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Abstract: In most Computer Vision applications, Deep Learning models achieve state-of-the-art
performances. One drawback of Deep Learning is the large amount of data needed to train the models.
Unfortunately, in many applications, data are difficult or expensive to collect. Data augmentation
can alleviate the problem, generating new data from a smaller initial dataset. Geometric and color
space image augmentation methods can increase accuracy of Deep Learning models but are often not
enough. More advanced solutions are Domain Randomization methods or the use of simulation to
artificially generate the missing data. Data augmentation algorithms are usually specifically designed
for single images. Most recently, Deep Learning models have been applied to the analysis of video
sequences. The aim of this paper is to perform an exhaustive study of the novel techniques of video
data augmentation for Deep Learning models and to point out the future directions of the research
on this topic.
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1. Introduction

We live in a world where most of our actions are constantly captured by cameras. Video
cameras are spread almost everywhere: in smartphones, computers, drones, surveillance
systems, cars, robots, intercoms, etc. Image Processing (IP) and Computer Vision (CV)
models, able to extract and analyse information from images, are becoming more and more
important. With the advent of Deep Learning (DL) and the increase in computational power,
classical CV algorithms are quickly being replaced by Convolutional Neural Networks
(CNN) or other DL models [1,2]. Typically, DL models possess a huge number of parameters
that need to be trained. The risk of overfitting with such big models is very high and big
datasets with high variability are needed for networks to be able to generalise.

Unfortunately, collecting a big collection of images or videos and labellng them is
both resource and time consuming, and, in some cases, even impossible. In medical image
analysis, data such as computerized tomography (CT) and magnetic resonance imaging
(MRI) scans are expensive and time consuming to collect. Moreover, medical data are
protected by strict privacy protocols, making it difficult to obtain past recordings from
hospitals. In robotics, a prolonged operation of robots for collecting data can result in
the wearing or damaging of components, labour intensive procedures and dangerous
interactions between machines and operators. Collecting data for autonomous vehicles
control have similar problems. Data collection in this case consists of running a vehicle (car,
drone, boat) with a camera mounted on top in various environmental conditions (weather,
time of the day, city versus countryside, etc.). This process can take a conspicuous amount
of time, it is expensive, the vehicle can be damaged and special permissions to operate in
restricted areas are often needed. From these examples, it is clear how data collection can
become a complex and troublesome process, but it is only part of the problem. In order
to generate a dataset for supervised learning models, data need to be labelled. In many
occasions, the labelling process cannot be automatised, and each image needs to be labelled
manually by humans (e.g., medical images segmentation).

Future Internet 2022, 14, 93. https://doi.org/10.3390/fi14030093 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14030093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-9611-0655
https://orcid.org/0000-0001-8646-6183
https://doi.org/10.3390/fi14030093
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14030093?type=check_update&version=1


Future Internet 2022, 14, 93 2 of 19

The consequence of the aforementioned problems in data collection and labelling is
the generation of small and unbalanced datasets. Several techniques exist to tone down
this problem, reducing the overfitting and improving the generalisation capabilities of
the models. For some problems like object recognition, face recognition and autonomous
driving, big generic and public datasets have already been collected [3–6]. Pretraining is
a technique where models are first trained on big existing datasets built for more generic
tasks. In this way, pretrained models can learn a base knowledge to be transferred to a
specific problem. A pretrained model is able to converge faster on a new dataset, needing
less data [7]. A similar approach is Transfer Learning: models pretrained on a dataset for a
specific data distribution are able to transfer part of the acquired knowledge to a different
distribution with small or no fine-tuning. Data regularization techniques (Dropout and
Batch normalization) are other approaches to reduce overfitting. Using a combination of
these techniques, tasks where data are scarce can be more easily handled by DL models.

However, none of the previous methods directly solve the problems of shortage
of data and unbalanced datasets. Data augmentation techniques, on the other hand,
address the lack of data artificially generating new ones. The most basic technique of
data augmentation for image analysis is noise injection: the dataset is expanded creating
duplicates of the original images injected of random values in the RGB space. Since the
introduction of AlexNet in 2012 [8], geometric and color space transformations are common
data augmentation techniques used to improve the performance of DL models for image
analysis. Cropping, flipping, rotating, translating, histogram and RGB values alteration all
fall in this category.

With the improvements in Neural Networks (NN) and DL, more advanced data
augmentation methods increased. Strategies based on generative modeling are able to
generate new input images belonging to a similar distribution of the original dataset. These
strategies use Generative adversarial networks (GANs) to generate the new images [9]. A
GAN consists of two networks, a generator and a discriminator that compete against each
other during training: the generator tries to produce an image belonging to a distribution
of interest from input images, while the discriminator tries to distinguish generated images
from the ones belonging to the true data distribution. After training, the generator can
be used to augment the original dataset with newly generated images from the same
distribution of the original dataset. Neural Style Transfer is another DL based methodology
able to augment the size of image datasets. The idea is to alter the latent space of an
Encoder/Decoder CNN in order to generate images with different styles. The output image
of the Decoder is similar to the input one but with a difference in style that depends on the
changes applied to the latent layer. In [10], the authors propose a GAN architecture, based
on Neural Style Transfer, able to generate photo realistic images that can be used to create
synthetic datasets.

