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Abstract: In recent years, 5G networks and services become progressively popular among telecom-
munication providers. Simultaneously, the growth in the usage and deployment of smartphone
platforms and mobile applications have been seen as phenomenal. Therefore, this paper discusses the
current state of the art of 5G technology in the merger of unconditional security requirements referred
to as Quantum Cryptography. The various domain of Quantum Cryptography is illustrated including
the protocols available, their functionality and previous implementation in real networks. This paper
further identifies research gaps covering critical aspects of how Quantum Cryptography can be
realized and effectively utilized in 5G networks. These include improving the current technique in
Quantum Cryptography through efficient key distribution and message sharing between users in
5G networks.
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1. Introduction

The 5G networks are rapidly adopting various developing technologies to provide
high-speed data delivery. The 5G technology is being used in a variety of applications such
as smart city, Industrial Internet of Things (IIoT), and smart grid to meet the user needs
and provide faster connection speed with high reliability and low latency for remote access
to routine services. The 5G architecture intends to utilize various nodes to offer secure and
on-demand connectivity to other devices. The 5GPPP mobile networks prefer to use high-
frequency technology to strengthen many devices faster with fewer interruptions. With
applications involving a phenomenally vast number of IoT devices and BSNs, improving
the network’s security at all layers becomes a major goal. When many devices are running
simultaneously, it becomes difficult to detect the security threats and adversaries who can
obscure the vast amounts of data transmitting across the network. Security enhancement is
needed since larger spectrum space is accessible on 5G networks that can support heavy bits
without reducing transmission range. Consequently, the security improvement demands
an advanced set of protocols that consider the operation and architecture of 5G networks.

Moreover, 5G communication systems are prone to security vulnerabilities, and var-
ious existing studies show the types of attacks that can significantly affect network per-
formances. Furthermore, since these systems must operate instantly, the presence of
contaminated codes, malware, wormhole, Trojans, and viruses in 5G devices can dis-
rupt the entire network. Different technology enablers that support the 5G networks are
software-defined networks (SDNs), network function virtualizations (NFV), multiple-input
multiple-output (MIMO), non-orthogonal multiple access (NOMA), radio access networks
(RAN), Massive-MIMO, device-to-device communications (D2D), simultaneous wireless in-
formation and power transfer (SWIPT), low-power wide-area networks (LPWAN), network
slicing, orthogonal frequency division multiple access (ODFMA), etc.
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In the information security areas, cryptography is not considered a new field. One of
the most classical concepts in cryptography is to combine a message with another piece of
information when converting a bit of information. The cryptography techniques can be
categorized as classical cryptography and quantum cryptography. The classical techniques
can be divided into two categories: Symmetric and Asymmetric cryptographic, where
the suitable categories rely on the required number of keys for encryption. However,
both types are determined by the complexity of the mathematical factorization. With
high technological computing such as quantum computing, any complex problems can be
solved within a few minutes. Furthermore, there is a new cryptography category derived
from quantum physics, which is called Quantum cryptography. As part of its physical
characteristics, the researchers utilized it in cryptographic development to guarantee
information security. Quantum cryptography is an upgrowing technology that uses the
quantum mechanical system to process, secure, and transmit information instead of using
a classical computational method. This method relies on mathematical algorithms that
encrypt, secure communication, and transmit information between different parties using
symmetric or asymmetric key distribution [1]. However, some advanced mathematical
constraints and the massive technology growth are threatening the traditional cryptography
protocols. Nowadays, as the intensity of software applications, websites and web browser is
growing, it will introduce cybersecurity and cryptography implications [2]. However, when
using QKD, the needs for communication and requirements of security collide physically.
Furthermore, the engineering that is necessary to balance these challenges has a very narrow
margin for error. As a result, rather than being guaranteed by physical laws, the security of
QKD is largely implementation-dependent. Currently, sector such as governments, military
and healthcare are not implementing QKD solutions in their applications due to these
limitations. Consequently, QKD techniques must be implemented in conjunction with
cryptographic authentication systems to prevent any security regression.

To use quantum cryptography efficiently, researchers proposed a Quantum Key Dis-
tributed (QKD), a fundamental technology based on the law of physics that ensures a
secure exchange of symmetric encryption keys. Even though the concept of QKD was
proposed in early 1980 [3], it took many years to be accepted and implemented. Since
then, the progress in QKD shows remarkable improvement. The concept of Quantum
Key Distribution is based on the principles of key distribution. The theory is that the
sender and the receiver share the public key using a channel to ensure that the public key
is not tempered. Consequently, the most crucial part of the encryption process is the key
distribution. QKD is based on transmitting secure quantum cryptographic keys between
different parties [4]. The main concept of communication in QKD relies on enabling two
parties to share random keys based on their private polarization angles, which are used
as an encryption and decryption mechanism, as mentioned in Figure 1. A sender will
send a stream of photon-based on a private polarization pattern which the receiver will
receive a stream of photons and then passing it through his private polarization. After
that, the sender and receiver will establish a secure classical communication in which they
will compare all the photons, keeping the matched photons and destroying the rest. The
matched photons are considered thoroughly accurate and safe. Therefore, QKD is regarded
as a secure key for data distribution between parties. Using the same session output, the
secure key can establish future secure sessions between the same parties. Moreover, QKD
can provide future security proof, which means that even if the cryptographic system
crashed for any reason, the prior data communications and session remains secure.

The 5th generation or 5G network is launched in 2019 to enhance and overcome
some of the limitations in the previous network generations such as enhances broadband
mobile services and wireless access services. It works to improve mobility by providing
great capacity and faster data speed that offers more excellent connectivity for people
on the move. 5G promises to lower the communication latency, opens the possibility of
real-time control of devices, industrial robotics, vehicle to vehicle communications and
safety systems, autonomous driving, and safer transport networks. Those new features
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contributed to the possibility to connect more devices than ever before which ensure the
opportunity of massive machine-to-machine communications without human intervention.
5G also will be mainly involved in manufacturing, industrial, agricultural revolutions. 5G
is expected to bring a drastic change in recent technology. As a result, several reviews and
research were conducted in 5G [5–7]. Although security was one of the main requirements
in 5G, however, limited research was proposed in that domain such as [8–10] are some of
few a survey that emphasizes on the security challenges and communications security of
5G. In the 5G security model, the main security domain such as confidentiality, integrity
and availability are ensured [11].
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Therefore, it is critical to emphasize the security challenges that exist in the 5G com-
munication systems. This paper focuses our research on the 5G security challenges that
need immediate security measures. We further examined the quantum key distribution
(QKD) as the potential security solution for the threats illustrate in this paper. The main
contributions of this paper are:

• We discuss the challenges in 5G networks in terms of privacy and security.
• We provide classification of QKD for 5G networks into three types of categories,

including, single photon, multiphoton, and entanglement approach.
• We present the challenges of QKD implementation in 5G networks.

The remainder of this paper is organized as follows. Section 2 discusses the security
challenges in 5G. The importance of QKD is demonstrated in Section 3, while Section 4
presents the QKD classifications. Lastly, the conclusion and future works are discussed in
Section 5.

2. Security Challenges in 5G Network

Due to the global service demands the number of connected machines as mobiles, IoT,
and IIoT devices, has been immensely increased. This improvement has a great impact on
the regular network efficiency and capacity for that matter a 5G network technology is pro-
posed to provide an efficient network that can cope with the recent technology revolution.

Some of the 5G benefits is providing a quality of services based on user requirements
and also 5G ensure the validity of peer-to-peer communication [12]. It promises the world
with a heterogeneous network that focuses on individual reliability and integrity. Moreover,
5G proposed unlimited wireless connectivity. That depends on the high speed of data with
low latency. It considers as the core foundation of the future of IA technology. Nevertheless,
5G encounter different security major issues in main security characteristics. Several of
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those vulnerabilities are in confidentiality as the risk of eavesdropping, a man in the
middle, side channel, stalking attacks, other vulnerabilities affecting the availability such
as jamming attacks and DDOS, DOS attacks [13]. As mentioned earlier, 5G provide a
proper quality of services (QOS) for end-users. However, the primary end-user’s private
information such as location, personal data, activities are vague in data maintained, data
storage, and the data storage conditions.

