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Abstract: From self-driving cars to detecting cancer, the applications of modern artificial intelligence
(AI) rely primarily on deep neural networks (DNNs). Given raw sensory data, DNNs are able to
extract high-level features after the network has been trained using statistical learning. However,
due to the massive amounts of parallel processing in computations, the memory wall largely affects
the performance. Thus, a review of the different memory architectures applied in DNN accelerators
would prove beneficial. While the existing surveys only address DNN accelerators in general, this
paper investigates novel advancements in efficient memory organizations and design methodologies
in the DNN accelerator. First, an overview of the various memory architectures used in DNN
accelerators will be provided, followed by a discussion of memory organizations on non-ASIC DNN
accelerators. Furthermore, flexible memory systems incorporating an adaptable DNN computation
will be explored. Lastly, an analysis of emerging memory technologies will be conducted. The reader,
through this article, will: 1—gain the ability to analyze various proposed memory architectures;
2—discern various DNN accelerators with different memory designs; 3—become familiar with
the trade-offs associated with memory organizations; and 4—become familiar with proposed new
memory systems for modern DNN accelerators to solve the memory wall and other mentioned
current issues.

Keywords: deep neural network (DNN); heterogeneous architecture; in/near memory processing;
memory system; reconfigurable architecture

1. Introduction

Deep neural networks (DNNs) have great potential and offer a multitude of benefits
to solve new problems. DNNs are employed in many various domains; for instance,
computer vision, image classification, computer prediction, and recognizing patterns
prediction. In correspondence with DNN application growth, there is an increase in the
demand for energy-efficient hardware architectures. This is a result of the large amount
of parallel processing required to compute massive data sets. The communication and
storage requirements needed by DNNs creates resistance on the path towards high power
efficiency and performance.

In order to use a DNN to make accurate predictions, the DNN model must first be
created and tuned using a set of training data. This is the first step in using a DNN and is
called the training phase. The next phase, called the inference phase, involves the use of a
trained model to make accurate predictions about the input data.

These two phases, though both related to the processing of data through a DNN, have
key differences to consider. In the training phase, the goal is to minimize the time required
for the output to converge to a certain accuracy, which improves the throughput of the
system. Contrastingly, the inference phase is not as concerned with accuracy, but with
latency and throughput. As a result, it is a prevalent practice to forgo accuracy in favor
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of increased throughput or decreased latency [1,2]. Furthermore, the two phases have
different memory requirements. Unlike inference, where only the last layer of activations
is stored, training requires almost all the activations of each layer so gradients can be
computed in the back-propagation flow. Lastly, to achieve higher throughput, the training
implementation exponentially increases in order to access numerous clusters and nodes [3].

The MAC operations represent the main arithmetic functions in processing DNNs.
Each MAC contains three memory reads and one write. Memory is read for various tasks
such as partial sum, fmap activation, and filter weights, and data is written to update the
partial sum. The three memory accesses can, in the worst-case scenario, travel across the
large energy toll/cost off-chip DRAM and this can significantly hamper energy efficiency
and throughput. As a result, reducing memory access latency is imperative to the perfor-
mance of the DNN, which motivates the research regarding different memory techniques.

Considering that the further development of neural networks (NNs) is causing an
increase in their size and complexity, it is critical that the efficiency and execution of NN
accelerators possess the ability to sustain comparable growth. Expansion in the number and
size of layers may cause the memory subsystems to exhibit a case of a bottleneck behavior
in the NN accelerators. New memory architectures, for instance 3D memory [4–12], near
memory [13–18], and in-memory processing [19], nonvolatile memories (NVMs) [20], and
ReRAM [21–29], etc., have brought about an upheaval of performance in DNN computing.

Advancements in technology have allowed for new techniques to improve efficiency
such as 3D memory. Compared to 2D memory, 3D memory has the capability of greatly
improving bandwidth and energy efficiency. Given the recent advancement of through-
silicon-vias (TSVs); 3D memory has the ability to be implemented by placing DRAM dice
upon the logic chip. This can significantly cause memory access latency to decrease [30].
Considering the benefits, prospective NN accelerator designs can take cognizance of and
plausibly utilize various 3D memory architectures [4–12].

In-memory computing also offers an optimistic alternative to the memory wall chal-
lenge. These forms of processing, computation, and memory are integrated using novel
memory technologies to bypass costly off-chip storage data transfers and PEs.

Given that some growing memory technologies, for example PCM [31], STT-RAM [30],
ReRAM [31], and other examples of nonvolatile memories (NVMs) [20] can process arith-
metic and logic operations along with reserving data, all have been explored extensively
to accelerate applications such as graph processing [23,29], complex computing [30], and
DNNs [1,2].

In summary, we will discuss different memory designs for DNN operation depending
on the application and the goal of the design. Though other existing surveys report on
DNN accelerators in overview, this article will provide an analysis of the various memory
architectures used in DNN accelerators depending upon the many possible design scenarios.

This study is designed to assess the hypothesis that designing an energy-efficient
memory architecture will improve the power consumption and performance of DNN
accelerators significantly.

The main contributions of this article are highlighted below:

(1) Accentuate the memory portion of DNN accelerator’s architecture including the
processing element (PE) design.

(2) Assess the DNN execution under various memory structures depending upon a
multitude of design goals and applications.

(3) Further notes for exploratory directions in regards to the future of DNN design after
investigating the present-day models extensively.

Figure 1 shows the layout of this article.
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Figure 1. Classification of the memory architectures discussed in this survey.

