
Citation: Lembo, D.; Santarelli, V.;

Savo, D.F.; De Giacomo, G.

GRAPHOL: A Graphical Language for

Ontology Modeling Equivalent to

OWL 2. Future Internet 2022, 14, 78.

https://doi.org/10.3390/fi14030078

Academic Editors: Agostino Poggi,

Martin Kenyeres, Ivana Budinská

and Ladislav Hluchy

Received: 18 January 2022

Accepted: 25 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

GRAPHOL: A Graphical Language for Ontology Modeling
Equivalent to OWL 2
Domenico Lembo 1,*, Valerio Santarelli 2, Domenico Fabio Savo 3,* and Giuseppe De Giacomo 1

1 Department of Computer, Control and Management Engineering, Sapienza Università di Roma,
Via Ariosto 25, 00185 Roma, Italy; degiacomo@diag.uniroma1.it

2 OBDA Systems S.R.L., Via di Casal Boccone, 00137 Roma, Italy; santarelli@obdasystems.com
3 Department of Management, Information and Production Engineering (DIGIP), Università degli Studi di

Bergamo, Via A. Einstein 2, 24044 Dalmine, Italy
* Correspondence: lembo@diag.uniroma1.it (D.L.); domenicofabio.savo@unibg.it (D.F.S.)

Abstract: In this paper we study GRAPHOL, a fully graphical language inspired by standard for-
malisms for conceptual modeling, similar to the UML class diagram and the ER model, but equipped
with formal semantics. We formally prove that GRAPHOL is equivalent to OWL 2, i.e., it can cap-
ture every OWL 2 ontology and vice versa. We also present some usability studies indicating that
GRAPHOL is suitable for quick adoption by conceptual modelers that are familiar with UML and
ER. This is further testified by the adoption of GRAPHOL for ontology representation in several
industrial projects.

Keywords: ontology and conceptual modeling; OWL; description logics; graphical modeling languages

1. Introduction

There is a long tradition in many areas of computer science of conceptualizing do-
mains of interest in terms of classes and relationships using a graphical or diagrammatic
model. Consider, for example, ER (entity–relationship) diagrams [1], ubiquitously used in
databases, or UML class diagrams [2], the de facto standard in software engineering for
information modeling (when used as conceptual models rather than to represent software
components). While often such diagrams are used in a semi-formal way to help commu-
nication, it is well-recognized that having precise semantics is actually needed to avoid
ambiguities in design.

Interestingly, the very first conceptual languages developed in AI were also graphical,
most prominently semantic networks [3,4]. However, most work on knowledge representa-
tion in AI has focused more on automated reasoning, and has gradually abandoned the
graphical conceptual languages in favor of logical languages. This process has started
with the famous paper “What’s in a link” [5], which questioned the inherent ambigu-
ity of graphical conceptual languages of the time, and has continued with the work on
KL-ONE [6], then followed by the introduction of modern description logics (DLs) [7].
Nevertheless, by the early 1990s, a research program started to emerge: not to disregard,
but to try to logically reconstruct graphical conceptual models used in many fields, such as
software development and information systems, in order to enable automated reasoning
on them [8–10]. This program has actually been one of the thrusts towards more and more
expressive DLs [11] that ultimately led to the development of OWL and OWL 2 [12].

In this paper we bring about a novel contribution to this program: we study a graph-
ical formalism, called GRAPHOL, which resembles ER and UML class diagrams, but has
inherent formal semantics based on DLs and is able to fully capture the ontology language
OWL 2. Our proposal comes after a few years of experience in ontology modeling in IT
organizations that are knowledgeable on information systems and software engineering, so
are familiar with UML and ER, but have only a technological view of ontology languages

Future Internet 2022, 14, 78. https://doi.org/10.3390/fi14030078 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14030078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-8391-8049
https://doi.org/10.3390/fi14030078
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14030078?type=check_update&version=3

Future Internet 2022, 14, 78 2 of 29

such as OWL 2 (e.g., [13–15]). In these contexts, people often struggle to effectively use the
logical formalisms through which ontologies are typically specified, thus slowing down
the adoption of semantic technologies. GRAPHOL mitigates this problem, since it provides
IT people with a formalism for specifying and reading ontologies rooted in conceptual
modeling languages they are used to. Indeed, its usage has helped substantially in taking
up semantic technologies in the industrial use cases [16–21].

We point out that we have also developed tools for drawing GRAPHOL diagrams
and translating them into standard OWL 2 ontology format. These tools, however, are
not treated in depth in this paper, and we refer the reader to [22,23] and to the Github
repository of the Eddy ontology editor (https://github.com/obdasystems/eddy, accessed
on 17 January 2022) for the details. Here, instead, we study GRAPHOL as a language, and
focus on its formal properties. Specifically, we give its mathematical semantics, based on
DLs, and show that GRAPHOL diagrams can be translated into OWL 2 ontologies and
vice versa. Furthermore, we describe a user evaluation study we carried out to verify the
usability of our language. A preliminary version of some of the contributions given in this
paper can be found in [24].

1.1. Introducing the GRAPHOL Language

To obtain an idea of GRAPHOL and its relation with UML and ER, in Figure 1 we model
a simple situation about students and courses they attend, using a UML class diagram, a
GRAPHOL diagram, and a set of DL axioms, all expressible in OWL 2. We assume that the
reader is familiar with UML class diagrams [2], DLs [11], and OWL 2 [12]. Furthermore,
since we adopt the DL notation throughout the paper to express logical axioms, we use
the DL terminology for ontology predicates, e.g., we use “concept” to denote a set of
objects (i.e., a “class” in OWL parlance), “role” to denote a binary relationship between
concepts (i.e., an “ObjectProperty” in OWL parlance), and “attribute” to denote a binary
relationship between a concept and a domain of values (i.e., a “DataProperty” relating
objects to datatypes in OWL parlance). In all the three versions of the model, we use the
same alphabet for predicates. The model states that a student must attend at least a course,
that university students are students, that graduate courses are courses, and that university
students can only attend graduate courses. One can see that, in GRAPHOL, concepts are
represented through rectangles, analogously to UML, while, as in ER, diamonds are used
for roles. Furthermore, solid directed arrows represent inclusions, as in UML and ER (cf.
the inclusion between UniversityStudent and Student). However, differently from UML and
ER, in GRAPHOL they do not need to involve only named concepts. The use of a diamond
to represent a role, i.e., a “node” in the diagram, allows us indeed to depict, in a simple
graphical way, concept expressions over the domain and the range of a role, i.e., over its
first or second component, by connecting the role to possibly labeled blank and solid boxes,
respectively. For example, in Figure 1, the blank box labeled with “forall” and linked to the
role attends denotes the set of individuals that attend only graduate courses. The inclusion
drawn between UniversityStudent and this concept expression specifies that a university
student can only attend graduate courses, which corresponds to the DL inclusion axiom
UniversityStudent v ∀attends.GraduateCourse. We remark that this property is not directly
expressible in a graphical way in UML, where we need to specify it as an external constraint
(cf. the note in the diagram), possibly expressed in a logical language such as OCL.

We notice that the idea of extending or adapting UML or ER to capture OWL is indeed
not new. However, GRAPHOL is distinguished from the other proposals with precise
semantics, such as [25–29] by its ability to capture any OWL 2 ontology in a completely
graphical way. Indeed, previous UML-inspired approaches typically require to annotate
diagrams with formulas corresponding to complex OWL expressions. Clearly, this hinders
both the diagrammatic representation of the ontology and its intuitive understanding. A
more in depth discussion on related work is given in Section 2.

https://github.com/obdasystems/eddy

Future Internet 2022, 14, 78 3 of 29

UML Class Diagram GRAPHOL Diagram DL Axioms
UniversityStudent v Student,

GraduateCourse v Course,

Student v ∃attends,
∃attends v Student,

∃attends− v Course,

UniversityStudent v
∀attends.GraduateCourse

Figure 1. Introductory example.

1.2. Paper Organization and Contributions

The rest of the paper is organized as follows. As stated, we first provide an overview
of related work on graphical languages for ontology design and visualization. Then, we
give some preliminaries on DLs, which we use as formal tool for defining the semantics
of GRAPHOL constructs and for establishing the correspondence between GRAPHOL and
OWL 2, which also has a DL counterpart. Next, in Section 4, we give the formal syntax
of the language (Section 4.1), its semantics (Section 4.2), and show its equivalence with
OWL 2 (Section 4.4), i.e., we prove that every GRAPHOL diagram corresponds to an OWL 2
ontology, and, conversely, that every OWL 2 ontology corresponds to a GRAPHOL diagram.
Then, in Section 5, we discuss the relationship between GRAPHOL and UML, and finally,
in Section 6, we provide some user evaluations of our language. Our study shows that
GRAPHOL can be adopted by non-expert modelers introducing only a minimal overhead
with respect to the use of standard conceptual languages such as UML and ER, and that this
overhead pays off when the UML/ER diagrams need logical annotation to fully capture the
ontology of interest. More interestingly, the evaluations we carried out show that GRAPHOL

can be adopted by expert conceptual modelers with ease, greatly facilitating the adoption
of a full-fledged ontology language, such as OWL 2, as a formal conceptual modeling
language. We conclude the paper in Section 7.

2. Related Work

The growing use of ontologies in information systems and throughout the semantic
web has made effective ontology representation and management a necessity. In this section
we provide a brief description of the main tools and graphical languages that have been
proposed over the years for these purposes. We point out that many of the proposals
we review in the following have been discontinued to date. Nonetheless, they testify the
huge effort carried on by the community in this direction and allow to better co-locate our
proposal within the state of the art.

For our overview we start from languages adopted in software engineering and database
design. As we have already pointed out in the introduction, popular diagrammatic formalisms
used in these fields, such as the ER model [1] and UML class diagrams [2], have been
devised with the primary goal to support design documentation and help communication
in the various phases of the development workflow. When used specifically for conceptual
modeling, such formalisms are often adopted in a pragmatic way, but a quite-productive
line of research has investigated them from a logical perspective with the aim of associating
such languages with formal semantics [8–10,30]. In particular, an important effort has been
made to exploit DLs to represent and enable automated reasoning in graphical conceptual
models used in software development and information systems [31–38]. In these works, the
relationship between UML class diagrams or ER models and logical languages is studied
mostly at theoretical level only. Two exceptions are [32], where the authors present a tool for
translating UML class diagrams into DL ontologies with the aim of verifying their consistency,
and [38], where a prototype tool that provides the DL representation of ER models (more
precisely, enhanced entity–relationship models) is presented.

Future Internet 2022, 14, 78 4 of 29

Along with ER and UML, other visual languages have also been employed in the
software engineering area, such as, for example, object–role modeling [39,40] (ORM and
ORM2). ORM provides a graphical notation for modeling and querying business domains
in terms of the underlying facts of interest. Unlike ER or UML, ORM treats all facts as rela-
tionships, and depicts them through a visual formalism that is meant to be understood by
nontechnical users of such domains. In ORM, a model is built around entities, represented
through logical predicates, and values, each of which can be described in terms of the types
they belong to. Similarly as performed for ER and UML, various research contributions
have been made to provide formal semantics to ORM through DLs or even OWL [41–44].

As stated, the above-mentioned works have aimed at reconstructing languages such
as ER, UML, or ORM under a logical perspective. Ultimately though, such languages have
proven to lack the necessary expressive power to capture current ontology formalisms such
as OWL 2 or the more expressive DLs.

Some authors have thus proposed to extend the above languages, in particular UML
class diagrams, to achieve the expressiveness needed for ontology specification. In [25,45]
the authors define the ontology definition metamodel (ODM), a UML-based metamodel
for defining ontologies. It is grounded in the Meta Object Facility of UML 2.0 (MOF2),
which is an extensible model-driven integration framework for defining, manipulating, and
integrating metadata and data in a platform-independent manner, and allows to visually
represent an ontology through a graph. In [26,46], the authors also provide UML profiles
which extend ODM with a visual UML syntax for the representation of ontologies in
OWL 1 [47]. However, these works were not continued thereafter towards the new version
of the standard language [12], and updating them in order to incorporate all the features
introduced in OW2 2 could be very complex.