The privacy issues in 5G can be divided into two aspects: user and network aspects.
From the user aspect, end-to-end data privacy is one of the privacy issues that can evoke
5G. Since a 5G network is mostly connected to a cloud system, which supports several
stakeholders in the network, such as service providers, operators, and any new technologies
that are connected to business models. Most stakeholders will depend on cloud computing
to store and process user’s data and make the data accessible. Sharing this data between
different parties can lead to privacy breaches. Thus, the end-to-end security in 5G should
be handled instantly [14,15]. Another issue is the different trust objectives between the
data owner and the cloud stakeholders. This conflict can raise a different perspective on
privacy. Such as losing data ownership in the 5G network, which is one of the coming
issues. The 5G network provides a shared network infrastructure to run many applications
together such as health care smart homes or IoT devices those shared access programs can
manipulate and forge access by attackers thus 5G insecure data ownership bounders rise
the chance of unauthorized access, exchange, and retrieving confidential data [16]. Another
issue that is facing by 5G is the trans-border information since the global digitalization and
excessive data exchange all the information will be traveled across borders as free flow this
flow will be mandate based on government consent of data transfers, data storage, and
data processing [17,18].

Meanwhile, the security issues in 5G can be divided into several key areas such as
authentication, access control, communication, and encryption.

2.1. Authentication

Authentication is a crucial security aspect in every communication channel to validate
the users’ identity. Every generation of mobile communication has developed various
methods and frameworks for the authentication process. Consequently, this section focuses
on the authentication scheme designed by 3rd Generation Partnership Project (3GPP)
specifically for the 5G communication system. Generally, there are two categories of
authentication that is primary and secondary. 3GPP has released the evaluation standard
of 5G Phase 1 in the 3GPP Release 15. Network and device mutual authentication that
supports both 4G and 5G is provided in the primary authentication. However, primary
authentication also has some limitations because of the evolved 5G environment. Home
automation authentication system manages the information and device authentication.
5G Authentication and Key Agreement (5G-AKA) and Extensible Authentication Protocol
(EAP-AKA) are two primary mutual authentication techniques in 5G Phase 1. EAP-based
authentication is allowed for a particular scenario, such as private networks. Since primary
authentication is not dependent on the Radio Access Technology (RAT), it can be used with
non-3GPP technologies. Secondary authentication is used to authenticate data networks
outside of a mobile network operator’s area.

EAP based authentication and associated credentials methods can be applied to this
method. Supplying key material to be used between the network and UE along with mutual
authentication can be achieved using primary authentication and key management. The
serving network-specific anchor key (KSEAF) are provided by key agreement procedures
and the primary authentication. In the serving network, KSEAF is sent to Security Anchor
Function (SEAF) by the home network’s Authentication Server Function (AUSF). Based on
technical specifications published by ETSI and 3GPP, AUSF works as a Network Function
(NF) Service Provider that offers UE authentication to the requester NF. Furthermore, AUSF
gives the NF service customer access to the Access and Mobility Management Function
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(AMF) for UE authentication. During the authentication process, NF supplies AUSF with
the UE’s identification and serving network name.

For EAP-based authentication or 5G-AKA, AUSF will utilize the information supplied
by AMF. Various research on security threats and security mechanisms for heterogenous
5G has been conducted for different scenarios and threats. Formal analysis on the 5G-
AKA authentication protocol is shown in [19], where the security goals weaknesses are
highlighted, and the requirements of 3GPP standards for 5G networks are discussed.
Hussain et al. proposed a public-key infrastructure (PKI) based authentication scheme
deployed above the asymmetric cryptography to authenticate the base station in the 5G
network. Moreover, the analysis of 5G-AKA is presented by authors in [20]. The research
shows that the 5G-AKA depends on the core network. Borgaonkar et al. discussed the
challenges and threat model for 5G-AKA protocols, where the author demonstrated the
logical vulnerabilities that require dedicated fixes [21]. Behrad et al. investigated the
vulnerabilities of 4G and 5G-AKA protocol to understand the weaknesses of Authentication
Authorization and Accounting (AAA) [22]. Authors in [23] presented the 3GPP-AKA
protocol with perfect forward secrecy for the session key. The proposed protocol focused on
the compatibility of perfect forward secrecy with the current Universal Subscriber Identity
Module (USIM) 5G-AKA protocol.

Moreover, Giustolisi-Gerhmann in [24] offers a group-based authentication threat
model for a heterogeneous 5G network. In [25], the authors studied the 5G-AKA protocol
for the 5G mobile communication network. The proposed protocol utilized asymmetric
randomized encryption to provide better privacy and secure communication. Furthermore,
the proposed protocol shows that all possible attack against 5G-AKA privacy still applies
except the IMSI-catcher attack. The authors also modified the existing 5G-AKA protocol
for prevention strategies. The authors in [26] developed an advanced authentication and
key agreement protocol for the 5G mobile network. The proposed scheme applies random
numbers, which resulting robust security and decreased communication cost. The authors
utilized public-key cryptography to encrypt the SUPI and generating the SUCI.

Furthermore, since current USIMs can execute random asymmetric encryption proce-
dures, a random number can be used in the 5G-AKA protocol. Moreover, the proposed
solutions guarantee forward security and post-compromise security. An efficient and
seamless vertical handover authentication protocol for a 5G wireless mobile network is
presented in [27]. The proposed mechanism offers fast, strong, and mutual authentication.
Furthermore, the authors suggested using a certificate-based approach called Extensible
Authentication Protocol-Transport Layer Security (EAP-TLS). Ma-Hu in [28] investigated
handover authentication schemes using cross-layer collaborative techniques for a 5G het-
erogeneous network. The proposed method offers reliable and secure services by utilizing
the cross-layer such as physical layer to implement the EAP-AKA authentication.

Moreover, the proposed scheme executed the physical layer authentication using the
non-parametric Kolmogorov-Smirnov (K-S) test. In [29], the authors considered the 5G
security model in their proposed protocol. They developed a 4G+ relative authentication
protocol (4G + RAM) that depends on 4G+ frequency re-authentication protocol (4G + FRP)
and privacy-protected authentication and key agreement protocol (PEPS-AKA). Wang et al.
presented two protocols to provide anonymity and secure device-to-device (D2D) group
communications [30]. The first protocol is the privacy-preserving authentication protocol
(PPAKA-HMAC), where the session key is created and combined with the hash-based
message. The second protocol is the key agreement protocol (PPAKA-IBS) where it protects
against internal attacks by utilizing IBS instead of HMAC. Shin-Kwon in [31] introduced
a two-factor authentication scheme in heterogeneous WSN for IoT to provide anonymity,
mutual authentication, and protection against various attacks.

2.2. Access Control

Performing selective limitation of the access for the network is the main purpose of
access control. Since access control is the main component for any network security system,
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securing and providing a safe network to end-users is crucial for network providers. The
authentication of user access is confirmed in the access control environment. The concept
of access control strategies shows at the implementation-independent level before applying
to real-time systems using accessibility policies systems. Several current access control
systems show that network decentralization can upgrade the security of the network
system environment. Research in [32] investigates access selection schemes for device-to-
device physical layer security with different eavesdroppers. Taking distance threshold
into consideration, the authors proposed sharing the spectrum between D2D devices and
cellular users. The interference generated is used to confuse the eavesdroppers using
jamming. The authors use the D2D protection pair to secure a single user and optimal
throughput access selection scheme to increase securities.

Furthermore, in [33], the authors introduced an automated framework called Con-
figSynth to synthesize network security configurations and provide affordable network
configuration. The author improved the security framework by designing a refinement
mechanism. The algorithm is used to offer better security device distribution, isolation,
and improved traffic flow. In [34], the authors update LTE pseudonyms by utilizing the
current pseudonym-based solutions to prevent International Mobile Subscriber Identity
(IMSI) downgrade attacks using fake base stations. Various access control solutions have
been proposed based on authentication, encryption, authorization, and secret sharing. The
authors in [35] proposed a privacy-preserving and accountable access control to guarantee
user privacy. The validity of the protocol is authenticate using restricted experimental
resources.

Meanwhile, the authors in [36] introduced a biometric and password-based authenti-
cation scheme for Telecare Medicine Information System (TMIS). The proposed solution
works by offering anonymity, authentication, forward secrecy, and lower computational
cost without the involvement of a remote server. Moreover, a general verification scheme
for access control policies is proposed to expand the current management and policy
specification [37]. An access control scheme for IoT based on the computer outsourc-
ing and ciphertext update is presented by authors in [38]. The proposed method uses
attribute-based encryption (ABE) to encrypt the user’s data before storing the data into
cloud storage.

