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Abstract: With the fast development of Fifth-/Sixth-Generation (5G/6G) communications and the
Internet of Video Things (IoVT), a broad range of mega-scale data applications emerge (e.g., all-
weather all-time video). These network-based applications highly depend on reliable, secure, and
real-time audio and/or video streams (AVSs), which consequently become a target for attackers.
While modern Artificial Intelligence (AI) technology is integrated with many multimedia applications
to help enhance its applications, the development of General Adversarial Networks (GANs) also leads
to deepfake attacks that enable manipulation of audio or video streams to mimic any targeted person.
Deepfake attacks are highly disturbing and can mislead the public, raising further challenges in
policy, technology, social, and legal aspects. Instead of engaging in an endless AI arms race “fighting
fire with fire”, where new Deep Learning (DL) algorithms keep making fake AVS more realistic,
this paper proposes a novel approach that tackles the challenging problem of detecting deepfaked
AVS data leveraging Electrical Network Frequency (ENF) signals embedded in the AVS data as
a fingerprint. Under low Signal-to-Noise Ratio (SNR) conditions, Short-Time Fourier Transform
(STFT) and Multiple Signal Classification (MUSIC) spectrum estimation techniques are investigated
to detect the Instantaneous Frequency (IF) of interest. For reliable authentication, we enhanced the
ENF signal embedded through an artificial power source in a noisy environment using the spectral
combination technique and a Robust Filtering Algorithm (RFA). The proposed signal estimation
workflow was deployed on a continuous audio/video input for resilience against frame manipulation
attacks. A Singular Spectrum Analysis (SSA) approach was selected to minimize the false positive
rate of signal correlations. Extensive experimental analysis for a reliable ENF edge-based estimation
in deepfaked multimedia recordings is provided to facilitate the need for distinguishing artificially
altered media content.

Keywords: deepfake attacks; Audio and Video Systems (AVS); Internet of Video Things (IoVT);
adversarial machine learning; environmental fingerprint; Electrical Network Frequency (ENF) signals;
spectral estimation; Singular Spectrum Analysis (SSA)

1. Introduction

Modern Artificial Intelligence (AI)/Machine Learning (ML) technology is widely inte-
grated with many multimedia applications to help enhance its applications, and General
Adversarial Networks (GANs) enable the manipulation of audio or video streams seam-
lessly based on the probability distribution of each dataset class [1]. Since first introduced
in 2015, the development of the generator and the discriminator module of the GAN has led
to the generation of deepfaked images that are indistinguishable from real images [2]. Such
high-resolution and accurate generation of images had found many applications in modern
media. The potential applications of deepfakes include e-health/medical field, commer-
cial applications, and secure privacy in media. With the capability to generate feature

Future Internet 2022, 14, 125. https://doi.org/10.3390/fi14050125 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14050125
https://doi.org/10.3390/fi14050125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-0511-0722
https://orcid.org/0000-0002-9623-237X
https://orcid.org/0000-0003-1880-0586
https://orcid.org/0000-0001-6894-6108
https://doi.org/10.3390/fi14050125
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14050125?type=check_update&version=1


Future Internet 2022, 14, 125 2 of 20

characteristics based on a learned probability distribution, a deepfake generation model
was proposed to help physically challenged people with entertainment media, where the
model extracts motion features from a source subject and generates similar movements
using the targeted subject [3]. In medical applications, deepfakes are readily applicable
to develop better plastic surgery procedures for facial reconstruction [4]. Along with a
guidance-based AI system in surgery, deepfakes are also used to generate training samples
for rare medical conditions where the data are limited [4]. Commercial companies develop
deepfake techniques to translate text-based messages delivered by artificial or deepfake
characters, and similar applications are seen in social media platforms to create online
avatars [5]. With the emergence of the metaverse, online deepfake avatars are created to
represent virtual presence. Holographic technologies leverage deepfakes to generate 3D
historical characters using accurate audio and video data and deliver their story for future
generations. Lastly, deepfake applications in privacy preservation stand on a fragile line.
One such application includes preserving victims’ identities appearing on media platforms
by altering their visual and audio characteristics [6].

However, deepfaked video, audio, or photos also can be highly disturbing and able
to mislead the public, raising further challenges in policy, technology, social, and legal
aspects [7,8]. Currently, there are deepfake tools available in the public domain that allow
people to impersonate anyone, from businessmen to music stars, during video chats [9–11].
Deepfake video “attacks” on some public scenarios have raised serious concerns [12,13].
Political leaders’ messages are altered to create fake news for the public and lower trust in
broadcast messages [14]. Researchers have pointed out that disinformation may actually
cause societal disturbance and ruin the foundation of trust [15–18]. For instance, the most
recent case was on March 17: a deepfaked video was posted on social media showing
that President Zelensky was calling the Ukraine soldiers to lay down their arms [19,20].
Domains such as smart surveillance, which highly depends on the audio and the visual
layer input for its functionality, could lose the track of malicious actions when the incoming
frames are altered [3]. Government agencies such as the U.S. Defense Advanced Research
Projects Agency (DARPA) are concerned about losing the war against deepfake attacks
from adversarial hackers that use popular ML techniques to automatically incorporate
artificial components into existing video streams [21,22]. Therefore, as a primary cause of
misinformation, an imminent need for fast and reliable authentication techniques is of a
high priority [14,23].

