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Abstract: The wide variety of services and applications that shall be supported by future wireless
systems will lead to a high amount of sensitive data exchanged via radio, thus introducing a sig-
nificant challenge for security. Moreover, in new networking paradigms, such as the Internet of
Things, traditional methods of security may be difficult to implement due to the radical change of
requirements and constraints. In such contexts, physical layer security is a promising additional
means to realize communication security with low complexity. In particular, this paper focuses on
node authentication and spoofing detection in an actual wireless sensor network (WSN), where
multiple nodes communicate with a sink node. Nodes are in fixed positions, but the communication
channels varies due to the scatterers’ movement. In the proposed security framework, the sink node
is able to perform a continuous authentication of nodes during communication based on wireless
fingerprinting. In particular, a machine learning approach is used for authorized nodes classification
by means of the identification of specific attributes of their wireless channel. Then classification
results are compared with the node ID in order to detect if the message has been generated by a node
other than its claimed source. Finally, in order to increase the spoofing detection performance in
small networks, the use of low-complexity sentinel nodes is proposed here. Results show the good
performance of the proposed method that is suitable for actual implementation in a WSN.

Keywords: physical layer security; wireless fingerprinting; machine learning; intrusion detection

1. Introduction

The demand for mobile data capacity is continuously increasing, and future wireless
systems are expected to support a wide variety of services that spans from low data rate
machine-to-machine (M2M) type communications to enhanced broadband in extremely
different application scenarios. Consequently, a high amount of data will be exchanged via
radio signals, introducing a significant challenge for security since the broadcast nature
of wireless channel makes the communications extremely vulnerable to several security
threats, such as wiretapping, spoofing, message falsification, and jamming, which are,
in general, dynamic and difficult to predict. Traditionally the communication security is
managed by high layers and solved by means of a wide variety of ciphers and key manage-
ment systems. The basic idea is that using complex calculations, the brute force attack is
generally not affordable with a non-quantum computer. However, these approaches are
usually computationally expensive and require protocols with high overhead. Moreover,
the continuous growth in computational power makes vulnerable such ciphers initially
considered unbreakable. Additionally the key distribution can be a problem especially in
dynamic systems and introduces latencies that can be unacceptable for delay-constrained
services [1–3]. Consequently, in new networking paradigms, such as the Internet of Things
(IoT), traditional methods for security cannot achieve the desired performance due to the
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radical change of requirements and constraints for establishing secure communication. In
particular, cryptographic techniques can lead to excessive transmission overhead, com-
munication latency and power consumption, which are not suitable for IoT devices with
limited resources.

The application of IoT services and systems spans every aspect of our lives: health,
education, industry, smart homes and cities, transportation, and utilities, just to name a few.
The potential benefits offered by IoT are endless and will become more effective with the
increase in the number of connected devices, but this requires to address the new security
challenges and threats that arise. This is particularly critical for some applications, such as
e-health or remotely controlled cars [4].

IoT systems will be made of a huge number of devices that very often will have
limited computation, memory and energy resources. Hence, the use of complex asymmetric
cryptography schemes will be impractical in many cases. Symmetric cryptography is more
suitable for many IoT devices from a complexity and energy consumption point of view,
but in this case, the distribution of the keys remains a challenge.

In this context, physical (PHY) layer security (PLS) is a promising additional means
to realize communication security with low complexity [3] since it substantially operates
independently on the higher layers and can be used to enhance the security of existing
approaches. The basic idea is exploiting the randomness of the propagation channel, noise
and interference to limit the information that can be wiretapped by an unauthorized user.
In addition, PLS can be used to generate secure keys and to identify unauthorized users [5].
Indeed, PLS can be realized in different ways:

• Secret communications without encryption—with a suitable design of the transmitted
waveform (coding, modulation, precoding schemes, etc.) together with the exploita-
tion of the available channel state information, it is possible for the intended receiver
to be enabled to successfully decode the data while the potential eavesdropper is not.

• Secure key generation—when the use of encryption is preferred, the randomness of
the channel between two nodes can be exploited to generate keys to be used for
symmetric encryption.

• Node authentication/spoofing detection—by means of the identification of specific distin-
guishing features of the wireless channel experienced by a node or of the transmitting
device, the receiver can detect if the message has been illegitimately modified by a
node other than its legitimate source.

The PLS is not thought to replace the traditional security, but it is an additional
security layer which helps to enhance the security level, in particular, when low-resourced
devices are used with a wireless connection [6]. Indeed, PLS (i) involves only the physical
layer, (ii) lies on the variation and randomness of the wireless channel rather than on
computational complexity of hard mathematical problems, (iii) uses the randomness of
the wireless channel as a “secure key” avoiding key management burden, and (iv) can
authenticate legitimate nodes quickly before demodulation and decoding, thus reducing
the overall latency. The use of PLS has been proposed and adopted in the literature for
several years [7], and the recent development of the IoT has given a great impetus to the
research community to use PLS. Often in IoT networks, hard encryption procedures cannot
been performed, at least with high frequency, and the effectiveness of encryption is related
to the distribution and protection of a secret key that in IoT systems can fail [8]. Moreover,
PLS approaches do not require modifications to the existing systems and hence, can be
easily added in a very short time. Hence, the use of physical layer characteristics as a
security tool can be seen as a method to help the higher layers to protect the system and, at
the same time, implement security, even in low-resourced devices [9,10].

This paper focuses on PHY layer continuous authentication and spoofing detection.
In particular, the paper proposes a machine-learning (ML) wireless fingerprinting method for
a wireless sensor network (WSN), where multiple nodes communicate with a sink node
that is in charge of their authentication. The idea is to exploit ML capabilities to verify
if the characteristics of the propagation channel of current messages correspond to those
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of previous transmissions of authorized users. ML allows to implement more efficient
data protection, having the capability of analyzing multi-dimensional information, without
the need of an analytical model, and in a continuous way, thus taking into account the
time-varying effects [1].

