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Abstract: The Internet of Things (IoT) connects massive smart devices to collect big data and carry
out the monitoring and control of numerous things in cyber-physical systems (CPS). By leveraging
machine learning (ML) and deep learning (DL) techniques to analyze the collected data, physical
systems can be monitored and controlled effectively. Along with the development of IoT and data
analysis technologies, a number of CPS (smart grid, smart transportation, smart manufacturing, smart
cities, etc.) adopt IoT and data analysis technologies to improve their performance and operations.
Nonetheless, directly manipulating or updating the real system has inherent risks. Thus, creating a
digital clone of a real physical system, denoted as a Digital Twin (DT), is a viable strategy. Generally
speaking, a DT is a data-driven software and hardware emulation platform, which is a cyber replica
of physical systems. Meanwhile, a DT describes a specific physical system and tends to achieve
the functions and use cases of physical systems. Since DT is a complex digital system, finding
a way to effectively represent a variety of things in timely and efficient manner poses numerous
challenges to the networking, computing, and data analytics for IoT. Furthermore, the design of
a DT for IoT systems must consider numerous exceptional requirements (e.g., latency, reliability,
safety, scalability, security, and privacy). To address such challenges, the thoughtful design of DTs
offers opportunities for novel and interdisciplinary research efforts. To address the aforementioned
problems and issues, in this paper, we first review the architectures of DTs, data representation,
and communication protocols. We then review existing efforts on applying DT into IoT data-driven
smart systems, including the smart grid, smart transportation, smart manufacturing, and smart cities.
Further, we summarize the existing challenges from CPS, data science, optimization, and security and
privacy perspectives. Finally, we outline possible future research directions from the perspectives of
performance, new DT-driven services, model and learning, and security and privacy.

Keywords: Digital Twin; Internet of Things (IoT); cyber-physical systems; smart-world applications

1. Introduction

The technological trend of the Internet of Things (IoT) has led to a massive increase
in the number of smart devices that are connected to cyberspace [1–3]. In order for these
smart devices to make a meaningful impact, it is important that they have the capability
of capturing information related to their intended use; some common information that
would be captured from typical smart devices may include traffic flows, temperature,
humidity, and energy consumption. Depending on what a smart device is designed for,
it may capture the key characteristics of things so that the efficiency and intelligence of
cyber-physical systems (CPS), including energy, transportation, manufacturing, agriculture,
healthcare, and other critical infrastructure systems, can be realized [4–14]. Due to the
large number of data points that are introduced in these CPS, it is important to adopt
advanced networking, data analysis (e.g., deep learning), and cloud/edge computing
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technologies in smart systems [15–21]. By doing this, the relevant information can be
collected, transmitted, analyzed, and shared in a timely manner so that usable information
can provide the intelligence to enhance the monitoring and control abilities of physical
systems [22].

As an energy-based CPS, the smart grid can be identified as a complex system, where
numerous uncertainties arise in both cyber and physical components [23–26]. The uncer-
tainties can be caused by an outage in one part of the grid; in other words, the smart grid
is susceptible and is easily affected by random accidents such as power load imbalance,
outages, and even disruption from surrounding environments. We can understate both
the importance and frangibility of the smart grid, which is facing unprecedented chal-
lenges. Depending on the development of big data and IoT, adapting big data analysis
tools (ML/DL, data mining, statistics, etc.) can predict some potential risks, in order to
mitigate accidents in the smart grid [27]. Furthermore, leveraging big data can establish
a virtual smart grid environment to simulate real accidents, to investigate and develop
mitigation plans.

Another example is related to wireless sensors networks, which can be used in different
environmental monitoring systems. For example, smart farming is an emerging application
that connects IoT devices so that agricultural production, soil quality, and temperature
humidity can be managed [12,28,29]. Due to the harsh weather and environments, there are
numerous uncertainties that could affect the reliability of connectivity and physical devices
in smart farming. The uncertainties of the smart farming system can cause failures and
lead to the quantity and quality reduction of agricultural products. Thus, it is necessary
to design and implement the smart farming system as a typical CPS in the agriculture
domain so that important data can be collected and efficient operations of smart farms can
be supported. To this end, leveraging the collected data to create a cyber replica of the
farming system for testing and evaluation is a feasible approach to deal with a variety of
uncertainties in the system.

Likewise, in smart manufacturing systems, leveraging big data analysis can help
system administrators and engineers discover vulnerabilities in the system. In addition,
based on big data analysis, system administrators and engineers can update systems
to optimize supply chain and production performance [7,30,31]. Nonetheless, directly
manipulating or updating the real system has some critical risks. Thus, creating a cyber
replica of real physical systems to emulate real cases in those physical systems is an efficient
strategy, which is named Digital Twin (DT).

Generally speaking, DT is a digital clone of a real physical system. The vision of DT
refers to data-driven software and hardware set that describes a real physical system with all
functions and use cases. It also includes all status and information in life-cycle phases [32].
With obvious benefits, integrating DT into CPS could pose numerous challenges to mod-
eling, computing, networking, and data analysis, alongside the exceptional requirements
of CPS with respect to latency, reliability, safety, scalability, security, and privacy, among
others. While advanced networking, computing, and data analysis technologies can help
the realization of DT, there are a number of issues that need to be addressed, including
how to define the theoretical foundation and modeling techniques such that DT accurately
and reliably reflect the states of things, how to design ML/DL models to achieve real-time
big data processing, and and how to secure DT and protect privacy-sensitive information
collection and publishing.

There are some existing studies that have proposed feasible approaches, such as
leveraging multi-domain and multi-level designs in manufacturing systems; that is, designs
based on different sub-system digital abstractions in different domains, and designs based
on the principal structures of real physical systems at different levels [33]. In order to
ensure that DT can represent the physical systems precisely, the multi-domain and multi-
level design process must accompany the life-cycle of real physical systems. In addition,
some existing surveys summarize existing DT efforts that are designed to emulate real
physical systems. For example, there are several existing surveys focusing on inspecting
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the framework of DT in industrial systems [30,34–36]. Additionally, some studies have
focused on categorizing different DTs in the power grid [37–40]. Nonetheless, since IoT is
widely applied to different physical systems, it is necessary to conduct a comprehensive
investigation of extending DTs to IoT-based smart systems driven by data science and
engineering. Furthermore, based on new techniques, the challenges and future research
directions for DT need to be discussed.

To address the aforementioned problems and issues, we make the following contribu-
tions in this study.

• We begin with the architecture design of existing DTs, which includes DT variants,
DT sub-types, and IoT-based DT. We then review the data representation and com-
munication protocols for DT. In addition, we present the use cases for applying DT
into a variety of smart-world systems, which include smart grid, smart transportation,
smart city, and smart manufacturing, as typical CPS.

• Based on the architecture and its applications to smart-world systems, we discuss chal-
lenges that arise from four perspectives: CPS, data science, optimization, and security
and privacy. We also present several research directions for DT that we strongly feel
need further research, including performance, new DT-driven services, modeling and
machine learning, and security and privacy.

The remainder of this paper is organized as follows: In Section 2, we provide the
historical background of DT, including the key concepts, techniques, architecture, and
protocols of DT. In Section 3, we review the examples of applying DT into smart-world
systems, including smart grid, smart transportation, smart manufacturing, and smart cities
as case study. In Section 4, we present the challenges of DT from the perspectives of CPS,
data science, optimization, and security and privacy. In Section 5, we outline possible
future research directions from the perspectives of performance, new DT-driven services,
modeling and machine learning, and security and privacy. Finally, we summarize the paper
in Section 6.