While the community has been engaging in the endless AI arms race “fighting fire with
fire” hoping to have “smarter” ML algorithms [24–26], new ML algorithms keep making
fake AVS data more real. Therefore, it is compelling to explore alternative ML deepfake
detection solutions. In this paper, we propose to tackle the challenging deepfake attack
detection problem leveraging the Electrical Network Frequency (ENF) signal, which is em-
bedded in the recorded AVS data as a fingerprint that is determined by the environmental
factors of the recording region. The effectiveness of a fingerprint technique against the
deepfake generation model depends on its uniqueness and randomness to avoid forgery
and predictions.

The ENF is the instantaneous frequency in the electrical power grid with a nominal
value of 50/60 Hz, depending on the geographical location [27,28]. For the rest of this
paper, we consider the nominal frequency value as 60 Hz for our testbed in the United
States. The Instantaneous Frequency (IF) varies over time due to the varying load balance
mechanism and power supply demands, resulting in the fluctuations from the nominal
frequency resulting in the ENF signal [29]. The variation in fluctuations is small, and the
fluctuations are similar throughout the power grid interconnect. Among the four major
power grid interconnects in the USA, the experimental data were collected in the Eastern
power grid where the variation of the ENF is in the range of [−0.02, 0.02] Hz from the
nominal frequency [30]. While the ENF signal functions as the main power supply, it also
gets embedded in the digital multimedia through background hum [31,32] or illumination
frequency in audio and video recordings [27,33,34]. Due to the presence of the ENF in
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audio–video channels, the manipulation in the ENF signal with respect to time is treated as
the manipulation or modification of the multimedia recordings [35–37]. The ENF signal
is also used for forensic analysis of digital evidence, time of recording estimation [38],
media synchronization among multiple channels [39], and geographical tagging of the
recording [40].

Although the ENF signal is present in the audio and video channels, some challenges
exist when using the ENF as a fingerprint mechanism. Due to the lower frequency range,
the Signal-to-Noise Ratio (SNR) for reliable ENF estimation is vital to address. In typical
deepfake videos, instantaneous frequency estimation is required for estimation, which de-
pends on the spectral estimation techniques used. In order to adopt the ENF as a fingerprint
technique, a solution is also needed to address the redundant ENF reference database for
comparing the estimated ENF. This paper analyzes the ENF estimation techniques against
deepfake audio and video recordings using different spectral estimation techniques and
robust and reliable estimation in low SNR recordings. Our contributions in this paper are
as follows:

• Designing of an effective spectral estimation technique using both parametric and
non-parametric methods for IF detection.

• Utilizing a Robust Filtering Algorithm (RFA) over a weighted SNR to identify the
harmonic ENF embedded in media recordings to enhance the ENF signal estimation
in the identified ENF.

• Implementing an effective detection technique against deepfake attacks and an inte-
grated Singular Spectrum Analysis (SSA) based on the correlation coefficient values to
reduce the number of false positives in a real-time video broadcasting scenario.

• Demonstrating experimental analysis on the video and audio deepfake attacks’ de-
tection using the RFA technique and comparing its effectiveness against traditional
spectral estimation techniques.

The rest of the paper is organized as follows. Section 2 discusses the background
and related work in deepfake detection technologies and ENF fingerprint applications.
Section 3 thoroughly discusses the spectral estimation techniques used in this work for the
comparison analysis and the ENF enhancement techniques in low SNR recordings followed
by the Singular Spectral Analysis (SSA) approach to minimize the false positive rate caused
by correlation outliers in Section 4. Section 5 reports the experimental evaluation of the
spectral techniques discussed in Section 3 and the performance evaluation of SSA in edge-
based devices. Finally, Section 6 discusses the limitations along with alternate strategies,
and we conclude this paper in Section 7.

2. Background and Related Work
2.1. Deepfake Detection Using Traditional and Trained Models

Deepfake detection has become a critical problem in digital media authentication. With
advanced computational power and the developments in GANs, the resulting media output
is very realistic [2]. However, along with its development, many detection techniques were
proposed in the early stages to leverage the artifacts introduced in deepfakes. Artifacts
such as eye blinking [41], facial distortion, facial symmetry construction [42], and motion
artifacts can be visually inspected and identified [43]. Machine-learning-based models were
also trained to identify the artifacts. However, the artifacts result from low training data and
improvement in the GAN architecture; with more data, the artifacts can be reduced, and
more realistic images can be created, leaving the visual-artifact-based detectors redundant.

Hidden features such as GAN fingerprints are unique to the deepfake model archi-
tecture [44], and biometric signatures such as heartbeat detection through the skin do not
depend on visual artifacts [45]. The signatures can be reliable when the visual artifacts
are removed by better training. The GAN also introduces frequency-level artifacts due
to the upsampling method in the GAN pipeline [46], and the modified frames can be
identified by frequency analysis and studying the compression map [47,48]. Noiseprint is
one such fingerprint extracted by suppressing the high-level scene content and leveraging
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the in-camera processes for unique fingerprints [49]. Noiseprint is applied to reliably
localize the frame modification with high performance. Other camera-based fingerprint
techniques such as Photo Response Non-Uniformity (PRNU) sensor noise and JPEG com-
pression artifacts were also used in detecting frame-level forgeries due to their dependence
on the source device [50,51]. However, these unique artifact-based detectors can also be
spoofed using a GAN-based approach where camera traces are inserted into the synthetic
images [52]. Along with the reliability of the unique fingerprint for its detection capability,
it is also essential that the fingerprint be less prone to forgeries. Hence, we adopted the
ENF-based environmental fingerprint where the fluctuations are a random process and
signal manipulation in media recordings leaves modification traces.

