 0.9, and 0.95 and in LastFM and WI, δ is set to 0.4, 0.5, 0.6, 0.7, and 0.8. In addition,
the number of neighbors N in both datasets is set to 5. The experimental results are shown
in Figures 7–10.
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Figure 7. The Impact of parameter δ on Epinions.
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Figure 8. The Impact of parameter δ on LastFM.
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Figure 9. The Impact of parameter δ on NC.
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Figure 10. The Impact of parameter δ on WI.

From Figures 7–10, it can be observed that in the four datasets, the RMSE values have
a rough trend of decreasing with increasing δ and improving recommendation accuracy.
The results show that it is more beneficial for GraphSAGE-CF to integrate fine-grained and
strong trust relationships with users to improve recommendation performance. Finally,
GraphSAGE-CF did not obtain the lowest RMSE with the same δ value in both datasets,
possibly because the network embedding technique learns different scales of user trust
strength in different social networks. For example, in Epinions and NC, the maximum user
trust strength is 0.9553, while in LastFM and WI, the maximum trust strength is 0.8769.

6. Conclusions

In this paper, a collaborative filtering recommendation algorithm based on a graph
embedding model is proposed, which uses the graph embedding technique to learn the
low-dimensional embedded representation of users in a social network and to derive
fine-grained trust relationships between users based on their embedded picture. This
fine-grained trust relationship captures the first-order and second-order trust levels be-
tween users. Finally, rating weights of trusted and similar users were used to predict
users’ ratings of the target item. The experimental results on real datasets demonstrate
that the graph embedding model-based collaborative filtering algorithm outperforms the
traditional collaborative filtering algorithm. This paper only focuses on the integration of
graph embedding techniques in memory-based collaborative filtering algorithms. In matrix
decomposition models, improving the performance of traditional collaborative filtering
algorithms is considered a future research direction. More specifically, the users with
many clicks are embedded by standard collaborative filtering; A weighted combination of
embedded representations of the users with fewer clicks is used to compute other users’
embedded graphics. In this way, some well-trained user representations can indirectly
calculate another few-shot or zero-shot user representations, thereby improving the gener-
alization performance on few-shot users or new users. At the same time, this representation
model can flexibly handle new users that appear in the future without retraining.

Author Contributions: Data curation, X.Y.; Investigation, X.H.; Validation, X.Z.; Writing—original
draft, J.S. (Jiagang Song); Writing—review & editing, J.S. (Jiayu Song) All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC
61836016,61672177,62072166).

Data Availability Statement: Not availability.

Conflicts of Interest: The authors declare no conflict of interest.



Future Internet 2022, 14, 32 16 of 17

Abbreviations
The following abbreviations are used in this manuscript:

u user
i item
γui Scoring data of user u
γR

uj user u’s rating of item j
γT

uj prediction score of user u for item j
r̄u the average rating of user u for all rated items
r̄v the average rating of user v for all rated items
D the set of users most similar to user
L the set of users that user u trusts the most
hk

v the k-th layer vector representation of the target node
α,δ Weight parameter
SIM(u,v) the user trust derived from the social network structure
hu The embedding of user u
hv The embedding of user v
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