We already mentioned several data augmentation techniques to improve training
and reduce overfitting of image processing DL models. A common trait of all these
methodologies is the use of images from the original dataset as a base for generating the
new images. A different approach is to generate the images for the augmented dataset
from physical models that approximate the world. In this case, detailed models of the
environment, the physics and the cameras are defined by the researcher and used to
generate synthetic approximation of real images. The researchers are able to randomise the
scene and create varied simulated images tuning the models’ parameters. This ability to
tune the models offers a higher flexibility compared to other data augmentation techniques.
Graphical and physical simulators are powerful tools and several researchers are using
them for the generation of artificial datasets [11]. This process has been accelerated by
the advancement in the video games industry. Modern game engines (Unity [12] and
Unreal Engine [13] among others) are able to render in a few milliseconds photo-realistic
images, simulate realistic physical interaction between objects, and they offer powerful
scripting and designing tools to recreate detailed artificial scenes. Exploiting game engines,
researchers can create varied and faithful to reality synthetic datasets to train large DL
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models for image analysis. Tremblay et al. [11] used Unreal Engine to create a photo
realistic synthetic dataset for training an object detection model. The dataset was generated
randomising objects position, scene, illumination and camera position. However, photo
realism is not always the way to go to create a synthetic dataset. Domain Randomization
(DR) is a method to generate synthetic data in simulation [14]. If the variability in the
generated dataset is significantly high, models trained on it will be able to generalise to the
real world. In order to achieve this result, the scene parameters need to be randomized to
an extent that the generated images can fully cover the desired data distribution. In this
way, to overtake the reality gap (intrinsic difference between simulated and real worlds),
simulated datasets are not generated to be as realistic as possible, but to contain a high
variability in lighting, object shapes, textures, camera position, and physics behaviours.

Video analysis adds the temporal dimension to the images problem, resulting in a very
complex challenge. With the introduction of industry 4.0, robotics and autonomous vehicles,
video analysis is becoming a focal problem for the research community. In this case, the
input of the DL models is not single images but streams of multiple images with temporal
and spatial correlation between each others. While some of the models meant for image
analysis can be used out of the box to analyse videos, usually some changes have to be
done to take into account the temporal dimension. Optical flow [15], 3D convolutions [16]
and Recurrent Neural Networks (RNN) [17,18] are the most common methods used to
handle image sequences. However, the correlation in time and space in between images of
the same sequence needs to be taken into account not only in the design of the DL models,
but also in the design of the datasets. Geometric and color space transformation can usually
be applied to videos keeping them constant for the entire image sequence, but, for more
complex methods, the changes need to be more significant. In generative modeling, the
Generator network needs to keep some information of the past frames. The DL models
used to analyse image sequences (Optical flow, 3D convolutions and RNN) are a proper
solution. In simulation, the physical interaction between objects needs to be taken into
account. If the focus is in human action recognition or prediction, the skeletal animation of
the subjects is needed to simulate the motion. In domain randomization methods, camera
motion must be taken into account and the variation in textures, illumination and objects
shapes must be constant or coherent through the entire video sequence.

Reviews on image data augmentation for DL models have already been
published [19–23]. In their paper, Shorten et al. [19] realised a complete survey on im-
age data augmentation for DL, covering both basic image manipulation and DL approaches.
The basic manipulation approaches are composed of geometrical and color space trans-
formations, kernel filters, noise injection, mixing images and random erasing. In their
review, the authors focus also on more recent DL approaches: feature space augmentation,
adversarial training, GAN-based and Neural Style Transfer. More recently, Khalifa et al. [20]
grouped the papers of their review on image data augmentation in a similar fashion. In
addition, the authors present an analysis of the state of the art specific to different ap-
plication domains. On the contrary, Wang et al. [21] focused their review on the more
specific problem of face data augmentation. The authors reviewed the state of the art on
face data augmentation under several points of view: transformation types, transformation
methods, and evaluation metrics. In face data augmentation, likewise for general image
data augmentation, generative models have recently been the primary choice, replacing
or enhancing most of the other methods. A different application area was tackled by
Chlap et al. [22] in their review of medical image data augmentation. The paper analyses
the state of the art of CT and MRI image data augmentation for DL applications. The
reviewed works were divided into three groups. The first group are basic augmentation
techniques that correspond to geometric and color space transformations. The second group
are deformable augmentation techniques, consisting of scaling and warping masks applied
to the original images. The last group are the DL augmentation techniques, further divided
into GAN-based and others. The author pointed out that basic and deformable methods
are still more popular being easy to apply on medical data and due to the availability of
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several software libraries for their implementation. On the other hand, DL methods are
evolving rapidly and will gain more popularity given their ability to tackle complex data
synthesis problems such as cross-domain image synthesis. Image mixing and deleting
data augmentation strategies are reviewed by Humza Naveed in his survey [23]. The
reviewed papers are split into three categories: erasing image patches; cut image regions
and replacing them with patches from other images; and mixing multiple images. The
author compared the performances of the reviewed methods for image classification, object
detection, and fine-grained image recognition on publicly available datasets. Unfortunately,
as far as our knowledge goes, an exhaustive review on data augmentation for DL based
video analysis is still missing. The goal of this paper is to fill this gap. In Section 2, the
methodology used to review the state of the art on video data augmentation is presented.
This section also contains a statistical analysis of the literature selected for reviewing. In
Section 3, the papers selected are presented based on the data augmentation method they
use. Lastly, future research challenges and directions are discussed in Section 4.

2. Methods Used and Overview of the Literature

The focus of this review paper is to comprehensively cover the scientific publications
on video data augmentation for DL models. We are going to center our attention specifically
on data augmentation methods designed to handle the temporal dimension of video
streams. Nowadays, several search engines for academic publications are available. We
decided to use Scopus [24] to examine the scientific literature and select the best set of
papers published in recent years on video data augmentation. Scopus has been chosen
based on the size and the quality of its scholarly literature database. The final set of selected
publications was obtained after few iterative refinement steps:

1. An initial search was performed, resulting in a collection of 570 publications. The
criteria used to select a paper were the following:

(a) title, abstract or main text must contain the set of words (“video” “data augmen-
tation”) or (“video” “synthetic” “data” “generation”) or (“video” “simulation”
“data” “generation”)

(b) papers must be published from 2012 to 2022;
(c) papers must be written in English;
(d) book chapters were excluded.

2. Duplicated entries and papers with the titles and abstracts not relevant with the topic
were removed, resulting in a pruned set of 76 papers.

3. The full text of the remaining 76 paper was evaluated. Several of the papers ap-
plied standard image data augmentation strategies without focusing specifically
on the problem of video data augmentation. For this reason, only 33 papers were
finally selected.

4. The set of 33 papers was extended with two more papers which we felt had an impact
on the survey. The final number of paper selected for the review is 35.