The OntoUML modeling language [27] is also UML-based, but it is tailored towards
general conceptual modeling and ontology representation through the ontological guide-
lines introduced in the unified foundational ontology (UFO), rather than towards providing
a visual language for real-world DL ontologies. The principle behind OntoUML is that in
order for a modeling language to satisfy the requirements of expressiveness and clarity of a
domain, its modeling primitives must be derived from a proper foundational ontology. In
other words, a domain-specific ontology must utilize some sort of upper-level ontology
as its underlying framework [48] for fundamental ontological structures such as theory of
parts, theory of wholes, types and instantiation, identity, etc.

OWLGrEd (http://owlgred.lumii.lv/, accessed on 17 January 2022) [29,49] is a more
recent graphical notation for ontologies based on UML class diagrams: concepts are repre-
sented as UML classes, attributes as class attributes, and roles as associations between the
classes. OWLGrEd’s UML classes also allow to specify logical expression in Manchester
syntax (http://www.w3.org/TR/owl2-manchester-syntax/, accessed on 17 January 2022)
for stating axioms in OWL which are not supported by the graphical notation. OWLGrEd
captures OWL 2 completely, and its UML-based notation is quite easy to understand. How-
ever, its effectiveness is hindered by the need to use logical formulas in the representation,
especially in case of complex ontologies, where the presence of many formulas of this kind
can lead to prejudice the intuitive comprehension of the ontology, and by its ambiguous
depiction of various kinds of expressions and axioms. Nonetheless, among the related
work we discuss, OWLGrEd is the closest in spirit to GRAPHOL, even though our language
allows for a completely graphical representation of OWL 2 ontologies. For this reason, we
have considered OWLGrEd in a comparative user evaluation study described in Section 6.

Below, we turn our attention to languages and tools for the graphical representation
of knowledge bases not specifically based on UML or the other diagrammatic languages
we discussed so far. Earlier efforts in this direction have typically focused on preliminary
explorations of issues and possible solutions for visual representations of DLs. For instance,
in [50], the author discusses general design issues for semantic network formalisms, also
providing some details of how such issues may be addressed through an example of a
visual language for DLs. Other efforts have focused on investigating the potential of

http://owlgred.lumii.lv/
http://www.w3.org/TR/owl2-manchester-syntax/

Future Internet 2022, 14, 78 5 of 29

diagrammatic reasoning systems, i.e., visual logics systems which use a graph-based
structural form for FOL sentences, as graphical representations of DLs. Examples of such
systems are spider and constraint diagrams, as well as conceptual and existential graphs.
In [51], the authors investigate which of these systems is compatible with DLs, concluding
that existential graphs are best suited for these purposes. Instead, in [33], the authors
focus on conceptual graphs, and introduce a conceptual graph-based formalism for the
representation of knowledge bases. To the best of our knowledge, there have, however,
been no further studies nor practical results in the direction of adopting these systems for
the visual representation of real-world ontologies.

Among other proposals, we below focus on GrOWL (http://growl.novasemantics.it/,
accessed on 17 January 2022) [52], and Graffoo (http://www.essepuntato.it/graffoo/,
accessed on 17 January 2022) [28] and VOWL (http://vowl.visualdataweb.org/, accessed
on 17 January 2022) [53], which, similar to ours, are specifically tailored to the representation
and/or visualization of OWL ontologies. For a more comprehensive classification and
comparison of available languages and tools for ontology editing and visualization, we
refer the reader to [54].

GrOWL is a tool for visualizing and editing ontologies, based on the underlying DL
semantics of OWL ontologies. GrOWL is able to map both TBox and ABox assertions to a
graph-line representation through the use of color, shading, and different shape nodes to
encode the properties of the language constructs. Although the core idea behind GrOWL
is similar to GRAPHOL’s, the project seems to have been discontinued, and the available
documentation does not provide an unambiguous indication of the syntax and semantics
of the language. Differently to GRAPHOL, OWLGrEd and Graffoo, GrOWL is also quite
distant in nature from classical logical languages such as UML or ER, and this poses further
difficulties in its understanding in industrial contexts.

Graffoo is a graphical notation for OWL ontologies, developed using the standard
library of the graph editor yEd (https://www.yworks.com/products/yed, accessed on
17 January 2022). The graphical elements featured in Graffoo are blocks (or nodes) and arcs.
Blocks are used to model classes, datatypes, individuals, ontologies, and rules. Arcs are
instead used to model assertions, annotation properties, attributes, and roles. Graffoo has
been designed for fully capturing OWL 2, but to this aim, some elements of the language
are not completely graphical. Indeed, those OWL 2 constructs that cannot be expressed by
means of Graffoo’s graphical elements are specified through OWL axioms in Manchester
syntax. Therefore, the same arguments given for OWLGrEd about the need of embedding
axioms given in a non-graphical way also apply to Graffoo. To the best of our knowledge,
there is no editor tailored for Graffoo, but a palette for the yEd editor is available instead.

VOWL (Visual Notation for OWL Ontologies) is a formalism that has been proposed
quite recently. It defines a set of graphical primitives and a color scheme, and uses a
force-directed graph visualization for the ontology. In VOWL, concepts (i.e., classes in
OWL) are represented as circles, and data types are displayed in rectangles. A labeled
arrow connecting two circles denotes a role (i.e., an objectProperty in OWL), whereas a
labeled arrow connecting a circle to a datatype denotes an attribute (i.e., a dataProperty in
OWL). The direction of the arrow establishes the typing of the domain and the range of the
property. Cardinality constraints are specified on arrows in the style of UML class diagrams.
The mentioned constructs are the basic elements of the representation. A complete list is
available at http://vowl.visualdataweb.org/v2/ (accessed on 17 January 2022). VOWL
is able to capture visually a good portion of OWL 2, although some constructs are not
part of the actual VOWL visualization. The language is not defined through a formalized
syntax, and in the documentation it is not clearly specified which fragment of OWL 2 is
completely captured in a visual mode by VOWL. The language has two main implementa-
tions: WebVOWL [55], which is a web tool for ontology visualization, and ProtégéVOWL,
a plug-in for the ontology editor Protégé (which, however, does not implement all visual
elements defined in the VOWL specification). In both such environments, essentially only
ontology visualization features are provided. Indeed, VOWL has been so far proposed as

http://growl.novasemantics.it/
http://www.essepuntato.it/graffoo/
http://vowl.visualdataweb.org/
https://www.yworks.com/products/yed
http://vowl.visualdataweb.org/v2/

Future Internet 2022, 14, 78 6 of 29

an ontology visualization language rather than a tool for ontology editing. Apart from all
the other differences, this last aspect seems to be the one that mainly distinguishes VOWL
from our language GRAPHOL, which is thought for ontology specification.

Besides VOWL and its related visualization environments, there is a number of systems
and tools designed for ontology visualization only, which adopt different representation
techniques in order to achieve this desired balance. The graphical representation provided
by such systems can be either two- or three-dimensional, and adopt visualization strategies
as degree of interest [56], space-filling [57], context focus [58], and multiple coordinated
views [59].

Among these systems, we can mention OntoGraf (http://protegewiki.stanford.edu/
wiki/OntoGraf, accessed on 17 January 2022) and OWLViz (http://protegewiki.stanford.
edu/wiki/OntoViz, accessed on 17 January 2022) plug-ins for the popular ontology editor
Protégé. The former plug-in uses the layouts library for the Jambalaya plug-in (http:
//protegewiki.stanford.edu/wiki/Jambalaya, accessed on 17 January 2022) to provide
interactive navigation of the relationships in an ontology through an incremental and
dynamic graph-like representation. The latter plug-in provides a node-link representation
for viewing and navigating class hierarchies, in which the nodes are classes, and the “is-a”-
labeled links represent inclusion relationships between them. It is worthwhile mentioning
that both such plug-ins, though popular in the past for quick rendering of the main
ontology elements and connection thereof, seem to be currently no longer supported by
active development or maintenance. Since tools tailored to ontology visualization do not
provide any functionalities for ontology editing, they are slightly far from the objectives of
this work; hence, we shall not provide further details on them and instead refer the reader
to surveys conducted in [54,60,61] for an in-depth discussion.

We conclude this section by mentioning some non-graphical ontology editing en-
vironments. These systems typically include features for editing, browsing, visualizing,
importing, and exporting ontologies.

Protégé (http://protege.stanford.edu/, accessed on 17 January 2022), which we al-
ready mentioned before and which is a popular open-source ontology editor and knowl-
edge base framework [62], is certainly one of the most widely-used non-graphical ontology
editors. Protégé supports many languages and formats for ontology development, such
as XML schema, RDF(S), and, of course, OWL 2. Moreover, it provides a plug-and-play
framework that fosters the development of new functionalities by means of plug-ins (such
as the one mentioned above) which can be used to modify both the appearance and the
behavior of the system.

The NeOn Ontology Engineering Toolkit (http://neon-toolkit.org/wiki/Main_Page,
accessed on 17 January 2022) is an open-source, multi-platform ontology engineering
environment [63,64] which is built on the Eclipse platform, and provides a variety of plug-
ins for ontology engineering activities such as management, reasoning, and collaboration.
In particular, the OntoModel (http://sourceforge.net/projects/ontomodel/, accessed on
17 January 2022) editor plug-in provides ontology visualization and editing functionalities
through a UML-based notation.

The commercial TopBraid Composer by TopQuadrant (http://www.topquadrant.
com/products/TB_Composer.html, accessed on 17 January 2022) is an ontology and RDF
data editing environment, developed as an Eclipse plug-in. It offers support for editing
ontologies in OWL 2 or RDF and for running SPARQL (http://www.w3.org/TR/sparql11-
query/, accessed on 17 January 2022) queries over them. Furthermore, it provides a visual
editor for RDF graphs and for class diagrams, allowing also to generate SPARQL queries
directly from the graph view of the ontology.

The OntoStudio Ontology Engineering Environment [65] is a commercial graphical
and textual ontology editor. Similar to TopBraid Composer, OntoStudio is developed as
an IDE application using the Eclipse platform, and is extendible through various Eclipse
plug-ins. OntoStudio supports RDF(S), OWL-2, and other formats for modeling purposes.

http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OntoViz
http://protegewiki.stanford.edu/wiki/OntoViz
http://protegewiki.stanford.edu/wiki/Jambalaya
http://protegewiki.stanford.edu/wiki/Jambalaya
http://protege.stanford.edu/
http://neon-toolkit.org/wiki/Main_Page
http://sourceforge.net/projects/ontomodel/
http://www.topquadrant.com/products/TB_Composer.html
http://www.topquadrant.com/products/TB_Composer.html
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

Future Internet 2022, 14, 78 7 of 29

While these systems often attempt to offer some visual representation of ontologies,
they are seldom successful in achieving a balance between the amount of information that
is shown to the user and the complexity and size of the given representation, which is
typically provided in terms of a two-dimensional graph. Furthermore, none of the provided
visualizations is based on a graphical language with formal syntax and/or that is able to
fully render an OWL 2 ontology.

3. Preliminaries

Description logics (DLs) [11] are formalisms used to model a domain of interest in a
formal way. They are portions of first-order logic that allow for decidable reasoning. In
DLs, the domain of interest is represented in terms of objects (i.e., individuals), concepts
(i.e., abstractions for sets of objects), and roles (i.e., binary relationships between concepts).
Moreover, some DLs consider also value-domains, denoting sets of values, and attributes,
denoting binary relationships between concepts and value-domains.

We assume to have an alphabet Γ partitioned into ΓP and ΓC. The former is in turn
partitioned into sets of symbols for atomic concepts, atomic roles, atomic attributes, and
atomic value-domains. ΓC instead contains symbols for constants, and is further partitioned
into the sets ΓO, which is the set of constants denoting objects, and ΓV , which is the set
of values.

We now provide syntax and semantics of the DL language of interest in this work. We
notice that the DL we provide in this section captures the DL SROIQ(D) [66,67], i.e., the
DL underlying OWL 2. In Section 4.4, we will discuss which syntactic restrictions to impose
to make this language equivalent to SROIQ(D) (and so to OWL 2). Concepts, roles,
attributes, and value-domains expressions in such DL are defined by the following rules:

C −→ A | ¬C | C u · · · u C | C t · · · t C | ∃R | ∃R.C | ∀R.C |
≥ n R.C | ≤ n R.C | ∃R.Sel f | ∃V | ∃V.F | ∀V.F |
≥ n V.F | ≤ n V.F | {c1, . . . , cn} | >C | ⊥C

F −→ T | ∃V− | ¬F | F u · · · u F | F t · · · t F |
>D | ⊥D | {w1, . . . , wn}

R −→ P | P− | ¬R | R ◦ R | >R | ⊥R
V −→ U | ¬V | >A | ⊥A

where A denotes an atomic concept, P an atomic role, U an atomic attribute, T an atomic
value-domain, >C (resp., >R,>A,>D) the universal concept (resp., role, attribute, value-
domain), and ⊥C (resp., ⊥R,⊥A,⊥D) the empty concept (resp., role, attribute, value-domain).