As specified before, the physical layer authentication (PLA) method proposed in this
paper does not want to eliminate or replace the traditional procedures, but simply adds a
"first line of defense". Traditional security protocols, such as WPA2, protect access to the
communication network by using encryption. The method proposed here could be helpful
in contexts where great and frequent efforts cannot be posed to perform hard encryption.
In addition to the general features of PLS explained before, in the proposed method, all the
computation (the ML algorithm) is executed at the sink node, while the low-complexity
sensors have nothing to do, except transmit their data. This is not possible using encryption
algorithms that operate at both sides of each communication link. Moreover, existing
Wi-Fi security access protocols weaknesses are known [11], and protecting the massive
IoT requires new security features which are currently not included into the wireless
standards [8].

1.1. Motivation and Related Literature

PHY layer authentication techniques are gaining a lot of interest. These can be dis-
tinguished between those that are key based or keyless, depending on whether a shared
secrecy key is used by the transmitter and receiver or not [12]. Different key-based authenti-
cation approaches have been proposed. The main idea is superimposing an authentication
or a noise-like signal to the message, or introducing a certain level of randomness in the
signal [13–15]. This in general requires additional computational complexity to recover the
signal through demodulation and decoding and to generate the keys. Differently, keyless
PHY layer authentication methods exploit the properties of the wireless link (wireless finger-
print—WF) to identify the legitimate node: specific characteristics of the transmitter or of its
communication channel are extracted from the received signal and compared with those of
previous authenticated messages (this can be provided, for example, using an initial higher
layer authentication procedure) to identify a claimed source. In this way, the receiver can
continuously authenticate the transmitting node, and being that the channel properties are
location dependent, these are difficult to be obtained by a malicious user if it is not very
close to the legitimate one. Several PHY layer authentication methods have been proposed,
under different assumptions of the available channel information and system models.
These methods exploit channel state information and spatial domain measurements, such
as channel gains, path delay profile, carrier frequency offset, power spectra density, and
received signal strength as, for example, in refs. [16–19]. In general, such methods compare
a specific PHY layer feature of the received signal with a test threshold that influences the
authentication accuracy. However, choosing the appropriate threshold can be challenging
due to the characteristics of the propagation environment and the unknown spoofing model.
Additionally, in ref. [20], it is shown that under a low-SNR regime, the authentication based
on a binary hypothesis testing cannot guarantee robust performance; thus an adaptive
threshold is proposed. In ref. [21], a Q-learning method is used to select the optimal test
threshold based on the received signal strength indicator (RSSI). Another problem of many
of existing PHY layer authentication methods is that they use only one channel attribute
that might be inaccurate and not enough to provide sufficient differentiation among trans-
mitters. Indeed, channel attributes are time varying and must be estimated; hence, they can
be affected by errors. Analyzing multiple PHY layer attributes improves the authentication
robustness. In fact, it is more difficult for a malicious user to predict all attributes from the
signal received on a different location: the legitimate user has high-dimensional protection.
Toward this goal, ML has emerged as a viable solution for security and in particular for
authentication [1,2]. It allows considering multiple parameters; moreover, it can provide
a model-free authentication, also under dynamic network conditions. Differently, most
of the existing approaches are model based, thus requiring a lot of data for achieving an
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accurate model that in complex environments may be difficult to obtain with a consequent
performance degradation. ML was applied to PHY layer authentication only very recently,
in general not considering time-varying channels and in simple network models, where a
single node communicates with an authorizing entity that has to distinguish between the
authorized node and a potential malicious user. In ref. [22], an extreme learning machine
is used, exploiting multi-dimensional attributes and using the training data generated from
a spoofing model. Attributes must have the same statistical distribution (Gaussian), and
the spoofing model is needed, so its applicability is limited. In ref. [23], authentication is
based on a logistic regression model assisted by multiple landmarks at different locations
that use multiple antennas to estimate the RSSI of the transmitter. In both previous papers,
a static environment is considered; moreover, the required computation load cannot be
affordable for low-complexity devices such as the one we consider. In ref. [24], a kernel
least mean square scheme is presented, where the dimensionality of the multiple-attribute
authentication is reduced by the kernel function that is able also to track the variations
in time. Other sophisticated ML algorithms proposed for PLA based on Q-Learning and
neural networks as in [25] cannot be suitable for resource-constrained scenarios, such as
the one of interest in this work.

Approaches more suitable for an IoT context for their low computational complexity
are based on one-classical ML classification schemes, as in [26–28]. Different PLA algorithms
are presented and compared in [26], based on classical hypothesis testing and on ML,
particularly nearest neighbor (NN) and support vector machine (SVM) algorithms. The
proposed solutions exploit the characteristics of a set of parallel wireless channels (modeled
as an OFDM transmission). These ML approaches are unsupervised, allowing a clustering
algorithm to decide the nature of the received packets. Channel coefficients are fixed. In
refs. [27,28], two ML approaches based on SVM and k-means clustering are investigated
in two different contexts, such as in multiple input multiple output (MIMO) stationary
systems [27] or in unmanned aerial vehicle (UAV) aided wireless systems [28]. Channel
variations are not considered.

1.2. Paper Contribution

In this paper, we focus on a scenario where, first, legitimate devices are authenticated
by means of a higher level procedure, and a unique ID is assigned to each of them. Succes-
sively, during communication, the sink node performs a continuous PLA (and spoofing
detection), which uses multiple PHY layer attributes to verify the correspondence of the WF
of each user with the assigned ID. In particular, the continuous authentication is performed
by a two-step procedure:

1. Each transmitting node is identified by means of a ML supervised non-parametric
classification algorithm where training data are labeled (i.e., it is associated to the
corresponding user’s ID). It means that an eventual malicious node is not detected at
this step, but it is classified as belonging to one of the authorized nodes’ class.

2. In order to detect a spoofing attack, a successive cross-check of the PHY layer classifi-
cation results and the ID declared by the transmitting node is performed.