2. Digital Twin

In this section, we review the basic concepts and architecture of DT, as well as data
representation and communication protocols for enabling DT.

2.1. Basic Concepts

A DT system can be regarded as a replica of a target physical system. It leverages
a model to continuously simulate different functions of physical systems. In order to
accomplish this, the DT must have a connection with the target physical entity so that the
state of physical things can be collected and updated. Thus, a DT model can be used to
predict, control, or optimize the functionality of things while at the same time learning
from things that it represents. Note that the function of a DT is more than just simulation; it
can interact with the physical system so that it can adapt to environmental changes.

DT technology relies heavily on the ability of ingesting large amounts of data and
drawing conclusions on their correlation. Because of this, DT is closely tied with big
modeling driven by advanced ML/DL and big data analytic techniques so that real-time
forecasting and prediction can be achieved. For example, by leveraging DT in manufac-
turing processes, we can plan repair and maintenance activities, which could eliminate
failures from the manufacturing process. In order to obtain this seamless integration of DT
and physical systems, it is critical that the DT obtains the real-time state information of
physical systems (i.e., sharing a connection to data); this is realized by using IoT sensors
and networking technologies.

Simulation technology has been evolving for several decades and is most commonly
used in Computer Aided Design (CAD), where a simulation of a system can gather insight
for a possible conclusion to a specific scenario. DT improves on this technology by intro-
ducing ML/DL engines to interpret data that can interact with the physical system. This
important distinction between traditional simulations and DT is made possible through
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the use of sensors, communication networks, data aggregation, and analysis, as well as
cost-effective and intelligent decision core, which can interpret the process and provide
real-time feedback to the system.

2.2. Architecture

Generally speaking, DT can be divided into three parts: the physical system, the digital
system, and the connection between them. Figure 1 illustrates the general architecture of a
DT. The physical system represents any actual system in the real world, including smart
grid, smart transportation, smart manufacturing, and smart cities. The physical system can
provide service to multiple users. Nonetheless, the environment may change when the
physical system operates. In this case, the physical system needs to take action to handle
this change. Nonetheless, it can be difficult to update a real physical model based on a
complex operating procedure. Under such a circumstance, the DT can leverage a simplified
physical system and, using the data from the new environment, perform simulation and
guide the physical system to perform the next step.

Figure 1. DT Architecture.

2.2.1. DT Variants

Based on different types of data sharing between physical and digital systems, we can
categorize DT into three variants: Digital Model, Digital Shadow, and Digital Twin (DT).
Figure 2 represents the architecture of these DT variants.

Figure 2. DT Variants.

Generally speaking, digital modeling refers to a digital representation of one existing
physical system or its theoretical model. The digital representation of the system may
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include a detailed description of the physical components. A distinct difference is that
a true DT system would utilize the data collected from the physical system to build a
digital system for simulation and control of the physical system based on the simulation
results. Nonetheless, for digital models, digital systems cannot automatically manipulate
physical systems based on digital system simulation results [30,41]. Changes to the physical
representation will not affect the digital representation and vice versa.

To expand on the modeling capabilities of the digital model, the Digital Shadow
further takes the simulation and integrates a one-way data flow from the physical object to
the digital representation [42]. Changes to the state of the physical systems can dynamically
alter the representation of the digital model based on changing states in the physical system.
This type of digital modeling can be used as a virtual representation of the physical system.
In this way, the system administrator can intuitively observe the operation of the physical
system and can respond in time according to the existing problems of the system. Changes
to the physical system can have impacts on the virtual model but not vice versa.

The DT is an extension of the digital model and digital shadow. The distinct difference
between the two previous examples and a DT system is the two-way link between the
physical system and the digital model. One benefit of having the two-way link is the ability
to affect the physical system based on the digital representation. Changes in the physical
system can be reflected over the digital model so that possible outcomes based on system
variables can be output. The link back to the physical system allows the control system to
interact with the physical system so that a desired outcome can be achieved.

2.2.2. Types of DT

In addition to the three variants mentioned above, the DT can be categorized into four
types: DT prototype (DTP) [43], DT instance (DTI) [44], DT aggregation (DTA) [45], and DT
environment (DTE) [44–46]. Figures 3 and 4 represent the architecture of DT types and DT
environment, respectively.

Figure 3. DT types.

Figure 4. DT environment.
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The DTP represents a type of DT framework that leverages all the information from
the physical system, which is necessary to reproduce the system in the physical world.
The data flow transfers from the physical system to the digital system. The purpose of
DTP is to improve the time and cost efficiency of the operation of the physical system.
DTP can be used in monitoring systems, such as smart grid monitoring systems. However,
the DTP data flow is a one-way flow from the physical system to the digital system. It can
only monitor the system and cannot manage it according to the incoming data from the
physical system.

The DTI is a type of DT that connects to its corresponding physical target. Unlike
the DTP, the DTI handles the data flow from the digital system to the physical system.
The data flow contains predictions or guidelines, which assist the physical system to
operate simultaneously when the environment changes. With both DTP and DTI, the two-
way connection between the physical system and digital system has been established.
Nonetheless, the DTI only represents a single data flow from the digital system to the
physical system. In this case, another term, called DTA, has been proposed to represent
the aggregation of all the DTIs. DTI/DTA can be used to manage systems as data flows
from digital systems to physical systems. The operator can operate the physical system
according to the prediction result of the physical system. Nonetheless, the DTI/DTA
data flow cannot be transferred directly from the physical system to the digital system.
Additional mechanisms need to be implemented to retrieve information from the physical
system to enable the DT to operate.

The DTE (DT environment) can be considered as the boundary of the DT application.
One DTE can contain multiple DT systems. The DTE is responsible for managing all the
DT systems under its coverage to assist in the operation of the relevant physical systems.
From the application point of view, DTE can be used to manage large systems. At the
same time, a synchronization mechanism needs to be implemented to speed up the query
processing among multiple digital systems.

2.2.3. Architecture for IoT Systems

As massive numbers of IoT devices have been implemented across a variety of real-
world applications and physical locations, and the collection, aggregation, storage, and anal-
ysis of their generated data is a prodigious challenge. Figure 5 illustrates a generic architec-
ture for IoT systems [47], which consists of four layers (i.e., object layer, communication
layer, application layer, and end-user layer).

Figure 5. DT architecture for IoT.
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The object layer represents all IoT sensors and is used to provide data and information
for different IoT-driven applications. It contains all the components that make up the
physical system. The communication layer provides communication network infrastructure
to collect IoT devices and collect data for DT. For example, a number of edge gateways can
be deployed to collect and aggregate information from sensors and send the information
to the application layer. IoT sensors and gateways use different communication protocols
to collect and transmit information. After the gateway in the object layer obtains the
information, it transmits the data to the application layer. The application layer includes
the digital systems of DT. At this level, the DT system first maps all sensor and gateway
information to the digital system. At the same time, we can use the IoT naming service
to name the mapped IoT sensors and local gateways, so that the digital system can locate
different resources [48]. The digital system can then use ML/DL models to perform
prediction and analysis. By doing so, the digital system can control the actuators in the
target layer based on the prediction results. Furthermore, the prediction and analysis
results can provide different services in the end-user layer. The end-user layer provides
services for users, who can send requests to the application layer. After that, the digital
system will analyze the information obtained and respond with the results accordingly.