2.2. ENF Applications in Digital Multimedia

The ENF was initially introduced as a forensic verification technique for law enforce-
ment applications to verify the authenticity of audio recordings [27]. Due to electromagnetic
induction, the audio recorders directly connected to the power grid can also embed the ENF
fluctuations in the audio recordings [28]. The applications were limited to devices connected
directly to the power grid until the presence of the ENF was verified in battery-powered
devices through the background hum generated by surrounding electrical appliances
connected to the grid and increasing its range of devices [31].

Along with audio, video recordings were also discovered to carry ENF fluctuations in
the form of illumination frequency [33,34]. The captured photons from artificial light have
similar fluctuations, and the method estimation from the video recordings depended on the
imaging sensor used in the capture device. Complementary Metal–Oxide Semiconductors
(CMOSs) and Charge-Coupled Devices (CCDs) are the most commonly used imaging
sensors with different shutter mechanisms [38]. In the case of CCD sensors, a global shutter
mechanism is used where the whole sensor grid is exposed to photon capture at one
instant, resulting in capturing the ENF samples equal to the number of frames per second.
However, in CMOS, a rolling shutter mechanism captures the ENF sample per row in
the sensor grid and vastly increases the captured samples [34]. Due to limited samples
in the CCD sensor, an alternative aliasing frequency technique can be used to estimate
the ENF fluctuations [33]; however, it is prone to signal noise. Most commercial-grade
camera devices use CMOS sensors due to their cost-effective nature, resulting in an effective
solution for ENF estimation through video recordings.

The presence of the ENF signal in audio and video recordings has increased its viable
applications in identifying the recording time due to its unique fluctuation nature. Al-
though the fluctuations in the ENF are similar throughout the power grid interconnect, the
propagation delay can be used to identify the geographical location of the recording within
the grid, essentially enabling the ENF technology with the geotagging feature [53]. ENF
presence in audio and video recordings can be used to synchronize the media recordings
from multiple recorders in commercial applications [39]. Smart grid infrastructure relies on
ENF fluctuations to analyze power consumption, create a feedback loop for power outages,
and prevent grid-level blackouts [30].

2.3. ENF-Based Digital Media Authentication

The ENF signal can essentially be used for both audio and video forgeries with its
forensic capabilities. Modifications such as copy and move, frame replay, spatial modifica-
tions, and inserting external recordings can be identified using ENF inconsistencies [36,37].
Many ENF estimation techniques are already proposed using multiple spectrum estimation
techniques and phase identifications. In this work, we focus on studying the effects of
deepfake generation on the embedded ENF signal, deploy multiple spectral estimation
techniques and verify their effectiveness, and analyze the robust and ENF-preserving
techniques increasing the likelihood of efficient ENF-based authentication.
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3. Robust ENF Estimation Techniques

ENF signal estimation primarily depends on a reliable Instantaneous Frequency (IF)
estimation from the source recording. Due to the harmonics embedded with the nominal
frequency, some harmonic frequencies have a higher SNR and can result in a reliable
signal [54,55]. However, the noise interference in some harmonics can also completely
interfere with the signal. With deepfake videos, the primary interruptions in extracting
a reliable signal from the video are from the moving subjects [56]. The signal estimation
is more efficient for a static background, but for a moving subject, there is additional
noise embedded due to the pixel intensities’ variation [35]. Other challenges include the
duration of the audio and video recordings used. The duration is not a problem in a
continuous stream of multimedia since the window can be larger. However, in the case
of a limited recording length, the spectrum estimation for reliable frequency extraction
becomes challenging. We aim to test the effects of parametric and non-parametric spectrum
estimation techniques against deepfake videos for this scenario [57]. For non-parametric
spectrum estimation, Short-Time Fourier Transform (STFT) was used to estimate the ENF,
and in the case of parametric methods [27], we used the Multiple Signal Classification
(MUSIC) algorithm [57]. Each method has its own merits in the case of computational
power, reliable estimation, and the amount of data sequence required.

3.1. Non-Parametric Spectral Estimation Techniques

Non-parametric approaches do not assume that a model generated the data. The
typical approach in this method is to use Fourier analysis, which can result in some higher
computational cost. We utilized the Short-Time Fourier-Transform (STFT)-based approach
in this work. The ENF signal fluctuations are represented as fENF = fo + f∆, where fo is
the nominal frequency and fδ is the instantaneous signal fluctuation. With the Fourier
transform of the input signal x(n), the Power Spectral Density (PSD) is calculated from the
spectrogram to estimate the spectral band from the harmonic frequency band (B) of interest
f ∈ k[ fo ± B

2 ].
From the spectral band, the instantaneous frequencies in each frame window are

estimated by the maximum value in the corresponding power density vector for that time
instant. To improve the frequency estimation accuracy, quadratic interpolation can be used
where the index of the frequency bin numbers is used to obtain the spectral peak. The peak
location is given as

∆ =
1
2
· α− γ

α− 2 · β + γ

where α is the previous bin of the max spectral bin, β is the max spectral peak, and γ is the
next bin. If k∗ is the bin number of the highest spectral sample, then the resulting frequency
estimate bin is adjusted by ∆, and the final interpolated frequency estimate is

fENF = fo + (k∗ + ∆)
fs

N
Here, fs is the sampling frequency of the input signal and N is the number of FFT bins
used. Although the input signal data length is not limited in a continuous input stream,
such as a surveillance system audio/video feed, the number j of fast Fourier transforms
FFTj where j = 1, . . . , J points can be increased for higher accuracy at the cost of increased
computational resources. With known nominal frequency bounds, the ENF estimate from
this technique can be accurate, but at the same time, if the energy peak is not in the bounds,
then it is susceptible to outliers.