The cross check of the ID and PLA outcome gives a higher level of protection with
respect to the exclusive use of an ID: the ID can be stolen, and while the PLA aims for
supporting the legitimate devices by a reciprocal wireless link, the wireless channel features
can be used as an additional unique security signature. The spoofing detection capability
increases with the network dimension (i.e., the number of nodes), and this is important for
future IoT systems where a massive machine access is foreseen. However, we propose also
the introduction of sentinel nodes, which can significantly enhance the detection capability,
especially in small networks.

Summarizing the contributions of the paper are the following:

• Proposal of a continuous authentication/spoofing detection system, suitable for an
actual WSN, where multiple IoT nodes communicate with a sink node. Differently,
previous works on PLA [16–28] were usually based on scenarios with a single au-
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thorized node that must be distinguished by the unauthorized one, and hence, only
a binary decision is needed (i.e., binary classification). However, binary classifica-
tion is not suitable for large-scale IoT networks, and extending these methods to a
multi-user scenario may not be straightforward. In any case, it means seeking an
optimal threshold individually for each IoT legitimate node, which is expensive in
terms of resources and signaling. Moreover, adopting a ML approach means adopting
and training one machine for each node. Here, instead, the malicious user must be
distinguished by multiple authorized nodes using their WFs. This is a more complex
scenario because there is a higher variability of legitimate channels, and the probability
that the spoofing attacker is close to one of them is higher. The proposed approach
allows to simultaneously distinguish the malicious node from all the legitimate ones,
using a single machine.

• We propose a threshold-free method, thanks to the integration of the classification of
devices using their PHY-layer attributes and the associated device ID. Differently, in
most of the approaches proposed in the literature, a threshold is needed to distinguish
between legitimate and malicious user data [16–19,19–21,24,26]. However, the thresh-
old must be optimized for each scenario with a consequent performance degradation,
especially in time-varying scenarios.

• We propose a method that does not require any knowledge and specific statistical
distribution, neither for the PHY-layer attributes nor for the spoofing model. This
makes the proposed system more applicable in actual contexts. Conversely, many of
the proposed approaches in the literature make assumptions difficult to obtain in a
real environment, such as specific channel models and knowledge of data belonging
to the attacker [16,18,22,26,28].

• We investigate a solution for a supervised classification of devices based on CART
and random forest algorithms that were not previously investigated in this context.
Random forest was adopted in ref. [29], using channel and hardware features to
distinguish different nodes; however, the investigation is limited to node identifi-
cation (i.e., no spoofing detection) and is very limited and related to a single static
experimental setup.

• The proposed approach integrates multiple-attributes to provide a higher identifica-
tion accuracy. Differently, most of the papers in the literature use only one channel
attribute [17–19,25,28,30] or multiple observations of the same attribute, exploiting
time or spatial diversity [22,23,26,27]. However, attributes can be estimated with a
different level of reliability; thus, having different attributes allows to compensate
for low-reliable attributes with high-reliable ones. Only a few papers have integrated
different attributes, but often these are limited, such as in ref. [16,31] where only CSI
and delay are considered. A wide range of attributes are considered only in [24,29].
Moreover, the angle of arrival (AoA) attribute is rarely considered, and in differ-
ent scenarios, such as in ref. [32], where AoA is used for improving the security of
channel training authentication, integrating the AoA with the pilot randomization,
or in ref. [33], where AoA information is cross checked with the GPS information
for improving security. Finally, here, the effects of different attributes are separately
evaluated. To our knowledge, only [24] provides an analysis based on the availability
of different attributes but in a different context.

• The proposal of the use of sentinel nodes to improve spoofing detection in small
networks. Cooperative solutions for PLA have been rarely considered as in ref. [23],
but here the goal of sentinel nodes is completely different. These nodes do not have to
perform any operation except sending periodical beaconing signals.

• The evaluation of the system performance in an actual and general time-varying
channel, also considering different environment conditions, while most of the papers in
the literature consider fixed channel parameters and simple channel models. Moreover,
the effects of different channel attributes in classification results are evaluated.
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2. System Model

Why is security necessary in wireless sensor networks (WSNs)? Due to the broadcast
nature of the transmission medium, wireless sensors are vulnerable. Another vulnerability
is that nodes are often placed in a hostile or dangerous environment, and they are not
physically safe. Most of the threats and attacks against security in WSNs are almost similar
to their wired counterparts, while some are exacerbated with the inclusion of wireless
connectivity. Attacks on WSNs can be classified as follows:

1. Attacks against security mechanisms;
2. Attacks against basic mechanisms (such as routing mechanisms).

In many applications, the data obtained by the sensing nodes need to be authentic. A
false or malicious node could intercept private information in the absence of proper security
or could send false messages to nodes in the network. In this paper, we considered a dense
WSN, used as a smart environmental monitoring system, where N low-complexity sensing
nodes are distributed on an area A and communicate with a sink node. The considered IoT
network is based on a classical star-topology network, where the sink node coordinates the
sensor devices distributed around it (Figure 1). Sensor nodes are supposed to be devices
with low-resource (i.e., computation, memory and energy), performing simple tasks that
monitor some physical parameters (e.g., humidity, gas, water level, vibration, pressure,
etc.) and transmitting them to the coordinator. Hence, sensor devices are equipped with
a low-power microcontroller with an integrated radio transceiver equipped with a single
antenna and a sensor interface. Differently, the coordinator is a higher-powerful device
with mode complex functionalities. Indeed, the sink node has in charge the management
of the access and communication in the network (e.g., access and resource management,
authentication, channel estimation, etc.) and could also perform processing of received
data. The coordinator is supposed to have more computing and memory resources and
always be connected to a power source. The transceiver is equipped with multiple antennas
so that the spatial information can be exploited in the network.

Figure 1. WSN with sink node responsible for the security of the system.