Qinlong et al. offered an efficient and secure data sharing scheme for Online Social
Networks (OSNs) that are developed using secret sharing and Ciphertext-Policy Attribute-
Based Proxy Re-Encryption (CPABPRE) [39]. The authors also reduced the computational
overhead by introducing partial decryption construction. The construction distributes
the decryption process to OSNs, examine the ability mechanism to ensure decrypted
data by OSNs, attribute revocation technique to attain forward and backward secrecy.
Moreover, authors in [40] proposed a node admission protocol using secured ephemeral
mobile ad-hoc network (MANET) using bi-variate polynomial secret sharing. The proposed
scheme is a secure admission method to ensure sharing, efficiency, and non-interactive.
MANETs are permitted to distribute efficiently and secretly pairwise secret keys without
any assistance from a centralized system. The authors also develop a method for creating
fast and spontaneous secure communication links from the pair of nodes. Castiglione
et al. introduced shared encryption-based construction (SEBC) access control schemes
based on general hierarchical access control [41]. The proposed scheme used symmetric
encryption and secret sharing to add authorized users to the system. The scheme allows
the management of access to different users and details other methods of accessing the
system. The authors also developed a secure and efficient key assignment protocol based
on threshold public-key encryption.

In ad-hoc networks, unique characteristics exposed the system to potential vulnerabil-
ities. Access control such as ad-hoc network group is important because it can prevent any
unauthorized individual or group from accessing the system. Authors in [42] investigated
a robust access control protocol attack that depends on a new proactive RSA signature
scheme. The authors emphasize that the adversaries can recreate the shared secret using
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the information obtained in the RSA signature scheme. Wang et al. studied the cooperative
relaying using multiple-input single-output (MISO) for multiple distance vehicles [43].
Techniques such as signal superposition and cooperative jamming are used where an
adjacent user decodes the signal and performs as a remote user relay. After a detailed
examination of the eavesdropping security threats, the authors propose an improved secure
transmission scheme.

In [44], the authors examined the reliability and security in the downlink of cloud
radio access network (C-RAN) practical scenario with channel estimation (CE) errors as
consideration and remote radio heads (RRHs) node selection. Cheminod et al. presented a
novel framework in implementing semiautomatic verification for access control policy [45].
The proposed technique developed for Industrial Network Systems (INS) applies a twofold
model that considers two system views: access control policies abstract requirement and
specific details of physical target scheme. Furthermore, the authors also used role-based
access control (RBAC) in the proposed framework to determine the policies. The utilization
of micro 5G operators or local 5G networks can lead to frequent roaming events in 5G
networks because most of the 5G operators have a lower level of security compared to main
mobile network operators [46–48]. Therefore, the probability of running into malicious
5G operators that work as a serving network is highly possible [26]. Consequently, a
strong authentication process in a 5G network is required to prevent the connection with
such networks.

2.3. Communication Security

The goals of 5G communications are to offer connectivity, low latency communication,
high data bandwidth, and extensive signal coverage to any type of device in the 5G
ecosystem. Consequently, the integration of 5G technologies and architectural changes will
be updated in the 5G communication. However, some threats and challenges need to be
mitigated in 5G mobile networks [49]. An efficient and reliable mobile network requires
secure communication among various control entities. Enabling secure 5G communication
will require integrating 5G core network elements and efficient key management entities.

Furthermore, security parameters and key exchanges need to be frequently updated
along with 5G core security network elements. In a 5G network, the overhead cost of
security maintenance such as communication cost, battery life, bandwidth and processing
power significantly increase because of the additional control entities such as core network
elements, number of base stations, and subscribers. Therefore, a proper solution needs to
be proposed to solve these challenges for future secure communication systems in the 5G
network. The adversaries use various attack segments such as access networks, user equip-
ment, and mobile operators core networks to launch an attack on 5G communication [50].
To help comprehend the challenges and security issues affecting on 5G network, Table 1
shows the security issues related to the 5G communication channel and the point of impact
for each security issue. There are two categories in 5G core networks: user data traffic and
control traffic. Both types are vulnerable to various security threats. However, the main
security issue of control traffic is the inadequate IP level security.

The security protocol in the application layer, such as Secure Sockets Layer (SSL)
or Transport Layer Security (TLS), is used to secure the communication channel in the
SDN-based 5G core network. The network has known TCP/IP security threats such as TCP
sequence number attack, TCP session hijacking, SYN flooding, IP spoofing, eavesdropping
attacks, TCP reset attacks [51]. Consequently, the use of an IP security mechanism that com-
bines with a multilayer security mechanism is necessary. Securing the control channel using
IPSec based security framework has been proposed by authors in [2,52,53]. Different SDN
controllers are used to manage different network segments in SDN mobile networks [54].
The east/west traffic interface is utilized to initiate inter-controller communication (ICC)
channel connecting various SDN controllers. The interface supports performing multiple
network functions such as traffic and mobility management, network monitoring, and
security policy synchronization by sharing control information. Therefore, securing the ICC
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channel is important in guaranteeing the appropriate operation of the network functions.
The entire system will be compromised if the core ICC channel is penetrated despite the
condition of the rest of the network.

Table 1. Security issues of 5G communication.

Attack
Segment Challenge/Threat Effected Technology Privacy

SDN NFV Channels Cloud

Device Threats

Bots *
DDoS Attacks * * *
MitM Attacks * *

Firmware Hacks *
Device Tampering *

Malware *
Sensor Susceptibility *

Air
Interface Threats

Jamming * *
MitM Attacks * * *

Eavesdropping * *

Edge
Network Threats

MEC Server Vulnerabilities * *
Rouge Nodes * * * *

Authentication Issues *
Side Channel Attacks *

Improper Access Control * * * *

Backhaul Threats

DDoS Attacks * *
Control and User Plane

Sniffing * * *

MEC Backhaul Sniffing * *
Flow Modification Attacks *

5G Core Network
Threats

Software Issues *
API Vulnerabilities *

Network Slicing Issues * *
DoS and DDoS Attacks * * *

Improper Access Control *
Virtualization Issues * *

External Network
Threat

Application Server
Vulnerabilities *

Cloud Service
Vulnerabilities *

BoTs and other IP-based
Attacks * *

Application Vulnerabilities *
API Vulnerabilities *
Roaming Partner

Vulnerabilities * * *

The current SDN inter-controller channel is vulnerable to various web-based and
IP-based attacks such as DNS hijacking, replay attack, DDoS, and IP port scan [55,56]. 5G
ICC will be imminently vulnerable to cyber-attacks and extensive physical threats such as
human errors, technical failures, and disaster failures. Additionally, the only consideration
for the current SDN communication system is the cyber-attacks impact. Authors in [56]
introduced identity-based cryptography (IBC) based secure key exchange scheme in a multi-
controller SDN network to secure the east/west-bound data transmission. However, the
authors did not emphasize current physical threats and cyber-attacks. Recent advances in
adaptive security provide a more resilient and flexible approach than industrial 5G security.

Furthermore, the security solutions are mostly developed by different vendor pro-
prietary solutions. Consequently, real-time synchronization and mix-and-match security
systems are nearly impossible and difficult in current existing networks [57]. Therefore,
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new flexible and resilient security systems for 5G network are needed since it is impossible
to change the existing system to prevent potential adversaries’ attacks.

2.4. Policies

New technologies, stakeholders, regulations, verticals, businesses, and end-users will
be included in the extremely large 5G networks. The 5G are considered the best platform
for the new generation of networks such as industries, smart cities, vehicles, and IoT. The
applications, devices, users, and machines will produce a large quantity of data. This
enormous data will be collected, analyzed, processed, combined, and stored for various
purposes such as cross-border data flows. Furthermore, the data belong to the applications,
organizations, societies, citizens, individual consumers, etc. In the classical network, the
risk of user privacy mostly originates from the plaintext communication of the application
data in the network. There is a high risk that user privacy is exposed to data leaks.

Consequently, one of the challenges in 5G network is to secure end-user privacy.
Solving privacy issues for all the stakeholders is a complex task since there are multiple
interests at risk. However, some privacy issues are highlighted from the cloud computing
perspective because of the relevance of cloud computing concepts to various 5G network
technologies, for instance, NFV, SDN [17].

• End-to-End data privacy issues: Stakeholders such as service providers, mobile opera-
tors, businesses, and new technologies utilizing new business models are currently
supported by 5G networks. Most of the stakeholders use cloud computing technology
to store and access users’ data. These personal data will then be managed and shared
among various stakeholders for multiple purposes, leading to privacy breaches. Con-
sequently, methodology for end-to-end data confidentiality must be considered to
secure user privacy [14,15].