3.2. Parametric Spectral Estimation Techniques

The spectrum estimates using parametric methods result in a higher-quality spectrum.
It requires less data compared to that of non-parametric methods. However, it is essential
that the model parameters be estimated appropriately; otherwise, the estimated model
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could give wrong or misleading estimates. Among the parametric methods, in this paper,
we adopted the Multiple Signal Classification (MUSIC) technique based on the subspace
analysis of the signal and noise model [57].

MUSIC is a subspace-based frequency estimation model depending on the eigen-
analysis of the observed discrete time signal data. For this algorithm, let the discrete time
signal v(n) of finite length L with K sinusoidal components be represented as

v(n) =
K

∑
k=1

Akejnωk + w(n)

where Ak = |Ak|eφk is the complex magnitude of the Kth harmonic signal component with
φk being unknown and assumed to be unknown and uniformly distributed in [−π, π] and
w(n) is the noise.

For a data sequence of length L = N + M− 1, the auto-correlation matric Rv of size
M×M is computed. M is the dimension spanned by v(n), and K is the signal subspace,
while the N-point observed signal,

R̂v =
1
N

VHV

where (.)H is a Hermitian operator:

V =


vT(0)
vT(1)

. . .
vT(N − 1)


T

=


v(0) v(1) v(2) . . . v(M− 1)
v(1) v(2) v(3) . . . v(M)
. . . . . . . . . . . . . . .

v(N − 1) v(N) v(N + 1) . . . v(N + M− 2)


N×M

With eigen-analysis on R̂v, the eigen vectors corresponding to the K signal subspace
(Us) are q1, q2, . . . , qK and the remaining qK+1, qK+2, . . . , qM span the noise subspace (Un).
Assuming a signal eigenvector e, then it must be orthogonal to the noise subspace eigen-
vectors e ⊥ qi for {qi}M

i=K+1, where

e(ωl) = [1, ejωl , ej2ωl , . . . , ej(M−1)ωl ]T , l = 1, 2, . . . , K

The MUSIC algorithm defines a squared norm function:

d2 = ‖UH
n e‖2 =

M

∑
i=K+1

|eHqi|2

If the e vector belongs to the signal subspace, then d2 = 0 due to the orthogonal-
ity condition. The reciprocal of the squared norm will result in sharp peaks at desired
signal frequencies.

PMUSIC(ejw) =
1

∑M
i=K+1 |eHqi|2

(1)

3.3. Robust ENF Enhancement Techniques

Multimedia recordings are often susceptible to noise interference. For reliable estimation
of the ENF signal from the source recording, robust measures are needed. The following
discusses the reliable techniques used for robust ENF estimation in a noisy environment.

3.3.1. Weighted Harmonics Combination

The ENF signal is embedded in multiple harmonics depending on the nominal fre-
quency. For audio recordings, the ENF is present in either even or odd harmonics depending
on the type of microphone used. Similarly, in video recordings, the harmonics are the mul-
tiple of illumination frequency, which is twice the nominal frequency. Other harmonics can
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be leveraged to obtain accurate fluctuations for noise interference in targeted frequencies.
Therefore, a weighted combination of the harmonics’ spectral bins can result in a noise-
tolerant spectrum for reliable frequency estimation [54]. The SNR values are computed as a
ratio of the PSD (s( f )) in the ENF fluctuation range ( fc) to the PSD in the spectral band of
interest ( fv). The optimal ENF fluctuation in the U.S. is ±0.02.

wk =
∑L

k=1 s( fo − fc, fo + fc)

∑L
k=1 s( fo + fc, fo + fv) + s( fo − fc, fo − fv)

where L is the maximum number of harmonics carrying ENF fluctuations and can be
combined. Using the weights computed for windowed spectral bins, the final spectrum
S( f ) is evaluated, and quadratic interpolation can be used to estimate the spectral peaks
and frequency fluctuations.

S( f ) =
L

∑
k=1

wks( f )

In our approach, we used weighted estimation from multiple harmonic bins to identify
the frequency with the highest SNR compared to other harmonics. For audio recordings,
due to the nature of the microphone used, the ENF is either embedded in the even harmon-
ics or odd harmonics. Similarly, for video recordings, the ENF is embedded on the Frames
Per Second (FPS), the illumination frequency, and the type of artificial light used. With the
weight matrix, the ENF with the highest SNR is identified, and then, the following filtering
algorithm is used to enhance the ENF in that frequency range.

3.3.2. Robust Filtering Algorithm

The RFA was proposed to improve ENF estimation in noisy interference [58]. Instead
of reducing the noise after the spectrum is computed, the RFA approach enhances the
estimation accuracy by improving the SNR and minimizing in-band noise prior to the
ENF estimation.

In the RFA [58], a time-domain preprocessed input signal is encoded into the Instanta-
neous Frequency (IF) of the Sinusoid-Frequency-Modulated (SFM) signal. A kernel function
is utilized to generate the Sinusoidal Time-Frequency Distribution (STFD) of the encoded
signal, where the peaks correspond to the denoised ENF. For an optimal selection of the
kernel function and the signal encoding, we recommend readers refer [58] for a detailed
description of the algorithm. With the help of the RFA, the ENF can be reliably estimated
under a −20 dB noise level. For deepfake videos, the underlying ENF, although captured
by the imaging sensor from the artificial light, is interfered by the pixel noise and subject
movement [56]. Therefore, the RFA technique can be used to minimize the noise, and then,
a suitable spectrum estimation technique can be used to estimate the ENF.