Analysing more in details the search results, we can point out some interesting findings.
Figure 1 depicts a bar chart of the number of publication for each year. We have not found
any relevant publication in the interval between 2012 and 2015; for this reason, only the
years from 2016 to 2022 are shown. It is possible to notice an exponential growth in the
number of papers that introduce data augmentation strategies tailored for video sequences.
This is a clear sign on how this topic is significant and is attracting the interest of the
research community. In addition, 77% of the papers selected for this review has been
published after 2019, demonstrating the novelty of this research area.

Some insight can be also drawn by the analysis of the most frequently occurring
keywords (Figure 2). Besides the obvious high number of occurrences of keywords like
“Data Augmentation”, “Deep Learning” and “Computer Vision”, it is worth noticing
the presence in the plot of application areas highly dependent on time (e.g., “Action
Recognition” and “Human-action Recognition”). Data augmentation techniques specifically
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tailored for video sequences are particularly interesting in applications dealing with subjects
in motions and scenarios dynamically changing through time.

Figure 1. Number of the selected publications per year in the interval between 2016–2022. No relevant
publications on video data augmentation has been found between 2012–2015.

Figure 2. Number of occurrences of the 15 most frequently occurring keywords in the selected papers.

3. Review on Video Data Augmentation

In this section, we are going to review and analyse the 35 papers selected from the
literature. The papers in this collection range from straightforward time domain extensions
of geometric and color space transformations, to complex DL generative models able to
render realistic synthetic videos. Some of the works focus primarily on data augmentation;
for others, data augmentation is only a block of a bigger system, while some others present
architectures that are not primarily intended for data augmentation, even if they can be
used to expand or create a video dataset. For all the reviewed papers, we will analyse
exclusively their application on video data augmentation. We decided to organise the
review grouping the papers according to the methodology they use. We define five classes
of methodologies for video data augmentation: basic transformations (geometric, color
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space, temporal, erasing and mixing), feature space augmentation, DL models, simulation,
and methods that improve data generated though simulation using Generative Adversarial
Networks. Tables 1 and 2 list all the 35 papers with their application area, data augmentation
methodology, and DL model used for the testing and dataset used for data augmentation
or comparison. The next subsections will analyse each of these classes.

Table 1. List of the reviewed papers part 1. The first 20 papers ordered by year of publication. Please
read the analysis of the papers in Section 3 for a better understanding of the fields.

Paper Application Area Data Augmentation
Method Model Tested Dataset

Charalambous et al.,
2016 [25] Gait recognition

Simulated avatars
animated with

mocap data
SVM Self collected

Wang et al., 2017 [26] Action recognition Temporal cropping Three-stream CNN UCF101, HMDB51,
Hollywood2, Youtube

De Souza et al.,
2017 [27] Action recognition Simulated scene

(Unity) TSN UCF-101, HMDB-51

Wang et al., 2018 [28] Salient regions
detection Optical flow warping Encoder/Decoder

CNNs FBMS, DAVIS

Griffith et al., 2018 [29] Aerial surveillance simulated wide area
aerial imagery - -

Lu et al., 2018 [30] Synthesis of Shaking
Videos

Dynamic 3D scene
modeling - -

Dong et al., 2018 [31] Video recommendation Feature space InceptionV3 Hulu Challenge 2018

Angus et al., 2018 [32] Road-scene synthetic
annotation Simulated road scenes FCN, SegNet

URSAS (generated by
the authors),

CityScapes, PFB,
Synthia

Aberman et al.,
2019 [33] Video-based cloning Double branches GAN - -

Rimboux et al.,
2019 [34] Pedestrian detection

Background
subtraction + 3D

synthetic models of
persons

ResNet-101, RPN+ Town Centre

Fonder et al., 2019 [35] Drone video analysis
Simulated aerial scenes

(Unreal Engine and
AirSim)

- -

Wu et al., 2019 [36] Action recognition GAN for dynamic
image generation 2D and 3D CNNs UCF101, KTH

Sakkos et al., 2019 [37] Background
subtraction

Changes in
illumination

Encoder/Decoder
CNN SABS

Li et al., 2019 [38] Hand gesture
recognition Temporal cropping mdCNN VIVA

Sakkos et al., 2020 [39] Background
subtraction

Changes in
illumination

Encoder/Decoder
CNN SABS

Kwon et al., 2020 [40]
Novel view synthesis

of human performance
videos

Two-tower siamese
encoder/decoder - MVHA, PVHM,

ShapeNet

Chai et al., 2020 [41] Crowd video
generation CrowdGAN MCNN, CSRNet,

SANet, CAN Mall and FDST
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Table 1. Cont.

Paper Application Area Data Augmentation
Method Model Tested Dataset

De Souza et al.,
2020 [42] Action recognition Simulated scene

(Unity) TSN UCF-101, HMDB-51

Namitha et al.,
2020 [43] Video surveillance Coloured boxes

superposition - Sherbrooke, i-Lids,
M-30, Car

Isobe et al., 2020 [44] Person re-identification Random cropping,
flipping and erasing Swallow network ILIDSVID, PRID 2011,

MARS

Table 2. List of the reviewed papers part 2. The last 15 papers ordered by year of publication. Please
read the analysis of the papers in Section 3 for a better understanding of the fields.

Paper Application Area Data Augmentation
Method Model Tested Dataset

Zhang et al., 2020 [45] Video data
augmentation

WGAN for dynamic
image generation 2D and 3D CNNs LS-HMDB4

Yun et al., 2020 [46] Action recognition Image mixing SlowFast-50 Mini-Kinetics

Ye et al., 2020 [47] Semantic segmentation Simulated fisheye
model SwiftNet-18 CityScapes

Wang et al., 2021 [48] Crowd understanding Simulation + GAN Several CNNs

ShanghaiTech
A/B,UCF-CC-50,

UCF-QNRF,
WorldExpo′10,

CityScapes

Hwang et al., 2021 [49] Action recognition Simulated scene and
avatar (Unreal Engine)

Glimpse, ST-GCN,
VA-CNN

ETRI-Activity3D, NTU
RGB+D 120

Tsou et al., 2021 [50] Photoplethysmography
Estimation

Encoder/Decoder deep
networks

rPPG network
(3DCNN) PURE, UBFC-RPPG

Wei et al., 2021 [51] Human video motion
transfer GAN - Self collected, iPER

dataset

Chen et al., 2021 [52] Self driving Video images + 3D car
models PSPNet, DeepLabv3 UrbanData (Collected

by the authors)