• Personal data ownership and shared environment issues: The 5G network can assist
application controls such as smart grid and healthcare running on virtual networks
and providing shared network infrastructure. However, these network infrastructures
are vulnerable to unauthorized data access [16]. Thus, effective functions of share
network infrastructure without affecting users’ privacy are needed. Furthermore, the
party responsible for the data losses in shared network infrastructure is still a major
concern for the users. Therefore, different stakeholders such as service providers,
network operators and other third parties must be assigned licensing and ownership
of personal information.

• Various trust objectives issues: For classical 5G network, communication service
providers and mobile operators might joint ventures and migrate some segment of
their network into the cloud. For such cases, these stakeholders may decide the
trust objectives based on their regulations and policies [17]. Consequently, these
stakeholders may not take all the aspects of user data privacy into consideration.

• Cross-border data flow issues: As a result of global digitalization, personal data is
considered an essential commodity of the modern market. The information is expected
to flow freely across the borders. Therefore, it is crucial to require consent from the
government and individuals for any data transfers, including the methodology for
storing and processing across the border [17,18].

• Issues of the third party in the 5G network: 5G and IoT offer a new opportunity to
the application developers to develop immersive applications that employ various
communication protocols. Since the application developers can access the 5G network,
the developers can sell or disclose the private data to a third party. In [58], the author
explained that by using the mobile application, “the health insurance portability and
accountability act (HIPPA) allow a share out of individual’s health data”. Furthermore,
the cloud network policies for information sharing can consequently invoke the issues
of data privacy.

As for the future directions, various potential future research can be conducted to
mitigate the data privacy issues since 5G technologies can be designed to offer privacy
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protection for a data source or privacy embedded for application, device, or service. Privacy-
by-Design (PbD) is one of the general architectures for 5G privacy that future researchers
can define and focus on. Other wide areas can be investigated, such as location-privacy
based on multi-access edge computing (MEC). Data processing for MEC occurs at the
edge nodes, where the operators will monitor and control the nodes. Moreover, some
examples of 5G applications that will directly impact the privacy solutions are healthcare,
IoT, transportation, and smart cities.

Furthermore, other methods such as software-defined privacy (SDP) also can be used
in the 5G network [17]. SDP allows privacy officers to define and implement an IaaS Cloud
Customer privacy policy [59]. The methods in managing and storing data under different
policies are still at an early stage. The author in [60] proposed PADRES, an open-source tool
to examine web applications and aid in the compliance process for securing data, privacy,
and security. The proposed tools can be extensible by adding questions related to general
data protection regulation and more cookie and vulnerability analysis tools. However, the
tools’ limitations include that the breadth and scope of the questions must be expanded, as
well as more case studies and end-user input.

Since 5G network contain various stakeholders (such as ISP, mobile network, CSP)
and different connected verticals (such as smart cities, data centres, power distribution)
that may have different objectives, effective regulation on the privacy policies for various
entities such as user, government, and other industries level are needed.

To summarize, 5G is the iteration of cellular technology and is designed to improve
the speed and quality of services of wireless networks. 5G technology plays an important
part in securing the communications. Thankfully, as technology advances, so do the tools
available to protect it. Nowadays, secure communications are widely utilized; they are
incorporated into any web browser that communicates over the Internet, and they allow
users to connect physically mobile devices or different corporate networks to private
networks. Quantum keys can make 5G communications significantly more secure by
physically transferring secret key sharing between two entities. To generate the shared key,
QKD can be used instead of asymmetric key agreement systems, which is subsequently
employed in symmetric schemes to safeguard messages.

3. The Importance of Quantum Key Distribution (QKD)

The importance of quantum is derived from its high security and reliability compared
to the classical key distribution. The classical key distribution is deployed and tested using
cryptography techniques that are widely used. A classical key distribution is based on
mathematical equations and computational complexity, which used two different funda-
mental distribution techniques namely symmetric techniques and asymmetric techniques.
The symmetric techniques are applied when both sender and receiver share the same
secure, and access protected key. On the other hand, the asymmetric technique provides
both public and private key that is preserved and protected. The private key is used
to keep the confidentiality and authenticity of each party in the communication. Those
security methods were acceptable and widely used until Shor’s algorithm was introduced
which is the quantum cryptography technique that are used to enhance the security of any
communication in the network. For that matter, quantum was proposed as an advanced
and efficient mathematical operation that undermine the security of RSA. Furthermore,
quantum can defeat the discrete logarithm problem consequently undermined the Elliptic
Curve Cryptography method that is based on providing small key size with the same RSA
cryptographic strength [61].

The quantum key distribution which based on quantum key distribution proves its
reliability, privacy of security and high level of confidentiality by avoiding eavesdropping
and providing holistic, different, and new concept on encryption mechanism that is based
on the law of quantum mechanics and logic of physics. It can be considered as an innovative
technology that proposing a new idea of transmitting photon lights between sender and
receiver to establishing a secure connection [62]. There are two main principles of quantum
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mechanics which quantum cryptography are based on namely the Heisenberg Uncertainty
Principle and quantum no-cloning theorem. Some of the advantages of using QKD is
related to the security that established secure communication that can replace the eventually
breakable mathematical algorithm. Furthermore, QKD is virtually unbreakable. QKD prove
its simplicity of use, regarding resource consumption, consume fewer resources compare to
the classical key encryption. Finally, QKD can firmly detect and eliminate eavesdropping
in any communication process.

The reason is that quantum mechanics prevents and will not replicate any alteration
in a photon. This is due to the quantum properties are strengthened by the unconditional
security as proved by the no-cloning theorem and Heisenberg Uncertainty theory. The
polarization mode of the photon will change when the eavesdropper measures a photon,
and eavesdropping will be observed according to quantum physics. The sending key is
ignored when a photon is intercepted, and the rest of the key may be safe to send [63].

When it comes to a key agreement and asymmetric encryption methods, other options
other than using QKD are using quantum-safe techniques if long-term security is required.
Furthermore, the other option is to merge the existing mechanisms with the quantum-safe
processes to prevent any security degradation caused by technical designs. In asymmetric
signature techniques, replacing present algorithms is no longer necessary. Signatures, in
contrast with encrypted messages, cannot be hacked after they have been sent. Moreover,
signature systems based on known primitives currently exist that are unaffected by quan-
tum computers. These schemes are suited in some scenarios even though it is not replacing
the current methods completely.

A feature equal to QKD might be developed using purely symmetric methods unaf-
fected by quantum computers in a theoretical world free from asymmetric key negotiation.
When this type of solution is widely utilized, secure communication will revert to what
they were before the mass acceptance of asymmetric mechanisms, which is expensive and
complex while needing unified secret management and thus employed exclusively by
large enterprises. They would, however, be simpler to implement than their QKD-based
equivalents because they are suitable with current networks.

3.1. The Challenges of QKD in 5G Implementation

In general, 5G networking does not ensure encryption of data traffic. Rather it relies
upon the top encryption sessions count on the end-user to ensure security maintenance and
updates. Knowing that, end to end encryption will still be applied. A crucial prerequisite for
unbreakable encryption is to secure the key exchange between different parties. However,
nowadays, the well-known key exchange algorithms are believed to be vulnerable by
large-scale quantum computers. There are two feasible routes to overcome this future risk
namely quantum-resistant algorithms (QRAs) and quantum key dispersion (QKD). Each of
the different approaches for QRA is based on robust mathematical proofs that reduce the
power of the large-scale quantum computer. However, QKD is based on fundamental laws
of quantum physics that provide strong communication security for any potential threats.

Currently, 5G takes advantage of public-key infrastructure (PKI). It affects both user
equipment (UE) authentication to the network and how control and management plane
services are securely interacting with each other. This embrace of PKI is happening just
as advances in quantum computing begin to make cryptographers nervous about the
longevity of workhorse ciphers such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve
Cryptography (ECC). To date, the density of qubits in quantum computers has matched a
Moore’s Law curve of doubling every 18 months. If these trends continue, ciphers such
as RSA will be broken and unusable before 2030. QKD provide a promising encryption
strategy that ensures security by using the concept of quantum physics. For that, QKD is
a promising measure to provide secure communication for a large capacity 5G network.
However, improving the transmission capacity has led to many problems such as the
limited research on the impact of strong carrier and carrier-free signal in the secure key rate
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in 5G networks. Moreover, there is limited research on the uncertainty of secret key rate
effect on the QKD system in different bandwidths, cost, and power levels [64].