3.4. ENF Similarity Verification Using the Correlation Coefficient

Authentication of the ENF carrying multimedia can only be verified when the es-
timated ENF fluctuations are not tampered with or modified. For this verification, we
adopted the correlation coefficient as a measure of similarity to verify the estimated ENF
signal from the recording (PENF) with the ground truth ENF (GENF) collected directly from
the power grid. The value of the correlation coefficient (ρ) varies from [−1, 1], where 1
represents the highest similarity and vice versa.

ρ(l) =
∑N

n=1[ fPENF (n)− µPENF ][ fGENF (n− l)− µGENF ]

var(PENF) ∗ var(GENF)
(2)

where l represents the lag measure, N is the signal length, and µ is the mean. Although
the reference ENF collected from the power grid is redundant for efficiently deploying this
authentication scheme, we later discuss a distributed authentication system that relies on a
consensus mechanism designed using the ENF fluctuations. Based on the consensus, the
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networked multimedia devices broadcast their estimated ENF, and a pseudo ground truth
ENF is selected, which is used for authentication.

4. ENF-Based Anomaly Detection Using Singular Spectrum Analysis
4.1. SSA for Anomaly Detection

With a reliable ENF signal estimated using the appropriate spectral estimation tech-
niques, we integrated an anomaly detection scheme to analyze the correlation vector
and detect major deviations from the historical trend. Figure 1 represents the algorithm
flow including the signal estimation process for anomaly detection. The estimated ENF
signal and ground truth reference signal were compared using the sliding window al-
gorithm for continuous monitoring of the input media stream. Similarly, the generated
correlation coefficients were analyzed for outlier detection and media forgery. The SSA
algorithm decomposes the time series vector and performs Singular-Value Decomposition
(SVD) for change-point detection [59] or future trend prediction [60]. The following sec-
tion discusses the algorithm based on the correlation coefficient values for change-point
detection analysis.

Figure 1. Singular Spectrum Analysis (SSA) algorithm using the ENF signal and its correlation coefficient.

4.2. SSA Algorithm

The correlation coefficient as a similarity measure between the ENF estimated from
the multimedia recordings and the ground truth ENF can generate false positives due to the
signal noise. We integrated a Singular Spectrum Analysis (SSA) technique to regulate the
fluctuations in the correlation coefficient and change-point detection [59,60]. The correlation
coefficient samples are non-periodic in nature, and in order to integrate the SSA algorithm,
a larger window size is required. Let ρn+1, ρn+2, ρn+3, . . . , ρn+N , ρn+N+1, . . . , ρn+N+Q be
the non-periodic correlation coefficient samples collected from the online ENF comparison
and N, M, l, p, and q be fixed integers, where n is iterative over new correlation coefficient
values, N is the window size for the base matrix, Q is the window size for our test matrix
with Q = q− p, and l < M ≤ N

2 . For each n = 0, 1, . . ., the following algorithm is executed:

1. Creating the base matrix of size (M× K) using the initial correlation coefficient values
and K = N −M + 1,

Xn
B =


ρn+1 ρn+2 ρn+3 . . . ρn+K
ρn+2 ρn+3 ρn+4 . . . ρn+K+1
. . . . . . . . . . . . . . .

ρn+M ρn+M+1 ρn+M+2 . . . ρn+N


M×K
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2. Using the base matrix, also known as the Hankel matrix, we compute R = (Xn
B).(Xn

B)
T ,

and the Singular-Value Decomposition (SVD) of the matrix R results in M eigen
vectors and eigen values. Among the M eigen vectors, l < M eigen vectors are
selected to create a group I. The group I consists of l-dimensional vectors in subspace
Ln,I of M-dimensional space RM. The eigen values computed from the matrix R
are arranged in descending order, and the top l values are selected for the matrix I,
respectively, such that the subspace Ln,I consists of the features ofRM.

3. With the base matrix established, next, a test matrix is constructed of size (M× Q)
with a lag p from the base matrix and Q = q− p. The resulting matrix is

Xn
T =


ρn+p+1 ρn+p+2 ρn+p+3 . . . ρn+q
ρn+p+2 ρn+p+3 ρn+p+4 . . . ρn+q+1

. . . . . . . . . . . . . . .
ρn+p+M ρn+p+M+1 ρn+p+M+2 . . . ρn+q+M−1


M×Q

4. With the test matrix Xn
T and the l-dimensional subspace Ln,I , the detection statistics

of abnormal fluctuations in the input values can be calculated with the sum of the
squared Euclidean distance between the column vectors of Xn

T and subspace Ln,I . The
column vectors of Ln,I are represented as Ui1 , Ui2 , . . . , Uil . The detection statistics
Dn,I,p,q for n iterating over {0, 1, . . .} is given as,

Dn,I,p,q =
q

∑
j=p+1

(
(X(n)

j )T · X(n)
j − (X(n)

j )T ·U ·UT .X(n)
j

)
5. With the iterating values, the detection scores are normalized and represented as

Sn =
Dn,I,p,q

µn,I

6. The Cumulative Sum of deviations (CUSUM) in the detection statistics are then
calculated to eliminate false positives and seek major changes in the input values. A
threshold h is used to detect the fluctuations in the correlation coefficient of the ENF
values. The detection score is

W1 = S1

Wn+1 = (Wn + Sn+1 − Sn −
1

M ·Q )+, n ≥ 1

h =
2tα

M ·Q

√
1
3
·Q · (3MQ−Q2 + 1) (3)

where (a)+ represents max(0, a).