We call C, R, V, and F a general concept, role, attribute, and value-domain, respectively.
In our treatment, such symbols can be used with subscripts. P− denotes the inverse of an
atomic role, while ¬C, ¬R, ¬V, ¬F denote the negation of C, R, V, and F, respectively. The
expression ∃R (resp. ∃V) denotes the domain of a role R (resp. of an attribute V). Instead,
the qualified concept existential restriction ∃R.C indicates the domain of R restricted to the
class C, i.e., it is an abstraction for the set of objects that R relates to some instance of C.
Similarly, ∃V.F denotes the qualified domain of V with respect to a value-domain F, i.e.,
the set of objects that V relates to some value in F. The concept ∀R.C, also called value
restriction, denotes the set of objects that are associated by R only to objects that are instances
of C. Similarly, ∀V.F denotes the set of objects that are associated by V only to values in
F. The concept ∃R.Sel f is used to express local reflexivity to a role R. ∃V− denotes the
range of an attribute V. Similarly, ∃R− denotes the range of a role R, which corresponds to
the domain of the inverse of R. The set {c1, . . . , cn} denotes the concept whose instances
are denoted by c1, . . . , cn, and, similarly, {w1, . . . , wn} denotes the value-domain whose
instances are denoted by w1, . . . , wn. The symbols u and t are the usual AND and OR
logical connectives. ≤ n and ≥ n indicate number restrictions, respectively, at-most restriction
and at-least restriction, where n ranges over the nonnegative integers. Finally, R ◦ R denotes
a role chain.

Future Internet 2022, 14, 78 8 of 29

The semantics of a DL KB is given in terms of interpretations. An interpretation
I = (∆I , ·I) consists of:

– A nonempty interpretation domain ∆I = ∆ I
O ∪ ΓV , where ∆ I

O is the domain of objects,
and ΓV is the set of values previously introduced (indeed, in every interpretation each
value is intepreted by itself);

– An interpretation function ·I that assigns an element of ∆ I
O to each constant in ΓO, and

interprets each DL expression as shown in Table 1.

Table 1. The DL constructs with their semantics.

Construct Syntax Semantics

Atomic concept A AI ⊆ ∆ I
O

Atomic role P PI ⊆ ∆ I
O × ∆ I

O

Atomic attribute U U I ⊆ ∆ I
O × ΓV

Atomic value-domain T T I ⊆ ΓV

Universal concept >C ∆ I
O

Universal role >R ∆ I
O × ∆ I

O

Universal attribute >A ∆ I
O × ΓV

Universal value-domain >D ΓV

Empty concept, role attribute, value-domain ⊥C,⊥R,⊥A,⊥D ∅

Unqualified role existential restriction ∃R { o | ∃o′. (o, o′) ∈ RI }

Qualified role existential restriction ∃R.C { o | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI }

Qualified role universal restriction ∀R.C { o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}

Qualified maximum cardinality role restriction ≤ n R.C { o |]{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI } ≤ n}

Qualified minimum cardinality role restriction ≥ n R.C { o |]{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI } ≥ n}

Self restriction ∃R.Sel f { o | (o, o) ∈ RI}

Unqualified attribute existential restriction ∃V { o | ∃v. (o, v) ∈ V I }

Qualified attribute existential restriction ∃V.F { o | ∃v. (o, v) ∈ V I ∧ v ∈ FI }

Qualified attribute universal restriction ∀V.F { o | ∀v. (o, v) ∈ V I → v ∈ FI}

Qualified maximum cardinality attribute restriction ≤ n V.F { o |]{v | (o, v) ∈ V I ∧ v ∈ FI } ≤ n}

Qualified minimum cardinality attribute restriction ≥ n V.F { o |]{v | (o, v) ∈ V I ∧ v ∈ FI } ≥ n}

One-of (concept) {c1, . . . , cn} {cI
1, . . . , cI

n}

One-of (value-domain) {w1, . . . , wn} {w1, . . . , wn}

Attribute range ∃V− { v | ∃o. (o, v) ∈ V I }

Inverse role P− { (o, o′) | (o′, o) ∈ PI }

Role chain R ◦ R { (o, o′) | ∃o′′. (o, o′′) ∈ RI
1 ∧ (o′′, o′) ∈ RI

2}

Future Internet 2022, 14, 78 9 of 29

Table 1. Cont.

Construct Syntax Semantics

Concept negation ¬C ∆ I
O \ CI

Role negation ¬R (∆ I
O × ∆ I

O) \ RI

Attribute negation ¬V (∆ I
O × ΓV) \V I

Value-domain negation ¬F (ΓV) \ FI

Concept conjunction C1 u · · · u Cn CI
1 ∩ · · · ∩ CI

n

Concept disjunction C1 t · · · t Cn CI
1 ∪ · · · ∩ CI

n

In the table, cI
1, . . . cI

n denote the interpretation of the constants c1, . . . cn from the
alphabet ΓO.

A DL KB K is a pair 〈T ,A〉, where T is a finite set of intensional assertions, called
TBox, and A is a finite set of extensional assertions, called ABox. In this paper we focus on
the modeling of intensional knowledge, i.e., the TBox, so we will not detail further the form
of the ABox (which is the component of the knowledge base maintaining the data).

The TBox assertions we focus on in this work are as follows:

C1 v C2 (concept inclusion);
R1 v R1 (role inclusion);
V1 v V2 (attribute inclusion);
F1 v F2 (value-domain inclusion).

Concept inclusion assertions state that all instances of one concept are also instances of
another concept, analogously for role, attribute, and value-domain inclusion assertions.

An interpretation I satisfies a TBox T if it satisfies all inclusions in T , where the notion
of satisfaction of an inclusion is as follows:

C1 v C2 if CI
1 ⊆ CI

2; R1 v R2 if RI
1 ⊆ RI

2;
V1 v V2 if V I

1 ⊆ V I
1 ; F1 v F2 if FI

1 ⊆ FI
2 .

4. The GRAPHOL Language

In this section we introduce the graphical elements and features of the GRAPHOL

language for ontologies. We will use the popular Pizza (http://protegewiki.stanford.edu/
wiki/Pr4_UG_ex_Pizza, accessed on 17 January 2022) ontology as a running example
to illustrate how different expressions and assertions of an ontology are represented in
GRAPHOL, and will use the DL syntax for logical symbols presented in Section 3 to define
the correspondence between GRAPHOL shapes and their logical meaning.

4.1. Graphol Syntax

The basic principle that guides GRAPHOL in representing ontologies is that a GRAPHOL

ontology is a graph whose nodes and edges assume the forms described in Figure 2.
Nodes can be of two kinds: predicate nodes and operator nodes. Predicate nodes model

the terms in the ontology alphabet, i.e., atomic concepts, rendered as rectangles, atomic
roles, which are depicted as diamonds, atomic attributes, drawn as circles, atomic value-
domains, represented as rounded rectangles, and constants (i.e., individuals and values),
denoted through octagons. Each predicate node is associated to a label, which is a name
from the ontology alphabet (to distinguish between individual nodes and value nodes,
the labels of value nodes are in inverted commas). We note that the shapes used to depict
concepts, roles, and attributes are the same as those used in ER diagrams. This choice was
made to take advantage of the familiarity that many of the potential users of GRAPHOL

may have with this well-known language for conceptual modeling.

http://protegewiki.stanford.edu/wiki/Pr4_UG_ex_Pizza
http://protegewiki.stanford.edu/wiki/Pr4_UG_ex_Pizza

Future Internet 2022, 14, 78 10 of 29

The special labels, “Top” and “Bottom”, are reserved for representing universal and
empty predicates (i.e, concept, role, attribute, or value-domain), respectively. For example,
a diamond with label “Top” represents the universal role (>R), while a diamond with
label “Bottom” represents the empty role (⊥R), analogously for concepts, attributes, and
value-domains.

Operator nodes are instead used to graphically construct complex expressions. Two
shapes for operators are adopted, i.e., the box (which can be either blank or solid), and
the hexagon. A blank (resp. solid) box, called domain (resp. range) restriction node, is used
to represent restrictions on roles or attributes (resp. their inverses). A box is labeled with
one of the following keywords: “exists”, for existential restriction, “forall”, for universal
restriction, “self”, for self-restriction, and “(x,−)” or “(−, y)”, with x and y positive integers,
for min and max cardinality restrictions, respectively. When the label is omitted we intend
“exists”. The other operator nodes are denoted by a hexagon and can assume one of the
following labels: “or” (union node), “and” (intersection node), “not” (complement node), “inv”
(inverse node), “oneOf” (one-of node), and “chain” (chain node).

Concept Role Attribute

Value-domain Individual/
Value

Domain
restriction

Union Intersection Range
restriction

Complement Inverse Inclusion edge

Chain One-of Input edge

Figure 2. Nodes and edges in a GRAPHOL ontology.

We observe that GRAPHOL uses three visual variables [68] to encode the predicate
and constructor nodes. These are (i) the shape of the nodes, which is used to distinguish
between predicate nodes, restriction nodes, and operator nodes, and among the different
kinds of predicate nodes; (ii) the size of the nodes, which allows to clearly discriminate
between the quadrilaterals used for concept nodes, value-domain nodes, and restriction
nodes; and (iii) brightness, which is used to distinguish the domain restriction node from
the range restriction node.

To avoid encumbering the user in learning the GRAPHOL syntax, we have chosen to
limit the number of different graphical symbols used to depict GRAPHOL nodes, and to
maintain it to around seven, which is the commonly recognized ideal upper bound for
software engineering graphical languages [69]. Indeed, experimental studies demonstrate
that a high number of different symbols in a language for software engineering increases
the learning difficulty by non-expert users [70].

GRAPHOL provides two types of edges: inclusion edges, which are solid directed arrow
edges (whose target end is denoted by the arrow), used to represent inclusion assertions,
and the input edges, which are dashed directed diamond edges (whose target end is denoted
by the diamond), used to construct ontology expressions.

An expression in GRAPHOL is a directed acyclic graph, where the nodes can be both
operator and predicate nodes and the edges are input edges only. In every GRAPHOL

expression there is a single node without outgoing edges, called sink. We give below a
formal definition:

Definition 1. A GRAPHOL expression can be of four types: concept, role, attribute, or value-
domain, defined inductively as follows:

1. A concept expression can be:

– A concept node (in this case the sink is the node itself);

Future Internet 2022, 14, 78 11 of 29

– A domain or range restriction node, with label “exists”, “forall”, “(x,−)”, or “(−, y)”,
taking as input a role expression and a concept expression (in this case the sink is the
domain or range restriction node);

– A domain or range restriction node, with label “self”, taking as input a role expression
(in this case, the sink is the domain or range restriction node);

– A domain restriction node, with label “exists”, “forall”, “(x,−)”, or “(−, y)”, taking as
input an attribute expression and a value-domain expression (in this case, the sink is the
domain restriction node);

– A union or intersection node taking as input at least two concept expressions (in this
case, the sink is the union or intersection node);

– A complement node taking as input a concept expression (in this case, the sink is the
complement node);

– A one-of node taking as input at least an individual node (in this case, the sink is the
one-of node).

2. A role expression can be:

– A role node (in this case, the sink is the node itself);
– An inverse node taking as input a role expression (in this case, the sink is the inverse

node);
– A complement node taking as input a role expression (in this case, the sink is the

complement node);
– A chain node taking as input n role expressions, with n ≤ 2, each associated to a label

1 ≤ i ≤ n and such that there are no two input edges with the same label (in this case,
the sink is the chain node).

3. An attribute expression can be:

– An attribute node (in this case, the sink is the node itself);
– A complement node taking as input an attribute expression (in this case, the sink is the

complement node).

4. A value-domain expression can be:

– A value-domain node (in this case, the sink is the node itself);
– A range restriction node with label “exists” taking as input an attribute expression (in

this case, the sink is the range restriction node);
– A union or intersection node taking as input at least two value-domain expressions (in

this case, the sink is the union or intersection node);
– A complement node taking as input a value-domain expression (in this case, the sink is

the complement node);
– A one-off node taking as input at least a value node (in this case, the sink is the one-off node).