Dong et al., 2021 [53] Video relevance
prediction Feature space InceptionV3 Hulu Challenge 2018

Hu et al., 2021 [54] Object detection
Background extraction

and geometrical
transformations

ResNet-18, ResNet-50
LaSOT, GOT-10k,

TrackingNet, OTB-100,
UAV123

Kerim et al., 2021 [55] Person tracking Simulated scene
(NOVA engine)

DiMP, ATOM, KYS,
PrDiM

PTAW172Real,
PTAW217Synt
(Collected and

generated by the
authors)

Varol et al., 2021 [56] Action recognition Synthetic 3D human
avatars generation 3D ResNet-50 RGB+D Dataset

Hu et al., 2021 [57] Object tracking Simulated scene
(GTAV)

Pixel2Mesh, Pix2Vox,
MeshR-CNN,
Video2Mesh

SAIL-VOS 3D
(proposed synthetic

dataset), Pix3D.

Bongini et al., 2021 [58] Object detection - YOLOv3 FLIR ADAS

Otberdout et al.,
2022 [59]

Facial expression
generation

MotionGAN and
TextureGAN LSTM CASIA
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3.1. Basic Transformations

A simple technique for temporal data augmentation in videos was proposed in [26].
The paper focuses on the problem of action recognition from videos. The authors augment
the training set for their model applying iteratively a temporal cropping several times to
each original video sequence. They temporally sub-sampled each video sequence of length
l with a stride s, obtaining s new sequences of length l/s. A three-stream CNN was trained
with and without data augmentation. The accuracy of both networks was evaluated on four
different datasets: UCF101, HMDB51, Hollywood2 and Youtube. The network trained with
data augmentation improved the accuracy on all the datasets (+1.3% on UCF101, +1.1%
on HMDB51, +1.2% on Hollywood2 and +2.5% on Youtube). Data augmentation using
temporal cropping is proposed also by Lee et al. [38]. The authors augment a video dataset
of hand gestures splitting the original 12 frames videos in 3 videos of 8 frames each (1st
to 8th, 3rd to 10th and the 5th to 12th frame). They also invert the temporal order of the
frames obtaining an augmented dataset six times larger than the original. The proposed
data augmentation strategy was used to augment the VIVA dataset. Their mdCNN trained
on the augmented dataset improved the accuracy of 6% over the same network trained
without data augmentation.

Applying commonly used image-level data augmentation strategies to video se-
quences may introduce unnecessary noise corrupting the temporal cues of intra-clip frames.
In [44], the authors solve the problem applying the same transformation to all the frames
of a mini-batch clip instead of randomly changing it for each frame. Random cropping,
flipping and erasing are used to augment a video dataset for person re-identification.

Image mixing techniques (e.g., Mixup [60] and CutMix [61]) have been widely used
for image data augmentation. These types of approaches generate the augmented images
mixing the pixel values from two different images of the original dataset. Some algorithms,
(i.e., Mixup), averages the RGB values of the two images, while methods like CutMix replace
randomly shaped patches of one image with the other. In order to extend image mixing
techniques to video data augmentation, temporal cues in between frames must be taken into
account. VideoMix [46] is a data augmentation method proposed by Yun et al. that extends
CutMix to video data augmentation. The temporal consistency is preserved keeping the
patch size and position the same for all the frames of each video clip. The authors tested
VideoMix on three tasks (action recognition, localization and detection) training different
3D CNNs. They compared the performances of their algorithm against the vanilla CutMix
method. After training the SlowFast-50 network on the Mini-Kinetics dataset, VideoMix
achieved the best improvement in accuracy (+2.4%) for action recognition.

A different approach to generate synthetic video is warping some key frames with
the use of optical flow fields. This technique is proposed by [28] to augment a dataset for
salient regions detection in videos. Starting from video frames and their saliency masks,
the authors generate a synthetic optical flow field. They then use these optical flow fields
to warp the original frames in order to generate new synthetic data. The proposed data
augmentation method was tested on FBMS and DAVIS datasets. To show the effectiveness
of data aumentation, three versions of training sets were created: only synthetic images,
mixed real and synthetic images, and only real images. After training on the three training
sets, the saliency maps mean absolute error (MAE) was calculated for each version. Using
only synthetic data resulted in a small increase in MAE compared to the mixed training set
(7.65 → 9.27 on FBMS, 6.36 → 7.53 on DAVIS), while the real images training set suffered
from severe overfitting.

Sakkos et al. [37,39] achieved data augmentation through changes in illumination of
video datasets for background subtraction. New synthetic images are generated applying
local and global illumination masks to the original frames that simulate dynamical changes
in illumination (spot light switch, global darkening and brightening, etc.). The data aug-
mentation method was tested on the Stuttgart Artificial Background Subtraction dataset
(SABS). Even if the dynamic light models were simplistic, an Encoder/Decoder CNN for
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background extraction improved its intersection over union (IoU)trained on the augmented
dataset rather than the original one: +25% (0.3594 → 0.6161) on IoU.

In video synopsis applications, motion information is more important than video
fidelity. Namitha et al. [43] proposed a toolbox for data augmentation able to generate
synthetic surveillance videos of static cameras for video synopsis analysis. The synthetic
videos are composed superimposing to an extracted background a series of coloured
rectangular boxes that represent moving objects or persons. The toolbox permits to choose
number, size, trajectory and speed of the boxes added to the synthetic video. In order to
test the efficiency of their data augmentation method, the authors compared real camera
footage from different real-world video datasets to their synthetic counterparts. When
evaluated on frame compact ratio (CR), total true collision area (TCA) and total false
overlapping area (FOA) metrics, the results obtained by both real-world and synthetic
data were close, demonstrating the validity of the data augmentation method. In their
paper, Hu et al. [54] introduced AMMC (Augmentation by Mimicking Motion Change),
a data augmentation strategy for object tracking that takes into consideration tracking
motion features. AMMC first separates the target and background from the images. The
cropped target images are transformed with operations like rotation, projection, resizing,
blurring, and occlusion that reflect motion changes. The augmented target images are then
superimposed on the background images at a random position in order to obtain new
synthetic data. The authors trained ATOM and DiMP trackers on their simulated dataset,
and they perform comprehensive experiments on five popular tracking benchmarks: LaSOT,
GOT-10k, TrackingNet, OTB-100 and UAV123.