Section 2 depicts the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) statement for the selection of articles to carry out the survey. Section 3
discusses the different 3D memory architectures in DNN accelerators and attempts to
expound the various design compensations The fourth segment describes ReRAM as
an emerging memory technology in DNN accelerators’ memory systems. Nonvolatile
memories such as STT-RAMs and the other emerging memory technologies used in DNN
accelerators’ memory systems are described in Section 5. Section 6 discusses the in-memory
processing technology used in DNN accelerators’ memory systems and examines the per-
formance impact depending on numerous parameters. Segment 7 reports other innovative
memory technology, referred to as near-memory processing, used in DNN accelerators in
order to achieve optimal execution of DNN operations. Segment 8 describes three off-chip
memory architectures in DNN accelerators. In Section 9 the memory architecture for DNN
accelerators is summarized, and ultimately the paper is concluded in Section 10.

2. PRISMA Methodology

The cited papers have been selected on the basis of different memory architectures
used in DNN accelerators. Figure 2 describes the paper selection methodology as per
PRISMA statement. Several papers on 3D memory, ReRAM, nonvolatile memories, in-
memory processing, near-memory processing and off-chip memory architectures have been
screened for the survey.
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3. 3D Memory Integration

In order to integrate computational layers inside a three-dimensional topology of a
memory package possessing very high levels of density, the hybrid memory cube (HMC) is
a new concept introduced in [4]. DRAM dice are layered upon a logic die vertically in the
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HMC. The HMC offers an efficient near-data processing with respect to its large memory
bandwidth and capacity, in addition to low latency.

In the proposed HMC-based accelerator, named Neurocube, in [4], there is a logic die
in the lowest layer and DRAM layers stacked on it, shown in Figure 3. The logic die in the
lowest layer includes logic and computation components. As illustrated in Figure 3, the
implementation of data storage for each PE is achieved by the DRAM dies in the vault.
Since every vault possesses its own vault controller in the logic layer, the PEs can access
multiple vaults in parallel.
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HMC in the Neurocube accelerator has 16 vaults. As demonstrated in Figure 3 every
vault is considered to be a subsystem, consisting of a router, and stacked DRAM dice. PEs
perform multiply–accumulate (MAC) operations. Routers perform data transfer between
the DRAM and logic layers. A source vault has the ability to transmit data packets to a
target vault via the routers.

Neurocube programs the implementation of a single layer of an NN individually.
Figure 4 examines the operation of a PNG, the key component in memory-centric neural
computing in the accelerator, for each layer. The important mission of the PNG is to generate
the weights and addresses of the neurons residing in the previous layer in the memory.
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In addition to Neurocube, which is based on the HMC concept, TETRIS [5] is the other
DNN accelerator based on the HMC.

The performance of NN accelerators is limited by off-chip main memory and on-chip
buffers. Although sizable on-chip SRAM buffers amounts in higher memory bandwidths,
and DRAM access is also reduced, it also leads to a significant amount of power consump-
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tion (Figure 5). The 3D memory technology promises an efficient memory system for the
NN accelerator.
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power consumption.

DRAM memory dice are integrated vertically over the logic layer as a single package.
This improves the bandwidth and lowers the access energy significantly. In order to
completely utilize 3D memory benefits, there are certain challenges that are required to be
addressed. Firstly, 3D memory technology allows different use of smaller on-chip memory
buffers. Secondly, 3D technology gives the opportunity to decide where the computations
will be carried out. Some operations can be moved close to memory locations. Thirdly, there
is a wide scope to frame new approaches for dataflow scheduling of NN computations.
Last but not least, an efficient partitioning scheme is required for highly parallelized 3D
memory stacks.

Addressing the above stated challenges in [5], the scalability of neural networks is
improved by the proposed TETRIS architecture in which the hardware includes 3D stacking
of memory with processing elements. In addition to this, for the software side, an analytical
representation is developed for optimized data flow schedules. At the hardware level, more
area is utilized in processing elements in addition to minor area utilization with respect to
SRAM buffers.

In the proposed TETRIS architecture, the HMC stack is alienated into 16 32-bit vaults.
TSVs get utilized by the vault channel bus in order to connect to the DRAM memory dice
to base logic die. This results in two banks per vault in each DRAM die (Figure 6). Two-
dimensional mesh network is incorporated for the NN accelerator. All processing elements
share a global buffer for storage and reuse of data from memory. In this manner, significant
bandwidth of memory is saved, and performance is improved. In-memory allocation of the
computation is carried out using DRAM die accumulation and bank accumulation, which
improves computational efficiency of the accelerator. A hybrid partitioning scheme of NN
computations in the parallel 3D stack system is also presented.
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Joardar et al. [6] have proposed a designing technique for 3D heterogeneous manycore
platforms for DNN applications using an (ML) established multiobjective optimization
(MOO) method. In this case, the MOO method places last-level cache (LLC) banks, CPU,
and GPU units in order to optimally minimize the access latency of the CPU memory
and maximize the throughput of the GPU network. A multiobjective optimization (MOO)
issue has been proposed for the optimally heterogenous placement in DNN-based appli-
cations. Figure 7 shows a result of the optimal placement by the presented ML-based
MOO technique.
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As illustrated in Figure 8, the ML-based MOO method includes two search methods
in order to find an optimal placement. They are local search and meta search. In the former
methodology, local search, also known as a greedy search, is an optimized path along
which a series of adjacent states are traversed for an optimal solution to satisfy the given
objectives. On the other hand, in the learning phase (meta search), a regression forest
technique is used to find the highest-quality initial state for the next local search iteration.
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In order to overcome the challenges of basic bus topology in neural networks, networks-
on-ships (NoCs) emerge as a promising candidate. In Figure 9, a customizable architecture
for NoCs in terms of three-dimensional memory logic is presented [7]. The processing
elements are arranged in the form of clusters, which are linked in an adjustable network.
Such a network can adjust the inter-cluster configuration in order to carry out connectiv-
ity between memory and processing elements. The memory layers, stacked above the
logic layer, are divided into several panels. A memory channel is formed by each pair of
vertically adjacent memory and logic.
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The prime advantage of this architecture is that the inter-router connections can
be reconfigured through configuration switches (represented in Figure 9). With such a
topology, several networks-on-chips can be built by managing cluster size, number of
clusters, and number of switches between two clusters. Reconfigurability of the network
promises improved power efficiency than conventional mesh topologies.