Based on the architecture of the DT system, data representation and communication
protocols are essential for data sharing within the DT, as well the provisioning of services
to end users.

2.3. Data Representation

Data representation enables components to understand data from different domains [49–51].
Several commonly used data representation protocols in DT are DT Definition Language
(DTDL) [52], FIWARE [53], OPC Unified Architecture (OPC UA) [54,55], and Feature-Based
DT Framework (FDTF) [56]. In particular, DTDL is an open-standard platform proposed by
Microsoft [52], which can realize data transmission within the system or between different
systems. The summary of data representation protocols is listed in Table 1.

Table 1. Protocols of DTs.

Protocol Name Protocol Type Protocol Characteristics

DTDL Data Representation
As an open-standard platform, it defines six characteristics
of IoT components and enables seamless data transmission
between different DTs.

FIWARE Data Representation It supports DT data transmission and the processing of con-
textual information received from various IoT components.

OPC UA Data Representation
As a modeling framework, it can retrieve information from
raw data, support data manipulation, and provide monitor-
ing capabilities.

FDTF Data Representation As a DT structure, it enables the DT system to share informa-
tion based on the data link between DT components.

CoAP Communication

As a specialized web communication protocol based on the
User Datagram Protocol (UDP), it is tailored for resource-
restricted devices, supports the transmission of data via Hy-
pertext Transfer Protocol (HTTP), and provides a publish and
subscribe mechanism to simplify the process of obtaining
continuous data from the sensor.

MQTT Communication

As a communication protocol based on Transmission Con-
trol Protocol (TCP), it enables lightweight way for IoT
devices to communicate, provides reliable data transfer,
and can establish a long-existing outgoing TCP protocol
to enable transmission.
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Table 1. Cont.

Protocol Name Protocol Type Protocol Characteristics

Modbus TCP/IP Communication

As a communication protocol based on Transmission Control
Protocol (TCP), it realizes the connection between industrial
devices, provides reliable data transfer, and contains built-in
checksum protection.

URLLC Communication
As a communication protocol, it tends to achieve low la-
tency and reliability in the transmission process between
IoT devices.

DTDL [52] defines the following six characteristics of IoT components: (i) Interface: the
basic information of a component (device ID, device type, display content, etc.). Different
interfaces can inherit attributes from parent interfaces (e.g., charging station components
can inherit some attributes of the parking lot such as addresses); (ii) Telemetry: the data sent
from any component in the IoT-based DT (the raw data from IoT sensors, the processed
data generated by DT models, etc.); (iii) Property: the status of the components in the
IoT-based DT (i.e., the device is read-only or read-write). This can also include the different
states between different DT (whether the data between the two DTs are consistent, etc.); (iv)
Command: operations that any DT can understand; (v) Relationship: the connection between
the DTs (e.g., the relationship between the house and the cleaner is cleaned up); and (vi)
Component: the entities that exist in the DT, including sensors, gateways, and digital systems.
Based upon these six components, DTDL can be composed of multiple DTs with a unified
structure and data, which enables seamless data transmission between different DTs.

FIWARE [53] is also an open-source project designed to support DT data transmis-
sion and the processing of contextual information received from various IoT components.
FIWARE developed a data modeling standard called FIWARE NGSI that describes the
collection, processing, and change notification operations of contextual information. FI-
WARE NGSI is an object-oriented data protocol that uses context objects to represent
physical/digital objects. NGSI provides a data model that enables data exchange between
multiple DTs. It also uses NGSI-LD to represent the relationship between different objects
and uses JSON-LD for encoding to unify the data format.

OPC UA [54,55] is a modeling framework that can retrieve information from raw
data. OPC UA defines the data transmission and understanding model between different
systems. It also has a mechanism to traverse all data and analyze its semantics. OPC UA
supports data manipulation to make it easier to manage data under the DT architecture.
Furthermore, it provides monitoring capabilities, enabling the DT system to manage the
state of all sensors under the control.

FDTF [56] is a DT structure that enables the DT system to share information based on
the data link between DT components. This structure realizes data sharing between digital
systems and physical systems, as well as data sharing within different DT models.

2.4. Communication Protocols

The communication protocol realizes the information transmission between IoT
devices, and between IoT systems [49–51]. There are some representative communica-
tion protocols common across IoT systems, including Constrained Application Protocol
(CoAP) [57,58], OASIS Standard Message Passing Protocol (MQTT) [59], Modbus TCP/IP
Protocol [60–64], and Ultra Reliable Low Latency Communication (URLLC) [65]. The sum-
mary of communication protocols are listed in Table 1.

CoAP [57,58] is a specialized web communication protocol based on the User Data-
gram Protocol (UDP), tailored for resource-restricted devices (battery-powered IoT devices,
etc.). CoAP can be used to handle communication between IoT devices. It is designed to be
compatible with the transmission of data via Hypertext Transfer Protocol (HTTP) and is
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more compatible with Web-based applications. CoAP can provide a publish and subscribe
mechanism to simplify the process of obtaining continuous data from the sensor.

MQTT [59] is the communication protocol based on Transmission Control Protocol
(TCP). It is a lightweight way for IoT devices to communicate with each other through
MQTT messages. These messages are lightweight due to their optimized headers, so
that the use of network resources can be reduced. The MQTT protocol includes MQTT
clients and MQTT brokers. The MQTT client can be IoT sensors, and the MQTT broker can
be deployed in an IoT gateway, which is used to manage data communication between
sensors and control commands to IoT actuators. Since MQTT is based on the TCP protocol,
it can provide reliable data transfer. Furthermore, IoT sensors may need to establish a
connection with the IoT gateway within a certain period of time. In this case, with the
help of MQTT brokers, IoT sensors can establish a long-existing outgoing TCP protocol to
enable transmission.

Modbus TCP/IP [60–64] is a communication protocol used in the industrial field to
realize the connection between industrial devices. The protocol was initially proposed
to provide communication between Programmable Logic Controllers (PLCs). Modbus
TCP/IP uses port 502 for data transfer. Meanwhile, the protocol contains built-in checksum
protection, which can ensure the reliability of the data transmission required in IoT systems.
With the aid of Modbus TCP/IP protocol, reliable operations can be supported and applied
to the smart grid, smart manufacturing, and other IoT systems.

URLLC [65] is a communication protocol that can achieve low latency and reliability
in the transmission process between IoT devices. Generally speaking, URLLC is based on
the 5G wireless protocol, which can reduce the delay to 0.5 ms. In order to reduce the delay,
URLLC uses a mini-slot for smaller time resource units, removes the scheduling mechanism
of direct channel access, supports asynchronous upload, and adopts dynamic scheduling
algorithms such as hybrid automatic repeat request (HARQ). In order to improve reliability,
URLLC utilizes a channel estimation mechanism, a transmission diversity mechanism,
and a bit error rate reduction mechanism. With the aid of URLLC, IoT sensors can exchange
information faster and more reliably.

3. Integrating DT in CPS

In this section, we review some existing efforts on integrating DT in different CPS
such as the smart grid, smart transportation, smart manufacturing, and smart cities. DT
in CPS is an evolving field of research. There have been growing research interests on
integrating DT in CPS. Figure 6 shows the number of recent publications from 2018 to 2022
from IEEE Xplore on the subject of DT and CPS from four representative CPS (smart grid,
smart transportation, smart manufacturing, and smart cities). The included papers are
related to both DT system and CPS system in the content or in the experiment.