Intensional assertions in GRAPHOL, as well as in OWL 2 and DLs, are specified as
inclusions. Thus, an (inclusion) assertion in GRAPHOL is specified via an inclusion edge from
the (sink of the) expression that is included to the (sink of the) expression that it includes.
For instance, a concept inclusion assertion between the two concepts C1 and C2 is obtained
by linking through an inclusion edge the sink of the GRAPHOL expression of C1 to the sink
of the GRAPHOL expression of C2. Of course, GRAPHOL does not allow to specify inclusion
edges between expressions of different types (e.g., a role expression with a concept one).

We finally define a GRAPHOL ontology as a set of GRAPHOL inclusion assertions.
To simplify ontology design and to keep the diagram easier to read, we allow in

a GRAPHOL ontology to have multiple occurrences of the same predicate, obviously all
labeled with the same label (which is the name of the predicate). This is particularly
useful in those cases in which a predicate occurs in many assertions of the ontology, and
so representing such predicate with a single node would lead to having a plethora of
incoming or outgoing edges from that node, likely leading to layout issues. We notice that
the tool Eddy [22], which offers an environment for the graphical specification of GRAPHOL

ontologies, provides functionalities for the refactoring of the ontology in case a predicate

Future Internet 2022, 14, 78 12 of 29

node is modified, e.g., changes on the predicate node label are automatically propagated to
all the replicas of such predicate in the ontology.

4.2. Graphol Semantics

An important desiderata of visual modeling languages is to have clear and precise
semantics [71,72]. To this aim, here we provide the semantics of GRAPHOL expressions and
assertions by giving their one-to-one correspondence with DL expressions and assertions,
which in turn have formal semantics, as discussed in Section 3.

We start with GRAPHOL expressions, and define a function Λ which takes as input a
GRAPHOL expression EG and computes a DL expression that encodes it.

To formalize Λ, we use sk(EG) to denote the sink of EG, and ar(EG) the set of GRAPHOL

expressions linked to sk(EG) through input edges (of course, this set can be empty). We
formally define Λ as follows:

– If sk(EG) is a concept, role, attribute, value-domain, or individual/value node with
label S, then Λ(EG) = S (we are considering concept, role, attribute, value-domain,
individual, and value alphabets as pairwise disjoint. Moreover, if S =“Top”, we
assume that Λ returns the corresponding DL universal predicate, which depends on
the form of sk(EG). Analogously if S =“Bottom”);

– If sk(EG) is a domain restriction node with label “exists” (resp., “forall”, “(x,−)”,
“(−, y)”), and ar(EG) = {εRA, εCV}, where either εRA is a GRAPHOL role expression
and εCV is a GRAPHOL concept expression or εRA is a GRAPHOL attribute expres-
sion and εCV is a GRAPHOL value-domain expression, then Λ(EG) = ∃Λ(εRA).Λ(εCV)
(resp., Λ(EG) = ∀Λ(εRA).Λ(εCV), Λ(EG) =≥ x Λ(εRA).Λ(εCV), Λ(EG) =≤ y Λ(εRA).
Λ(εCV));

– if sk(EG) is a range restriction node with label “exists” (resp. “forall”, “(x,−)”,
“(−, y)”), and ar(EG) = {εR, εC}, where εR is a GRAPHOL role expression and εC
is a GRAPHOL concept expression, then Λ(EG) = ∃(Λ(εR))

−.Λ(εC) (resp. Λ(EG) =
∀(Λ(εR))

−.Λ(εC), Λ(EG) =≥ x (Λ(εR))
−.Λ(εC), Λ(EG) =≤ y (Λ(εR))

−.Λ(εC));
– If sk(EG) is a domain (resp., range) restriction node with label “self”, and ar(EG) =

{εRA}, where εRA is a GRAPHOL role expression, then Λ(EG) = ∃Λ(εRA).Sel f (resp.,
Λ(EG) = ∃(Λ(εRA))

−.Sel f) ;
– If sk(EG) is a range restriction node with label “exists” and ar(EG) = {εA}, where εA

is a GRAPHOL attribute expression, then Λ(EG) = ∃(Λ(εA))
−;

– If sk(EG) is a union (resp. intersection or a one-of) node and ar(EG) = {ε1, . . . , εn},
then Λ(EG) =

⊔n
i=1 Λ(εi) (resp. Λ(EG) =

dn
i=1 Λ(εi), Λ(EG) = {Λ(ε1), . . . , Λ(εn)});

– if sk(EG) is a complement node and ar(EG) = {ε}, then Λ(EG) = ¬Λ(ε);
– If sk(EG) is an inverse node and ar(EG) = {εR}, then Λ(EG) = (Λ(εR))

−;
– If sk(EG) is a chain node and ar(EG) = {ε1

R, . . . εn
R}, where every εi

R, where 1 ≤ i ≤ n,
is a GRAPHOL role expression that is connected to sk(EG) through an input edge with
label i, then Λ(EG) = Λ(ε1

R) ◦Λ(ε2
R) ◦ · · · ◦Λ(εn

R).

Analogously, to define the semantics of GRAPHOL inclusion assertions, we use a
function Ψ which takes as input one such inclusion αG and returns its DL encoding. We
use source(αG) to denote the GRAPHOL expression having as sink the node from which
the inclusion edge starts in αG, and target(αG) to denote the GRAPHOL expression, having
as sink the node to which the inclusion edge arrives in αG. We thus define Ψ as follows:
Ψ(αG) = Λ(source(αG)) v Λ(target(αG)). Letting OG be a GRAPHOL ontology, we trans-
form OG in a DL ontology ODL by executing Ψ for every assertion in OG. The semantics of
OG thus are given by the semantics of ODL, which we have defined in Section 3.

Tables 2 and 3 give examples of application of Λ to GRAPHOL expressions of “depth”
0 or 1, i.e., expressions with either only predicate nodes or a constructor node with only
predicate nodes as input.

Future Internet 2022, 14, 78 13 of 29

Table 2. Correspondence between GRAPHOL and DL for concept and role expressions of depth 0 or 1.
C, C1, and C2 denote atomic concepts, and R, R1, and R2 denote atomic roles.

GRAPHOL DL

Atomic concept C

Role domain restriction ∃R.C ∀R.C
≥ xR.C ≤ yR.C

Role range restriction ∃R−.C ∀R−.C
≥ xR−.C ≤ yR−.C

Attribute domain restriction ∃V.F ∀V.F
≥ xV.F ≤ yV.F

Concept intersection C1 u C2

Concept union C1 t C2

Concept complement ¬C

One-of (concept) {a, b, c}

Self restriction ∃R.Sel f

Atomic role P

Role inverse R−

Role complement ¬R

Chain R1 ◦ R2

Future Internet 2022, 14, 78 14 of 29

Table 3. Correspondence between GRAPHOL and DL for attribute and value-domain expressions of
depth 0 or 1. V denotes an atomic attribute, and F, F1, and F2 denote an atomic value-domain.

GRAPHOL DL

Atomic attribute U

Attribute complement ¬U

Atomic value-domain T

Attribute range existential
restriction ∃V−

Value-domain intersection F1 u F2

Value-domain union F1 t F2

Value-domain complement ¬F

One-of (value-domain) {“1”, “2”, “3”}

4.3. Shortcuts

We have defined some shortcuts to help the designer in specifying a GRAPHOL ontol-
ogy. Through such shortcuts it is possible to use a more compact representation of some
expressions and assertions that often occur in ontologies. Below we describe them, and
provide examples of their use.

The disjoint union node is a new type of node, having the shape of a black hexagon,
used to represent a disjoint union expression, i.e., a union that at the same time states
the disjointness between its arguments. Therefore, through a disjoint union node we also
represent negative inclusions over its inputs. This shortcut is particularly useful for defining
disjoint concept hierarchies. This is inspired by a similar construct used in the ER model
and in UML class diagrams. In Figure 3, we give an example of one such hierarchy in the
two versions, with and without the use of the shortcut.

The second shortcut we introduce is a compact notation for the definition of the exis-
tential domain or range restriction on a role (resp. attribute) taking as input the universal
concept (resp. universal value-domain), which is equivalent to an unqualified existen-
tial restriction. Since this is among the most recurring restrictions occurring in ontolo-
gies, we allow to omit the universal concept (resp. value-domain) (notice also that the
OWL 2 syntax includes redundant constructs such as owl:ObjectPropertyDomain and
owl:ObjectProperyRange with a similar aim). In other words, to express the unqualified
existential restriction on a role or attribute, one can simply link a role or attribute sub-graph
to an existential restriction node, as shown in Figure 4.

Future Internet 2022, 14, 78 15 of 29

Figure 3. Example of a disjoint concept hierarchy represented in GRAPHOL with (left-hand side
figure) and without (right-hand side figure) the disjoint union node.

Figure 4. Example of an existential restriction in GRAPHOL with (left-hand side figure) and without
(right-hand side figure) the compact notation.

Another commonly used assertion in ontologies is the one which specifies that a role R
(resp., an attribute V) is globally functional, i.e.,>C v ≤ 1 R.>C (resp.,>C v ≤ 1 V.>D).
Global functionality can be obviously expressed in GRAPHOL through a graphical inclusion
assertion. However, in order to provide a more compact representation, we allow to
use a blank double-bordered role node (resp., attribute) for a functional role, a solid
double-bordered role node for an inverse functional role, and a double-bordered role half
blank and half solid for a role that is both functional and inverse functional. Notice that
OWL 2 also allows for the use of a compact syntax to specify global functionality (cf.
owl:FunctionalObjectProperty).

As an example, in the left-hand side of Figure 5 we show the standard GRAPHOL

assertion that defines the functionality of a role, and on the right-hand side, the compact
notation for a functional role (top left), an inverse functional role (top right), a role that
is both functional and inverse functional (bottom left), and, finally, a functional attribute
(bottom right).

We further notice that two domain (resp. range) restriction nodes with labels (x,−)
and (−, y), respectively, and the same input expressions, can be substituted by a single
domain (resp. range) restriction node with label (x, y) and the same inputs. In other
terms, min and max cardinality restrictions can be drawn together. Lastly, if one wishes to
define equivalence between two expressions of the same kind, it is possible to use a single
inclusion edge with an arrow both on the source end and on the target end instead of two
inclusion edges (with the arrow only on the target end) in opposite directions.

Future Internet 2022, 14, 78 16 of 29

Figure 5. Example of globally functional role represented without the compact notation (left-hand
side), and examples (right-hand side) of globally functional role, inverse functional role, functional
and inverse functional role, and functional attribute (resp., top left, top right, bottom left, and bottom
right) represented with the compact notation.

4.4. Graphol and OWL 2

In this section we study the relationship between GRAPHOL and OWL 2 [73], the
W3C standard ontology language. We first study whether GRAPHOL ontologies can be
entirely expressed in OWL 2, and then consider the other way around. In fact, for a
formal treatment we identify OWL 2 with its underlying DL SROIQ(D) DL [66,67] (some
OWL 2 features not in SROIQ(D), such as data type restrictions or key axioms, can be
modeled in GRAPHOL by using some additional graphical elements, as reported in the
Eddy documentation https://github.com/obdasystems/eddy (accessed on 17 January
2022). These aspects are not described here for the sake of simplicity).

According to the GRAPHOL syntax given earlier, GRAPHOL expressiveness goes
slightly beyond that of OWL 2. This allowed us to maintain the formal definition of
the syntax of our language simple, without burdening it with too many syntactic categories.
Of course, due to this choice, reasoning in full GRAPHOL is undecidable [11]. However, by
suitably restricting the way in which GRAPHOL expressions can be combined, we easily
obtain decidable languages. In particular, we can limit GRAPHOL in such a way that it
becomes translatable in OWL 2. To precisely describe this restriction, we need to define
basic role expressions, which are expressions constituted by either a role node or the inverse
node with a role node as input. Below we give a proviso needed to our aims.