QKD is a sample of quantum cryptography that depends on a distributed classical key
between legitimate users to achieving unconditional security. This concept was proposed
using the form of the QKD protocol (BB84). However, BB84 can be hacked if the attacker
uses a system of higher dimensions without the consent of legitimate parties. This limitation
can be countermeasure using devices dependence DI which allow the QKD protocol to
perform in a separate dependent device model that limits the analysis in the statistical form
and the security based on those statistical experiments results [65]. A long-distance QKD
implementation is considered one of the vital security challenges in quantum. Quantum
cryptography is based on the strength of the photon length before it fades away in optical
fiber. The problem was solved by place a repeater in the fiber optic to work as an amplifier
that strengthens the photons before they are lost. This process depends on reboots the
optical signal as if taking a copy of the signal to secure the transmission losses. However,
QKD cannot trust the repeater to transmit the quantum data in the long-distance which
means that the range of QKD is limited presents a contradictory dilemma in quantum
cryptography between distance and efficient communication rete that explains basically as
the longer the distance the weaker the photon signals becoming the fewer photons reaches
the destination. In the past 10 years, many successful pieces of research contributions
strengthen the signals to travel longer distances [66]. On the other hand, each repeater in
the communication channel secures the key can be revealed thus the confidentiality can be
easily exposed. Rebooting the signal will indeed reduce the number of repeaters along the
communication channel, but it cannot eliminate it.

3.1.1. Implementation Cost

Firstly, the cost of specialist QKD communication hardware is expected to complicate
the migration to quantum cryptography. Recently, many researchers were conducted
toward using 5G with QKD to enhance the security of 5G with an attempt to limit the
vulnerabilities on QKD. Due to the quantum communication over fiber optic has reached
optimal performance caused by fixed loss related to fiber and the restriction of the device, it
(fiber optic) can be replaced by free space channel that offers several advantages including
flexibility of installation, broader geographical coverage, and cost-effectiveness in terms of
infrastructure deployment [67].

3.1.2. Integration Issue

Secondly, in terms of integrating the QKD network with conventional telecommunica-
tion networks and also optical routing purposes [68,69], a technique such as wavelength
division multiplexing (WDM) can be used in fiber-based QKD networks. Furthermore, the
QKD integration scheme with conventional telecommunication data using a single fiber
can considerably reduce the cost while able to increase the robustness of QKD applica-
tions. Townsend in 1997 [70] first introduced the scheme by concurrently transmitting a
combination of QKD and conventional data. Later on, numerous QKD experiments are
conducted to verify the feasibility in terms of QKD network integration with conventional
telecommunication networks [71–74]. Moreover, an integration between 3.6 Tbsp. optical
communication data and QKD over 66 km backbone fiber network has been conducted in
2018 [75].

3.1.3. Efficiency

The third challenge is efficiency. Efficiency can be justified by the number of classical
and quantum resources used to transfer an amount of information. Currently, the QKD
protocol only provides a steadiness key over 50 km with the only secure key rate of 1 Mb/s.
With that, no QKD protocol can prove its efficiency to travel over 300 km using optical
fiber. Thus, it is necessary to improve the efficiency over quantum channel. However, this
approach is not able to guarantee end-to-end security.
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3.1.4. Secure Secret Key Rate

The fourth challenge is the high channel loss and decoherence in long-distance due
to the key rate of QKD that degraded over a long distance. For example, 1000 km fiber
can detect merely 0.3 photons, even with the perfect source and detector for every single
photon. Recently the distance recorded for QKD in fiber is only 412 km [76], and for
that matter, a protocol was proposed to lengthen the distance to 500 km [77]. A proper
solution for this challenge is to place a quantum repeater [78] that prove the proposed
solution is able to expand up to 500 km. Even though the limitation of the application
experiences limitations both in terms of performance and quantum memory [78,79], one
of the temporary substitutions of the quantum repeater is the trustful relay scheme using
the current technology along with proper protection on all related nodes [80]. Moreover,
the satellite-based quantum communication recorded significantly less chancel loss and
negligible decoherence in space and providing great achievable progress lately which
makes it the promising solution [81–83]. Nowadays, enhancing the communication rate is
the priority research area to prove the efficiency of QKD technology [84].

3.1.5. Number of Nodes

The fifth challenge is based on the number of end nodes in the network. Typically,
the smart grid consists of different types of nodes with a massive number of nodes that
have different capabilities. To control all nodes in the distributed network, the smart
grid provides many sensors, energy and data storage, actuator, processors, transformer
substations and renewable energy generators. Moreover, any network consumer is installed
with a smart meter. Consequently, QKD is designed to function only in point-to-point pair
communication nodes. The main challenge for QKD relies on allocating the secure key to
many nodes where the nodes have different capabilities, and they are not all connected
through fiber optic directly. The solution is to have a separate quantum channel for each
control device. However, this solution is considerably expensive.

3.1.6. Real-Time Communication

The sixth challenge is associated with real-time communication. A system similar to
a smart grid that supports a myriad number of applications such as load shedding appli-
cations and dynamic pricing applications, demands a fast response application. Several
of those applications that provide a substantial protection mechanism would deny any
communication delay if it exceeded 4 ms [85]. In cases such as in Unmanned Aerial Vehicle
(UAV) application, traditional networks’ communication latency and dependability are
unsuitable for UAVs deployed in warfare operations. In those kinds of scenarios, the system
cannot tolerate even a 1 ms delay or system downtime, which results in big catastrophe for
both persons and property. The challenge relies on the QKD protocols features that support
real-time communication. The QKD protocols approximately take hundred milliseconds to
distribute the secure key which depends on the length of that key.

3.1.7. Big Data Handling

The seventh challenge is regarding the capability of handling a big amount of data.
Several smart grid tools generate a flow of data stream based on the sampling period and it
requires the accuracy of data. One of these tools is the synchronous phase measurement
unit’s tool. Mostly, the data stream records a few Mb/s. Consider the capacity of optical
fiber that can transmit terabits per second or the capacity of 5G network that able to handle
gigabit per second. QKD protocol encounters a challenge in supporting and coping with
the requirements of data rate in each application where the secret key must be shorter
than the data rate if it used with the OTP symmetric cryptographic algorithm. However,
QKD can only produce a secret key at a rate of 1 Mb/s on 50 km. and it is rare for
QKD implementation to generate a secret key at 10 kb/s over 100 km. In cases such
as in UAV domain, due to the continuous data collection procedure, the data collected
from UAV sensors is huge in volume. As a result, if there are insufficient resources to
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managing the data, it will create a problem when the data processing and data handling
occur simultaneously.

4. Quantum Key Distribution Categories

The fundamental of QKD is to use the non-cloning of the non-orthogonal single
quantum state to accomplish the key distribution. Due to the usage of Heisenberg’s
uncertainty principle in the prepare-and-measure protocol, the measurement of the system’s
quantum state is hardly attainable without interrupting the quantum state. As discussed
in the no-cloning principle [86], the possibilities to amplified or copy the qubit without
disturbing them are impossible. Consequently, the QKD system can identify the adversaries
by measuring the error parameter when transmitting the photons.

Figure 2 shows the classification of QKD protocol that can be divided into three
categories based on their physical characteristics.
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4.1. QKD Based on Single Photon

Hilbert space is used in evaluating the criteria for classification for this category of pro-
tocols. For this category, quantum states are used to code the finite-dimensional of the entire
QKD process. To distinguish the states, the information polarization direction that contains
the photon or the phase of the photon is utilized. For example, BB84 is the most basic
single photon protocol in this category. However, this protocol integrates Distributed Phase
Reference (DPR) convention that is equal with the conventional correspondence protocols.

For this category, to convey the information, these protocols use different states of a
single photon. Consequently, other various states are used for the coding and encoding of
the key distribution process. Some of the protocols categorized in this QKD protocols class
are as follows:

• BB84 protocol is proposed in 1984 by C.H. Bennett and G. Brassard [3]. BB84 is a QKD
scheme that used quantum mechanics such as Heisenberg’s uncertainty principle
to share the secret key between sender and receiver. Furthermore, it is also the first
QKD scheme that described the usage of photon polarization state in transmitting the
secret key using a quantum communication channel. BB84 is considered as PM QKD
protocol and used a single photon in transmitting and distributing the secret key’s
random bits. In BB84, the photon is polarized using either of the four polarization
states, which is called rectilinear basis and choosing either of the two conjugate bases,
which is called vertical polarization and horizontal polarization. The same principle
applies to the diagonal basis polarization states and their conjugate bases, which are
called diagonal polarization and anti-diagonal polarization. The polarization bases are
shown in Figure 3. For the implementation of the BB84 protocol, there are four steps
involved which is Quantum Exchange, Key Sifting, Information Reconciliation, and
Privacy Amplification. BB84 is theoretically proven in providing complete security, as
the author discussed in [87,88].