In several video analysis applications (e.g., autonomous driving or surveillance), a
wider field of view gives more information about the surrounding environment. For this
reason, fisheye cameras are often used to capture the videos to analyse. Unfortunately,
due to the high level of distortion of fisheye camera images, common data augmentation
methods based on geometrical transformations cannot be directly applied. Ye et al. [47]
proposed a data augmentation method able to generate synthetic fisheye images from
rectilinear ones. The authors defined a geometrical projection model that simulates a
fisheye camera. The model possesses seven degrees of freedom (DoF): six DoFs are the
relative rotation (3 DoFs) and translation (3 DoFs) between the world coordinate system
and the camera coordinate system, while the last one is the focal length. The augmented
data are generated randomising each DoF in order to vary translations, rotations, zooming
and distortion of the simulated camera. Through a detailed ablation study, the paper
evaluated the importance of each DoF calculating the mean intersection over union (mIoU)
for semantic segmentation. Focal length is the most relevant, but using a 7-DoF model
gives the best mIoU. However, for tests of the augmented dataset on real fisheye images,
the paper gives only qualitative results.

3.2. Feature Space

DL models often extract a one-dimensional, feature vector from the input images.
Sometimes, it is more convenient to perform the data augmentation on the feature space
instead than on the image space (lack of availability of the original videos due to privacy
constraints, ad hoc organization of the feature space, etc.). In their works, Dong et al. [31,53]
proposed a data augmentation strategy for a content-based video recommendation chal-
lenge. The authors did not have access to the RGB video frames and applied the data
augmentation directly on the feature vector extracted from an InceptionV3 deep network.
They propose a data augmentation technique similar to the one used by Wang et al. [26] for
video action recognition. Their frame-level data augmentation sub-samples each feature
sequence skipping frames with a stride s. Repeating the process starting from a different
frame of the original feature sequence, they are able to generate s distinct new sequences.
The authors compared the performance metric scores (recall/hit scores) of the network
trained with and without data augmentation on the Hulu Content-based Video Relevance
Prediction Challenge 2018. In the most recent work, the network trained with data augmen-
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tation achieved an improvement of the performances both for TV-Shows (2.708 → 3.092)
and Movies datasets (2.030 → 2.289).

3.3. Dl Models

In [33], the authors used a double branches GAN to generate synthetic videos of a
subject performing new dancing moves. The network is trained on a specific person, and
it is able to generate images of that person performing moves acted by different subjects.
Even if it is possible to use this system to augment an existing video dataset, one drawback
is that the network needs to be retrained every time that the principal actor changes. Each
synthetic frame can be generated at 12.5 fps using an NVIDIA GeForce GTX Titan Xp GPU
(12 GB).

A GAN is also used by [36] to augment video datasets for action recognition. For each
video sequence representing an action, the generator outputs a single frame that encodes all
the information regarding motion features. The generated frames and original datasets are
then joined together to obtain the augmented training set. The GAN features generator can
enlarge the differences between similar classes. The data augmentation model was tested
on UCF101 and KTH action recognition datasets. A 2DCNN and 3DCNN were trained
with and without data augmentation, with the data augmentation networks obtaining
an increase in accuracy on both datasets with respect to the one trained on the original
ones: 2DCNN +35% on KTH and +26% on UCF101, 3DCNN +37% on KTH and +21%
on UCF101. The work of Zhang et al. [45] shares the idea of utilising a GAN to generate
dynamic images compressing the motion information of video sequences. The authors
propose a data augmentation framework that generates new synthetic dynamic images
from videos using a WGAN. The augmented dataset of real and synthetic dynamic images
can be used to train video classification models. In an ablation study, the proposed method
was compared with other two data augmentation strategies: corner cropping with scale
jittering (CCS) and horizontal flipping (HF). The three data augmentation strategies were
applied separately to the LS-HMDB4 dataset and the proposed method obtained the better
accuracy of 71.01% (70.28% for CCS and 69.69% for HF).

More recently, Wei et al. [51] presented a novel GAN based model for Appearance-
Controllable Human Video Motion Transfer. The GAN model is able to generate a novel
video from a source motion video and multiple target appearance videos. The innovation of
their technique is the ability to control the appearance of the subject and the background in
the generated synthetic videos without any retraining of the model. To achieve this result,
the input are first preprocessed, extracting the skeletal poses sequence from the source
motion video together with the appearance of face, upper garment and lower garment from
the target appearance videos. Using the preprocessed inputs, a GAN generates a synthetic
video of a new subject performing the source action. This video is then superimposed to a
selected background to generate the final video sequence.

Kwon et al. [40] designed and implemented a two-tower siamese encoder/decoder
network able to synthesise, from videos of a human performing the same action taken from
multiple reference viewpoints, novel videos of the same scene from different viewpoints.
The network first encodes the 2D videos in a 3D volumetric latent layer. The volumetric
latent layer is then used to generate the synthetic new viewpoint videos.

Instead of focusing on a single subject, CrowdGAN [41] is a DL model able to re-
cursively generate synthetic crowd videos starting from few initial context frames. The
model contains two modules, one directly predicts the next frame while the other predicts
the optical flow map used to warp the pixels of the starting frame. The output of the
two modules is fused together to obtain the next frame. Iterating the process, using the
output frames as next inputs, CrowdGAN can generate longer realistic video sequences
for crowd motion analysis. In order to evaluate the applicability of the model for data
augmentation, the authors tested it on two datasets for crowd counting: Mall and FDST.
Several state-of-the-art counting methods (i.e., MCNN, CSRNet, SANet and CAN) were
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trained with and without augmenting the datasets. The results of all the tests on data
augmentation outperformed the ones on real data.