Figure 6. Number of publications related to DT and CPS in IEEE Xplore.
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3.1. Framework

Figure 7 describes an architecture option of a DT-driven smart-world system motivated
by the existing efforts on DT [33]. The architecture consists of three main components:
the physical subsystem, the Artificial Intelligence (AI) model, and the DT model. The IoT
gateway from each physical system collects and aggregates the data from the physical
system. With the support of communication protocols, data can be transmitted from the
physical system to the AI model. The AI model is used for data analysis and model design
based on the states of physical system. Then, the AI model stores its trained model as a
DT model to represent the digital perspective of physical system. If the configuration of
physical system does not change, the DT model can guide the physical system to react
based on the data collected by physical system. If the configuration of physical system
changes or needs to respond differently to the same situation, the AI model can update its
model according to the changes of physical system and revise the DT model to further assist
the operations of physical system. Recall that DT can assist in the control and operation of
physical systems [34].

Figure 7. DT-based CPS.

3.2. Smart Grid

As a key energy infrastructure, the smart grid leverages information communication
technology (i.e., cyber system) to provide two-way communication (of both energy and
information) so that the monitoring and control of the grid can be improved and consumers
can be engaged. The physical infrastructure of the power grid is composed of power gener-
ation facilities, transmission facilities, and power distribution facilities. Power generation
facilities are responsible for generating electricity, while transmission facilities are used
to deliver power to distribution facilities. Finally, power distribution facilities provide
electricity to consumers.

With the integration of the cyber system, the next-generation power grid, denoted
as the smart grid, has been envisioned to provide more efficient energy service for users,
including reliable and intelligent distribution management, renewable energy integration,
energy storage, grid monitoring and control, and the integration of electric vehicles into
the grid [5]. Generally speaking, the smart grid is a highly distributed grid system, which
integrates information communication techniques, including sensing, networking commu-
nications, data analytics, and machine learning [66,67]. These technologies can improve the
reliability, efficiency, and security resilience of the grid system.

The smart grid system is a large-scale distributed system. To improve the monitor
and control of the grid, it is critical to know the states of physical objects (voltage, current,
etc.) in the system. To do so, a massive quantity of sensors can be deployed in the grid
to measure the state of critical objects and derive the accurate and insightful knowledge
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of physical objects based on measurements. In the past, both static and dynamic state
estimation have been applied to the monitoring and control of the grid, and bad data
detection algorithms have also been designed to deal with corrupted, invalid measurement,
and/or malicious injection data, which can be generated via measurement error, sensor
failure, or even cyber threats [24,25]. Note that in addition to potential failures in the grid,
cyber threats can directly or indirectly affect the grid’s operations by injecting malicious
measurement data and/or manipulating the critical control information to the actuator.
To handle cyber threats, it is critical to not only monitor the state of physical objects but also
monitor the state of cyber components. In this regard, the DT can be a viable approach to
link the objects in the physical world to the cyber world.

DT uses a data-driven modeling strategy to map the physical grid to the digital grid
so that monitoring and management operations for the entire grid can be enabled. Based
on the DT architecture that we have discussed, the smart grid system can be divided into
several layers: object layer, communication layer, application layer, and end-user layer.
In the object layer, grid components include power generation facilities, transmission
facilities, and power distribution facilities. The communication layer is responsible for
the communication to connect objects, supporting data exchange between the objects and
the application layer, and the data communication within the object layer. For example,
the gateway of the communication layer contains the device information of object layer.
When the application layer needs data, the gateway can retrieve the data from a specific
device as required. The application layer can also construct a digital model based on the
device distribution information from the gateway.

The application layer includes a digital representation of the gateways from the phys-
ical system, which contains device information from the object layer; it communicates
between the application layer and the object layer through the communication layer. In the
application layer, the AI model is trained based on the data collected from the object layer,
and the trained model is stored in the data storage for future use. If the physical state of the
object layer changes, the application layer can send commands to some actuators in the ob-
ject layer to control the grid based on the current data and the trained model. If the physical
components of the object layer change, the AI model can perform model updates to reflect
the changes as well. The end user layer uses the information processed by the application
layer to provide services for end users, including smart grid management systems, smart
charging systems for autonomous vehicles, and hybrid energy management systems.

There are a number of research efforts on DT for the smart grid [38,39,68–71]. For
example, General Electric (GE) proposed two models related to the use of DT in wind
farms [68,69]. In the object layer, a communication network was designed to enable
wind turbines to communicate with each other. A wind turbine control system was also
implemented to control one or more wind turbines. The middleware layer includes a cloud-
based infrastructure with the support of the communication network so that the data (e.g.,
state of turbines) can be collected and turbines can be remotely controlled via gateways. It
also includes digital models that represent digital replicas of wind turbines. The digital
model can be updated based on the information extracted from the object layer, and the
wind farm can be controlled through an industrial gateway. In addition, GE designed a
graphical user interface (GUI) in the application layer to show the digital representation of
the wind farm and perform the control and management operations of the wind farm.

Ahmed et al. [39] proposed a microgrid DT model based on the IoT to mitigate cyber
attacks. The object includes microgrid, local controller, and area controller. Real-time
balancing algorithms were implemented in each controller. If some microgrids are attacked
and go offline, the area controller can obtain information, and the balancing algorithm will
not transfer more power to the offline area based on the tampered data. This architecture
can also mitigate distributed denial of service (DDoS) attacks and false injection attacks.
Likewise, Nikolaos et al. [38] used DT to manage a large number of devices in the smart
grid system. To be specific, they used the spike neural network (SNN) deployed on
the smart meter in the grid to detect fault nodes. A transient state estimator (TSE) was
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designed to reveal the dynamic state of the smart grid. William et al. [70] leveraged deep
learning algorithms to analyze data from the supervisory control and data acquisition
system (SCADA) to assist the DT in detecting physical faults in the smart grid system.
Likewise, Payam et al. [71] proposed a DT framework with artificial neural networks
(ANN) for distributed smart grids to ensure real-time model generation, verification,
and identification.

3.3. Smart Transportation

The smart transportation system can be regarded as a CPS, which provides a va-
riety of services for the transportation domain, including traffic management control.
Some applications in smart transportation systems include toll payment, vehicle operation,
emergency, vehicle control and safety management, and maintenance and construction
management [6,72,73]. Since the smart transportation system requires real-time data trans-
mission and analysis capabilities to implement time-sensitive services such as autonomous
vehicles, it is difficult for traditional models to complete model training under massive
data within a short time. It is additionally challenging for traditional smart transportation
systems to complete the collection and aggregation of all sensor data within a short time.
In this case, the DT model can use high performance cloud/edge servers in the digital
system to conduct data aggregation and model training so that real-time processing and
transmission can be achieved.

Based on the architecture of the DT that we have discussed, DT in the transportation
system consists of four layers. The object layer contains the components of the infrastructure
and participants (e.g., drivers), including sensors on the vehicle, traffic cameras, and other
traffic sensors. The communication layer uses a variety of gateways to process sensor data
from the object layer, and handle data transmission between the object and application
layers. The application layer maps the gateway from the communication layer to realize
data transmission between the communication layer and the application layer. Based on
the data and sensor information from the gateway, the DT can use ML/DL technology
to train the model and store it in data storage. The end-user layer can navigate based
on the data processed by the application layer, assist the driving of autonomous vehicles,
and cooperate with smart cities and smart grids to reduce transportation costs, reduce
energy consumption, and make the charging process of electric vehicles more efficient.