In the design flow proposed in [7], firstly the neural network is divided across NoCs
using layer-wise division. Then, the divided neurons are mapped on NoC nodes. The
grouping is done in such a manner such that adjacent divisions are grouped together and
same layer neurons are combined in each cluster. Furthermore, a mapping algorithm is
utilized to map the division groups and clusters. Figure 10 shows the mapping of a cluster
of neurons onto a vault. Finally, inter-cluster links are configured through configuration
switches and routers.
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Figure 10. The composition of a vault [7].

Another innovative DNN architecture called RAPIDNN is proposed in [8], in which
neuron to memory transformation is carried out to enhance the performance of the DNN
network. This memory design is purely based on digital computations. Therefore, analog-
to-digital conversion and vice versa are not required in this design. Hence, area and power
overhead are significantly decreased.

Figure 11 shows the outline of RAPIDNN structure. In this model, first the compu-
tation flow of DNN is analyzed. Then, the DNN operations are encoded. Furthermore,
clustering algorithms are utilized to find parameters processed in each neuron. The key
characteristic of this model is that the continuous functions as multiplication and activation
can be considered as stepwise functions with minimal DNN inference.
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The RAPIDNN architecture proposed in [8] maps all the functionalities into the mem-
ory block. It utilizes a single level memristor device, rather than multilevel memristors. The
RAPIDNN network consists of two modules: DNN composer (software) and accelerator
(hardware) as depicted in Figure 11. DNN composer creates a table of each neural network
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operation, which can be stored in accelerator memory blocks. This sequence of operations
is shown in Figure 12.
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Figure 12. Interpretation of computation of a neuron to sequence of operations in RAPIDNN
network [8].

In [9], a reliability improvement scheme in a DNN accelerator with 3D memory inte-
gration has been proposed. High bandwidth memory (HBM) is a new concept introduced
in [9]. In 3D-stacked memories, there is a different soft error rate (SER) in every layer, unlike
planar memories. Since from the top of the package material alpha particles rise up, the
top-most layer shows a higher SER than the remaining layers. In addition, the bottom-most
layer also shows a high rate of SER due to the heat released from the interposer and logic
units. As shown in Figure 13, the uppermost and lower-most layers show 10 times higher
SER in comparison with the remaining layers.
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Figure 13. SER of different layers in a 3D DRAM integration [10].

Authors in [9] mention that DNN possesses very accurate results in areas such as
image classification. The majority of computations in DNNs are produced in the hidden
layer—consisting of weighted filters.

For every layer stored in the stacked DRAM dice, a frequently applied input feature
map is able to extract the corresponding output feature map. In this process, the same
weight filter, stored in the stacked DRAM dice, is read from numerous interactions by
the memory. If faults are injected into weights, a duplicate fault effect can be caused by
repetitive memory accesses. Authors in [9] find that all the weights in AlexNet are below
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than 1. The 29th and 30th bits of all the weights are 0 and 1 when they are expressed in
32-bit floating point. Two following cases show that flipping just one bit has a high impact
on accuracy.

� Case-1: flipping the 29th bit (1→0) for 500 weights in each layer of DNN.
� Case-2: flipping the 30th bit (0→1) for 5 weights in each layer of DNN.

Therefore, faults on weights, and everything stored in memory layers, create abnor-
mality in operations. Kim et al. in [9] shows that designing fault-tolerant DNN accelerators
for reaching high accuracy levels is a topic that should be taken into consideration.

Deeptrain [11] presents a novel architecture using the 3D stacking processing-in-
memory (PIM) paradigm. It applies to the hybrid memory cube (HMC) concept for
accelerating training and inference [11]. Deeptrain integrates a logic layer in the lower
layer and high-bandwidth DRAM layers in upper layers for eliminating off-chip DRAM
accesses. Deeptrain is for DNN training using an embedded platform, yet it does not
possess the quality of back propagation of pooling layers and weight updates by the DNN.
An overview of Deeptrain architecture has been displayed in Figure 14.
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Every programmable memory address generator (PMAG) is equipped with a vault.
This PMAG unit is a key component in Deeptrain. PMAG realizes different data flows in
Deeptrain based on a state machine. PMAG maps various data (gradients, parameters, and
inputs) to individual vaults. PMAG couples partitioning as well as data mapping along
with the bus communication fabric. PMAG can be configured in regards to numerous
computational kernels in the training phase.

In recent studies, 3D memory stacking-based architectures for DNN have been intro-
duced. These structures utilize DRAM stacking over the processing elements. 3D stacking
has been witnessed to offer numerous advantages; however, the DRAM latency poses a
difficult problem. In addition to this, optimization based on algorithms have resulted in
an improper DRAM architecture. In order to overcome these challenges, SRAM-based 3D
memory stacking is viewed as a promising solution. Such a log-quantized architecture
called QUEST has been proposed in [12]. The design structure for this architecture has been
depicted in Figure 15.
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Improved efficiency, reduced area, and higher memory bandwidth are the favor-
able attributes of log quantization. The multiplications are replaced by additions in log
quantization; therefore, it offers reduced area computations compared with linear quan-
tization. In this architecture, reconfigurable arrays with bit-serial data lines instead of
parallel data paths have been adopted. Therefore, different bit-precision configurations are
well-advocated. Also, this methodology allows the utilization of distinct kinds of layers for
neural networks with the aid of a unified hardware. Numerous configurations for neural
networks are therefore effectively mapped. In this architecture, 3D SRAM has been used as
external memory with inductive coupling technique. Stacking of SRAM instead of DRAM
offers reduced memory access time.