Tsou et al. [50] focused their attention on the specific problem of Remote Photoplethys-
mography Estimation (rPPG), in order to detect blood volume changes from videos of
human faces. They propose a data augmentation methodology to generate synthetic videos
of the face of a subject that represents a target rPPG signal. The facial synthetic videos are
generated by two Encoder/Decoder deep networks. The inputs needed by the models are
images of the face of the subject and the target rPPG signal. The authors evaluate their
model on PURE and UBFC-RPPG datasets over several metrics (e.g., Pearson correlation
coefficient (R), Mean absolute error (MAE), and Root mean square error (RMSE)). They
trained on three different data: the source data, the data augmented with traditional meth-
ods (i.e., random rotation, brightness, and saturation), and the data augmented with the
proposed method. The model trained using the proposed method for data augmentation
improved the performances on all the metrics. Lastly, the authors of [59] presented a model
able to generate synthetic images of facial expressions. The model is composed of two
GANs: a MotionGAN able to generate a series of synthetic facial landmark sequences that
represent facial expressions; and a TextureGAN that generates novel facial expressions
videos from the generated landmark sequences together with a source natural face im-
age. The performances of MotionGAN in data augmentation were tested on the CASIA
dataset, training an LSTM network to recognise facial expressions. The LSTM trained on
the original training set achieved an accuracy of 87.5%, while the same network trained on
an augmented dataset using MotionGAN achieved 92.7%.

3.4. Simulation

The great success of the video game industry is leading to an exponential improvement
of graphic cards and real-time rendering systems. Several graphic and physic engines exist
that are able to render photo realistic scenes at high frame rates. Game engines like Unreal
Engine [13] and Unity [12] not only produce high quality synthetic videos, but they also
come with a powerful, programmable and user friendly interface, making them the perfect
tool to generate augmented simulated datasets. In robotics, simulators are often used to
test and train the control models and 3D robotic simulator, which have existed for more
than two decades. As far as DL model training is concerned, Reinforcement Learning (RL)
agents have often been trained in simulations, due to their need to continuously explore
the environment that surrounds them [62].

One of the first attempts to generate a video simulated dataset for gait recognition was
made by Charalambous et al. in 2016 [25]. The authors used Vicon’s motion capture data
extracted from recordings of humans walking and running on a treadmill. The Vicon data
were then imported into Blender [63] and attached to randomly generated avatars (with
differences in age, sex, weight, etc.). Using Blender, it was possible to automatically label the
data. Compared to a more recent simulated dataset, the images were quite simplistic, with
a single avatar centered in the frame and with a plain grey background. De Souza et al. [27]
made a step ahead generating a diverse, realistic, and physically plausible dataset of human
action videos, called PHAV. The authors used Unity to render the videos, and they were
able to randomise the scene based on different parameters and preset assets (environment,
camera position, weather, lighting, time of the day, number of actors). The approach is
not limited to existing motion capture sequences, but it procedurally defines synthetic
actions via a combination of atomic motions. In their follow up paper [42], the authors
improve and deeper describe the generative 3D model and the procedural algorithm to
randomise the scene and generate the actions. The improved framework is also able to
generate multiple sensor modalities like semantic segmentation and optical flow. The
proposed parametric simulation tool is able to generate fully annotated action videos at 3.6
FPS using one consumer-grade gaming GPU (NVIDIA GTX 1070). The authors tested data
augmentation performances of the model on two main stream action recognition datasets:
UCF-101 and HMDB-51. A Temporal Segment Network (TSN) was trained with and
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without data augmentation, with the former (named CoolTSN) obtaining higher accuracy
on both datasets: TSN on UCF-101 93.6%; CoolTSN on UCF-101 94.2%; TSN on HMDB-51
66.6%; and CoolTSN on HMDB-51 69.5%.

ElderSim, a synthetic data generation platform for human action recognition was
implemented by Hwang et al. [49]. The authors used Autodesk Maya and Unreal Engine to
model and simulate virtual scenes for eldercare applications. The realistic elders models are
placed inside detailed 3D house environments and they are animated using motion capture
data. The platform presents a user interface for generating synthetic video sequences
with randomised camera viewpoints, illumination, objects, and avatars’ appearance and
movements. The data augmentation tool was tested on two elder activity recognition
datasets (ETRI-Activity3D and NTU RGB+D 120) training three different action recognition
models (Glimpse, ST-GCN, VA-CNN). The recognition networks were trained both on the
original datasets and on the same datasets augmented with synthetically generated videos.
In all the tests performed, the networks trained on augmented datasets improved the
accuracy, reaching an increase of +16.39% on a cross-dataset test using the Glimpse model.
In a similar fashion, Hu et al. [57] use the open world game Grand Theft Auto V (GTAV)
to create a synthetic dataset for object selection and 3D mesh reconstruction from videos
named SAIL-VOS 3D. The dataset provides video frames, camera matrices, depth data,
instance level segmentation, instance level amodal segmentation and the corresponding
3D object shapes. No quantitative experiments on real-world datasets were performed.
Kerim et al. [55], on the other hand, created their own rendering engine (NOVA) based
on Unity to allow researchers with no experience in computer graphics to generate high
quality datasets with accurate and dense annotations. The authors collected a real-world
dataset named PTAW172Real, and they used NOVA to generate a synthetic one called
PTAW217Synt. They tested several state-of-the-art person trackers (DiMP, ATOM, KYS
and PrDiM) training them on both PTAW172Real and PTAW217Synt. Overall, the models
trained on the synthetic dataset obtained better IoU results compared to the same models
trained on PTAW172Real.

Surveillance video analysis is another area of application of simulated video data
augmentation. In this case, the synthetic data need to be generated based on an accurate
crowd and traffic simulation. The area to be watched can be wide, as in aerial surveillance
imagery. Virtual flight simulators can come in handy to render photo realistic videos of wide
areas. Griffith et al. [29] proposed a system for the generation of synthetic wide area aerial
surveillance imagery. The authors simulated the traffic in an urban environment using
Matlab and a traffic simulator (SUMO). The 3D models of city buildings were extruded
from Open Street Map data and exported, together with the traffic simulations, to X-Plane
flight simulator, which has been used as the main visualization tool. The system was able
to generate simulated aerial videos of wide urban areas.