The proposed WF authentication method is based on PHY-channel features; hence, we
have to resort to a suitable channel model. In particular, we consider the 802.11ac™ (TGac)
multipath fading channel [34]. This is a system level model, which can describe an arbitrary
number of propagation environment realizations for single or multiple radio links for all the
defined scenarios, with one mathematical framework by different parameter sets. The TGac
channel model follows a stochastic channel modeling approach, as the channel parameters
are determined stochastically, based on statistical distributions extracted from channel
measurements. This model is frequently used for indoor area wireless communication
systems operating in a 5 GHz spectrum with a bandwidth up to 160 MHz. In this paper, we
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selected the Model-D scenario [35] that represents the propagation conditions in a typical
large indoor open environment, with mobility (0–5 km/h). More in detail, we assume that
the transmitting/receiving nodes are in fixed positions, but we consider a certain time
variability to take into account the scatterers’ movement in the area.

The 802.11ac™ model represents a multiple input multiple output (MIMO) channel,
with M transmitting and Q receiving antennas. However, we focus on the particular case
with M = 1; hence, we focus on a SIMO (single input multiple output) system. Indeed, we
consider low-complexity IoT sensor nodes, equipped with a single antenna. The multipath
fading SIMO channel is modeled as a tapped delay line (TDL) with L taps (paths), and the
channel matrix can be written as follows:

H(t) =
L

∑
l=1

Hl(t)δ(t− τl) (1)

where Hl(t) is the SIMO channel matrix of the l-th path, τl is the delay of the l-th path and
δ()̇ is the delta function defined as δ(t) = 1 i f t = 0, δ(t) = 0, otherwise. Assuming that all
paths are Rice distributed with mean power γl , the matrix Hl(t) can be separated into a
fixed matrix HF

l (t) representing the LOS (non variable) part, and a Rayleigh-distributed
matrix HV

l (t) which represents the NLOS (variable) part. The matrix Hl(t) can be thus
written as follows:

Hl(t) =
√

γl

(√
ζ

ζ + 1
HF

l (t) +

√
1

ζ + 1
HV

l (t)

)
=

√
γl


√

ζ

ζ + 1


ejφ1(t)

ejφ2(t)

...
ejφQ(t)

+

√
1

ζ + 1


X1(t)
X2(t)

...
XQ(t)




(2)

where

• Xi(t) is the coefficient of the i-th receiving antenna in the NLOS condition. The Xi
coefficients are correlated complex Gaussian random variables with zero mean and
unitary variance;

• φi(t) is the phase difference between the transmitting and the i-th receiving antenna;
• ζ is the Ricean factor;
• γl is the mean power of the l-th path at the receiver.

Each tap Hl(t) is composed by a cluster of individual propagation rays so that the
complex Gaussian assumption is valid.

The path loss model is a free space loss breakpoint model with two fixed slope values:
a standard LFS (slope of 2) up to the breakpoint distance and slope of 3.5 afterwards{

L(d) = LFS(d), for d <= dBP
L(d) = LFS(dBP) + 35 log10(d/dBP), for d > dBP

(3)

where d is the distance [m] with 5 < d < 100 and dBP is the breakpoint distance [m].
In our proposed system, we are interested in several channel attributes, not only

those related to the signal amplitude. Hence, we have integrated the TGa model with
the WINNER II [36] model for what concerns the delays and the angle of arrival (AoA)
information. In particular, since paths delays are fixed in the TGa model in every channel
realization, we used the distribution proposed by WINNER II to model the paths delays. In
the WINNER II model, each user has a delay profile randomly selected: the average delay
of each path, τ

avg
l , is generated using an exponential distribution with parameter λ [36].

Moreover, to take into account the scatterers’ movement in the surrounding environment
as well as delays estimation errors, we introduced a certain variability of the delay values
around their mean value, τ

avg
l . The delay of each path, τl , is derived from an uniform
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distribution with mean τ
avg
l and variance σ2

τ = 1/λ. For the same reasons and following a
similar procedure also, AoA values are randomly distributed around their mean value. In
particular, following the model in [36], AoA is normal distributed N (µ, σ2

AoA), where the
mean value µ is chosen as the geometrical direction of the sink-node link and the variance
is σ2

AoA.

3. Proposed System

The proposed system is proposed as a means to enhance and integrate the higher level
authentication, for identifying potential illegal nodes trying to transmit unauthorized data.
The basic idea is that during the initial access procedure, each sensing node is authenticated
by means of a high-level procedure, and a unique ID is assigned to each one. Consequently,
the sink node has a list of N authorized nodes with their corresponding identification ID.
Successively, a continuous PLA is performed during normal communication involving
only the physical layer. In particular, the sink node verifies if the received message has
been illegitimately modified/generated by a node other than its claimed source, exploiting
the WF that provides an additional unique identifier of the radio link between two nodes.
Therefore, even if the malicious node is able to intercept and use a valid ID, the WF
identification allows to detect the intrusion, thanks to the spatial decorrelation of radio
channels of the malicious and authorized node using the same ID.

The WF is obtained by the extracting some PHY attributes from the signal received by
a specific device and, hence, by a specific propagation channel. In this paper, we considered
the following PHY attributes:

• AoA: the direction of arrival of the signal at the sink node;
• Maximum delay spread (MDS): the time interval needed to collect all paths of

the signal;
• Peak value: the maximum value of the channel impulse response;
• Energy: the sum of the squared absolute value of the signal;
• Received signal power (RSP): calculated as the ratio between the energy and the MDS.

These attributes are used for the PLA of devices by means of a ML approach. In
particular, we focus on a supervised learning multi-class classification approach:

• During the training phase, the ML algorithm is trained using N-labeled training se-
quences belonging to the N legitimate sensor devices. Each one is composed of X
samples of the received signal. Hence, only data of the authorized nodes are used for
training, since it is impractical to assume to know the dataset of the spoofing node.

• Then, during the communication phase, the received signal samples are classified as
belonging to one of the N classes. However, in this way, even a malicious node
is identified as a legitimate one, so an additional step is needed for its detection:
the classification output is cross checked with the declared ID and if they match,
the authentication is successful, while otherwise it fails. In the second case, the
node communication is blocked and a new authentication at higher layers must
be performed.