Summary and Discussion

This section analyzes different papers discussing efficient 3D memory architectures
in DNN accelerators. The literature reflects that the hybrid memory cube (HMC) concept
develops as a prominent possibility for the DNN accelerator memory architectures where
a compute layer is stacked within numerous memory layers. In addition to HMC, recon-
figurable network-on-chip architecture is also presented, which implements inter-cluster
topology to carry out data transfer between memory and processing elements. Some works
utilize stacking of SRAM instead of DRAM and promise reduced access times. Though
3D stacking offers heterogeneous integration, density and power overloads need to be
addressed as some challenges in this area.

4. ReRAM Technology

Another promising design of DNN accelerator is based on processing-in-memory
implemented using ReRAM technology. In resistive random-access memory (ReRAM),
the computations are performed by storage of neural network filters into the ReRAM cells.
One such ReRAM-based DNN accelerator is proposed in [21]. The presented architecture
‘atomlayer’ carries out atomic layer computations, thereby promising to overcome the
pipeline issues witnessed in previous designs. Execution of one neural network at a time
reduces latency and on-chip buffer overhead significantly. The atom layer compromises an
array of processing elements, ALU tree, and global output buffer along with the on-chip
network. The presented atom-layer architecture is shown in Figure 16.
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Figure 16. Atomic-layer architecture for ReRAM-based DNN accelerator design. PE: processing
element; GOB: global output buffer [21].

Each processing element contains rotating crossbars, peripheral devices such as
DACs/ADCs, and four buffers. The crossbars are utilized to provide storage for filters
and computation of convolution. The atom-layer architecture makes use of a data-reuse
technique in which row-disjoint filter mapping allocates multiple hardware levels from the
data reuse hierarchy levels as shown in Figure 17.
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Figure 17. The row-disjoint filter mapping technique proposed in [21].

Chi et al. [21] propose PRIME, a neuromorphic accelerator using resistive random-
access memory (ReRAM). PRIME using memristors instead of the DRAM main memory to
perform neural computations in memory. PRIME uses a 256 by 256 memristor array size,
which can be used for either a 4-bit multilevel cell computation or a 1-bit single-level cell
repository. Due to the pipeline organizations, PRIME cannot support training efficiently. In
this neuromorphic accelerator, stable ReRAM cross bars are applied to store the weights as
well as perform in-situ analog dot product operations for processing in memory (PIM).

A set of peripheral circuits have been designed in PRIME to configure a malleable
PIM structure with regard to the ReRAM main memory. This proposed PIM allows the
use of arrays in terms of scratch pads dot product engines as well as arrays specifically for
DNN workloads.

Positive and negative connections are both supported by PRIME, but the input vectors
have to be unsigned. Another shortcoming of the PRIME is lossy computations regarding
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the dot product due to the precision in ADC not always matching the accuracy of the
computed dot product. In [21], computation of the product in a 4-bit weight and 3-bit input
has been shown, the same as the limited precision shown in mixed signal circuits in this
work. In addition, the conversion overhead between the ADC and DAC should be also
examined in the overall cost. This is most notable when the weights are trained in the
digital domain. Figure 18 demonstrates a trend from traditional shared memory technology
to PRIME, a new 3D PIM based on ReRAM technology.
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ReRAM and crossbar networks based on it, have immense ability for graph processing.
However, the separate storage and computation of edges contributed to higher power
consumption and longer latencies. Overcoming this limitation of graph processing, a
large-scale graphical processing accelerator based on ReRAM called GraphSAR is proposed
in [23]. GraphSAR utilizes processing-in-memory technique to eliminate writing overheads
to ReRAM crossbars. The computations are carried out directly in the memory. Also,
memory space wastage is controlled by further division of low-density subgraphs.

Figure 19 shows the comparison of GraphSAR with a previous design, GraphR. Graph-
SAR supports direct processing of edges in the memory itself where they are placed. In
such a manner, less energy is consumed. Also, the latency of putting edge values into the
computational units is reduced considerably. In addition to this, sparsity-aware partitioning
of subgraphs limits memory space overhead.
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Figure 19. Contrast between GraphR and GraphSAR architectures [23].

Figure 20 shows the overview of the GraphSAR topology. The edge data is both stored
and computed in the ReRAM crossbars. The data is allocated in edge list format as well as
block list, as demonstrated in Figure 19. Data from the reg (register) file is utilized by both
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crossbars and simple ALUs. Data loading and scheduling is taken care of by the scheduler.
The architecture also includes sample and hold unit as well in order to convert analog
data into digital by using an analog to digital converter. The authors of [23] proposed
light weight clustering method in which only denser blocks are processed, while others are
skipped. This method decreases blocks to be under procedure. Therefore, it significantly
reduces the memory overhead.
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Figure 20. GraphSAR architecture with allocation of data with respect to the block and edge lists [23].

ReRAM-based NN accelerators have promising features but most of them lack the
ability of efficient mapping for sparse neural networks. To overcome this limitation and
improve crossbar utilization of ReRAM, a sparse neural network technique is proposed
in [24] as illustrated in Figure 21. It is based on clustering, i.e., shuffling of columns in a
weight matrix. The nonzero crossbars are also eliminated. The prime aim of this scheme is
to use lesser crossbar arrays.
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Figure 21. Sparse NN-based mapping scheme [24].