With the rise of autonomous vehicles, one of the most relevant applications for com-
puter vision and DL are self driving cars. Angus et al. [32] explore using commercial video
games to generate large-scale, high-fidelity training data for semantic segmentation in
autonomous driving scenarios. The authors use GTAV to simulate, render and annotate
a synthetic dataset of cars driving in urban roads (URSA dataset). In-game AI is used to
drive the vehicles in simulation and an optimised annotation algorithm is proposed to
segment the synthetic frames. The performances of URSA dataset used as a traning set
for semantic segmentation were tested on the popular CityScapes dataset. The evaluation
metric used was the class-specific intersection over union (c-IoU) averaged over all of the
19 classes of the dataset, and the networks used for segmentation were FCN and SegNet.
The FCN model trained on an URSA synthetic dataset obtained an IoU in line with other
state-of-the-art synthetic datasets: URSA = 0.139; Playing For Benchmarks (PFB) = 0.170;
Synthia = 0.126. The performances are still far from the one obtained training directly FCN
on CityScapes (c-IoU 0.449). However, using URSA plus only 10% of CityScapes dataset
for training, the mean c-IoU gets closer to the baseline (0.422). Autonomous drones have
now become very popular. Fonder et al. [35] used Unreal Engine and the AirSim plugin to
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generate a simulated dataset of flying drones. The authors simulated several sensors other
than RGB cameras (GPS, depth sensor, accelerometer and gyroscope), and they were able to
produce several pieces of simulated data (RGB on-board camera images, and depth, normal
and semantic segmentation maps). Different weather conditions and seasonal changes
were present.

In problems where camera motion is the central focus, 3D simulated data are a good
solution for data augmentation. Lu et al. [30] presented a framework to generate syn-
thetic shaking videos to train video stabilization and deblurring models. As seen in
previous papers, the authors generate various camera paths and motions starting from
motion capture data. Matlab was used to process the original shaking motion capture
data and produce the new synthetic camera motions. Autodesk Maya was used to ren-
der the synthetic videos of a camera moving in different static environments and with
different illumination.

Simulated data do not need to render the entire scene. Some methods superimpose
new simulated actors or objects on top of existing videos. In [34], Rimboux et al. generate
an augmented synthetic dataset of video from surveillance cameras. The idea is to extract
the background from a surveillance video sequence, calculate the 3D plane of the ground
and superimpose 3D simulated pedestrians on top of it. This method is able to create a
realistic video sequence, but it needs significant preprocessing to extract the background
and calculate the 3D walkable area of the scene. The data generation model was tested in a
person detection scenario using the Town Centre data set. A pretrained version of ResNet-
101 and RPN+ networks was used as baseline. The two networks were then trained on
the proposed synthetic dataset improving the average accuracy compared to the baselines
(ResNet-101 39.09% → 50.04%, RPN+ 20.77% → 21.32%). A similar approach to generate
video simulation for self driving cars (GeoSim) has been proposed by Chen et al. [52].
The idea behind their work is to superimpose realistic dynamic objects (cars) on existing
on-board camera videos in order to obtain novel synthetic data. The authors create a dataset
of 3D dynamic objects from real images and LiDAR point clouds. Starting from camera
video footage, LiDAR point clouds, and HD maps, GeoSim adds and moves the 3D models
of the cars into the 3D representation of the source video. The 3D scene is then used to
add the car model to the source video generating a new realistic synthetic sequence. In
addition, the authors collected a real-world dataset from cameras mounted on a fleet of self
driving cars (UrbanData). To test the synthetic data generation, they trained two semantic
segmentation networks (PSPNet, DeepLabv3) on the UrbanData dataset, both with and
without augmenting it with synthetic data. The networks trained on the augmented dataset
obtained an increase in the mean IoU: PSPNet +1.8%; DeepLabv3 +0.2%. Varol et al. [56]
automatically estimate 3D human motions from videos and use that information to generate
synthetic videos of realistic 3D human avatars performing those actions. The authors tested
the data augmentation quality of their synthetic data training a 3D ResNet-50 network on
the NTU RGB+D dataset of human actions. The network was tested with and without data
augmentation. The model trained on real+synthetic data improved the mean accuracy over
the one trained only on real data (74.8% → 81.7%).

3.5. Solving the Reality Gap (Simulation + GAN)

The reality gap is the subtle discrepancy between reality and simulation that prevents
DL models to properly learn from simulated images. One way to alleviate the problem is
to exploit the recent advancement in generative adversarial networks. GAN models can be
used to refine synthetic images to be visually closer to real ones. Reently, Wang et al. [48]
used a similar idea in their data augmentation framework for crowd videos. They created
two synthetic datasets. The first one is a large synthetic video training set with labels
generated using the video game GTAV; the second one is a smaller dataset of synthetic
images generated by a CycleGAN. The CycleGAN takes as input real and simulated images
and generates realistic images based on the two. CycleGAN generated dataset preserves
the labels of the original simulated videos. The large synthetic dataset was used to pretrain
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a CNN crowd understanding model. The crowd model was then fine-tuned on the smaller
refined dataset.

Bongini et al. [58] used Unity game engine to augment a thermal imagery video
dataset with synthetic images. In order to improve the fidelity of the synthetic images
generated in Unity, the authors used a LSGAN model. Starting from a synthetic image and
its segmentation mask, the generative network is able to output a refined thermal image.

4. Future Directions and Conclusions

Video analysis is a rising research topic and DL is the best tool to tackle it. Unfor-
tunately, DL models need a large amount of training data that are often not available or
difficult to collect. For this reason, in the last couple of years, several researchers are trying
to find solutions for data augmentation for videos.

4.1. From Static Image to Video Data Augmentation

Data augmentation for static images is a well developed research field. Several models
able to augment static image datasets are already available, and it is worth analysing more
in detail the possibility of their use on video data augmentation. In order to apply standard
image data augmentation methods to video sequences, the time domain needs to be taken
in consideration. The changes applied to each frame must be coherent through time.