5. Experimental Study and Performance Analysis
5.1. Prototype Implementation

In our experiments, the DeepFaceLab software was adopted to create video deep-
fakes [61], and Descript was used to create audio deepfakes [62]. The DeepFaceLab software
is capable of generating deepfakes in real-time using face swapping and mapping to the
original face by modifying the surrounding pixels. For audio deepfakes, a training time as
little as ten minutes of target audio can be used to recreate a deepfake voice to mimic the
targeted actor. Software such as this made easily available with almost no usage complexity
can only result in more generation of fake media. In this paper, we study the effects of
multiple spectrum analysis against deepfake modification and use a signal enhancement
technique to estimate the reliable signal to localize the forgery.

Figure 2 presents the overall architecture of the prototype implementation consisting
of multiple edge clients and an edge server. The computational complexity and resource
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allotments are shared across multiple devices for enhanced ENF estimation. Each client
collects real-time streams from cameras and then extracts ENF fingerprints, which are
used for spectral estimation at the edge devices and SSA detection at the powerful edge
server. The deployment of our proposed approach was analyzed on both edge-based
devices (Raspberry Pi) and an edge server (desktop), and a detailed performance analysis
of computational resource consumption is also presented.

Figure 2. System architecture of deterring deepfake attacks at the edge network.

5.2. Effects of Spectral Estimation Techniques against Deepfakes

Spectral estimation techniques have different parameters to control for a reliable esti-
mation. In this work, we used MUSIC- and STFT-based spectral methods. The spectrum is
computed from both techniques along with a bandpass filter along the nominal frequency
of interest. In the STFT method, the spectral harmonic bands are collected from the spec-
trogram, whereas the MUSIC method looks for K complex exponential components in the
signal. For the ENF signal, the value of K is two. Once the spectrum is computed for both
techniques, the maximum frequency bin is identified with the help of quadratic interpo-
lation, and the required frequency fluctuations are estimated. Although each spectrum
estimation method has its own advantages, for deepfake videos, it is important that the
method be more consistent and fast. MUSIC performs better with a lower signal length,
whereas STFT relies on the Fourier transform, which needs more data for its computation.
In Figure 3, the performance of each method is measured with respect to the input signal.
The ENF was estimated from a static background recording under artificial light along with
the ground truth reference signal with a sampling rate of 1000 Hz. The input signal was
incremented by six seconds for each round, and the correlation coefficient was measured
for similarity with the reference signal. Figure 3 clearly shows that MUSIC performed
better with lower-duration recordings, but STFT outperformed the MUSIC method with
sufficient input data given.
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Figure 3. Performance of STFT and MUSIC spectrum estimation methods on ENF estimation based
on the length of input signal.

With the performance analysis based on the duration of the input signal, next, the STFT
and MUSIC algorithms were tested with a fixed-length input signal on its ENF estimation
on video recordings. The video recording used includes a talking head subject with
movements recorded under artificial light. Figure 4 represents the correlation coefficient for
STFT and the MUSIC algorithm. Here, it is clear that STFT performed better in video-based
ENF estimation compared to the MUSIC algorithm. For a reliable deepfake manipulation
detection, it is vital that the ENF from unmodified recordings be estimated more reliably,
so that any significant changes in the ENF can be marked as a potential manipulation. For
some audio and video analysis, the harmonic frequencies in the recordings are targeted
with external noise interfering with the embedded ENF. For this purpose, we used reliable
estimation techniques such as the weighted combination of multiple harmonics [54] along
with the robust filtering algorithm proposed in [58]. Table 1 represents the average SNR of
the ENF fingerprints in the media recordings. Using the SNR matrix, the targeted frequency
range was identified and the RFA algorithm was used to increase the SNR significantly.
From Table 1, for power and audio recordings, the ENF signal is stronger in odd harmonics,
and in video recordings, it is stronger in even harmonics since the nominal frequency in
videos is 120 Hz.

Figure 4. Spectrum estimation techniques for ENF estimation in a video recording with a moving
subject under artificial light.
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Table 1. SNR of the ENF fingerprint in media recordings.

Media 60 Hz 120 Hz 180 Hz 240 Hz 300 Hz 360 Hz

Power 39.88 2.456 38.647 0 14.48 4.534

Audio 9.761 0.888 27.94 7.106 43.717 10.585

Video 0 8.396 0 90.163 0 1.439

5.3. ENF Enhancement Using the RFA

The efficiency of the RFA was tested on real-world audio recordings with ENF em-
bedded though background hum. We used the STFT algorithm to estimate the harmonic
frequency with the highest SNR and estimate the ENF signal. However, due to external
noise, the ENF estimated from a single harmonic frequency had a significantly lower corre-
lation coefficient when compared with its reference ENF. Using the RFA to enhance the ENF
in the frequency of interest, the noise was suppressed, and then, the ENF was estimated
from the new spectral bins. Figure 5 represents the correlation coefficient histogram of the
audio ENF before and after applying the RFA to the recordings. Although it was unclear
if the recordings carried any ENF signature before the RFA, it can be clearly seen that the
RFA enhanced the embedded ENF and was more reliable for better ENF estimation from
recordings with a lower SNR.

Figure 5. Correlation coefficient histogram collected from real-world audio recordings before and
after applying the robust filtering algorithm.

ENF estimation from video recordings depends on the presence of artificial light in the
recording. With lower-intensity light in the background, the ENF is not reliable due to the
interference of other in-camera noise such as ISO sensor noise and other subject-movement-
related pixel disturbances. We tested the performance of enhancing the harmonics of the
ENF in a video recordings with lower illumination intensity and noise. In Figure 6, we
used the STFT method to estimate the ENF from the video recording with and without the
RFA to enhance the ENF harmonics. With the improvement in the correlation coefficient of
the RFA-enhanced ENF signal, the ENF can be reliably estimated from video recordings
with a lower SNR, as long as it carries the embedded artificial light fluctuations.
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Figure 6. Enhancing the embedded ENF signature with the RFA in video recording with a low SNR
and external noise.