The mapping design is based on two prime observations. Firstly, in most neural
networks, the weight matrix is massive, which is not possible to map onto a singular
ReRAM crossbar block—it has to be divided into sub-blocks. Secondly, to show the pros
and cons of the matrix, two crossbars are required. Therefore, the density goes to half the
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original size because 98 percent of the matrix values become zero. As per these findings,
elimination of these zero elements can improve the crossbar utilization. The sparse neural
network is further compressed by elimination of crossbars with low utilization. The authors
of [24] also propose a crossbar-grained pruning algorithm as shown in Figure 22.
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Figure 22. Crossbar-based pruning algorithm proposed in [24].

FPSA is an NN accelerator [25] with ability in memory processing based on the ReRAM
technology. In previous works [21–24], the pros of high efficiency and density of ReRAM
are not completely fully understood and applied because of the large demands of commu-
nication among PEs and the peripheral circuit overheads. Earlier approaches [21–24] apply
a memory bus or a mesh-based NoC for communication purposes for PEs in ReRAM-based
NN accelerators. In those works, memory buses and NoCs are unable to appease the large
communication cost of the PEs. FPSA has been implemented to increase the production of
ReRAM based on the NN accelerators improving their volume in current interconnections
as well as the requirements of the ReRAM. A reconfigurable routing architecture has been
proposed by the FPSA to provide a distinctively large among of communication capacity
through the wiring resources. FPSA does not apply memory buses or NoCs among the PEs.
With enabling various paths with a large communication bandwidth during an off-line
reconfiguration phase by the FPSA, the communication demand among the PEs is satisfied.
Since the configuration of the neural network models such as the DNN are static, applying
a runtime flexibility is not meaningful, while previous researches [21–24] recycle physical
channels to plan a path among the PEs and provide a runtime flexibility. Therefore, FPSA
proposes a fixed-time datapath and determines a physical channel for every signal in
advance. ReRAM-based connection boxes (CB) and switch boxes (SBs), proposed by [25]
shown in Figure 23, connect PEs in order to minimize the area consumed and compensate
for the high amount of fan in/outs of PEs. Authors in [25] mention that in compared with
PRIME [22], the ability of the FPSA can improve the computational density by about 31×.
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Every NN possesses two stages, training and testing. In the testing phases, the
network’s weights have been established and data drifts via the layers in a forward path.
Before using neural networks in any application, it is required to move into the training
stage in which the weights are generated by the model. The data moves bidirectionally to
update the weights. In [26], training and testing are aided in a ReRAM-based accelerator
called Pipelayer. Interlayer parallelism is carried out with an effective pipeline system in
which data constantly drifts in the accelerator at successive cycles. In addition to it, the
pipelayer architecture utilizes a spike-based scheme for data input instead of voltage level.
The overhead of ADC and DACs is removed in such a manner.

Pipelayer configuration immediately utilizes the ReRAM cells in order to carry out
computations regardless of the processing units. Figure 24 shows the pipelayer architecture
to process the training phase of a neural network. The main memory is spilt into two
categories, morphable and memory subarrays. The memory subarrays can store data while
the morphable subarrays can both store data and carry out computations. In Figure 24,
the memory subarrays are represented by circles and rectangles represent morphable
subarrays. The results of computations carried out at morphable subarrays are stored in
memory subarrays.
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Figure 24. Pipelayer architecture to process the training phase of a neural network [26].

3D-ReG is another ReRAM-based heterogeneous manycore system that has been
proposed for accelerating of the training phase of deep neural networks [27]. 3D integration
and ReRAM are two technologies that have been applied for designing the 3D-ReG. A
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processing-in-memory (PIM) design based on the ReRAM technology has been introduced
in [27] to accelerate the DNNs. The designed PIM possesses two distinct array types,
memory and morphable arrays. Memory arrays are used as standard data storage whereas
morphable arrays are enabled to jump between the data storage and computational data. A
ReRAM layer has been stacked on the GPU layer in the 3D-ReG architecture as shown in
Figure 25.
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Another ReRAM-oriented deconvolution architecture (RED) design of neural accelera-
tor has been proposed in [28]. The performance is analyzed for deconvolution execution
for pre-existing PIMs. Extra operations are disregarded to improve the utilization.

Figure 26 illustrates the overall presented ReRAM deconvolution architecture (RED).
A local input buffer is common for various processing elements to omit the inserted zeroes.
The single functional (SFB) and multifunctional (MFB) registers in the input buffer allow
the reuse of data with shift and buffer modes. When in shift mode, the buffers shift the
data required for carrying out the computations. On the other hand, the buffer mode is
used to load the data from memory or supply to the processing elements. Each processing
element (PE) consists of an array of ReRAM crossbars and peripheral devices as decoders,
multiplexers, and read circuits. For a computational result, the outputs from a PE cluster
are selected via multiplexer and are added to compute the final result.
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Figure 26. Block diagram depicting the RED architecture proposed in [28].

Firstly, a pixel-wise mapping scheme is carried out which maps the kernel weights to
resistive RAM arrays at a very fine level. Parallel execution of various computation modes
is facilitated through this technique. Secondly, in order to facilitate the reuse of input data, a
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zero-skipping data flow technique is also presented. In this mode, only the novel inputs are
dispersed in various processing elements for extreme data reuse and concurrent execution.