• B92 protocol is proposed in 1992 by C.H. Bennet [89]. This protocol is considered a
prepare-and-measure-based QKD protocol. The B92 protocol is regarded as a simple
protocol compares to the BB84 protocol, where the protocol can only choose either
from two polarization states. In contrast, the BB84 protocol can choose either from
four polarization states. For the B92 protocol, 0 degrees of the rectilinear basis is
considered as bit 0, while 45 degrees of the diagonal basis is regarded as bit 1. Note
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that, single non-orthogonal basis could be utilized to encode and decode the QKD
protocol while not affecting the eavesdropper detection capabilities. Furthermore, the
difference between BB84 and B92 protocol is that the B92 protocol will not obtain the
measurement if the receiver chooses the wrong basis. The circumstances are called an
erasure in quantum mechanics [90].

• Six-State Protocol (SSP) is proposed in 1998 by D. Bru [91]. This protocol is classified
as a prepare-and-measure-based QKD protocol. The SSP protocol uses three measure-
ment bases and six polarization states. This protocol can be assumed as advanced
BB84 with additional measurement bases. The BB84 protocol utilizes four spin and
half polarization states in the Poincare sphere that identical with ±x and ±y direction.
Although the polarization state contains two additional states that correspond to ±z,
which makes it becoming six states, they are considered ±x, ±y, and ±z in the Poincare
sphere. The advantages of this protocol are that it has higher symmetrical compared
to the BB84 protocol.

• SARG04 protocol is proposed in 2004 by V. Scarani et al. [92]. In terms of photon source,
this protocol is developed by utilizing attenuated laser pulse rather than a single-
photon source. This protocol is categorized as a prepare-and-measure-based QKD
protocol. The similarity between SARG04 and BB84 is that it has an indistinguishable
first phase scheme of the protocol. However, the second phase is different where Alice
will apply either one of two non-orthogonal states when encoding the qubit instead of
directly announcing her bases. The accuracy of the actual state and whether Bob will
acquire the bit depends on him using the appropriate basis for the measurement. The
length for the remaining key after the sifting stage in the no errors measurement is
0.25 from the raw key transmitted.
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4.2. QKD Based on Entanglement

Entanglement is an area of quantum physics that can be described as the correlation
among particles that can’t be separated despite their physical separation. When the state
of one qubit is affected by the measurement of the other qubit, two qubits are said to be
entangled. The disruption to the entangled qubits may cause them to lose their correlation.
There are various states of entanglement, such as Greenberger-Home-Zeilinger (GHZ),
Einstein-Podolsky-Rosen (EPR) and Bell state. The measurement is critical in quantum
entanglement to determine whether the state is entangled or separable. There are two
kinds of entanglement states: qubits spinning in the same direction and qubits spinning in
different directions [93].

In quantum cryptography, especially in QKD, entanglement has widely been applied.
The entangled state is applied to identify the existence of an eavesdropper and establish a
secure key. The first QKD protocol using entangled state was proposed by Ekert in 1991 [94].
In entangled state QKD, the photon pairs entangled in the polarization degree of freedom
are shared between Alice and Bob. One of the photons is transmitted to Alice whereas the
other photon is transmitted to Bob. When they received the photons, the measurement
will be conducted. After then, the entangled state is used to create a secure key and
discover the existence of an eavesdropper. The states that have different results during
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measurement will be eliminated. Next, Error Correction (EC) and Privacy Amplification
(PA) will be conducted in the same procedure as BB84. In [95], EPR-QC is introduced
where an entangled state in an EPR channel is used to perform an authentication procedure
while the quantum channel transfers the shared key in QKD protocols. The process of
authentication and key sharing is performed simultaneously to provide a sustainable flow
of data. Semi-QKD was proposed in [96] where Charlie, as the third party prepares Green-
Horne-Zeilinger (GHZ) states, divides them into a sequence and inserts decoy states into
the sequence. Then, the quantum Alice requests the sequence of GHZ states and shares it
with classical Bob. The security of Semi-QKD is preserved because Charlie cannot obtain
the value of two particles by only knowing the value of one particle. However, the practical
implementation of QKD should not rely on a third party. Therefore, Multi-party Bell state
QKD [97] is introduced based on bi-directional communication. As a result, information
leakage has been eliminated accordingly.

However, despite the benefits of entangled state QKD, the difficulty of efficiently
creating, transmitting, and storing the entangled state make it impossible to implement
in today’s communication system. Furthermore, a research study conducted by [98] dis-
covered that quantum cryptography based on entanglement is technically more cost than
a single qubit. Due to the noise and error act independently in each qubit, the expensive
quantum resource might be reduced using the single-qubit approach. In addition, entangle-
ment suffers from photon source issues. Eve will try to split the copy of entangled states in
case the photon laser source accidentally emits multiple simultaneous pairs of photons [99].
Consequently, Eve might be capable to measure the photons and obtain secret information.

The type of protocol in this category is a protocol that utilized the entanglement of
photons for encryption and decryption instead of using the state of the photon. Some of
the protocols that categorized as this type of QKD protocols class are as follows:

• E91 protocol is proposed in 1991 by Artur Ekert [94]. This QKD protocol is categorized
as an entanglement-based protocol. E91 is developed by applying entangled photon
pairs in the protocol. Since the protocol is using the principle of entanglement photon,
the source of the photons can come from either Alice or Bob. The key point of using
entanglement photons as the source for QKD is that the source can be untrusted.
Which means, the security of QKD can be guaranteed even if the source is provided
or controlled by opponents. Both Alice and Bob will acquire a particle from pair of
entangled photons released by the entanglement photon source. The similarity of the
E91 protocol and BB84 protocol is in the procedure of choosing the random basis for
measuring purposes and reviewed it in the classical channel. Based on the principle
of quantum, Alice and Bob will receive an opposite or identical result depend on
the specific state of entanglement. Moreover, in the E91 protocol, detection of an
eavesdropper can be performed using Bell’s Inequality experiment.

• BBM92 protocol is proposed in 1992 by C.H. Bennett et al. shortly after the E91 protocol
is proposed by Ekert [100]. This QKD protocol is also categorized as entanglement-
based protocol. The similarity between BBM92 protocol and BB84 protocol is privacy
amplification, key sifting, and raw key exchange procedure.

Some other DV Protocols

The proposed protocol can be divided into two categories: One-way protocols and Two-
way protocols. Some of the proposed protocols that fall into the category are as follows:

One-way protocol:

• Differential Phase Shift (DPS) protocol is proposed in 2002 by Kyo Inoue et al. [101].
This protocol is categorized as an entanglement-based protocol. The principle of
quantum entanglement is used in designing this protocol. The advantages of this
protocol compare to other protocol is due to its simplicity of the configuration, efficient
domain time usage, and the robustness against an attack such as photon number
splitting (PNS) [102].
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• Round-Robin Differential Phase Shift (RRDPS) protocol is proposed in 2014 by
T. Sasaki et al. [103]. This protocol is attracting the researchers because of the pro-
tocol security characteristics; for example, the information leakage can be confined
within the boundary without the knowledge of key bit error rate. However, there are
still major doubts about the practicality of the implementation due to the difficulty in
terms of the measurement device. Furthermore, from the theoretical aspect of security,
the view on the optical attack remains unclear.

• The Coherent One-Way (COW) protocol is proposed in 2005 by D. Stucki et al. [104].
This protocol was developed by utilizing the principle of photon entanglement. This
protocol is categorized as entanglement-based QKD protocol. Furthermore, this
protocol has advantages where the protocol is robust against photon number splitting
(PNS) attack, resistant to low interference visibility, and efficient with distilled secret
bits per qubit. In this protocol, the time function is used to encode the information.

• S13 protocol is proposed by Eduin H. Serna [105]. The similarity of the S13 protocol and
BB84 protocol is in terms of the mechanism of quantum. The only difference between
each protocol is the usage of private reconciliation using asymmetric cryptography
and random seed.

Two-way protocol:

• Ping-Pong QKD protocol [106] works by Bob, making sure that the Bell state is in
specific pair of photons entangled inside freedom polarization degree where Bob will
transmit one photon, which is supposed to be lossless and noiseless, to Alice by using
the quantum channel. Next, Alice will perform the encoding of the travelling qubit
and return the qubit to Bob. Bob received the qubit again from Alice. The remaining
qubit that he will be accepted is either one of two encoded Bell states correlating with
bit 0 or 1. Bob will differentiate using Bell measurement. In the default ping pong
protocol, the security demands the control mode and the message mode to be rotated,
in which the qubit is measured by Alice to check for error but will not return it. The
ideal case for the Ping-Pong protocol is that Eve can only obtain the onward qubit and
restore the photon to a maximum mixed state [107].