Proviso. Role expressions given as input to domain or range restriction nodes, to self
nodes, inverse nodes, complement nodes, or chain nodes can be only basic role expressions.
Attribute expressions given as input to domain restriction nodes can be only attribute
nodes. Role and attribute expressions having the complement node as sink cannot be the
source of any inclusion edge. Role expressions having the chain node as sink cannot be the
target of any inclusion edge and can be included only in basic role expressions. Attribute
expressions in input to range restriction nodes can be only attribute nodes. GRAPHOL

inclusion assertions between value-domain expressions must involve at least a value-
domain node (i.e., the source or the target of the assertion must be an atomic data type).
Finally, value-domains and values are as in OWL 2, and the ontology must obey the same
global restrictions imposed on OWL 2 (e.g., only regular role hierarchies are allowed and
only simple roles can occur in cardinality restrictions) [66,73].

Theorem 1. Every GRAPHOL ontology constructed under the above proviso is correctly translat-
able into an OWL 2 TBox in linear time.

Proof. The function Ψ given in Section 4.2 is obviously applicable to a GRAPHOL ontology
restricted according to the above proviso. It is then easy to verify that each DL inclusion
assertion returned by Ψ is an OWL 2 axiom. Since Ψ returns one DL inclusion assertion for
each GRAPHOL inclusion assertion, the cost of the transformation is linear.

The following theorem considers instead transformation of OWL 2 TBoxes in GRAPHOL.

Theorem 2. Every OWL 2 TBox is correctly translatable into a GRAPHOL ontology in linear time.

https://github.com/obdasystems/eddy

Future Internet 2022, 14, 78 17 of 29

Proof. We first observe that any OWL 2 ontology can be written as a set of inclusion
assertions. Below, we provide some well-known correspondences useful for this aim (Q
denotes a role or its inverse, whereas >C denotes the universal concept).

(funct Q) ≡ >C v≤ 1Q.>C (transitive Q) ≡ Q ◦Q v Q
(symmetric Q) ≡ Q v Q− (asymmetric Q) ≡ Q v ¬Q−

(reflexive Q) ≡ >C v ∃Q.Sel f (irreflexive Q) ≡ >C v ¬∃Q.Sel f
(disjoint Q1 Q2) ≡ Q1 v ¬Q2

It is then possible to define a function that translates such a normalized TBox in
GRAPHOL. Intuitively, this function inverts the function Θ introduced in Section 4.2.
More precisely, we first define a function Λ−1 by induction on the structure of OWL 2
formulas, which can be seen as the inverse of the function Λ introduced in Section 4.2. For
the base case, letting S be an atomic concept (resp., role, attribute, or value-domain), Λ−1(S)
returns a GRAPHOL concept node (resp. role, attribute, or value-domain node) labeled
with S. Letting then ∃P.C (resp.∃P−.C) an OWL 2 expression, with P an atomic role and
C a concept, Λ−1(∃P.C) (resp. Λ−1(∃P−.C)) returns the GRAPHOL expression whose sink
node is a domain (resp. range) restriction node labeled “exists” taking as input Λ−1(C) and
Λ−1(P). Other inductive cases can be defined analogously. Then, letting α = α` v αr be an
OWL 2 inclusion assertion, Λ−1(α) = αG, where αG is the GRAPHOL inclusion assertion
whose sink node is Λ−1(α`) and target node is Λ−1(αr). It is easy to see that the cost of this
transformation is linear.

4.5. Example

In Figure 6, we provide the GRAPHOL specification of a portion of the Pizza ontology
we have used in some previous examples. We also present below a logically equivalent
representation of such ontology given in terms of DL assertions.

Pizza

Food

PizzaTopping

hasIngredient

exists

exists

hasTopping

CheeseyPizza MeatyPizza CheeseToppingMeatTopping

exists

existscaloriesexists
xsd:integer

VegetarianPizza

exists

not

not

or

and

Figure 6. GRAPHOL ontology example: an excerpt of the Pizza ontology.

Future Internet 2022, 14, 78 18 of 29

Pizza t PizzaTopping v Food Pizza v ¬PizzaTopping
MeatTopping v ¬CheeseTopping MeatyPizza v ¬VegetarianPizza
∃hasIngredient v Food ∃hasIngredient− v Food
hasTopping v hasIngredient ∃hasTopping− v PizzaTopping
∃calories ≡ Food ∃calories− v xsd:integer
(f unct calories) (f unct hasTopping−)
MeatTopping t CheeseTopping v PizzaTopping
CheeseyPizza tMeatyPizza tVegetarianPizza v Pizza
Pizza u ¬∃hasTopping.MeatTopping ≡ VegetarianPizza

5. Comparison with UML Class Diagrams

In this section, we discuss more in depth the relation between GRAPHOL and UML
class diagrams. This section is mainly addressed to people knowledgeable with UML
and willing to approach ontology modeling. The aim here is to highlight the differences
between the two formalisms, so that it can be easier to understand the potential of ontology
design and the shift in the modeling tools that is required to move from conceptual models
of limited expressiveness to full-fledged powerful ontology languages. The content of
this section should also further help understanding the syntax of GRAPHOL starting from
that of UML class diagrams. In Figure 7, we show how the main UML constructs are
expressible in GRAPHOL and for each construct we specify the corresponding OWL 2
axioms, expressed in DL syntax (UML n-ary relationships are not considered, since they
are not directly expressible in OWL 2 and can always be captured using only roles, i.e.,
binary relationships, through reification, similarly for role attributes. We also note that
all domain/range restriction nodes without labels in Figure 7 have to be read as if they
were labeled with “exists”, as said in Section 4). In the first four rows of the figure we
show how to represent in GRAPHOL a UML relationship R between two concepts, with
different cardinality restrictions. In the first row, where there are no such restrictions, we
simply type R by requiring that its domain belongs to concept C1 and its range to concept
C2. This is performed through two GRAPHOL inclusion assertions, corresponding to the DL
assertions ∃R v C1 and ∃R− v C2. In the second row, we add a mandatory participation
of C1 to R (indicated in UML with a min cardinality restriction 1..∗). In GRAPHOL, this is
reflected by adding an inclusion edge from the concept node C1 to the domain of the role
node R. In the third row, the UML diagram specifies that the participation of C1 to R is both
mandatory and functional (notice the cardinality restriction 1..1). In GRAPHOL this can
be easily specified by using the shortcut for global functionality introduced in Section 4.3.
Indeed, in UML both the domain and range of a role are always typed on a named concept,
and thus every local cardinality restriction is actually global, in the sense that every object
participating in the domain or range obeys it. In the next row, the participation of C1
to R is constrained by the cardinality restriction (x, y). This is represented in GRAPHOL

through the use of a second domain restriction node labeled with “(x, y)”, besides the one
used to type the domain of R. The following four rows show the main cases of concept
hierarchies. Here, through the union node (the hexagon labeled “or”), we represent the
union expression between the two concepts C2 and C3, while we use the black hexagon
(a shortcut introduced in Section 4.3) to represent their disjoint union expression. Notice
that completeness of a hierarchy is specified through a double-headed arrow. The next
two rows describe how attributes and restrictions over them are depicted. Note that in
GRAPHOL these are treated analogously as roles (we recall that in UML, in the absence of a
cardinality restriction on attributes, they are considered mandatory and functional). Finally,
in the last row, we have an example of role hierarchy, depicted in GRAPHOL as two role
nodes linked by an inclusion edge.

Future Internet 2022, 14, 78 19 of 29

UML Class Diagram GRAPHOL Diagram DL Assertions
∃R v C1
∃R− v C2
∃R v C1
C1 v ∃R
∃R− v C2

RC1 C2

∃R v C1
C1 v ∃R
∃R− v C2
(f unct R)
∃R v C1
C1 v≥ x R
∃R− v C2
C1 v≤ y R

C2 v C1

C1 v C2t C3
C2t C3 v C1

C2t C3 v C1
C2 v ¬C3

C1 v C2t C3
C2t C3 v C1
C2 v ¬C3

V
C xsd:string

∃V v C C v ∃V
∃V− v xsd:string
(f unct V)

∃V v C
∃V− v xsd:string
C v≥ x V
C v≤ y V
∃R1 v C2
∃R1− v C1
∃R2 v C3
∃R2− v C1
R2 v R1

Figure 7. UML constructs, GRAPHOL corresponding diagrams, and related DL assertions.

6. User Evaluation Study

In this section, we present the results and setup of the user evaluation tests we carried
out on the GRAPHOL language. The goal of the tests was to evaluate the effectiveness
of GRAPHOL for ontology design and understanding. Both these aspects were tested
independently and in comparison with other ontology languages similar, in spirit, to
GRAPHOL. Users with different backgrounds and levels of experience in ontology and
conceptual modeling participated in the tests.

We conducted two different studies on different models and in which users were
asked to perform a variety of editing tasks.

6.1. Setup of the Study

Before defining the definitive setup of the user study, we conducted two test runs with
ontology and conceptual modeling experts who were already familiar with the GRAPHOL

Future Internet 2022, 14, 78 20 of 29

language, which allowed us to iteratively improve the setup of the experiments. Our pri-
mary goals for these test runs were to verify that the tasks which we asked to perform were
clear, and that their difficulty was adequate for the expertise of the final test participants.
Examples of modifications that we made were the removal of overcomplicated tasks, the
modification of several questions to avoid ambiguity in what the questions were asking,
the refinement of the cheat sheets which were handed out with the questionnaires, and the
definition of the time limits for each part of the experiments.

Because we conducted two different studies, with two groups of users and on different
dates, we also took advantage of the experience of the first test to refine the second one. For
instance, we made some modifications to the tutorial slides which were presented prior
to the second test, in light of some doubts that were expressed by the users during the
presentation of these slides during the first test.

6.2. Objectives of the Study

The design of our user evaluation study was geared towards the achievement of two
main objectives.

1. Evaluate the difficulty of using the GRAPHOL language for ontology comprehension
and editing by users very experienced in conceptual modeling and (in some cases)
with basic skills in logics and ontologies.

2. Evaluate the difficulty of approaching and learning the GRAPHOL language for users
with only basic knowledge of conceptual modeling and little or no experience with
ontologies, both in isolation, and in comparison with another graphical ontology
language that is heavily based on a formalism that is already familiar to them.

In accordance to these two objectives, we identified two groups of test participants,
and defined two different types of tasks for each of these groups. Further details of the
test participants, of the required tasks, and of the structure of the two tests are given
in the remainder of this section. Here, we give a brief sketch of these two tests: the
first one included a series of comprehension tasks and of editing tasks on two ontology
models represented in the GRAPHOL language; the second one, involving users with
limited knowledge of conceptual modeling and ontologies, instead included two sets of
comprehension tasks on two ontologies represented in GRAPHOL and in OWLGrEd [29,49].

The reason for limiting the comparative evaluation of GRAPHOL with OWLGrEd to
the comprehension test with less-skilled users is that the purpose of the test was to verify
that the GRAPHOL language could be learned and used by these users with no more effort
and difficulty than that needed for another language which is, by its very nature, more
recognizable, due to its strong relation to UML class diagrams. . Therefore, it was not
in our interest to gauge the effectiveness of GRAPHOL against OWLGrEd, or any other
similar visual language, among more expert users. Instead, our test with these users was
specifically designed towards measuring their perception of GRAPHOL as a viable candidate
for future use in the design of ontologies in real life.

Furthermore, we have not carried out a comparative evaluation of our language with
ontology editors which do not provide solutions for graphic editing and which are based
on formal non-graphic languages, such as Protégé, given that our main goal is to deal with
users who are not necessarily experts in formal languages and ontologies.

6.3. Participants

Participants were recruited among computer science master’s and Ph.D. students,
postdocs, and researchers. Eighteen participants took part in the test: ten with only basic
knowledge of conceptual modeling and limited or no experience with ontologies (beginners),
and eight with advanced skills in conceptual modeling and basic knowledge of ontology
design and logic (experts). Table 4 recaps some descriptive statistics about the age of the
users, their education degree, the number of years of experience with ontologies, and their
knowledge in ontologies and conceptual modeling. Note that, as expected, the knowledge
of conceptual modeling among experts is in general very high (4.2 out of 5 average, with

Future Internet 2022, 14, 78 21 of 29

a low standard deviation of 0.7), and is fairly high among beginners (3.3 out of 5, again
with a low standard deviation of 0.7). Furthermore, the average knowledge of ontologies is
lower than that of conceptual modeling for both experts and beginners.

Table 4. Statistics of the participants (“Beg.” indicates statistics for beginners, “Exp.” indicates
statistics for experts): for Education, 1 = Bachelor’s degree, 2 = Master’s degree, 3 = Ph.D; conceptual
modeling and ontology knowledge are on a scale from 1 to 5, with 1 indicating no knowledge.