In video analysis, time series of images are usually organised in mini batches represent-
ing short clips. To guarantee a time coherence, geometric and color transformation must
remain constant through the entire mini batch, and they can be randomised over different
mini batches. In other scenarios, 2D motion models can be used to extend static image data
augmentation methods to videos. Data augmentation systems based on random erasing,
for example, generate the augmented images removing the pixel values from random
patches of the original ones. For video data augmentation, instead of randomly selecting
a patch for each image, the patch size and position can change based on a predefined 2D
motion on the image plane. This approach simulates the occlusions created by a dynamic
moving object in the scene.

DL based data augmentation models can perform better on videos if they are able to
keep a memory of the previous frames to generate the new ones. The past frames contain
information about temporal variations in the scene, like object motions, dynamic light
changes, and weather evolution, among others. RNN are widely used for the analysis of
text and time series due to their ability to retain a memory of the past inputs through their
internal loops. Recently, 1D RNN models (i.e., LSTM and GRU) have been integrated to
CNN (ConvLSTM [64], ConvGRU [65]) to perform video analysis and generation. Another
approach used to analyse image temporal sequences is the use of 3D convolutions. In this
case, the third dimension is used to stack several contiguous frames to obtain temporal
information. Extending generator networks with a time series specific model like 3D
convolutions or RNN is a promising solution.

Several simulator tools able to generate synthetic images for object detection dataset
augmentation (e.g., the Unreal Engine 4 plugin “NVIDIA Deep learning Dataset Synthesizer
(NDDS)” [66]) already exists, but their randomisation routines do not usually take into
consideration time dependency for the creation of simulated video sequences. Some of
the reviewed papers are starting to move in that direction (e.g., ElderSim, a synthetic data
generation platform for human action recognition [49]).

4.2. Future Directions

From our review, it is possible to notice that basic transformations for video data
augmentation are effective, but they are not as flexible as more powerful approaches like
generative adversarial networks or 3D simulators. More recent papers tend to utilise GAN
models to generate realistic synthetic data (see Figure 3), but the authors often use the same
architectures both for problems of image and video analysis. Some authors are starting to
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integrate, to generators, models used for sequence analysis like RNN or 3D convolutions,
and we believe this will be the future direction.

Figure 3. Examples of synthetic images generated by GAN models. Please refer to the original papers
for more information. (Upper left) Aberman et al. [33]. (Upper right) Wei et al. [51]. (Bottom left)
Kwon et al. [40]. (Bottom right) Chai et al. [41].

On the other side, 3D simulators and game engines are becoming more powerful
and user-friendly. Game engine companies are getting involved in Computer Vision
and Machine Learning problems and some specialized DL and AI plugins for the most
popular engines (Unity and Unreal) are starting to appear. In the next few years, this
collaboration between academic research and game industry will become even stronger.
One of the biggest advantages of the use of simulators for data augmentation is the ease
of automatically labelling the data and generating complex annotations like segmentation
or depth maps. Moreover, next generation engines are able to render, at high framerate,
images almost indistinguishable from real ones (see Figure 4). One drawback of simulated
videos is the reality gap. Even if synthetic images generated by 3D game engines are
getting close to be identical to real images, they are still not able to replicate all the visual
and physical details of the real world. We have seen that, in order to reduce the reality
gap, a combination between simulated videos and GAN models can be used. Researchers
are starting to propose architectures where a simulator is used to generate the synthetic
images, while a GAN model is used to refine them, resulting in generated images closer
to real camera ones. This approach takes the best of the two worlds: high fidelity of GAN
generated images and flexibility of 3D simulators.

Important aspects to take in consideration while training and running DL models are
time and memory efficiency. Usually, the time needed by a data augmentation algorithm to
generate the dataset is negligible compared to the one needed for collecting and labeling
novel real-world data. Even in the eventuality that the augmented data generation is a
time consuming process, once the augmented dataset is generated, various tests can be
performed on it. Unfortunately, it is not always possible to generate the entire dataset
before training. Sometimes, the dataset has to be generated online. The reasons for this
can be many: limited memory to store the data, generation of the data guided by the
training for reinforcement learning models, and so on. For data augmentation algorithms
based on basic transformations, computational time usually is not an issue. Rotations,
cropping, change in illumination, noise addition and image mixing are usually simple
transformations that are quick to calculate. Complex simulations, on the other hand, can
be computationally expensive. Fortunately, in the last few decades, game engines made
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a significant improvement in speed and graphical fidelity (games usually run at 120/60
fps). Recent data augmentation methods that use game engines (Unity, Unreal Engine,
GTA) to produce synthetic data are able to generate a frame in few milliseconds. Other
data augmentation methods that are computationally demanding are the ones based on
DL models (e.g., GAN networks). Big generator networks can require powerful GPUs to
generate the augmented data and several hours to be trained. In case of online generation
of the augmented data, sharing the GPU between the data augmentation model and the
main DL model can be complicated. Computational efficiency of data augmentation
methods is a crucial issue that needs to be carefully addressed in future papers on video
data augmentation.

Figure 4. Examples of synthetic images generated by 3D simulators. Please refer to the original papers
for more information. (Upper left) Kerim et al. [55]. (Upper right) De Souza et al. [42]. (Bottom left)
Fonder et al. [35]. (Bottom right) Hwang et al. [49].

4.3. Conclusions

This paper presented a complete review of the state of the art in data augmentation
specifically addressing the problem of video datasets. We analysed 35 papers published
in the period between 2016 and the first months of 2022 pointing out the most common
methodologies in use and future directions. Recently, video data augmentation has gained
popularity, due to the rise of several applications based on video analysis. From our re-
search, a review having its focus only on video data augmentation is missing and this
survey has the target to fill that gap. We noticed how the problem of video data augmenta-
tion is having a big impact in the CV community, demonstrated by the exponential growth
of papers on that topic in the last few years. This review shows that, in data augmentation,
we are having a transition from methods based on basic image transformations to more
complex generative and simulated models. The latter models are more powerful and
flexible, but they also bring new challenges and open future research directions. We tried
to address some of them in this review.
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