The proposed procedure is represented in Figure 2.
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Figure 2. Flow diagram of the proposed approach.

More in detail, let us distinguish between two cases:

• The spoofing node is not present—the ML classification algorithm detects the class of the
incoming authorized data and then cross checks the classification outcome with the
declared ID: if the data belong to the node with claimed ID = j, the identification is
successful if the ML classification result is j; otherwise, it fails and an alarm of spoofing
is generated for the j-th node. Hence, the ML algorithm accuracy is defined as the
probability of correctly identifying the class of an authorized user. At the opposite, if
the ML classification fails, an authenticated user is erroneously blocked; hence, we
define the probability of blocking an authorized node as Pban = 1− Accuracy.

• The spoofing node is present—if the transmission belongs to an authorized user, we fall
into the previous case. If the transmission belongs to the spoofing node, the ML classi-
fication algorithm classifies it as an authorized node with ID = i and i = 1, · · · ,N . At
this stage, the spoofing node cannot be detected; hence, the probability of detection of
a spoofing node does not directly depend on the ML algorithm. The spoofing node can
be detected only by cross checking its declared ID with the classification result since
each class is labeled with a specific node ID. The probability that a unauthorized node
is classified as authorized, named the probability of miss spoofing detection, Pmsd is the
probability that an unauthorized node claiming the i-th ID is classified as belonging to
the i-th class.

The basic idea is that a spoofing node cannot know how the sink node will classify its
signal; hence, even if it is able to steal a valid ID, likely this ID will not correspond to the
classification output. This probability increases as the number of authorized nodes in the
network increases.

We underline that Pban directly derives from the ML algorithm. Indeed, denoting with
P(i, j) the probability that the predicted class is j when the true class is i (see the confusion
matrix in Figure 3), we have that Pban = ∑N

i=1 ∑N
j=1j 6=i

1
N(N−1)P(i, j) = 1−∑N

i=1
1
N P(i, i) =

1− Accuracy. Hence, the accuracy is the probability that a node is correctly classified within
the class labeled with its ID.
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Figure 3. Confusion matrix.

Conversely, Pmsd does not directly derive from the ML algorithm; indeed, it depends
on the probability of selecting a given ID that decreases as N increases.

We want to stress that the proposed method represents an additional level of security
(in addition to the first authentication step) especially for low-complexity nodes, where
complex encryption algorithms cannot be executed. In particular, (i) high-level authenti-
cation can be only used to assign a unique ID to the node, then during communication
the reliability of the received data is related to the outcome of the proposed method since
encryption is not used, and (ii) high-level authentication provides both an unique ID and
a secret key that can be used in successive encrypted communications. In this case, the
proposed approach is an additional security level that avoids spoofing, even if the secret key
is detected by the attacker, especially in the presence of low-robust encryption algorithms.

3.1. ML for Devices Classification

As stated before, sensor devices identification is performed by means of a ML approach
that exploits multiple PHY-parameters of their unique propagation channel. In particular,
we resort here to a non-parametric classification approach, so not depending on information
from a certain sort of distribution that is difficult to achieve in dynamic environments.
Moreover, this method is suitable for a low-cost/low-consumption WSN. In particular,
two different algorithms are investigated. First, a CART algorithm is used [37]. This is a
supervised ML algorithm that generates a decision tree in order to solve a classification
or a regression problem. Because of their readability and simplicity, decision trees are
among the most popular machine learning methods. In particular, the CART algorithm is
well suited in the case of high-dimensional data; it contains the criteria for choosing the
best attribute for the data splitting and assigning a class to the leaf. Then input data are
classified based on their attributes through logical “if–then” statements.

More in detail, during the training phase, the CART algorithm builds the decision tree
using a dataset containing samples of signals received by the N sensor nodes. Let us
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assume that data are characterized by K attributes A = a1, · · · , aK, and let us consider the
Shannon’s entropy of a dataset D, that is

H(D) = −
N

∑
n=1

pn log2 pn (4)

where pn = |D(n)|/|D| is the ratio between the number of elements of D belonging to the
n-th class, D(n), and the total number of elements in D (i.e., the operator | · | represents
the cardinality of the set). To build the decision tree, the CART algorithm at each step
performs the split of a dataset D in two disjoint datasets D1/2, using the information gain as
the metric to select the best attribute for the splitting. The information gain of the splitting of
the dataset D based on the attribute ai, Igain(D, ai) is defined as the difference between the
entropy value of the original dataset, H(D) and the sum of the entropy of the two subsets
generated by performing the split based on the attribute ai with i = 1 · · · , K as

Igain(D, ai) = H(D)− R(D, ai) (5)

where R(D, ai) = H(D1(ai)) + H(D2(ai)) and H(D1/2(ai) is the entropy of the dataset
D1/2 obtained using the attribute ai. Hence, the best attribute â for performing the split is
selected as

â = max
a1,··· ,aK

Igain(D, ai) (6)

The algorithm is iterative: initially, the whole training dataset is considered (tree root),
and at the first step, this is split in two disjoint datasets (using the best attribute), then the
two generated datasets are in turn split, each one into two datasets (using the best attribute
for each split), and so on until one of the following conditions is reached:

1. The maximum number of split has been performed (it is set as a parameter);
2. One leaf is “pure”, that is, all input data in the leaf belong to the same class;
3. One leaf contains only one input sample.

Fixing the maximum number of splits limits the dimension of the tree and, hence, the
test complexity as detailed later. Moreover, having a tree with limited dimension avoids
also overfitting problems that can arise, having leaves with a few sample data.

During the classification phase, the received signal samples are moved in the decision
tree from the root down to the leaf that represents the most suitable class for those samples.
In particular, input data are compared with the attribute selected at each node of the tree
and moved in the corresponding branch.