There have been some research efforts on DT-driven smart transportation. For example,
Peter et al. [74] proposed a scheme for DT-driven smart transportation that attempts to
optimize traffic flows in urban areas. The proposed smart transportation system includes an
AI model, a digital replica of the road network, and various traffic control and management
services. The system obtains data from the object layer, including traffic lights, sensors,
and cameras. After the smart transportation system processes the data, it will build an
application at the end-user layer based on the collected data, which is called the city service
information system. Then, operators can manage the entire system at a high level based on
the end user’s application. Additionally, Sagar et al. [75] proposed a DT-based adaptive
traffic signal control (ATSC) to reduce the waiting time at intersections, thereby improving
the driver’s driving experience. In that study, the Urban Traffic Simulation (SUMO) was
used as the simulation platform.

Additionally, Wang et al. [76] designed a DT-based verification platform to perform
verification between different metro systems. The object domain includes operation center;
trackside and train information is collected, and data is transmitted to the DT system of the
application layer through various communication protocols, including 4G, 5G, Ethernet,
and NB-IoT. The DT platform uses ML/DL, data fusion, and data modeling to analyze all
data and assist the end-user level in scheduling, train monitoring, pedestrian monitoring,
etc. Sahal et al. [77] proposed a DT structure combined with blockchain to enable DT-
based intelligent transportation systems to achieve interoperability, identity verification,
distributed ML/decision-making, and scalability and robustness. Likewise, Guo et al. [78]
demonstrated a DT-based 3D collaborative vehicle infrastructure system (CVIS) to visualize
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real-time road data and use LIDAR as road sensors. They used the ROS bridge as a
communication protocol to communicate between the physical and virtual worlds.

3.4. Smart Manufacturing

The smart manufacturing system, as a general concept, is the integration of traditional
manufacturing systems and processes with information communication technologies to
enable advanced intelligence and process optimization and automation. The demands
of current manufacturing systems can be complex in nature, due to the challenges of
scalability, efficiency, delivery, or design requirements [79]. The smart manufacturing
system is the utilization of emerging technologies to massively optimize production in
terms of throughput, efficiency, precision, loss, resource consumption, scale, and value [7].

Traditional manufacturing systems are comprised of shop floor hardware that works
as a unit to streamline the production of a deliverable product. In contrast, the smart
manufacturing system integrates communication and computing technologies to utilize
information generated from traditional manufacturing systems to make a more complete
representation of a product life cycle. The application of IoT to industrial systems, or Indus-
try 4.0, relies on technologies such as sensing, control, communication, computing, and data
science to support information flows between different components of the manufacturing
system, allowing for better system interoperability and use.

One major limitation in manufacturing systems is the ability to automate and mass
produce in a manner that is efficient and cost-effective. With the shifting paradigm in
manufacturing of custom user deliverables, there is an increased challenge to provide
custom solutions in a method that can be massively produced by manufacturing systems.
A common issue in manufacturing is the ability to generate a deliverable that is flexible to
the user’s needs while still maintaining automated systems that can quickly and efficiently
create products. At scale, it is often difficult to analyze how changing requirements in
the product design or supply chain will impact variables such as cost and production
timelines while retaining quality and efficiency. Additionally, adoption rates are going
to be a challenge for manufacturing environments that are looking to incorporate smart
manufacturing systems in their product life-cycle. A core technology for enabling smart
manufacturing is the availability of information from the physical objects (i.e., shop floor
equipment) through IoT sensors connected to IoT networking infrastructure.

Implementation of DT in the smart manufacturing system can help evaluate the
effectiveness of large-scale production environments by utilizing models for analyzing
production efficiency and design factors. The link between the virtual and physical rep-
resentation of a manufacturing system (i.e., in the way of DT) can determine whether a
design is going to be cost-effective by integrating with decision support systems such as
supply chain management and timeline forecasts. The integration of smart supply chain
technologies involves a real-time link between the production environment and the sup-
pliers and distribution centers to determine the deliverable dates [80]. Determining the
availability of materials required for manufacturing production will allow the system to
generate a cost model and timeline for delivering a final product.

Monitoring the physical production environment with DT systems can allow for the
real-time analysis of system health on physical things (i.e., equipment, tools, and hardware)
and prevent delays based on environmental factors. In the event of an anomaly detection
on a manufacturing system, the DT model can determine whether the work load should be
rerouted to another system in the manufacturing line to avoid delays in production [81].
IoT sensors in manufacturing equipment allow for real-time monitoring, enabling the de-
tection of events that could cause breakdowns in the manufacturing system and providing
alternative scenarios for maintaining system efficiency to prevent delays in production
timelines [82].

Since smart manufacturing can apply to many different levels of technologies in
manufacturing systems, it is important to consider the level of adoption for technologies in
Industry 4.0 scenarios. For example, Frank et al. [80] analyzed different levels of adoption
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in several different manufacturing domains and concluded that the implementation of
Industry 4.0 technologies is interrelated and provides potential benefits when more systems
are integrated with smart manufacturing processes. Additionally, the utilization of both
front-end technologies and base technologies could provide more complete integration
between physical systems and virtual representations that can better handle the challenges
of requirement complexity and decision support systems.

With the support from the communication layer and techniques to enable data aggre-
gation, DT implementation can help with the following scenarios in a smart manufacturing
system. The first scenario is the detection of fault tolerance and device health, which can
help smart manufacturing systems to avoid outages by predicting device failures and
rerouting workflows in the production process. In particular, cloud-based frameworks
that are designed to handle large amounts of data utilize embedded sensor systems in
manufacturing devices in order to monitor system health, leading to the creation of pre-
dictive models for avoidance procedures [83]. In the example of a robotic gripper in a
manufacturing production line, Redelinghuys et al. [82] investigated anomaly detection in
the gripper closing speed for detecting via pressure sensor to detect faults and degradation
that could lead to failure and considered utilizing the result to reroute production traffic to
another assembly line. This type of fault detection compares recent samples to historical
data and builds a model that determines when a device is likely to fail in a production
environment, enabling the automated scheduling of preventative maintenance.

The second scenario is supporting supply chain management, which involves the
integration of DT systems and the communication of real-time data between suppliers and
distribution centers. The tracking of products can be integrated into the supplier systems to
inform the manufacturer system and can be integrated with the customer-facing deliverable
to accurately determine product delivery timelines and end-to-end supply chain logistics.
The tracking of goods required for a customer deliverable can be remotely monitored and
integrated between supplier and manufacturer systems to determine the availability of
goods required to produce a product [84]. In the event that a good required for a custom
deliverable is not available, the decision support system can determine whether there is a
more suitable supplier for the product and whether it would be cost-efficient to utilize a
different supplier. By generating a pricing and timeline model for the availability of goods,
the manufacturer can determine whether the product is worth producing and provide an
accurate cost analysis to the customer.

Note that one of the emerging challenges of manufacturing systems is the ability to
create highly customized products in a manner that is efficient. Manufacturing in general is
often focused on the mass production of a good or product in order to decrease the cost and
effort required per unit. This type of mass production is often associated with processes
that are easily automated to speed up the production time. With the shifting paradigm
of manufacturing trending towards more customized deliverables [85], product variety
becomes a factor when designing production systems that will maintain efficiency while
still meeting diverse customer requirements. Integration with DT systems can allow for
the application of ML/DL algorithms and modeling technologies to determine whether a
custom deliverable requirement is feasible in a given manufacturing system. Manufacturing
systems need to be both flexible and efficient in order to be useful for custom deliverable
objectives [86].