• LM05 protocol [108] is similar to BB84 protocol using four states obtained through two
common unbiased bases. The protocol works by Bob forwarding the state to Alice,
where Alice will then encode the state by utilizing unitary transformation. Next, Alice
will send the encoded qubit to Bob, where the sharp measurement will be produced.
A control mode is randomly executed to ensure security where the measurement
of the received qubit will be performed. Then the comparison of the results will be
conducted through a public channel. Nevertheless, quadratic scale losses occurred for
the two-way channel of the protocol [109].

In QKD protocols, the aspect of distance must also be taken into considerations. Most
current protocols do not provide a long-distance communication channel. According
to Chen et al., the current distance record that the QKD protocol can cover is around
509 km [66].

4.3. QKD Based on Multiphoton

The enhanced approach where multiple photons are emitted from laser pulse or
using a larger average number of photons is known as multiphoton approach [110]. The
vulnerabilities in single-photon such as BB84 and protocol that derived from BB84 towards
PNS attacks is significantly high since the difficulties for the photonic devices to periodically
generating single photon at regular intervals due to a limited number of photons in the
time slots [111]. A device that can produce single photons with periodicity on a consistent
basis is technically difficult to be created. Multiphoton is claimed to be able to support
long-distance photon and a higher rate of transmission compared to single-photon. In the
multiphoton approach, information exchange is not limited to the single-photon source in
a time slot, which means it allows transmitting the same quantum state more than once.
The transmission of encoded bit between sender and receiver needs coherent non-decoying
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quantum states with a mean number of photons greater than one [112,113]. Even though
the laser pulse generates multiple photons, any unitary transformation and their complex
conjugate transformation will have similar photons as long as all the photons are in the
same phase [114]. Multiple photons can be delivered simultaneously to represent one bit of
information to increase the transmission success rate.

The multiphoton approach is an enhanced version of a single photon with the benefits
of high transmission rates and long photon travelling distance. In contrast, a single photon
and entangled state are unable to do so [115]. In the multiphoton approach, information
exchange is not limited to a single photon source in a time slot, allowing the same quantum
state to be transmitted multiple times. Multiple photons could be transferred at the same
time to represent one bit of information, increasing the transmission’s success rate. To
transfer the encoded bit from Alice to Bob, coherent non-decoying quantum states with a
mean number of photons greater than one have been used [112,113]. Quantum commu-
nication using multiphoton approach are illustrated in Figure 4 where in the situation of
Alice wants to transmit a photon, bit 1 will be encoded with 90◦ or bit 0 will be encoded
with 0◦, three photons were transferred, indicating of 90◦, 90◦, 90◦ or 0◦, 0◦, 0◦ denoting
as one bit of information [116]. In this approach, if an error happens in one of the three
photons, the original photon can be easily recovered. As a result, the beam-splitting attack
does not affect the multiphoton approach.

Future Internet 2022, 14, x FOR PEER REVIEW  19  of  29 
 

 

used [112,113]. Quantum communication using multiphoton approach are illustrated in 

Figure 4 where in the situation of Alice wants to transmit a photon, bit 1 will be encoded 

with 90° or bit 0 will be encoded with 0°, three photons were transferred, indicating of 90°, 

90°, 90° or 0°, 0°, 0° denoting as one bit of information [116]. In this approach, if an error 

happens  in one of the three photons, the original photon can be easily recovered. As a 

result, the beam‐splitting attack does not affect the multiphoton approach. 

 

Figure 4. Quantum Communication using the multiphoton approach. 

The multiphoton approach utilizes the arbitrary state of polarization using a rotation 

operator, which can secure  the  information  from  the MITM attack. The polarization of 

rotation operator [117] adopted in Figure 4 can be described as: 

R(θ) =  ቂcos θ െ sin θ
sin θ cos θ

ቃ  (1)

where θ is the rotation angle. The secret unitary operation will be applied by Alice and 

Bob using UA and UB where UAUB = UBUA. The values of the rotation operator are UA = 

R(θ) and UB = R(Φ), where R(θ) = R(Φ). 

Despite the advantages of multiphoton  in  terms of multiple photon emission, Eve 

can  easily  syphon off multiphoton  if only one  stage  is used. Therefore,  it needs  to be 

operated with the multi‐stage transformation between sender and receiver. In theory, the 

Eve’s capability to estimate the state of polarization might be improved as the numbers of 

photons  in  a beam  increased. Therefore,  the photon numbers  and  the  stages must be 

carefully identified to make the protocols well utilized during their operations. 

The Multiphoton QKD  based  on  double‐lock  encryption  has  been  introduced  to 

overcome the weaknesses of a single photon and its variants [118]. The random secret key 

needs to be travel in a multi‐stages step to make the transmission channel more secure 

and making the eavesdropper difficult to guess the state of the qubits. Same as BB84, the 

procedure of Error Concealment and Privacy Amplification is subsequently performed to 

minimize  the knowledge of Eve  towards  the  information. This protocol has significant 

benefits  in  increasing  the  distance’s  limit  and  provides  higher  SKR  than  the  existing 

single‐photon  QKD.  However,  although  any  QKD  protocols  provide  unconditional 

security, they still need an authentication procedure before the communication due to the 

key  needs  to  be  distributed  to  the  right  communication  parties  [119,120].  Therefore, 

implementing an effective authentication procedure using a secure shared authentication 

key for multiphoton has been introduced to overcome the issue as mentioned earlier [121]. 

The  advantages  of  the multiphoton  approach  are  that  it  can  solve  the  intricated 

heterodyne and homodyne detection and noise‐sensitive problem. Thus, a detector with 

less  efficiency  is  more  appropriate  when  using  multiphoton  protocol.  Furthermore, 

multiphoton  implementation  using multiple  stages  is  designed  to  solve  the  security 

problem such as man‐in‐the‐middle attack, photon splitting number attack, and Trojan 

Horse  attack  that  occurred  in  the  single‐photon  protocol.  Currently,  there  is  no 

involvement of  the public channel  in the multiphoton protocol as  the exchanging keys 

process, and the entire procedure is performed only through a quantum channel. 

The  multiphoton  protocol  is  initially  designed  for  Quantum  Secure  Direct 

Communication (QSDC), where the protocol eliminates the key distribution process and 

Figure 4. Quantum Communication using the multiphoton approach.

The multiphoton approach utilizes the arbitrary state of polarization using a rotation
operator, which can secure the information from the MITM attack. The polarization of
rotation operator [117] adopted in Figure 4 can be described as:

R(θ) =
[

cos θ − sin θ

sin θ cos θ

]
(1)

where θ is the rotation angle. The secret unitary operation will be applied by Alice and Bob
using UA and UB where UAUB = UBUA. The values of the rotation operator are UA = R(θ)
and UB = R(Φ), where R(θ) = R(Φ).

Despite the advantages of multiphoton in terms of multiple photon emission, Eve
can easily syphon off multiphoton if only one stage is used. Therefore, it needs to be
operated with the multi-stage transformation between sender and receiver. In theory, the
Eve’s capability to estimate the state of polarization might be improved as the numbers
of photons in a beam increased. Therefore, the photon numbers and the stages must be
carefully identified to make the protocols well utilized during their operations.

The Multiphoton QKD based on double-lock encryption has been introduced to
overcome the weaknesses of a single photon and its variants [118]. The random secret key
needs to be travel in a multi-stages step to make the transmission channel more secure
and making the eavesdropper difficult to guess the state of the qubits. Same as BB84, the
procedure of Error Concealment and Privacy Amplification is subsequently performed to
minimize the knowledge of Eve towards the information. This protocol has significant
benefits in increasing the distance’s limit and provides higher SKR than the existing single-
photon QKD. However, although any QKD protocols provide unconditional security, they
still need an authentication procedure before the communication due to the key needs to
be distributed to the right communication parties [119,120]. Therefore, implementing an
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effective authentication procedure using a secure shared authentication key for multiphoton
has been introduced to overcome the issue as mentioned earlier [121].