Another Re-RAM-based graph processing accelerator is presented in [29]. It is based
on near-memory processing to facilitate lower energy and hardware overheads. As shown
in Figure 27, each GraphR node consists of two main blocks, ReRAM memory blocks, and
graph engines. Meanwhile, memory ReRAM stores the original graph data and graph
engines carry out matrix-vector multiplications through numerous peripheral devices.
It also includes a series of ReRAM memory crossbars. Additionally, sample and hold
components, controllers, analogs to digital converters, drivers, shift and add units, and
input/output registers are some parts of a graph engine.
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This paper utilizes a streaming–application execution model that processes each
subgraph in a streaming fashion. The execution is carried out in two alternatives: column
major and row major. The processing of subgraphs with same destination vertices is carried
out together in the column major, while in the row major, the processing of subgraphs
with same source vertices is handled together. In this manner, the column major requires
lesser output registers while the row major needs few input registers. GraphR carries out
execution using column-major alternatives as it needs lesser output registers.

Summary and Discussion

This section assesses resistive ReRAM-formed memory architectures for DNN accel-
erators. The reviewed papers show that atomic layer computations in ReRAM promise
effective pipelining. In some works, memristors are utilized to perform neural computa-
tions instead of DRAM. ReRAM-based memory architectures promise excessive benefits for
graph processing with an ability to both store and compute data in crossbars. Some parts
of research also defend an increase in capacity of DNN accelerators with an amalgam of
processing-in-memory with ReRAM. Section 6 discusses features of processing-in-memory
architectures in DNN accelerators.

5. Nonvolatile Memories (NVMs)

Despite the high degree of parallelism offered by GPUs, DNN workloads have massive
memory footprints and work to further worsen the memory bottleneck of the system. As a
solution in [20], nonvolatile memories (NVMs) such as STT-RAM [30] show more promise
than conventional SRAM, but due to NVM technology’s absence from the commercial
market, there is a need for a design space for further exploration of it. To this end, DeepNVM
was developed to provide guidelines in order to analyze, distinguish, and optimize NVM-
based caches for GPU architectures. It has the ability to assess the power, performance, as
well as the area of NVMs in application in the last-level cache in the GPU.
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NVSim, another modeling tool for NVM technologies, was incorporated into the
DeepNVM framework to develop additional functionality. Since NVSim disregards the
architecture-level analysis and applications’ specific memory behavior, it cannot perform
cross-layer analysis on NVM technologies. Thus, NVSim is integrated with DeepNVM’s
advanced architecture-level ISO capacity and area, as well as area analysis flow to enable
the investigation of the design space of both the latest NVM caches as well as the SRAMS
such as STT-RAMs.

This paper performs an evaluation in regards to the spin-transfer torque MRAM (STT-
MRAM) in addition to the spin-orbit torque MRAM (SOT-MRAM) using the developed
framework in a GPU-based DNN accelerator and makes the following notable findings
when compared against the baseline performance of SRAM:

• STT-MRAM consumes 2.17× dynamic energy and SOT-MRAM uses 1.02× more
dynamic energy

• STT-MRAM and SOT-MRAM have 6.6× and 8.5× lower leakage energy respectively.
• In general, STT-MRAM and SOT-MRAM possess an energy reduction of 5.6× and

7.7× respectively.
• Lastly, both STT-MRAM and SOT-MRAM supply a decrease in area of 2.4× and

3.0× respectively.

Summary and Discussion

This section reviews scope of nonvolatile memory-based DNN accelerators. Recent
works reflect that deepNVM is one such structure, which analyzes performance parameters
for NVMs used as last-level caches (LLCs) in GPGPU architectures.

6. Processing-in-Memory (PIM)

Unlike 3D memory and ReRAM-based memory architectures, processing-in-memory is
another rich memory technology that has wide scope in design of efficient neural networks.
Yet, PIM architectures have certain challenges that need to be addressed. Firstly, it is
difficult to obtain computations of high precision with PIM. Also, PIM architectures face the
limitation of nonscalability of analog/mixed circuits designs. These challenges are catered
in FloatPIM architecture proposed in [13]. In the presented architecture, out of 32 tiles
in PIM, every tile embraces a memory block with 256 crossbars with row and column
drivers. The switches allow simultaneous flow of data between different blocks of memory.
The operations of switches and row and column drivers are synchronized by a controller.
Float PIM architecture incorporates digital data storage features which enables block-size
scalability with need of lesser memory subblocks for computations. The memory blocks
are arranged in such a manner that each of the blocks is connected to two of its adjacent
neighboring blocks. This arrangement allows effective row-parallel communication in
between the blocks. At first cycle of the clock (To), all the memory blocks work parallelly in
computing mode. In the other two cycles, T1 and T2, the blocks operate in data transfer
mode. In T1, the odd-numbered blocks send data to neighboring blocks, while in T2, data is
transferred by even-numbered blocks. In this manner, the complete data transfer is carried
out in only two consecutive cycles.

In [14], another PIM-based architecture is a proposal that focuses on an energy efficient
design possessing high-performance binary weights in deep neural networks. A presented
architecture, ParaPIM, aims at achieving parallel access of spin-orbit torque magnetic
random access memory subarrays for efficient and high-speed BWNNs.

The structural block diagram of presented ParaPIM as depicted in Figure 28, broadly
involves image and kernel banks, memory subarrays, and a digital processing unit. Before
the mapping of kernels into memory subarrays, they are binarized by binary unit of
DPU. The obtained results are further drawn to corresponding subarrays. The ParaPIM
subarray structure is also depicted in Figure 28. It can be operated in double mode for both
read/write memory operations and bit-line computations.
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Figure 28. Proposed ParaPIM architecture [14].

The comparison results of different memory architectures on the BWNN model are
gathered in [14] for a common task considering batch sizes of 8 and 32 as shown in
Figure 29. It is witnessed that ParaPIM is at least 3.9 times a more energy-efficient model
than DRAM for batch size 8. Also, when considering a comparison with a ReRAM-based
model with batch size 32, ParaPIM comes out as being 13 times more energy efficient.
Likewise, the super-fast and in-situ operations place it ahead of other technologies in terms
of performance as well.
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different memory architecture accelerators [14].