The second algorithm that is considered is random forest [38,39], which is introduced
to counteract the decision tree’s overfitting tendency by reducing the data variance. This
is an ensemble learning technique, which creates and aggregates multiple decision trees
trained on different datasets, each one obtained from the initial dataset by random sampling
it with the replacement (bootstrapping). The decision trees are created using the CART
algorithm described before, but with a subset of the original attributes randomly selected.
The dimension of the subset is the nearest integer of log2(K + 1) (where K is the total
number of attributes) [38,39]. During the classification phase, the received signal samples
are moved in the different decision trees, and the result is taken by the majority.

Algorithm Considerations

In this section, some issues on the applicability of the proposed method are discussed.

• Suitable scenario: The proposed approach is suitable for a scenario with a limited
variability on the network topology, where nodes are distributed in an area on almost-
fixed positions, for example, for monitoring purposes (e.g., surveillance, anti-intrusion,
and environment monitoring). When a new node is added to the network, the set-up
phase has to be run again, i.e., the learning must be performed again to add the new
class. However, this urgency is not present if a node leaves the network (and its ID is
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disabled). Indeed, in this case, the classification still works: if an attacker is classified
as the disabled ID, it must be certainly blocked.

• Complexity and Scalability The complexity of the considered ML approaches must be
evaluated separately for the two phases: training and test. During the training for each
attribute (K), the information gain is calculated for the M = NX elements of the dataset
(with complexity O(KM)) and values are sorted to find the right splitting threshold.
The complexity of the sorting operation is O(KMlog2M) that, asymptotically, is the
complexity of the training phase. As the RF algorithm complexity must take into
account the number of trees T, the complexity is O(T log2(K + 1)Mlog2M). In our
system, the number of attributes is K = 5, and, as shown in the numerical results
section, both CART and RF need short training sequences, thus resulting in fast and
limited complexity training. Obviously, the complexity increases as Nlog2(NX), as
the number of nodes, N, increases. On the other side, the testing phase complexity
is proportional to the tree depth P that depends on the number of splits that must
be at least equal to N. In the numerical results section, we verified that selecting a
number of splits slightly higher than N provides a slight improvement in the accuracy,
but a further increase does not provide advantages. For simplicity, assuming that
the number of split is N, in the best case (totally balanced-tree is P = log2N) and
in the worst case is P = N. Hence, in the classification (test) phase, the algorithm
complexity in the worst case is linear with N, thus, scaling efficiently with N. Indeed,
this aspect makes the decision tree algorithms very fast and resource efficient during
the test stage, and hence, suitable even for real-time machine learning deployment
and large scenarios.
In terms of performance increasing the number of nodes in the area, we can expect
two opposite behaviors, indeed, as explained before, the spoofing detection capability
improves if N increases, but on the other side, the Pban can increase due to a reduction
of the accuracy of the classification since nodes are closer to each other and it is more
difficult to discriminate them. However, in the numerical results section, we verified
that the performance degradation is not significant within a certain value; we tested
node density up to around 50,000 nodes/km2. Obviously, the number of needed splits
of the trees increases.

3.2. Sentinel Nodes

The classification algorithm allows to associate each received signal to one of the
possible WF classes that are labeled with the authorized nodes’ ID. When a malicious node
wants to access the network, supposing it is able to steal the ID to one of the nodes, it
sends its message with the associated ID. The sink node classifies the node as stated before
and then cross checks the classification result and the claimed ID. Being that the malicious
user is classified as one of the authorized users, the spoofing detection fails when the WF
class and ID match. Assuming, for example, that the unauthorized user randomly selects
one of the possible IDs, this occurs with probability 1/N. This means that in dense WSNs
(i.e, when N is large) the probability of selecting the ID of the class resulting from the
classification algorithm is very low, but it increases in small networks. For this reason, we
propose to use some simple cooperative nodes named sentinel nodes that allow to increase
the classification space, thus increasing the detection. Sentinel nodes periodically send a
beaconing signal, and thus are classified as an additional authorized source. In this way,
the number of WF classes increases, and the previous probability is reduced as 1/(N + NS),
where NS is the number of sentinel nodes. Using cooperative nodes is already proposed
in the literature, such as, for example in ref. [23], where the additional nodes estimate
the RSSI of the authorized communication link and forward this information to the sink
node for enhanced detection. Here, cooperative nodes are simpler and do not perform any
action. These simply periodically send a beaconing signal. This is more suitable for a large
deployment and for low-cost and low-complexity WSNs.
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4. Numerical Results

This section presents the numerical results of the proposed authentication/spoofing
detection method derived by means of simulations using the Matlab environment. An area
A = 30× 30 m representing a large indoor hall with the sink node positioned in the center
is considered. The number of connected nodes is N = 15 if not differently indicated. The
channel attributes are characterized stochastically as described in Section 2, taking into
account also their time variability due to the scatterers’ movement. This allows to analyze
different scenarios, as detailed later, and the capability of the proposed scheme to follow
the attributes’ variations. As specified in each scenario, nodes are randomly placed in the
considered area with a uniform distribution or following a cluster distribution. Moreover,
for what concerns the spoofing detection capability of the system, this is evaluated by
averaging the value Pmsd over different positions of the spoofing node in the area as
specified later.

4.1. Probability of Blocking an Authorized Node

First of all, we are interested in evaluating the false spoofing detection capability of the
system. It is related to the accuracy (i.e., the capability of the classification method of cor-
rectly classifying the authorized nodes) of the classification method as Pban = 1− Accuracy.
Indeed, if the classification is not correct, an authorized node is erroneously associated to a
different class, and the ID check fails. In the basic scenario, we refer to the model channel
parameters described before: the scatters’ speed is in the range [0–5] km/h, στ = 1/λ
with λ = 1.664 · 107 and σAoA = 1.5849 [36]. However, in order to test the effectiveness
of the classification also under more challenging conditions, we have also considered the
following different scenarios:

• Scenario A1—nodes are randomly placed inA according to a bidimensional probability
distribution. The Doppler spread is related to a scatterers’ movement in the range
[0–5] km/h;

• Scenario A2—nodes are randomly placed as in A1, but scatterers’ speeds are increased
in the range [0–15] km/h;

• Scenario A3—nodes and speeds are set as in A2, but also the angle and delay spread
are increased, considering a variance that is three times the original one;

• Scenario B1—nodes are placed in clusters as shown in Figure 4, and the signals experi-
ence the Doppler effect under the same conditions as case A1;

• Scenario B2—clustered nodes are paired with the same environmental conditions of
case A3.