Attacks on audio and video recordings such as deepfakes alter the original samples
of the recordings to create a false perception. Along with the samples, the embedded
ENF frequency fluctuations, which are temporal sensitive, are also altered, resulting in
interference of the ENF fingerprint. Using a reference signal recorded at the same time
instant, the manipulations to the multimedia recordings can be detected and also localized
with a reliable ENF estimation method [35,56]. Figure 7 shows the drop in the correlation
coefficient of the audio and video deepfake recordings where the ENF was estimated from
the RFA-enhanced harmonics. For the video deepfake, the whole recording was swapped
with an alternate trained face model, and this resulted in a drop in the overall correlation
for the whole video. For the audio recording, a partial deepfake recording was generated
and appended to the original recording. The correlation coefficient can also be used to
localize the forgery.

Figure 7. Deepfake detection in audio and video recordings by ENF signal comparison with RFA
enhancement.

In order to deploy the proposed authentication scheme to reliably authenticate a
continuous stream of media input such as surveillance system monitoring, the ENF should
be reliably estimated for better correlation. However, sometimes, it is susceptible to outliers
that occur due to a frame being skipped due to network delay or frame obfuscation. In order
to address the outliers and reduce the false alarm rate, we integrated Singular Spectrum
Analysis (SSA) to observe the correlation coefficient vector and suppress the outliers. The
performance analysis and the computation overhead were studied from the perspective of
edge-based computers.
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5.4. SSA Performance Analysis

We evaluated SSA performance in terms of processing time and computational re-
source consumption on the host machine. During our test, we only repeated SSA functions,
then evaluated the processing time and resource usages. Thus, deepfake video preprocess-
ing was not considered in this test. Table 2 describes the devices used for the experimental
study for SSA detection. The prototype was deployed on a small-scale Local Area Network
(LAN) that consisted of multiple desktops and IoT devices. We used the desktop to simulate
a fog server, while RPi devices to simulate edge servers.

Table 2. Configuration of experimental nodes.

Device Redbarn HPC Raspberry Pi 3 (B) Raspberry Pi 4 (B)

CPU 3.4 GHz, Core (TM)
i7-2600K (8 cores)

1.2 GHz, Quad core
Cortex-A72 (ARM v8)

1.5 GHz, Quad core
Cortex-A72 (ARM v8)

Memory 8 GB DDR3 1 GB SDRAM 4 GB SDRAM

Storage 350 G HDD 64 GB (microSD) 64 GB (microSD)

OS Ubuntu 18.04 Raspbian (Jessie) Raspbian (Jessie)

In deepfake attack scenarios, an adversary attempts to use forged or duplicate audio
and video streams to fool video surveillance systems. Figure 8 shows how SSA detection
identifies suspicious activities. We simulated attack scenarios that inject fake multimedia
streams in attack ranges 200–240 and 400–430. Owing to the randomness and unpredictabil-
ity of the ENF in streams, the injected audio or video streams demonstrate a very low ENF
coefficient score by compared with the ground truth ENF. As a result, multimedia streams
in attack ranges have Wn higher than threshold h, and they will be marked as suspicious.
Instead of relying on the experimental threshold of 0.8 used to compare the correlation
coefficient factors, here, we rely on change-point detection of the SSA decomposition, where
a structural change is detected if Wn > h, as mentioned in Equation (3) [59].

Moreover, our SSA detection can also tolerate noise influence to mitigate false alarms.
Figure 8 shows that spontaneous detection points with noise influence do not significantly
change Wn.

Figure 8. The SSA detection on deepfake attack scenarios.

Figure 9a shows the processing time given different stages during the SSA detection.
The detection statistics’ calculation in Stage D took the longest time, as it needed more
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computational resources to perform singular-value decomposition on the Hankel matrix
and computing the Euclidean distances between the base matrix and test matrix. The
detection score Stage S simply converts D into the normalized sum of squired distances Sn,
and then, the W stage calculates the CUSUM statistics. Thus, they had less process latency
than stage D. As a result, the processing time of the D stage dominated the total latency of
executing SSA on all three platforms.

Figure 9. (a) The latency of executing SSA with different platforms; (b) the CPU usage of executing
SSA with different platforms.

To evaluate the run time overhead of executing SSA detection on the host machine,
only one core was used to run the SSA detection thread. We used the top command to
monitor the running status of the SSA detection thread and obtained the CPU percentage
distribution and average memory usage. Figure 9b shows the CPU usage percentage of
executing SSA detection given different devices. Owing to different computing capability,
executing SSA detection on the device with a powerful CPU core had a low mean and
deviation of CPU usage percentage (desktop < RPi4 < RPi3).

The memory usages during the SSA detection were: desktop: 96 MB, Rpi4: 99 MB, Rpi3:
72 MB. Executing our SSA on different platforms may show different memory usages owing
to the heterogeneous CPU architecture (X86 vs. ARM), different OSs (Ubuntu vs. Raspbian),
and even various system running statuses. However, the gap was marginal, and both the
desktop and Rpi almost demonstrated the same memory cost as executing SSA detection.
Moreover, memory usage also included the cost due to OS tasks, such as managing the
thread, but the majority of the contribution came from the SSA algorithm’s execution.
Therefore, it can be used to approximately evaluate the memory cost by SSA detection.