Paper [15] presents a comparator-based PIM memory architecture accelerator design
for a fast and efficient comparator-based neural network. The presented architecture
utilizes parallel SOT-MRAM-based memory subarrays as processing units. The pre-existing
CNN algorithms are altered by substituting convolution layer multiplications with lesser
complex additions and comparisons as depicted in Figure 30.
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Figure 30. Block representation of comparator-based neural network [15].

The basic block comprises a set of operating functions as batch normalization, depth-
wise and pointwise convolution. Figure 31 depicts the presented CMP-PIM architecture,
and it comprises image and kernel banks, memory subarrays, and a digital processing unit.
Before the mapping of kernels into memory subarrays, they are binarized by binary unit of
DPU. The obtained results are further drawn to corresponding subarrays.
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Figure 31. (a) Presented CMP-PIM architecture; (b) detailed structure of P-sum [15].

Liu et al. in [17] have proposed a processing-in-memory architecture derived from a
runtime system considering a system gleaned from a runtime design.

According to the authors’ observations in [17], the most time-consuming operations,
which dominate in the training phases of the DNNs, are the most memory intensive. Based
on their observations, simply executing pure multiplication and summation are inade-
quate for cumbersome memory exhaustive computations. Relu, MaxPool, ApplyAdam,
Conv2DBackpropFilter, and Conv2DBackpropInputs are the best example functions in
DNNs’ training phases, which are composed of operations and logic beyond the capacity
of simple summation and product computations [16]. These comprehensive operations
have the capability to exhaust on average 40% of the total implementation time of the
DNNs based on the study in [17]. This observation shows a heterogeneous computation
requirement in DNNs. Therefore, a heterogenous PIM design which intertwines micropro-
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cessor based/programmable cores and fixed function logic has been proposed in [17]. In
the presented architecture, a runtime framework oversees time-based computations for
CPU, fixed function PIM, and programmable PIM. The runtime framework includes two
steps, profiling and scheduling.

In the profiling phase, the runtime framework for each clock cycle tracks every com-
putation with a hardware counter accumulating the amount of main memory access-level
cache misses and the execution time shown in Figure 32. The runtime framework makes a
decision derived from the profiling results about determining the eligible functions, which
can be outsourced to the CPUs and PIMs. In making the decision, the runtime framework
organizes operations into two categories determined by the amount of main memory
accesses and execution times. These categorical lists are in descending order and every
computation in each list has one index. The runtime framework generates a global index
by the summation of the two respective indexes. A global list is generated by organizing
all operations evolved from their respective global indexes. Finally, from this global list
the top operations are chosen to unburden the PIMs via the runtime framework. In the
scheduling phase, the runtime framework schedules the given candidate operations to
offload to CPU, fixed function PIMs, and programmable PIM based on a set of principles
mentioned in the paper.
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A heterogeneous PIM architecture is proposed in [17]. This particular software/hardware
scheme encourages fast data communication between memory and processors (Figure 33).
The presented design broadly has three key mechanisms. Firstly, fixed function logic blocks
and programmable hubs are stacked in a 3D network to form heterogeneous architecture.
Secondly, the programming challenges are catered by the OpenCL model. Then, a runtime
system is presented to maximize hardware utilization and operation parallelism.
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The runtime system proposed in [17] includes two main features. Firstly, it includes a
pipeline scheme to simultaneously run multiple neural network operations. Secondly, it
also includes a recursive method to call the fixed function PIMs. Hardware utilization is
considerably improved through these topographies.

To achieve a bit precision reconfigurable digital in memory computing macro, smaller
components called bitcells are used in [18]. A macro consists of a 128 by 128 bitcell array.
Each bitcell is comprised of three parts:

(1) 6T SRAM cell: stores binary values for weight.
(2) Bitwise multiplier replicated by an XNOR gate.
(3) Full adder: carries out bitwise addition.

An implementation of parallel configured neurons can be represented by bitcell arrays.
Furthermore, it was found that bitcell arrays have the capability to be reconstructed into
parallel row neurons. A neuron consists of 128 column-shaped multiply and accumulate
units (column MACs) arranged in a row. A bitcell array, dependent on precision settings,
can be manipulated to adapt to various N bit column MACS up to 16-bit precision. An
advantage this architecture holds over conventional processing methods is the number
of components required to achieve the desired bit precision. In conventional arithmetic
logic, the multiplier size grows quadratically as bit precision increases. However, this
architecture’s multiplier size grows in proportion to the bit precision. On a 65 nm test chip,
the energy efficiency is reported as 117.3–2.06 TOPS/W for 1- to 16-bit precision respectively.

Summary and Discussion

This segment of the article examines processing-in-memory (PIM) which is another
promising memory architecture used in DNN accelerators. Though PIM permits faster
communication between the processor and memory, high-precision achievement has been
a challenge. Recent works show that floatPIM enables block size scalability with its
digital storage capabilities. A comparator-based PIM architecture offers rich scope for fast
and efficient neural networks. Another work illustrates that parallel access of memory
subarrays in PIM promises an upsurge in energy efficiency. A combination of fixed-function
logic and programmable cores in heterogeneous processing-in-memory also supports fast
data communication.

7. Near-Memory Processing

In an attempt to reduce the memory wall in the training processes of neural networks,
in [19] the near-data processing enabled eXpander (NDPX) is developed as a nonintrusive
method to handle memory-bound operations to increase the allocated GPU memory storage.
Since NDPX minimally modifies the GPU architecture, it can be easily implemented with
GPUs from various vendors.