Different datasets were created for each scenario to train the machine. In particular,
for each node, 5000 impulse responses were sampled and of those, the first 100 were used
as the training dataset, while the rest of them were used to evaluate the performance of
the classifier. As shown in Figure 5 for the CART algorithm (similar results were derived
also for the random forest algorithm), the value of 100 for the training sequence length
was selected because an increase does not provide a noticeable performance improvement.
Moreover, until the length of 80 (it is more evident with very short lengths, 5/10) we can
note an overfitting effect due to the fact that with a few data, the training is too fitted on
these; hence, there is a consequent significant loss of performance after training.

First of all, we evaluated the performance of the CART algorithm, varying the number
of splits in the range [20–60]. We saw that in basic scenarios, there is not a high variance of
the achieved values with the number of splits. Differently, when the Doppler, variance of
angle and delay spread increase, a higher number of splits is beneficial. In general, 20 splits
is a good trade off. Table 1 reports the maximum and minimum values of the classification
accuracy for different scenarios and the number of splits for which these values are reached.
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Figure 4. Example of the nodes position in a clustered scenario.
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Figure 5. CART classification accuracy for different training sequence lengths in A1 scenario.
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Table 1. Accuracy variation vs. number of CART splits.

Scenario Min (n.Splits) Max (n.Splits)

A1 95.28% (15) 95.84% (20)
A2 95.00% (15) 96.04% (20)
A3 91.02% (15) 96.07% (25)
B1 88.19% (15) 95.62% (25)
B2 86.04% (15) 89.89% (40)

The following results were derived, assuming a CART classifier with a maximum
of 20 splits and a random forest classifier composed of five trees of the same size as the
CART one. Figure 6 shows the accuracy of the two classifiers on the A1 dataset for the
whole sample sequence of 5000 samples (graphs starts at the 100-th sample because the first
100 samples are used for training). Both classifiers show a good stability with little loss of
accuracy over time, with an average percentage of correct classification around 95% (i.e., in
average Pf sd = 5%). There are not significant differences in the performance of CART and
random forest algorithms; the gain of random forest is substantially negligible.
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Figure 6. Classification accuracy for scenario A1.

The accuracy averaged on the whole dataset for all scenarios is reported in Table 2.

Table 2. Average classifiers accuracy for different scenarios.

Scenario CART Accuracy Random Forest Accuracy

A1 95.43% 95.49%
A2 95.95% 96.14%
A3 96.53% 96.66%
B1 93.91% 95.04%
B2 87.96% 89.74%

Results in Table 2 show that only in scenario B2 is there a noticeable reduction in the
accuracy, which goes down around 88–89%. We evaluated also the effect of the number of
nodes in the area. In scenarios A1–3, we varied the number of nodes in the range [15, 30]
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and we saw that there is not a performance degradation in terms of accuracy, but obviously
the number of splits must be increased. In particular, for up to 25 nodes, the sufficient
number of splits is N increased by the 20%/25%. At 30 nodes instead, with 40 splits, the
accuracy decreases down to 79%, and 65 splits are needed to reach the 95% value.

In order to further investigate this issue, we considered also different clusters’ distri-
butions. We noted that there is not a significant difference if the clusters’ position varies,
but the number of nodes/clusters is the same. Similarly, leaving unchanged the number of
nodes per cluster and increasing the number of clusters up to 10/12 (which corresponds to
more than 60,000/70,000 nodes/km2), performance is not significantly affected because the
number of nodes that can create confusion in the classification process (since AoA and delay
attributes are very similar within a cluster) is the same. Obviously, with a higher density
of clusters, it is more likely that cluster overlapping occurs (being that the clusters are
randomly placed). Thus, a lower number of clusters with a higher number of nodes occurs,
and the overall accuracy decreases. We investigated also the case of a higher number of
clusters and nodes per cluster as well as the extreme case, where all nodes belong to the
same cluster. In the first case, considering 6 clusters with 7 nodes per cluster, there is only a
slight reduction in the accuracy, due to the presence of more nodes within the cluster that
have similar attributes: the average value of the CART algorithm in scenario B1 is 91.5%,
while in the extreme case of a single cluster with 15 nodes, the performance worsens and
average accuracy of CART is 88%. In general, up to a certain nodes/clusters density, the
reduction in accuracy is limited, but obviously when the density significantly increases,
there is a reduction in the accuracy due to the high probability that different nodes have
similar attributes.

Since the proposed method is based on multiple attributes, it is interesting to evaluate,
as these impact the accuracy of the classification. For this reason, the classifiers were used
with different sets of attributes, particularly the following:

• The whole set;
• The whole set without AoA attribute;
• The whole set without delay attribute;
• Only attributes related to the signal intensity (i.e., RSP, peak value and energy) without

AoA and delay;
• Only AoA and delay attributes.

Table 3 reports the accuracy averaged over the whole dataset for different scenarios.
The results show that the classifier using all the attributes outperforms others, using
only a subset; in particular, the information provided by AoAs and delays improves
drastically the prediction accuracy when compared to a classifier that relies only on “energy-
based” attributes.

Table 3. Average classifiers accuracy for different scenarios.

Scenario Full No AoA No Delay “Only Energy” AoA & Delay

CART

A1 95.43% 90.64% 94.67% 55.88% 90.70%
A2 95.95% 89.92% 94.87% 55.94% 90.80%
A3 96.53% 83.78% 81.08% 52.11% 95.40%
B1 93.91% 75.32% 76.96% 51.43% 91.69%
B2 87.96% 68.76% 77.44% 51.82% 81.84%

Random Forest

A1 95.49% 88.77% 93.27% 61.61% 92.56%
A2 96.14% 89.26% 94.43% 62.93% 92.88%
A3 96.66% 89.35% 80.70% 65.56% 95.45%
B1 95.04% 86.01% 76.61% 57.23% 92.60%
B2 89.74% 79.84% 72.22% 61.89% 83.39%
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The Pban depends on the ML classification algorithm; hence, we compared the results
of CART and random forest with those of other two basic ML classification methods, SVM
and k-NN, to show the effectiveness of the selected ones. In Table 4, the classification
accuracy of the four methods is reported for scenario A1. We considered a linear kernel for
the SVN and k = 20 for the k-NN (different values of k were tested).