Age Education Conceptual Modeling Ontology KnowledgeKnowledge

Beg. Exp. Beg. Exp. Beg. Exp. Beg. Exp.

Min 22 27 1 2 2 3 1 1
Max 28 47 2 3 4 5 2 3

Median 24.5 31 1 2 3 4 1 2.5
Mean 24.7 34.2 1.1 2.4 3.3 4.2 1.4 2.4
St.dev. 2.3 6.7 0.3 0.5 0.7 0.7 0.5 0.7

6.4. Ontology Models

We chose three different ontologies for the study, the Pizza ontology (http://130.88.198
.11/co-ode-files/ontologies/pizza.owl, accessed on 17 January 2022), the Lehigh University
Benchmark (LUBM) ontology (http://swat.cse.lehigh.edu/projects/lubm/, accessed on 17 Jan-
uary 2022), and the Family ontology (http://rpc295.cs.man.ac.uk:8080/repository/download?
ontology=http://www.mindswap.org/ontologies/family.owl&format=RDF/XML, accessed
on 17 January 2022), and modeled excerpts of the Pizza and LUBM ontologies in both GRAPHOL

and OWLGrEd, and of the Family ontology in GRAPHOL. These ontologies were chosen for
their popularity among the Semantic Web community, and due to the fact that the simple and
widely-understood nature of the domain of these ontologies guarantees that the results of the
test would not be altered by misinterpretation of the meanings of the terms in the ontologies.

The ontology models can be found in File S1 of the Supplementary Material.

6.5. Language for Comparison

Among the available language candidates for the comparative test, we chose OWL-
GrEd [49,74] which allows for designing OWL 2 ontologies through a graphical notation
based on UML class diagrams. OWLGrEd was chosen because its goal and its expressive
power are akin to GRAPHOL’s, while its visual representation and UML-based design
principles are rather different from those of GRAPHOL, but are accessible, at least without
big efforts, to a user with knowledge in UML class diagrams. As stated earlier, among our
goals was to evaluate the difficulty of approaching the GRAPHOL language for a non-expert
user, in comparison to that of learning a language based on a formalism with which the
user is familiar with, and OWLGrEd is an ideal fit for this task.

The comparative aspect of the study was limited to these two languages in order to
avoid encumbering the users with an excessive amount of new information to process
during the tests.

Here, we give some further details about OWLGrEd, and in Figures 8 and 9, provide a
very simple example of a model represented respectively in GRAPHOL and OWLGrEd. For
a complete presentation of OWLGrEd, we refer the reader to [29,49,74].

The OWLGrEd notation is based on UML class diagrams. Specifically,

– OWLGrEd concepts are represented as UML classes, without operations;
– OWLGrEd attributes are represented as UML class attributes, but with different default

cardinalities;
– OWLGrEd roles are represented as UML binary associations with the arrow indicating

the direction, from the domain to the range. OWLGrEd roles are thus typed in both
the domain and the range;

– OWLGrEd cardinalities on roles are represented as UML cardinalities on roles, with
the possibility of further refining the cardinality;

http://130.88.198.11/co-ode-files/ontologies/pizza.owl
http://130.88.198.11/co-ode-files/ontologies/pizza.owl
http://swat.cse.lehigh.edu/projects/lubm/
http://rpc295.cs.man.ac.uk:8080/repository/download?ontology=http://www.mindswap.org/ontologies/family.owl&format=RDF/XML
http://rpc295.cs.man.ac.uk:8080/repository/download?ontology=http://www.mindswap.org/ontologies/family.owl&format=RDF/XML

Future Internet 2022, 14, 78 22 of 29

– OWLGrEd cardinality restrictions on attributes are represented as UML cardinalities
on attributes;

– OWLGrEd inclusions between concepts are represented as UML ISAs between classes;
– OWLGrEd generalizations are represented as UML generalizations, using a special

graphical symbol;
– OWLGrEd uses the OWL 2 Manchester syntax to specify expressions which denote

complex concepts;
– OWLGrEd role restrictions are represented as red arrows from the concept which is

included in the restriction to the concept that qualifies the restriction, labeled with the
name of the restricted role.

Person Car

is owner of
exists exists

Car Maniac
forall

exists
not

exists age exists
xsd:integer

Figure 8. Example of a small ontology in GRAPHOL.

Figure 9. Example of a small ontology in OWLGrEd.

6.6. Tasks

We designed a series of model comprehension tasks for both the Pizza and LUBM
ontology models, and of model modification tasks for the Family ontology model. The
tasks were designed to present a varying degree of difficulty to the user: those for beginners
were limited to more basic aspects of conceptual modeling, while those presented to experts
also focused on slightly more advanced aspects.

Each comprehension task consisted of answering a question regarding the domain
represented by the given model. Question types vary, from open format questions to
closed format (or multiple choice) questions, to yes or no questions. Each modification task
instead requested the user to modify the given GRAPHOL model of the Family ontology by
modeling one or more assertions, provided in natural language. The complete set of tests is
provided in the Supplemental Material.

For each task, the participant was asked to measure the time in minutes in which
he completed the task. We also asked each participant to indicate, on a scale from 0 to 4,
the clarity and the easiness of each task. To understand the difference between these two
response variables, consider that the participant may think he has clearly understood what
he must do for a certain task, but may not be able to easily place it into practice, or vice
versa. In different words, the first variable is a measure of the quality of the questionnaire,

Future Internet 2022, 14, 78 23 of 29

while the second is of the tools the user is provided with to carry out the tasks. Examples
of the two question types are provided below.

– Was the question clear?
Not clear at all − − − − Very clear

– Were you able to easily answer this question?
Not at all − − − − Absolutely

6.7. Structure of the Study

Here we provide the details for the evaluation studies of beginners and experts, which
were conducted separately, on different dates.
Beginners:

1. Introduction and brief GRAPHOL tutorial (15 min): a general introduction to the purpose
of the experiment, and a brief tutorial on ontologies and on the GRAPHOL language.

2. Brief OWLGrEd tutorial (15 min): a brief tutorial on the OWLGrEd language.
3. Brief user background questionnaire (5 min): participants had to answer a brief question-

naire in which they were asked to provide some personal background information, as
well as to rate their knowledge of conceptual modeling and ontologies on a scale from
1 to 5 (with 1 indicating extremely low and 5 extremely high expertise), to indicate
how many years they had of experience with ontologies (if any), whether they were
familiar with some of the more popular ontology editors and knowledge representa-
tion and conceptual modeling formalisms, and whether they had any experience with
ontologies in real-life scenarios or in manually creating or editing ontologies.

4. LUBM comprehension tasks (40 min): each user was asked to answer ten questions on
the LUBM model they were provided. Half of the users were provided a GRAPHOL

version of the LUBM model, and half an OWLGrEd version.
5. Pizza comprehension tasks (40 min): each user was asked to answer ten questions on the

Pizza model they were provided. Half of the users (those which were provided the
OWLGrEd version of the LUBM model) were provided a GRAPHOL version of the
Pizza model, and half an OWLGrEd version.

6. Ex-post survey (10 min): after all the comprehension tasks were completed, we asked
the participants to compile a short survey regarding their experience. The survey
required the users to rate, on a scale from 0 to 4, the general difficulty of the compre-
hension tasks, the difficulty of learning the GRAPHOL and OWLGrEd symbols, the
difficulty of using GRAPHOL and OWLGrEd to read ontologies, and, optionally, to
indicate aspects of GRAPHOL and OWLGrEd which they particularly liked, or that
they would like to see improved.

Experts:

1. Introduction and brief GRAPHOL tutorial (30 min): participants were given the same
introductory tutorial on ontologies and on the GRAPHOL language as the beginners,
with the addition of some more complex features on the GRAPHOL language which
were featured in the expert questionnaire but not the beginner questionnaire.

2. Brief user background questionnaire (5 min): we asked the participants to fill out the same
background questionnaire given to the beginners.

3. GRAPHOL comprehension tasks (35 min): after completing the introductory part on
GRAPHOL, each user was asked to answer ten questions on the GRAPHOL model of
the Pizza ontology they were provided.

4. GRAPHOL editing tasks (35 min): we asked each participant to perform ten editing
tasks on the GRAPHOL model of the Family ontology they were provided.

5. Ex-post survey (5 min): after carrying out both the comprehension and editing tasks, the
users were asked to fill out a brief survey, analogous to the one given to the beginners.

We now discuss some more detailed aspects of the study.

Future Internet 2022, 14, 78 24 of 29

– All participants, in support of their tasks, were provided with documentation regard-
ing the languages in play for that specific task. Specifically, the questionnaire included
some cheat sheets which recapped the symbols of the GRAPHOL and the OWLGrEd
language (the latter only for tests carried out by beginners) and their meaning, along
with some examples of the representation of some of the most common ontology
expressions and assertions in the two formalisms. Additionally, users were provided
with a printout of the slides of the introductory tutorials.

– The order in which the tasks were presented in the questionnaires was intentionally
random, i.e., not linked to the expected difficulty of each task. This choice was made
in order to compensate for a potential bias given by the learning curve of familiarizing
with GRAPHOL or OWLGrEd during the course of the tasks. In other words, we
wanted to avoid facilitating the participants by allowing them to face easier questions
at the beginning of each task, and more difficult ones at the end, when they would
probably have gained familiarity with the language.

– The experimental design method we chose for the comparative study between GRAPHOL

and OWLGrEd is the within-subjects method, common in HCI [75]. This choice, as
opposed to the between-subjects technique, was made mainly due to the limited number
of participants to the experiment. Therefore, each user was asked to complete the
comprehension tasks both for the GRAPHOL language and for the OWLGrEd language.
In order to avoid the transfer of learning effects between tasks, we split the ten users into
two groups of five, and asked the first group to first carry out the comprehension tasks
on the GRAPHOL version of the LUBM model, and then the comprehension tasks on the
OWLGrEd version of the Pizza model, and the second group to do the opposite.

As already stated, all questionnaires we used in our tests can be found in the Supple-
mental Materials.

6.8. Study Results

Figure 10 summarizes some of the results of the tests. Each box plot shows the full
range of variation, from minimum to maximum, indicated by the whiskers, the likely range
of variation, indicated by the two boxes, and the median value. The overall correctness
results for the comparative test, shown in boxplot (a), indicate a good comprehension level
by the novice users of the GRAPHOL language, that can be considered comparable to the
one obtained for OWLGrEd, which is based on UML class diagram, which is a formalism
which the users were familiar with. Boxplot (b) summarizes the correctness results of the
comparative test limited to five questions that deal with complex modeling aspects that go
beyond UML, i.e., questions 1, 3, 5, 9, and 10 on the LUBM questionnaires, and questions
2, 4, 5, 7, and 9 on the Pizza questionnaires. These results confirm that users were able to
more easily understand the completely graphical representation provided by GRAPHOL

than the formulas or non-UML constructs adopted in OWLGrEd. Finally, boxplot (c) shows
the correctness results of the non-comparative test by the more expert users. The very high
scores indicate that such users quickly learned how to read GRAPHOL diagrams and how
to use the language for modeling.

Figure 10. Correctness results for user tests. In boxplots (a,b) the scale is 0–20 (sum of correctness
scores for five students on questions graded from 0 to 4); in boxplot (c) the scale is 0–32 (sum of
correctness scores for eight students on questions graded from 0 to 4).

Future Internet 2022, 14, 78 25 of 29

6.9. Post-Questionnaire Analysis

Finally, we discuss the results of the post-test questionnaires, which were presented to
all participants. We recall that the goal of the post-test questionnaires was to measure the
perceived general difficulty of the tasks required, of learning of test language symbols and
of using GRAPHOL to read ontologies. The average results of the questionnaires are shown
in Figure 11.

1

1.5

2

2.5

3

3.5

4

4.5

5

Task
Difficulty

Symbol
Difficulty

Reading
Difficulty

Consumers
Graphol

GRAPHOL
OLWGrEd

Figure 11. Post-questionnare results (scale: 1–5, with 1 being the best value).