There are some existing research efforts on the evolution of smart manufacturing
concepts and the best way to apply DT technologies for more robust manufacturing sys-
tems [30,86–88]. For example, Lu et al. [86] reviewed the standards utilized in smart
manufacturing systems, applied their research toward the production of new standards,
and further envisioned scenarios for smart manufacturing systems, some of which can
benefit from the application of DT systems. Kritzinger et al. [30] took the application of
smart manufacturing one step further by studying the application of DT as an enabling
technology for Industry 4.0. Likewise, Brennet et al. [87] discussed the convergence of digi-
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tal and physical systems for Industry 4.0 through the application of Personalized Product
Emergence Processes (PPEP) and additive manufacturing technologies.

Furthermore, the implementation of DT in smart manufacturing systems was inves-
tigated [81,89,90]. For example, Tao et al. [89] summarized the deployment structure of
DT for smart manufacturing based on the concept of DT Workshop, which enables digital
systems and physical systems to synchronize with one another. In this case, the digital
system can be virtualized based on data from the physical system, and the physical system
can be optimized based on the instructions from the digital system. In order to better
explain how to deploy Digital Twin Shop-Floor (DTS), DTS was divided into four parts:
physical shop-floor, virtual shop-floor, shop-floor service system, and shop-floor DT. Like-
wise, Kamil et al. [90] implemented a DT in an experimental assembly quality production
inspection system. In particular, they used radio-frequency identification (RFID) and cam-
eras in the physical system and used a programmable logic controller (PLC) system to
collect data. The OPC UA framework was considered to transfer data between the physical
system and the digital system. The digital model consists of a 3D model created in CAD
design software and is simulated and virtualized using the Tecnomatix platform. The cloud
platform was integrated into the digital system for data analysis so that the assembly
quality inspection could be realized without stopping the manufacturing process. Open-
source technology can also benefit the development of applying DT in smart manufacturing
scenarios. For example, Aghenta et al. [91] proposed a low-cost IoT-based SCADA system
solution. In addition to providing the basic functions of a traditional SCADA system, this
particular system can not only support data acquisition, transmission, and presentation
but also the monitoring and control of physical objects.

3.5. Smart Cities

The objective of the smart city is to leverage information communication and data-
related technologies so that resources can be efficiently used, leading to better quality of
life, reduction of resource input, etc. So far, the majority of focus has been on government
and energy initiatives, followed by transportation, building, and water, among other goals.
A number of research and development efforts on smart cities and DT applications have
been generated [92–96]. Similar to smart manufacturing, smart cities are the combination
of a wide range of IoT domains to address the complex challenges in cities and must
incorporate cloud/edge computing with big data collection and analysis as essential
techniques to drive the realization of efficiency and optimization [11,97].

It should be noted that the development of the smart city has involved several op-
portunities and challenges: (i) people’s expectations are constantly changing. How can
people’s expectations be accounted for when they are frequently and forever changing,
even when real-time communication is a reality? How can the change in expectation be
evaluated? (ii) How can the latest technologies be utilized to improve the efficiency of
our government? How can we forecast outcomes and avoid potential losses or mistakes?
How can we mitigate the risks? These questions have become the urgent issues that a
government must consider with respect to smart cities. Similar to numerous practices
in smart manufacturing, in smart cities, we could leverage DT to detect and address a
problem before it arises, reducing cost, rather than attempting to solve a problem after it
has occurred. If the results from the DT match the expectation, data can be transferred to
real physical objects to implement the changes in a fast and seamless way.

Some efforts toward integrating DT with smart cities have already been made [98–103].
For example, Deng et al. [98] reviewed some key technologies in Digital Twin City (DTCs),
such as surveying and mapping, building information model, IoT, next-generation wireless
networking, and blockchain. Shahat et al. [99] reviewed some challenges of DT cities and
discussed some research that leveraged DT into smart cities. Note that while the city DT
cannot provide solutions for addressing problems in cities, DT can provide benefits in
several areas. In order to demonstrate the performance of DT, it is necessary to conduct
research on data collection, data management, the utilization of big data, virtual reality
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(VR), IoT, and 3D Modeling. Likewise, Shirowzhan et al. [100] discussed technologies
that can be useful for enabling smarter cities. They identified trends in geospatial science,
particularly in the application of geographic information system (GIS), and observed the
impacts of newly developed online applications such as ArcGIS Urban.

More and more smart cities around the world are embracing DT to replicate its
performance and response to changes. By the year 2020, 118 cities were using DT in Smart
City projects and systems. Cities are also using DT to reduce carbon dioxide emissions and
manage traffic efficiently. According to ABI Research, DT could assist cities in carrying out
cost-effective urban resource planning [104]. We believe that DT has the potential to further
improve upon the already significant gains that it has achieved.

4. Challenges

Integrating DT into CPS can not only improve the efficient operation of CPS through
increased intelligence, it can also assist CPS in providing more valuable service to end-
users. Recall that as DT is a digital replicate of physical things, it is critical to make DT
capable of representing a variety of things in a timely, accurate, and efficient manner.
The realization of such a DT raises numerous challenges to the networking, computing,
control, and data analysis of IoT. Furthermore, the design of DT shall consider the numerous
exceptional requirements of CPS (e.g., latency, reliability, safety, scalability, security, and
privacy). To address such challenges, designing DT offers opportunities for novel and
interdisciplinary research efforts.

4.1. CPS Challenges

As a complex system that requires the coordination of network, computing, and con-
trol, CPS has strict performance requirements in different application scenarios. Generally
speaking, CPS applications require very low latency, high reliability, and large scalability.
Taking the smart transportation system as an example, suppose we are designing applica-
tions related to autonomous driving. Vehicles need to be able to quickly collect pertinent
information. This information includes data collected by sensors, transmitted through the
Internet of Vehicles, and so on. Then, the vehicle needs to process this data quickly, extract
usable information, and control the vehicle according to the determined situation at the
time. Since vehicle driving is closely related to personal safety, there is no doubt that the
reliability of autonomous driving is our primary consideration. The issues that we need to
consider include network failures, computing hardware failures, and many more.

Moreover, because the number of vehicles in each scenario will be different, we need
to ensure the scalability of the autonomous driving application that we design to handle
the problems caused by the large number of vehicles, such as network congestion and high
control algorithm complexity. From this example, we can conclude that the performance
requirements of CPS are very strict. The overall performance of CPS is the result of multiple
subsystem (network, computing, and control) interactions and is synthesized within the
CPS. This interaction means that any slight change in the performance of any one subsystem
can have a compounding effect on the performance of other subsystems, thereby causing a
complex impact on the performance of the entire CPS system. Thus, when building a DT
for CPS, it is challenging to not only meet all these strict performance requirements but also
to reflect the interactions between the various subsystems in a timely manner.

4.2. Data Science Challenges

Building the DT of a complex system itself is very challenging, involving mathematical
modeling and data analysis. There are two major approaches to building an accurate DT:
model-driven and data-driven. When we adopt the model-driven approach, we use
mathematical models to represent physical systems. Therefore, knowing how to build
a mathematical model that accurately represents a complex physical system in CPS is a
challenging problem. Since there are many variables involved in the physical system of
CPS, the mathematical model will be significantly complicated, typically with properties
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such as non-linearity, highly-coupled, and time-variance. When we adopt a data-driven
approach, we collect massive amounts of data from the physical system that reflects its
status over time. The process of collecting and selecting these data poses some challenges.