Table 4. Comparison of classifiers accuracy.

CART RF SVM k-NN

95.43% 95.49 95.59% 94.59%

The results show that in this scenario, accuracy is similar using different classification
algorithms, thus supporting the effectiveness of the selected ones. Moreover, these present
low complexity and less degrees of freedom, which can affect their performance. Indeed, k-
NN is usually a low-complexity approach, but its performance requires a suitable selection
of k that should be differently optimized for different scenarios; moreover, the computation
load increases with k. SVM instead requires a large amount of time to process; hence, it
is suitable only if the data size is small and provides poor performance with overlapped
classes (it can happen with proximity nodes). Finally, performance strongly depends on
the hyperparameter settings.

4.2. Probability of Missed Spoofing Detection

The second performance indicator is the mis-detection of an unauthorized user access,
that is Pmsd. We want to verify what happens when a spoofing node is present. This node
can be in any position; hence, first of all, we want to verify if there is a relation between
the spoofing node position and its classification. As an example, Figure 7 shows a scenario
with N = 8 authorized nodes, whose positions are indicated with the red triangles, and
each one is identified by a different color (i.e., each color corresponds to a different class).
The sink node is considered in the center of the area, even if not represented. The area A
is divided in 10× 10 squares, and the malicious node classification is performed placing
the malicious user in the center of each square not occupied by an authorized node. The
color of the square indicates the output of the classification (i.e., the unauthorized node in
each specific position is classified as the authorized node that has the same color). We can
see that even if there is a certain spatial correlation, the classification of a malicious user in
different positions is quite mixed in the area.

Since the attacker tries to embody another node by transmitting a packet to the
sink with the label of the node whose identity it is trying to spoof, we consider two
different cases.

First, we assume that the malicious node randomly selects one of the available node
IDs in the network (with probability 1/N). Hence, Pmsd goes as 1

N ; indeed, given the
classification results, the probability of selecting the ID that matches with the resulting class
is 1/N. This is shown in Figure 8. These results were derived averaging the Pmsd over all
the possible positions of the malicious user. Obviously if the number of nodes is low, 1/N
is high, and hence, the Pmsd is high. To overcome this problem in small networks, sentinel
nodes can be introduced, each one with its assigned ID. For example, adding NS = 10
sentinel nodes, the Pmds is significantly reduced as shown in Figure 8. Sentinel nodes are
randomly placed in the area.
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Figure 7. Example of unauthorized node classification depending on its position in the area.
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Figure 8. Pmsd vs. number of authorized nodes in the area, with and without sentinel nodes (NS = 10).

As a second scenario, we considered the worst case in which the malicious node tries
to impersonate the nearest authorized node (i.e., it is able to intercept its ID). Results are
shown in Figure 9 in the case without sentinel nodes. We can see that performance slightly
worsens, due to the spatial correlation of the classification results shown in Figure 7, but it
is still close to the 1/N curve because the spatial correlation is not so high.
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Figure 9. Pmsd vs. number of authorized nodes in the area when the malicious user selects the ID of
the nearest sensor.

4.3. Limits of the Proposed Solution and Future Works

The proposed PLA scheme can be used in IoT scenarios with low environment mobility
to enhance the authorization/identification in a network, especially when nodes have low
computational capabilities and are not able to perform complex encryption algorithms. It
was proven that this approach is able to correctly classify and authorize nodes with a high
accuracy, even in the presence of challenging channel attributes variability; however, in the
considered scenario, the nodes’ position is assumed to be fixed, and hence, the mean values
of delay and AoA do not change, but in a high mobility scenario, this could be not possible,
thus reducing the ML classification accuracy. Different approaches should be considered in
this case for classification.

Moreover, the spoofing detection capability is achieved, thanks to the use of the node
ID, and increases as the number of authorized nodes increases. This is suitable for a future
scenario where a massive number of machines will require access to the network; however,
in the case of small networks, the number of nodes is a limit that can be overcome with
the introduction of sentinel nodes as we proposed. An alternative solution could be using
different ML algorithms that, even if trained on N datasets, are able to detect (N + 1) classes,
where the (N + 1)-th class is the one of an unauthorized node. Toward this goal, algorithms
must be suitably selected and modified in order to work in a multi-class environment.
These solutions could not only make the spoofing detection probability independent on the
number of nodes in the network, but also avoids the use of the node ID.

These aspects are currently under investigation for a future extension of this work.

5. Conclusions

This paper presented a PHY-layer continuous authentication and spoofing detection
scheme based on wireless fingerprinting for an actual wireless sensor network, where
several nodes communicate with a central sink node. The identity of authorized nodes
is confirmed, verifying the correspondence of specific attributes of the wireless link with
previous transmissions of the same nodes. A machine learning (ML) approach is used for
classifying the authorized users, so that the capability of analyzing multi-dimensional infor-
mation without the need of an analytical model is exploited. In particular, the framework
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proposed in the paper is based on two ML approaches based on the decision tree. Moreover,
the attack of a malicious node can be revealed by performing a cross-check of the classifica-
tion result and the declared ID. Numerical results show that, even in challenging scenarios,
the considered algorithms are able to reach high levels of accuracy in the classification that
corresponds to a correct identification of an authorized user. Similarly, the system presents
good performance in terms of spoofing detection, especially in large networks as foreseen
by the future IoT application scenarios. However, even in small networks, good protection
can be achieved by adding simple sentinel nodes that periodically send beaconing signals
containing their ID.
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