The advantages of the multiphoton approach are that it can solve the intricated het-
erodyne and homodyne detection and noise-sensitive problem. Thus, a detector with less
efficiency is more appropriate when using multiphoton protocol. Furthermore, multipho-
ton implementation using multiple stages is designed to solve the security problem such
as man-in-the-middle attack, photon splitting number attack, and Trojan Horse attack
that occurred in the single-photon protocol. Currently, there is no involvement of the
public channel in the multiphoton protocol as the exchanging keys process, and the entire
procedure is performed only through a quantum channel.

The multiphoton protocol is initially designed for Quantum Secure Direct Commu-
nication (QSDC), where the protocol eliminates the key distribution process and directly
shares the message using quantum channel [122,123]. Recently, the researchers have
hotly discussed the works on improving QSDC. The quantum-memory-free version of the
efficient-QSDC protocol is based on original work [123] was proposed by Hanzo and his
collaborators [124]. As a result, the protocol is robust to individual attacks and produces
high communication efficiency. Meanwhile, QSDC can be made into measurement-device-
independent to create high communication distance [125]. QSDC can also be implemented
with single-photon measurement to increase the secrecy of the protocol [126]. Furthermore,
the two-step transmission can be further simplified by using hyperentanglement in one
round. As a result, this protocol can improve transmission efficiency compared to standard
quantum communication [127]. Furthermore, the concept of multiphoton QKD is to per-
form a key exchanging process by utilizing the polarization rotational in the multi-stages
protocol [118,128].

Furthermore, multiphoton QKD is easily implemented in the administered network
infrastructure. Multiphoton QKD are also not required to produce the same polarization
states as in the BB84 protocol due to the generation of an arbitrary polarization state that
can avoid the man-in-the-middle attack. Despite multiphoton successes, determining the
number of stages and the optimal mean photon numbers to ensure that the protocols
function correctly during operations remain critical concerns. Therefore, the works on
enhanced multiphoton have been resolved the issue of increasing source redundancy [129],
improved the authentication procedures [121] and improved the achievable secret key
rate as well as distance coverage [130]. With the emergence of quantum technology, the
chip-based QKD is introduced [131]. Chip-based technology can offer small size and low
energy consumption for a low cost. Table 2 shows the QKD protocol based on Heisenberg’s
Uncertainty Principles.

Table 2. QKD Protocol based on Heisenberg’s Uncertainty Principles.

Year Name of Protocol Citation

1984 BB84 [132–134]
1991 E91 [135,136]
1992 BBM92 [137–139]
1992 B92 [140–142]
1999 SSP [143]
2002 GG02 [144,145]
2002 Ping-Pong [146]
2003 DPS [147–149]
2004 COW [150]
2004 SARG04 [151–153]
2004 Coherent State Heterodyne [154,155]
2005 LM05 [156,157]
2013 S13 [105]
2014 RRDPS [158]
2015 Multiphoton [159,160]
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5. Conclusions and Future Works

As for the future directions, quantum security can be the solution that connects
cryptography and network security areas. The existing signature schemes and public-key
encryption could not guarantee secure connection once the adversaries are equipped with
quantum level powers. The existing signature schemes and public-key encryption cannot
provide a secure communication channel once the adversaries are equipped with quantum
level powers. Without limiting any abilities of eavesdroppers, quantum cryptography
security could be proven mathematically. Quantum cryptography techniques will generate
and distribute longer symmetric keys, ensuring the security of many IoT devices over
time. This approach will also reduce the network overhead and extend the device battery
life by lowering the handshake frequency in the key establishment process. Moreover,
quantum security can also be utilized in device authentication, power-efficient algorithms,
certification, qualification, securing identity, and applying policies. Furthermore, MEC
capabilities are used to implement the key management entities at the network edge and
reduce the communication overhead related to security in the 5G backhaul network. This
technique can also be used in other crucial areas such as smart grid, smart city, and IoT
applications. For example, authors in [161] introduced integration software that combine
IoT communication protocol to increase the security and resiliency of electricity grids. The
proposed framework reduced overhead and allows 5G and IoT to be integrated.

Quantum cryptography has garnered a lot of attention from different organizations
both industrial and academic communities. Over the last few years, significant progress in
the quantum cryptography and development of optical equipment is shown by numerous
successful research studies and testing of QKD technology. This research and testing
produce significant results in quantum cryptography and underline the future works that
need to be addressed and resolved.

This paper reviews and discusses the existing quantum cryptography protocol that has
been identified in the literature to be implemented in the 5G networks. Trusted repeaters
are required to extend the distance of secure transmission for quantum channels. Currently,
the hot topic in optical research is to integrate the QKD networks into conventional telecom-
munication networks. The future works or the next breakthrough will be on employing
quantum cryptography into the real-world information transfer applications. Since 5G is
at the core of the future’s heterogeneous network, QKD can also be implemented in the
backbone network for a secure connection. Implementing QKD in the 5G backbone network
will be the focus of our future works. Currently, the maximum key rate is correlated with
the distance of the QKD links. One of the limitations of QKD links is length constraints.
However, the development in optical equipment has significantly improved as discussed
in this paper. In 2003, the DARPA QKD network achieved a key rate of 1 kbps. In 2007,
the key rate in SECOQC or European QKD network are increased to 3 kbps and followed
by the Tokyo QKD network in 2011 where the key rate is 300 kbps. This achieved key rate
is adequate to initiate a secure video conferencing along with OTP cipher established by
QKD. In terms of the correlating distance, the DARPA QKD networks have a connection
distance of 29 km between Boston and Harvard Universities using the optical switch. For
SECOQC network, the QKD link was between St. Pölten and BREIT for maximum distance
of 82 km while for the Tokyo QKD network, the connection was between the Koganei-1
and Koganei-2 nodes with maximum distance of 90 km. Meanwhile, real-life application
using QKD network that has been demonstrated in Hefei has the maximum distance of
85.1 km using the Hefei-Chaohu-Wuhu (HCW) intercity link.

Consequently, there is an expectation for a longer distance and a higher key rate in
the upcoming years. Currently, QKD networks are merely accomplished using Trusted
Repeater Approach (TRA), and it is expected that the optical quantum repeaters will
ultimately be accessible for practical use. TRA is important in assisting routing for QKD
networks and solving the distance limitations of QKD links. However, the are some
restrictions that need to be resolved for a QKD network to be combined with conventional
IP networks and used in everyday life. One method for extensive application of QKD
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technology is by using an approach such as SDN-QKD to integrate QKD networks with
telecommunication networks. Previous research [130] proved that the implementation
of a new quantum technique for secret key transmission such as multiphoton approach
in networks will improve the key transmission efficiency. Therefore, for future research,
the implementation multiphoton approach during the interchanged of information are
required to ensure that the key remains a secure between parties in the 5G networks.
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Abbreviations

The following abbreviations are used in this manuscript:

3GPP 3th Generation Partnership Project
5G 5th Generation Network
ABE Attribute-based Encryption
AMF Access and Mobility Management Function
AUSF Authentication Server Function
CE Channel Estimation
C-RAN Cloud Radio Access Network
CSP Cloud Service Provider
D2D Device-to-Device
DoS/DDoS Denial of Service
DPR Distributed Phase Reference
EAP Extensible Authentication Protocol
ECC Elliptic Curve Cryptography
HIPPA Health Insurance Portability and Accountability Act
HMAC Hash-based Message Authentication Code
IBC Identity-based Cryptography
ICC Inter-Controller Communication
IIoT Industrial Internet of Things
IMSI International Mobile Subscriber Identity
INS Industrial Network System
ISP Internet Service Provider
LTE Long-Term Evolution
LPWAN Low-Power Wide-Area Network
MANET Mobile Ad-Hoc Network
MEC Multi-Access Edge Computing
MISO Multiple-Input Single-Output
MIMO Multiple-Input Multiple-Output
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NFV Network Function Virtualization
NOMA Non-Orthogonal Multiple Access
ODFMA Orthogonal Frequency Division Multiple Access
PbD Privacy-by-Design
PKI Public Key Infrastructure
PNS Photon Number Splitting
QKD Quantum Key Distribution
QRA Quantum-Resistant Algorithm
QoS Quality of Service
QSDC Quantum Secure Direct Communication
RAN Radio Access Network
RAT Radio Access Technology
RBAC Role-based Access Control
SDP Software-Defined Privacy
SEAF Security Anchor Function
SEBC Shared Encryption-based Construction
SSL Secure Socket Layer
SWIPT Simultaneous Wireless Information and Power Transfer
TCP Transmission Control Protocol
TLS Transport Layer Security
UAV Unmanned Aerial Vehicle
USIM Universal Subscriber Identity Module
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