6. Discussion

Fake media generation using deepfake technology has raised significant concerns,
and we have witnessed multiple “attacks”. Although “nice” deepfaked AVS may bring
benefits in multiple fields, preventive measures to distinguish fake media from authentic
counterparts are necessary to prevent negative impacts. This paper introduces an ENF-
fingerprint-based approach to analyze the deepfake-generated media recordings and detect
manipulations. While the ENF is verified in indoor audio and video recordings due to the
presence of devices connected to the power grid, there are certain limitations. For example,
recordings that are generated in outdoor settings or in scenarios where the presence of
the ENF is negligible, the proposed ENF authentication is not applicable. Meanwhile, in
applications such as conferencing calls that occur in indoor settings under artificial light,
the ENF-based detection scheme is an effective countermeasure [63].

The number of samples collected for the ENF is also a key factor for reliable estimation
of the embedded signal. Video cameras based on CCD imaging sensors use a global
shutter mechanism, where the ENF-carrying samples are restricted to the number of frames
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collected. Due to the low sampling rate and the higher nominal frequency, the Nyquist
criterion is not satisfied [33]. However, the aliasing frequency can be used to identify
the signal fluctuations at the cost of reduced accuracy. With the proposed integration of
the RFA and a weighted combination of spectral harmonics for ENF enhancement, the
algorithms add additional complexity for time-sensitive applications such as surveillance
systems. The RFA approach is used to enhance the SNR of the signal prior to the ENF
estimation algorithm and thereby is suggested to be applied in scenarios where the external
noise interference disrupts the ENF signal noise level down to −20 dB. However, with
the increase in signal duration, the time taken for the RFA also exponentially increases
compared to the spectral combination method [58]. Figure 10 presents the difference in the
execution time for each enhancement algorithm, where the input signal is incremented for
12 s for each round. In order to integrate the RFA with the STFT-based ENF estimation,
we used a sliding window approach with a window size of 45–60 s and a shift size of five
to ten seconds. For an online detection system, manipulations made to the live feed are
detected in less than ten seconds of occurrence provided the ENF enhancement and SSA
algorithms are integrated.

Figure 10. Execution time of the STFT algorithm in combination with ENF enhancement techniques.

ENF authentication is not restricted to specific media types, unlike other trained mod-
els that depend on input compatibility. It is applicable to audio and video authentication
and results in a generalized solution against media manipulation attacks. In our presented
work, the media manipulations were detected using an external reference ENF signal,
also referred to as the ground truth signal. Deploying external circuity for this purpose
could be redundant, and a central reference ENF database would not be effective since
the ENF is different for each power grid. Instead, a distributed authentication scheme
could be adopted where the ENF estimated from each device can be used to generate a
ground truth signal without relying on an external reference signal [64]. Our previous
work proposed a consensus mechanism for edge-based devices to estimate the ENF for
continuous media input. The broadcast ENF was used to create a mutually agreed ground
truth signal, allowing for detecting any faulty nodes. We recommend our prior work on the
ENF-based consensus algorithm to detect forgery attacks for further discussion [56,63,64].
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7. Conclusions

Emerging technologies such as deepfakes have become a common source for gen-
erating misinformation to affect trust in online media. Different from existing work on
deep-learning-based detection models trained to identify deepfakes, we tackled the problem
of identifying frame manipulations such as deepfakes using an environmental fingerprint
technique. Using the Electrical Network Frequency (ENF) signal embedded in media
recordings through artificial power sources, the integrity of the recording can be verified
in both the spatial and temporal domains. In this work, we present a comprehensive
analysis of effective spectral estimation techniques such as Short-Time Fourier Transform
(STFT) and Multiple Signal Classification (MUSIC) against low Signal-to-Noise Ratio (SNR)
media recordings. Our experimental results concluded that STFT is more reliable for ENF
estimation. However, according to our findings, for media recordings with a short duration,
the MUSIC algorithm has better performance for spectral estimation.

In addition to spectral analysis techniques, we tested signal enhancement algorithms
such as the Robust Filtering Algorithm (RFA) and weighted harmonics combinations
against deepfake audio and video recordings. From our experiments, the RFA technique
significantly improved the SNR of the embedded ENF signal and resulted in reliable
verification of signal authenticity. We also integrated the proposed method for online
media verification, and based on the experimental results, we adopted STFT with the
RFA algorithm considering the execution time complexity in our testbed. Furthermore, to
minimize the false positive rate due to outliers, we deployed our ENF-based authentication
scheme with the Singular Spectrum Analysis (SSA) method to improve the performance of
detecting media manipulations. The results demonstrated a reliable and comprehensive
tool against fake media distribution, adaptable to heterogeneous media recordings made
under the influence of the power grid.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AVS Audio and/or Video Stream
CMOS Complementary Metal–Oxide Semiconductor
CCD Charge-Coupled Device
CUSUM Cumulative Sum of deviations
DL Deep Learning
ENF Electrical Network Frequency
FFT Fast Fourier Transform
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FPS Frames Per Second
GAN General Adversarial Network
IF Instantaneous Frequency
IoVT Internet of Video Things
LAN Local Area Network
MUSIC Multiple Signal Classification
ML Machine learning
PRNU Photo-Response Non-Uniformity
PSD Power Spectral Density
RFA Robust Filtering Algorithm
SFM Sinusoid Frequency Modulate
SNR Signal-to-Noise Ratio
SSA Singular Spectrum Analysis
STFD Sinusoidal Time-Frequency Distribution
STFT Short-Time Fourier Transform
SVD Singular-Value Decomposition
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