As one can see, the feedback essentially confirms the positive impression gained
from the analysis of the test results. Users felt about as comfortable reading ontologies
modeled through the novel GRAPHOL language as they were with those in OWLGrEd
(almost identical average scores for “Reading Difficulty”), even though, as expected, they
felt that learning GRAPHOL’s symbols was slightly more difficult than learning OWLGrEd’s
UML-based ones (“Symbol Difficulty” scores). Indeed, we recall that the participants
were knowledgeable in conceptual modeling languages such as UML class diagrams and
entity–relationship diagrams (ER). While OWLGrEd strictly adheres to the former (at the
cost of recurring to expressions in logical languages when needed), GRAPHOL is rooted in
ER, but it adds several graphical elements in order to completely cover OWL 2 without
using non-graphical formulas.

The average values in the “Task Difficulty” column are more a reflection of the diffi-
culty of the tests rather than the languages, but in both cases users seem to feel that the
tests were not excessively difficult (average difficulty score of 2.4 and 2.2 out of a maximum
of 5).

We finally point out that the results of the tests brought to light the need to enhance
the usability of the language through a dedicated ontology tool. We used many suggestions
we collected during the evaluation study to push forward the development of the Eddy
editor tool for GRAPHOL [23], which is also equipped with some specific functionalities
to facilitate the specification of GRAPHOL ontologies (e.g., through commands for the
automatic construction of some recurrent modeling patterns, such as concept hierarchies or
role typing axioms).

7. Conclusions

In this article, we studied the graphical language for ontologies GRAPHOL, which is as
expressive as OWL 2. As we have illustrated, the key features of GRAPHOL are its precise
semantics, its expressive power, and its completely graphical representation of ontologies,
inspired by popular conceptual modeling languages, such as ER. This combination sets
GRAPHOL apart from other proposals.

We remark, once again, that an editor, called Eddy [22], specifically tailored to support
the specification of GRAPHOL ontologies, is available. This tool provides advanced function-
alities for drawing syntactically correct GRAPHOL diagrams, for documenting them, and
for translating them into standard OWL 2 syntax. Eddy is currently developed by ODBA
Systems (http://obdasystems.com/, accessed on 17 January 2022), a Sapienza startup com-
pany, and is available as open-source software (https://github.com/obdasystems/eddy,
accessed on 17 January 2022).

http://obdasystems.com/
https://github.com/obdasystems/eddy

Future Internet 2022, 14, 78 26 of 29

Currently, our work is mainly focused on devising GRAPHOL-like mechanisms for the
visual specification of SPARQL queries over OWL 2 ontologies. Our idea is to automatically
produce a query in SPARQL syntax on the basis of the selections of predicates performed by
a user on a GRAPHOL ontology, which naturally allows to trace the basic graph pattern of
the query, plus additional conditions imposed on the query variables through user-friendly
visual mechanisms [76].

We are also working to add additional features to the language itself, to allow an even
broader scope of modeling possibilities. In particular, we are looking into the addition
of metamodeling features such as metaconcepts, which are concepts whose instances can
be concepts themselves, and metaproperties, which are relationships between metacon-
cepts. Metaconcept representation could be useful, for instance, for the representation
in GRAPHOL of formal ontologies, where specific metaproperties, such as, for instance,
rigidity, can be exploited for expressing key aspects of the intended meaning of predicates
in ontologies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fi14030078/s1, File S1: GRAPHOL: a graphical ontology language
Survey and User Evaluation Study.

Author Contributions: Conceptualization, D.L., D.F.S., V.S. and G.D.G.; Formal analysis, D.L., D.F.S.
and V.S.; Methodology, D.L. and D.F.S.; Supervision, D.L.; Validation, D.L., D.F.S. and V.S.; Writing—
original draft, D.L., D.F.S., V.S. and G.D.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This work was partly supported by the EU within the H2020 Programme under
the grant agreement 834228 (ERC Advanced Grant WhiteMec) and the grant agreement 825333
(MOSAICrOWN), by Regione Lombardia within the Call Hub Ricerca e Innovazione under the
grant agreement 1175328 (WATCHMAN), and by the Italian MUR (Ministero dell’Università e della
Ricerca) through the PRIN project HOPE (prot. 2017MMJJRE), by Sapienza (project CQEinOBDM),
and by the J.P.Morgan AI Faculty Research Award 2021 “Resilience-based Generalized Planning and
Strategic Reasoning”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, P.P. The Entity-Relationship Model: Toward a Unified View of Data. ACM Trans. Database Syst. 1976, 1, 9–36. [CrossRef]
2. Unified Modeling Language (UML) Superstructure, Version 2.0. 2005. Available online: http://www.uml.org/ (accessed on 17

January 2022).
3. Sowa, J.F. Conceptual Structures: Information Processing in Mind and Machine; Addison Wesley Publ. Co.: Boston, MA, USA, 1984.
4. Sowa, J.F. (Ed.) Principles of Semantic Networks: Explorations in the Representation of Knowledge; Morgan Kaufmann: Burlington, MA,

USA, 1991.
5. Woods, W.A. What’s in a Link: Foundations for Semantic Networks. In Representation and Understanding: Studies in Cognitive

Science; Bobrow, D.G., Collins, A.M., Eds.; Academic Press: Cambridge, MA, USA, 1975; pp. 35–82.
6. Woods, W.A.; Schmolze, J.G. The KL-ONE Family. In Semantic Networks in Artificial Intelligence; Lehmann, F.W., Ed.; Pergamon

Press: Oxford, UK, 1992; pp. 133–178.
7. Brachman, R.J.; Levesque, H.J. The Tractability of Subsumption in Frame-Based Description Languages. In Proceedings of the

AAAI-84: Fourth National Conference on Artificial Intelligence, Austin, TX, USA, 6–10 August 1984; pp. 34–37.
8. Borgida, A.; Brachman, R.J. Conceptual Modeling with Description LogicsIn. Chapter 10, pp. 349–372. Available online:

http://www.cs.toronto.edu/~jm/2507S/Readings/DLTutorial.pdf (accessed on 17 January 2022).
9. Berardi, D.; Calvanese, D.; De Giacomo, G. Reasoning on UML Class Diagrams. Artif. Intell. 2005, 168, 70–118. [CrossRef]
10. Catarci, T.; Lenzerini, M. Representing and using Interschema Knowledge in Cooperative Information Systems. J. Intell. Coop. Inf.

Syst. 1993, 2, 375–398. [CrossRef]
11. Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; Patel-Schneider, P.F. (Eds.) The Description Logic Handbook: Theory,

Implementation and Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007.
12. Bao, J. OWL 2 Web Ontology Language Document Overview (Second Edition). W3C Recommendation, World Wide Web

Consortium. 2012. Available online: http://www.w3.org/TR/owl2-overview/ (accessed on 17 January 2022).

https://www.mdpi.com/article/10.3390/fi14030078/s1
https://www.mdpi.com/article/10.3390/fi14030078/s1
http://doi.org/10.1145/320434.320440
http://www.uml.org/
http://www.cs.toronto.edu/~jm/2507S/Readings/DLTutorial.pdf
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/10.1142/S0218215793000174
http://www.w3.org/TR/owl2-overview/

Future Internet 2022, 14, 78 27 of 29

13. Amoroso, A.; Esposito, G.; Lembo, D.; Urbano, P.; Vertucci, R. Ontology-based Data Integration with Mastro-i for Configuration
and Data Management at SELEX Sistemi Integrati. In Proceedings of the 16th Italian Conference on Database Systems (SEBD),
Mondello, Italy, 22–25 June 2008; pp. 81–92.

14. Savo, D.F.; Lembo, D.; Lenzerini, M.; Poggi, A.; Rodríguez-Muro, M.; Romagnoli, V.; Ruzzi, M.; Stella, G. Mastro at Work:
Experiences on Ontology-Based Data Access. Proc. DL 2010, 573, 20–31.

15. Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; Savo, D.F. The
Mastro System for Ontology-based Data Access. Semant. Web J. 2011, 2, 43–53. [CrossRef]

16. Civili, C.; Console, M.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Lepore, L.; Mancini, R.; Poggi, A.; Rosati, R.; Ruzzi, M.; et al.
MASTRO STUDIO: Managing Ontology-Based Data Access Applications. Proc. VLDB Endow. 2013, 6, 1314–1317. [CrossRef]

17. Kharlamov, E.; Giese, M.; Jiménez-Ruiz, E.; Skjaeveland, M.G.; Soylu, A.; Bagosi, T.; Console, M.; Haase, P.; Horrocks, I.; Horrocks,
I.; et al. Optique 1.0: Semantic Access to Big Data. The Case of Norwegian Petroleum Directorate’s FactPages. In Proceedings of
the 12th International Semantic Web Conference (ISWC), Sydney, NSW, Australia, 21–25 October 2013; pp. 65–68.

18. Antonioli, N.; Castanò, F.; Coletta, S.; Grossi, S.; Lembo, D.; Lenzerini, M.; Poggi, A.; Virardi, E.; Castracane, P. Ontology-based
Data Management for the Italian Public Debt. In Proceedings of the 8th International Conference on Formal Ontology in
Information Systems (FOIS), Rio de Janeiro, Brazil, 22–25 September 2014; pp. 372–385.

19. Aracri, R.M.; Radini, R.; Scannapieco, M.; Tosco, L. Using Ontologies for Official Statistics: The ISTAT Experience. In Current
Trends in Web Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 166–172.

20. Santarelli, V.; Lembo, D.; Ruzzi, M.; Ronconi, G.; Bouquet, P.; Molinari, A.; Pompermaier, F.; Caltabiano, D.; Catoni, E.; Fabrizi,
A.; et al. Semantic Technologies for the Production and Publication of Open Data in ACI-Automobile Club d’Italia. In CEUR
Workshop Proceedings, Proceedings of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Outrageous
Ideas), Auckland, New Zealand, 26–30 October 2019; Volume 2456, pp. 307–308.

21. Lembo, D.; Li, Y.; Popa, L.; Scafoglieri, F.M. Ontology mediated information extraction in financial domain with Mastro System-T.
In Proceedings of the 6th International ACM Workshop on Data Science for Macro-Modeling (DSMM 2020), Portland, OR, USA,
14 June 2020; ACM Press: New York, NY, USA, 2020; pp. 3:1–3:6.

22. Lembo, D.; Pantaleone, D.; Santarelli, V.; Savo, D.F. Drawing OWL 2 ontologies with Eddy the editor. AI Commun. 2018,
31, 97–113. [CrossRef]

23. Lembo, D.; Pantaleone, D.; Santarelli, V.; Savo, D.F. Easy OWL Drawing with the Graphol Visual Ontology Language. In
Proceedings of the 15th International Conference on the Principles of Knowledge Representation and Reasoning (KR),Cape Town,
South Africa, 25–29 April 2016; pp. 573–576.

24. Console, M.; Lembo, D.; Santarelli, V.; Savo, D.F. GRAPHOL: Ontology Representation Through Diagrams. In Proceedings of the
27th International Workshop on Description Logic (DL), Vienna, Austria, 17–20 July 2014; Volume 1193, pp. 483–495.

25. Brockmans, S.; Volz, R.; Eberhart, A.; Löffler, P. Visual modeling of OWL DL ontologies using UML. In Proceedings of the 3rd
International Semantic Web Conference (ISWC), Hiroshima, Japan, 7–11 November 2004; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2004; Volume 3298, pp. 198–213.

26. Djuric, D.; Gasevic, D.; Devedzic, V.; Damjanovic, V. A UML Profile for OWL Ontologies. In Proceedings of the 2003/2004
European Workshop on Model Driven Architecture (MDAFA), Twente, The Netherlands, 26–27 June 2003; Revised Selected
Papers; 2004; pp. 204–219.

27. Guizzardi, G. Ontological Foundations for Structural Conceptual Models; Centre for Telematics and Information Technology (CTIT):
Enschede, The Netherlands, 2005.

28. Falco, R.; Gangemi, A.; Peroni, S.; Shotton, D.M.; Vitali, F. Modelling OWL Ontologies with Graffoo. In The Semantic Web: ESWC
2014 Satellite Events; Revised Selected Papers; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014;
Volume 8798, pp. 320–325.

29. Cerans, K.; Ovcinnikova, J.; Liepins, R.; Grasmanis, M. Extensible Visualizations of Ontologies in OWLGrEd. In The Semantic
Web: ESWC 2019 Satellite Events; Revised Selected Papers; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11762, pp. 191–196.