First of all, in CPS, one type of data may be collected from multiple sources, and the
hardware conditions of these sources will be different, such that it is difficult to ensure that
the quality of all data is the same. Second, the storage and transmission of this massive
amount of data creates significant overhead to the system. In order to truly reflect the
timely updates of the physical system, we often sample the state of the physical system
at a very high frequency, and these data require considerable storage space and pose
significant overhead for networking and computing infrastructures with strict performance
requirements. Therefore, one fundamental data science problem is how to collect the
least amount of data without significantly and negatively impacting the efficacy of DT.
In conclusion, how to effectively construct a DT for the complex system with the least
amount of data is a challenging problem that needs to consider both mathematical modeling
and data science aspects.

4.3. Optimization Challenges

Realizing a DT in CPS that accounts for the interactions of computing, control, commu-
nication, and data analysis modules in an end-to-end chain is challenging. The communica-
tion resource allocation algorithms, such as time and frequency resource scheduling, are
very complex, especially when combined with massively distributed networking devices
and low latency requirements. In addition, the computing resource allocation, such as
task-offloading in an edge/cloud computing architecture, is another optimization problem
with stringent performance constraints. Furthermore, the control mechanism, possibly
event-triggered or time-triggered control, or both, yields still another optimization prob-
lem. In addition, analysis of the collected data is highly complex, requiring prodigious
feature extraction, and training (or at least validation), coupled with potentially continual
prediction or classification to satisfy real-time requirements.

The DT is a combination of the real-time computing, real-time control, and real-time
communication, which generates the joint/integrated optimization problem of computing,
control, and communication. Consider VR-supported smart manufacturing as an example.
First, we need to deliver massive amounts of sensing data with required latency. Then,
we need to use the graphics engine to generate the digital model in real time. Finally, we
need to execute the control command within the latency constraint. Since any problem in
this chain will directly affect the performance of the other, even in a centralized system
with superior hardware conditions, it is very challenging to perform joint optimization
on this VR system. Further, the distributed system of CPS only makes the problem of
joint optimization much harder. For example, in our previous work [105], we adopted
deep reinforcement learning to help configure the network and dynamically change the
sensor sampling rate at the same time to improve the control performance of a distributed
smart manufacturing system. However, by introducing DT to the CPS, there are more
processes that need to be considered. For example, in the control process, there are two
processes, such as the domain expert controlling DT and DT controlling the physical objects.
The computing of DT in CPS needs to consider three computing processes, such as the
computing process of generating a digital copy of a physical object, the computing process
of the interaction between DTs in a simulated scenario, and the computing process of actual
CPS tasks. The communication of DT in CPS needs to consider the communication between
the physical object and the virtual clone, the communication between the DT and other
DTs, and the communication between the DT and the human control interface. These extra
processes make the optimization problem more difficult to solve.

Taking into account the limited resources of the CPS system, we also need to optimize
the large amount of data generated in these processes from the perspective of data gen-
eration, data storage, and data transmission. From a data generation perspective, when
we generate the data needed to build a DT in CPS, the quality of the data is a major issue.
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Because we need to deploy a massive number of CPS devices, the hardware conditions of a
single CPS device are often very limited. In addition, in the CPS environment, one type
of data may be collected by multiple sources. Thus, how to effectively select data sources
for different CPS applications is a challenging problem. From a data storage perspective,
when we are building the DT, in order to truly reflect the timely update of physical objects,
we often sample the state of physical objects at a relatively high frequency. Inevitably,
an incredible volume of data will be collected on the DT server side. On one hand, these
data can be used to assist in the development of other DT systems; on the other hand, these
data take up significant storage space. Because there is not a simple linear relationship
between the amount of stored data and the performance of the DT system, the question of
how to accurately select useful data for storage has always been difficult to answer. From a
data transmission perspective, due to the heterogeneity of CPS systems, IoT/CPS devices
use different communication technologies. When we need to transmit data between these
devices, we usually deploy a gateway with various radio interfaces for data exchange. This
solution will bring additional hardware costs and potential network bottlenecks. Con-
sidering that the DT system has very strict requirements on timing and latency, it is very
challenging to design networking infrastructure to support real-time communications so
that the information between different components can be delivered quickly and efficiently.

4.4. Security and Privacy Challenges

We now discuss the security and privacy challenges. Since DT needs to update the
state of physical objects in real time through network communications, DT will be subject
to cyber attacks, such as integrity attacks on physical hardware and sensors, transmission,
and digital systems. Taking the data integrity attack as an example, the adversary can
directly attack IoT devices as data collectors, causing them to upload invalid/misleading
data. Alternatively, an adversary can attack the gateway, to which the IoT device uploads
data, mixing the invalid/misleading data with the correct data collected by IoT devices.
Finally, the adversary could directly inject false data into the DT. Because the DT and
physical objects are closely connected, any one of these attacks will yield a significant
impact on the integrity of the entire system.

Additionally, from the perspective of confidentiality, the DT applications contain
a large amount of privacy-sensitive information, such as medical records, autonomous
vehicle sensing information, and real-time smart grid operation information. Therefore,
it is not only necessary to implement an authentication mechanism for physical objects
but also an authentication mechanism for digital communication and machine-to-machine
transmission. Nonetheless, it can be costly to implement authentication mechanisms on
low-energy IoT devices. In this case, knowing how to handle the authentication process
on devices with limited power has become a challenge. From a usability point of view,
DT applications rely on sensor information from the object layer to help the DT build
the digital clone of the physical system. In this case, adversaries can launch attacks on
sensor or gateway, such as a denial of service (DoS) attack or malware propagation. Once
the gateway or sensor is compromised, it is difficult for DT to obtain the overall states of
the physical system. For this reason, it is important to propose and validate mitigation
mechanisms to reduce the impact of such attacks.

5. Research Directions

In extending the DT to IoT scenarios, promising new fields arise that are worthy of
further investigation. We will discuss the future research directions from the following as-
pects: performance, new DT-driven services, modeling and machine learning, and security
and privacy.

5.1. Performance

As we discussed in Section 4, the DT in CPS has very strict performance requirements
to achieve real-time computing, real-time control, and real-time communication. We believe
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that the joint optimization of sensing, control, networking, computing, and data analysis is
critically important for DT to meet these performance requirements. There have been some
works focused on one of these optimization targets (sensing, control, networking, or data
analysis), and some results have been achieved. However, if we need to maximize the
overall performance of the system, we must study the interaction between all components
and design a joint optimization strategy. Taking the intelligent transportation system as
an example, suppose we are generating DT for moving vehicles in a certain area to better
manage traffic. We use sensor data from both vehicles and cities to build DT. When we
select data, simply having more data is not optimal. Instead, the pre-processing of the data
should account for the quality of the data, the bandwidth of the network, the computing
power of the infrastructure, and the Quality of Service (QoS) requirements of the specific
application. Similarly, when we are transmitting the data, we need to consider not only
the current communication environment but also the mobility of the vehicle, and the data
storage space of the vehicle, among others.

5.2. New DT-Driven Services

By combining DT and IoT search services, we can interconnect different CPS systems
and provide more services. Specifically, the DT bridges CPS in disparate domains, such
as transportation, energy, and manufacturing, to obtain a ubiquitous connection. The DT
enables more data sharing to create abundant content that improves the IoT search results.
For example, the DT bridges electric cars that primarily consume energy with the smart grid
that primarily generates and stores electricity. With DT, electric cars can obtain seamless
and efficient energy supply via the information from digitized charging piles, solar planes,
and so on. IoT search services such as location-based search and content-based search can
also help us find IoT devices and data to build DTs [48,106]. This is particularly important
in the rapidly changing CPS environment.

For example, in the smart transportation system, suppose we are using smart cameras
to build digital clones of vehicles. After a few seconds, the vehicle drives out of the range
of the smart camera. We can use the location-based IoT search service to find other cameras
around the vehicle to ensure that DT can continue to work. As another example, if we want
to know the moving trajectory of vehicle, we can use a content-based IoT search service to
find all the information that contains the vehicle license plate. Finally, some new services
can be provided by DT on different CPS. For example, in the smart manufacturing system,
operators can check DT through algorithms to quickly perform quality inspections on a
large number of products. In the smart home, users can integrate smart cameras and VR
devices to provide holographic remote social interaction. In the smart grid, DT can be used
to monitor the status of infrastructures in real time. In smart health care, DT can be used to
monitor and record the vital signs of patients so that doctors can make better treatment
plans. Likewise, in the smart transportation system, DT can be used to dynamically plan
routes and provide additional driving assistance functions such as blind spot monitoring,
brake warning, etc.

5.3. Modeling and Machine Learning

Considering the challenges of modeling a complex system in Section 4.2, a modeling
methodology that can be adapted to different CPS systems is worth studying. There are
two major directions that should be investigated: model-based DT and model-free DT.

For model-based DT, the main problem is that the CPS system is difficult to mathe-
matically model, and there are significant differences between different CPS. Therefore,
any model that works and is complete for one CPS will need to be re-modeled every time
the CPS changes. To address this problem, one solution is modular DT. This focuses on
building the DT of the small objects of the system and combining them to form the DT of
the entire system, instead of building the entire system from the beginning. This not only
reduces the complexity of building a DT model but also uses the constructed DT models to
create a different combination DT systems.
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In model-free DT, we establish DT by frequently collecting information on physical
objects. Because this kind of DT completely relies on observations and disregards mathe-
matical model support, it is difficult for us to predict the state of the system, which greatly
affects the control and optimization of the DT system. Therefore, we consider using DL to
generate a neural network-based model by learning data collected from the CPS devices.
In this case, even for very complex systems that are difficult to model, we can still use DL
models to build DT. Nonetheless, one problem is that ML/DL algorithms usually require a
large amount of data, which is sometimes difficult to provide for CPS devices with limited
resources. Therefore, it is worth investigating the best way to design DL models that
work for small amounts of data. Moreover, training a DL model requires considerable
computing power, and trained models need to be retrained once the environment changes,
both of which are obviously too demanding for CPS devices. To solve these problems, we
believe that using transfer learning is a promising solution [107]. Transfer learning is an ML
technology that can transfer the learned knowledge from one a well-trained model to a new
learning model. Specifically, with transfer learning, we can use a generic DL model trained
with large amount of the data as the source model and replace several of the last (terminal)
layers in the network to construct a new model. During the training phase, we only update
the replaced layers. By using this transfer learning technique, we can use less training data
to obtain better performance than training from scratch. Because there are fewer network
parameters that need to be trained, this method also reduces the requirements for device
computing power and storage space. Therefore, it is suitable for real-time computing,
real-time control, and real-time communication in a large-scale distributed CPS system.

Finally, we should consider the integration of model-based DT and model-free DT
into a hybrid-model DT. Even in the most complex cps system, there will be components
that can be easily mathematically modeled. Therefore, we can mathematically model those
components of the system that are easily modeled and use a model-free approach such as
DL to model the remaining components. Once a DL-based model is trained, it can be treated
as a modular model and directly integrated with other model-based DTs in a modular
DT system. For example, in the smart transportation system, we can mathematically
model the mobility of vehicles and use DL to model the Internet of Vehicle communication.
By combining these two components together, we can obtain a complete DT of moving
vehicles in CPS.

5.4. Security and Privacy

DT applications rely on data provided by IoT sensors and gateways. In this case, data
and communication security and privacy are an important research direction. In consider-
ing security, we discuss the research from several perspectives: confidentiality, integrity,
and availability.

In terms of confidentiality, we now take the smart transportation system as an example.
DT obtains data from IoT sensors installed near roads, vehicles, etc. At the same time, IoT
sensors may belong to different organizations/operators. In this case, different organiza-
tions/operators need to ensure the confidentiality of data through some authentication
and secured communication protocols. In addition, some data stored in the application
layer, such as vehicle location and traffic camera data, are sensitive. Thus, access control
needs to be in place to protect user privacy. At the same time, some information security
regulations can protect user privacy and achieve data confidentiality by restricting data
sharing, especially on the end-user layer. For example, in the field of healthcare, Health
Insurance Portability and Accountability Act (HIPPA) will be used to regulate the sharing
and confidentiality of user medical data.

For the sake of integrity, some DT applications, including smart grid, smart transporta-
tion, smart manufacturing, and smart cities, require real-time data to build a digital model
of the DT system. In this case, data integrity is essential for the DT system to correctly
model and guide the physical system in response to changes in the environment. Based
on the DT architecture, we discuss the integrity of the four layers. For the object layer,
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the sensors need to communicate with the gateways. In this case, the communication
from sensor to gateway and gateway to sensor at the application layer needs to be secured
to prevent an adversary from hijacking the communication using a man-in-the-middle
(MITM) attack or others. In addition, authentication and other security mechanisms must
be in place to restrict unauthorized users from modifying data. At the same time, at the
application layer, anomaly detection can be used to detect manipulated data to ensure data
integrity. Finally, an authentication system can be implemented at the end user level to
prevent unauthorized users from accessing DT.

Finally, availability is key to real-time DT. Certain types of cyber attacks, including
distributed denial of service (DDoS) and malware propagation, can target sensors and
gateways. In this case, mitigation schemes need to be implemented on the gateways to
filter malicious traffic and reduce the impact of attacks. At the same time, an adversary can
send time-consuming queries or massive queries through the end user layer to overload the
DT. To deal with such threats, mitigation schemes can be deployed at the application layer
to avert the affects. Moreover, in a certain period of time, there may be multiple normal
users accessing the same service at the same time. In this case, load balancing algorithms
can be deployed on the gateway. If a gateway is overloaded, the algorithm can use nearby
low-load gateways to process the request, leading to a highly resilient system.

6. Final Remarks

With the rapid advance of big data and ML/DL techniques, the cyber replica of a real
physical system has been considered as a viable digital platform to emulate lifecycle use
cases for CPS. DT is the cyber replica of the real physical system, which consists of real-time
computing, real-time control, and real-time communication. By leveraging the DT with
a physical system, we can imitate real-world cases in physical systems, without directly
operating the real-world system, to optimize system performance. DT can also simulate
emergency situations of the system, allowing system operators to practice emergency plans.
Furthermore, DT could enable data sharing to support more data-oriented services on
CPS. DT needs to represent things in a timely, accurate, and efficient manner, which poses
numerous challenges to the networking, control, computing, and data analysis of CPS.
Furthermore, the design of DT shall consider numerous exceptional requirements of CPS
(e.g., latency, reliability, safety, scalability, security, and privacy). In this paper, we have
first reviewed the principles of DT (architecture, data presentation, and protocols). We
have then presented how to integrate DT in different CPS, including smart grid, smart
transportation, smart manufacturing, and smart cities. We have further discussed some
challenges from CPS, data science, optimization, and security perspectives. Finally, we have
outlined future research directions from the perspectives of performance, new DT-driven
services, modeling and machine learning, and security and privacy.
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