30. Evans, A.S. Reasoning with UML Class Diagrams. In Proceedings of the 2nd IEEE Workshop on Industrial Strength Formal
Specification Techniques (WIFT), Boca Raton, FL, USA, 23 October 1998; IEEE Computer Society Press: Piscataway, NJ, USA,1998.

31. Artale, A.; Franconi, E. Temporal ER Modeling with Description Logics. In Proceedings of the 18th International Conference on
Conceptual Modeling (ER), Paris, France, 15–18 November 1999; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 1999; Volume 1728, pp. 81–95.

32. Simmonds, J.; Bastarrica, M.C.; Hitschfeld-Kahler, N.; Rivas, S. A Tool Based on DL for UML Model Consistency Checking. Int. J.
Softw. Eng. Knowl. Eng. 2008, 18, 713–735. [CrossRef]

33. Chein, M.; Mugnier, M.L. Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs; Springer:
Berlin/Heidelberg, Germany, 2008.

34. Kaneiwa, K.; Satoh, K. On the Complexities of Consistency Checking for Restricted UML Class Diagrams. Theor. Comput. Sci.
2010, 411, 301–323. [CrossRef]

35. Queralt, A.; Artale, A.; Calvanese, D.; Teniente, E. OCL-Lite: Finite Reasoning on UML/OCL Conceptual Schemas. Data Knowl.
Eng. 2012, 73, 1–22. [CrossRef]

http://dx.doi.org/10.3233/SW-2011-0029
http://dx.doi.org/10.14778/2536274.2536304
http://dx.doi.org/10.3233/AIC-180751
http://dx.doi.org/10.1142/S0218194008003829
http://dx.doi.org/10.1016/j.tcs.2009.04.030
http://dx.doi.org/10.1016/j.datak.2011.09.004

Future Internet 2022, 14, 78 28 of 29

36. Franconi, E.; Mosca, A.; Oriol, X.; Rull, G.; Teniente, E. Logic Foundations of the OCL Modelling Language. In Proceedings of the
14th European Conference on Logics in Artificial Intelligence (JELIA), Funchal, Portugal, 24–26 September 2014; pp. 657–664.

37. Oriol, X.; Teniente, E.; Tort, A. Computing repairs for constraint violations in UML/OCL conceptual schemas. Data Knowl. Eng.
2015, 99, 39–58. [CrossRef]

38. Zhang, F.; Ma, Z.M.; Cheng, J. Enhanced entity-relationship modeling with description logic. Knowl. Based Syst. 2016, 93, 12–32.
[CrossRef]

39. Halpin, T.A. Object-Role Modeling: Principles and Benefits. Int. J. Inform. Syst. Model. Des. (IJISMD) 2010, 1, 33–57. [CrossRef]
40. Halpin, T.A. Formalization of ORM Revisited. In OTM Workshops; Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 2012; Volume 7567, pp. 348–357.
41. Franconi, E.; Mosca, A.; Solomakhin, D. ORM2: Formalisation and Encoding in OWL2. In On the Move to Meaningful Internet

Systems: OTM 2012 Workshops; Springer: Berlin/Heidelberg, Germany, 2012; pp. 368–378.
42. Keet, C.M. Mapping the Object-Role Modeling language ORM2 into description logic language DLRifd. arXiv 2007,

arXiv:cs/0702089.
43. Wagih, H.M.; ElZanfaly, D.S.; Kouta, M.M. Mapping object role modeling 2 schemes to OWL2 ontologies. In Proceedings

of the 3rd International Conference on Computer Research and Development, Shanghai, China, 11–13 March 2011; Volume 3,
pp. 126–132.

44. Sportelli, F.; Franconi, E. A Formalisation and a Computational Characterisation of ORM Derivation Rules. In On the Move to
Meaningful Internet Systems: OTM 2019 Conferences-Confederated International Conferences: CoopIS, ODBASE, C&TC; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11877, pp. 678–694.

45. Brockmans, S.; Haase, P.; Hitzler, P.; Studer, R. A metamodel and UML profile for rule-extended OWL DL ontologies. In The
Semantic Web: Research and Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 303–316.

46. Object Management Group. Ontology Definition Metamodel. Technical Report formal/2009-05-01, OMG. 2009. Available online:
http://www.omg.org/spec/ODM/1.0 (accessed on 17 January 2022).

47. Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A. OWL Web Ontology
Language Reference. W3C Recommendation, World Wide Web Consortium. 2004. Available online: http://www.w3.org/TR/
owl-ref/ (accessed on 17 January 2022).

48. Benevides, A.B.; Guizzardi, G. A model-based tool for conceptual modeling and domain ontology engineering in OntoUML. In
Enterprise Information Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 528–538.

49. Barzdins, J.; Barzdins, G.; Cerans, K.; Liepins, R.; Sprogis, A. UML Style Graphical Notation and Editor for OWL 2; BIR, Forbrig, P.,
Günther, H., Eds.; Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2010; Volume 64,
pp. 102–114.

50. Gaines, B.R. Designing visual languages for description logics. J. Logic Lang. Inf. 2009, 18, 217–250. [CrossRef]
51. Dau, F.; Eklund, P. A diagrammatic reasoning system for the description logic ALC. J. Vis. Lang. Comput. 2008, 19, 539–573.

[CrossRef]
52. Krivov, S.; Williams, R.; Villa, F. GrOWL: A tool for visualization and editing of OWL ontologies. J. Web Sem. 2007, 5, 54–57.

[CrossRef]
53. Lohmann, S.; Negru, S.; Haag, F.; Ertl, T. Visualizing ontologies with VOWL. Semant. Web J. 2016, 7, 399–419. [CrossRef]
54. Dudáš, M.; Lohmann, S.; Svátek, V.; Pavlov, D. Ontology visualization methods and tools: A survey of the state of the art. Knowl.

Eng. Rev. 2018, 33, E10. [CrossRef]
55. Wiens, V.; Lohmann, S.; Auer, S. WebVOWL Editor: Device-Independent Visual Ontology Modeling. In Proceedings of

International Semantic Web Conference (ISWC 2018) Posters & Demonstrations, Industry and Blue Sky Ideas Tracks, Monterey,
CA, USA, 8–12 August 2018; Volume 2180.

56. da Silva, I.; Santucci, G.; del Sasso Freitas, C. Ontology visualization: One size does not fit all. In Proceedings of theEuroVA 2012:
International Workshop on Visual Analytics, Vienna, Austria, 4–5 June 2012; pp. 91–95.

57. Shneiderman, B. Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. (TOG) 1992, 11, 92–99.
[CrossRef]

58. de Souza, K.X.; dos Santos, A.D.; Evangelista, S.R. Visualization of ontologies through hypertrees. In Proceedings of the Latin
American Conference on Human-Computer Interaction, Rio de Janeiro, Brazil, 17–20 August 2003; ACM Press: New York, NY,
USA, 2003; pp. 251–255.

59. Wang Baldonado, M.Q.; Woodruff, A.; Kuchinsky, A. Guidelines for using multiple views in information visualization. In
Proceedings of the Working Conference on Advanced Visual Interfaces, Palermo, Italy, 23–26 May 2000; ACM Press: New York,
NY, USA, 2000; pp. 110–119.

60. Lanzenberger, M.; Sampson, J.; Rester, M. Visualization in Ontology Tools. In Proceedings of the 2009 International Conference
on Complex, Intelligent and Software Intensive Systems, (CISIS), Fukuoka, Japan, 16–19 March 2009; IEEE Computer Society:
Washington, DC, USA, 2009; pp. 705–711.

61. Katifori, A.; Halatsis, C.; Lepouras, G.; Vassilakis, C.; Giannopoulou, E.G. Ontology visualization methods—A survey. ACM
Comput. Surv. 2007, 39, 10. [CrossRef]

62. Gennari, J.H.; Musen, M.A.; Fergerson, R.W.; Grosso, W.E.; Crubézy, M.; Eriksson, H.; Noy, N.F.; Tu, S.W. The evolution of
Protégé: An environment for knowledge-based systems development. Int. J. Hum.-Comput. Stud. 2003, 58, 89–123. [CrossRef]

http://dx.doi.org/10.1016/j.datak.2015.06.006
http://dx.doi.org/10.1016/j.knosys.2015.10.029
http://dx.doi.org/10.4018/jismd.2010092302
http://www.omg.org/spec/ODM/1.0
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://dx.doi.org/10.1007/s10849-008-9078-1
http://dx.doi.org/10.1016/j.jvlc.2007.12.003
http://dx.doi.org/10.1016/j.websem.2007.03.005
http://dx.doi.org/10.3233/SW-150200
http://dx.doi.org/10.1017/S0269888918000073
http://dx.doi.org/10.1145/102377.115768
http://dx.doi.org/10.1145/1287620.1287621
http://dx.doi.org/10.1016/S1071-5819(02)00127-1

Future Internet 2022, 14, 78 29 of 29

63. Haase, P.; Lewen, H.; Studer, R.; Tran, D.T.; Erdmann, M.; d’Aquin, M.; Motta, E. The NeOn ontology engineering toolkit. In
Proceedings of the 17th International World Wide Web Conference (WWW), Beijing, China, 21–25 April 2008.

64. Adamou, A.; Palma, R.; Haase, P.; Montiel-Ponsoda, E.; Aguado de Cea, G.; Gómez-Pérez, A.; Peters, W.; Gangemi, A. The NeOn
Ontology Models. In Ontology Engineering in a Networked World; Springer: Berlin/Heidelberg, Germany, 2012; pp. 65–90.

65. Weiten, M. OntoSTUDIO® as a Ontology Engineering Environment. In Semantic Knowledge Management; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 51–60.

66. Horrocks, I.; Kutz, O.; Sattler, U. The Even More Irresistible SROIQ. In Proceedings of the 10th International Conference on the
Principles of Knowledge Representation and Reasoning (KR), Lake District, UK, 2–5 June 2006; pp. 57–67.

67. Horrocks, I.; Sattler, U. Ontology Reasoning in the SHOQ(D) Description Logic. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI), Seattle, WA, USA, 4–10 August 2001; pp. 199–204.

68. Bertin, J. Semiology of Graphics: Diagrams, Networks, Maps; University of Wisconsin Press: Madison, WI, USA, 1983.
69. Miller, G.A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev.

1956, 63, 81. [CrossRef]
70. Nordbotten, J.C.; Crosby, M.E. The effect of graphic style on data model interpretation. Inf. Syst. 1999, 9, 139–155. [CrossRef]
71. Goodman, N. Languages of Art: An Approach to a Theory of Symbols; Hackett Publishing: Indianapolis, IN, USA, 1976.
72. Moody, D.L. The “physics” of notations: Toward a scientific basis for constructing visual notations in software engineering. Softw.

Eng. IEEE Trans. 2009, 35, 756–779. [CrossRef]
73. Motik, B.; Parsia, B.; Patel-Schneider, P.F. OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax.

W3C Recommendation, World Wide Web Consortium. 2012. Available online: http://www.w3.org/TR/owl2-syntax/ (accessed
on 17 January 2022).

74. Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, A. Advanced Ontology Visualization with OWLGrEd. In CEUR Workshop Proceedings;
Dumontier, M., Courtot, M., Eds.; OWLED. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.4
375&rep=rep1&type=pdf (accessed on 17 January 2022).

75. Dix, A. Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2009.
76. Di Bartolomeo, S.; Pepe, G.; Savo, D.F.; Santarelli, V. Sparqling: Painlessly Drawing SPARQL Queries over Graphol Ontologies.

In Proceedings of the CEUR Electronic Workshop Proceedings, Fourth International Workshop on Visualization and Interaction
for Ontologies and Linked Data (VOILA@ISWC 2018), Monterey, CA, USA, 8 October 2018; Volume 2187, pp. 64–69.

http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1046/j.1365-2575.1999.00052.x
http://dx.doi.org/10.1109/TSE.2009.67
http://www.w3.org/TR/owl2-syntax/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.4375&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.4375&rep=rep1&type=pdf

	Introduction
	Introducing the Graphol Language
	Paper Organization and Contributions

	Related Work
	Preliminaries
	The Graphol Language
	Graphol Syntax
	Graphol Semantics
	Shortcuts
	Graphol and OWL 2
	Example

	Comparison with UML Class Diagrams
	User Evaluation Study
	Setup of the Study
	Objectives of the Study
	Participants
	Ontology Models
	Language for Comparison
	Tasks
	Structure of the Study
	Study Results
	Post-Questionnaire Analysis

	Conclusions
	References