Memory-bound operations can consume a significant portion of memory capacity and
considerably hinder the training process by lengthening train time and limiting training
throughput. Batch normalization is one such process which optimizes all the activations in
every channel for the same batch and normalizes them. In addition to this, the average in
addition to the variance is also realized in the batch normalization training process. This
stabilizes the distributions of activations in the batch. The pooling layer is another memory-
bound operation that downsamples 4 × 4 activations in input tensors to a 2 × 2 output.
Additionally, to update the model parameters, element-wise operations are commonplace
in order to integrate the respective layers’ output feature maps. These operations are
examples of processes the NDPX will accelerate, so as to free memory in the GPU to speed
up training. The NDPX has a direct connection through a high-speed memory semantic
connection to the GPU. This consists of an NDPX controller as well as DRAM devices.
Figure 34 illustrates the NDPX architecture and its interaction with the GPU.
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Each memory controller has a dedicated NDP unit and packet filter per memory
channel, and is capable of simultaneously executing multiple requests. When a response
packet via the memory controller or a request by the GPU containing physical address
corresponds to a filter entry, an NDP kernel function is executed. This is done to replace a
GPU kernel in order to offload the memory-bound operations to the NDPX. As a result, the
GPU possess additional free memory to handle other operations to continue training. The
NDPX architecture has been shown to speed up training for VGG-16 by 51%.

8. Off-Chip Memory Architectures in DNN Accelerators

We have reviewed different on-chip memory architectures in DNN accelerators in the
previous sections. Three off-chip memory organizations are reviewed in this section.

The access to off-chip memory imposes a big limitation on the energy efficiency of
CNN (convolution neural networks) accelerators. One technique to decrease DRAM access
is data reuse, but specific data reuse can minimize memory access for only the respective
data type. Therefore, sticking to one data type does not solve the issue for the entire
network and will cost for reuse of other data types. The authors of [32] offer a promising
layer partitioning and scheduling scheme, called Smart Shuttle. An analytical framework
is presented to measure DRAM access volume and find suitable sectionalization and
scheduling arrangement for every layer.

Another methodology named ROMANet, for promising DRAM access energy savings
is proposed in [33]. It empowers effective reuse off-chip memory access management and
data arrangement. DRAM energy access shows dependency on number of DRAM accesses,
row buffer misses and conflicts. The authors of [33] offer an analytical model to optimize
these parameters. The data mapping in off-chip DRAM improves throughput and reduces
DRAM access energy. Along with it, the data mapping in on-chip SRAM buffers supports
bank-level parallelism. Figure 35 shows the flow of operation of ROMANet methodology.
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Unlike conventional DNNs, capsule networks (CapsNets) are capable candidates
that offer multidimensional capsules rather than one-dimensional neurons. However, the
memory requirements are likewise high, triggering necessity of energy efficient on-chip
memories. The authors of [34] analyze design challenges for on-chip memories deployed in
CapsNets accelerators. DESCNet, a multibanked memory architecture, is proposed, which
is based on dataflow mapping and respective memory access patterns of various steps of
CapsNet inference.

9. Summary of the Paper

The approaches we discussed in this paper are summarized in Table 1. In addition,
Table 2, which is a ranking table for reviewed architectures in this work, indicates certain
factorials such as throughput, power consumption, footprint, technology node, and energy
efficiency. Throughput can be considered as a parameter to show accelerated computation,
and power consumption, footprint, and energy efficiency can be good parameters to show
the cost and simplicity of each method. In addition, a column related to the specific
application for each method has been considered for this table.

Table 1. Summary of memory architectures in DNN accelerators.

Approach Hardware Platform Memory Technology Interconnection

Neurocube [4] Manycore 3D memory Mesh
TETRIS [5] Manycore 3D memory Mesh

Joardar et al. [6] CPU-GPU 3D memory Mesh
Firuzan et al. [7] Manycore 3D memory Reconfigurable Clusters

RAPIDNN [8] Manycore 3D memory Mesh
DRIS-3 [9] Manycore 3D memory Mesh

DeepTrain [11] Manycore 3D memory Bus
QUEST [12] Manycore 3D memory Reconfigurable data paths

AtomLayer [21] Manycore ReRAM Bus
PRIME [22] Multicore ReRAM Bus

GraphSAR [23] Manycore ReRAM Bus
Sparse NN [24] Manycore ReRAM Bus

FPSR [25] Manycore ReRAM Reconfigurable wiring network
Pipelayer [26] Manycore ReRAM Bus
3D-ReG [27] Manycore ReRAM and 3D memory Mesh
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Table 1. Cont.

Approach Hardware Platform Memory Technology Interconnection

RED [28] Manycore ReRAM Mesh
GraphR [29] Manycore ReRAM Mesh

DeepNVM [20] GPGPU NVM Bus
FloatPIM [13] Manycore PIM Switches
ParaPIM [14] Manycore PIM Mesh

CMP-PIM [15] Manycore PIM Mesh
Liu et al. [17] Manycore PIM Mesh

Bit-Precision [18] Multicore PIM Bus
NDPX [19] GPGPU NDP Bus

Table 2. Ranking of the reviewed architectures in this work.

Approach Throughput Power
Consumption Footprint Technology

Node
Energy

Efficiency Specific Application

Neurocube [4] 132.4 GOPS/s 21.5 W 1.077
mm2/single core 15 nm 38.82 GOPS/s/W Image classification

TETRIS [5] N/A 6.94 W 3.5 mm2/single
core

45 nm N/A

Image and voice
recognition and

Internet-of-Things
(IoT)

Joardar et al. [6] N/A N/A N/A 28 nm N/A Image classification

Firuzan et al. [7] N/A N/A N/A 22 nm N/A Image and speech
recognition

RAPIDNN [8] 1904.6
GOPS/s/mm2 4.8 W 3.88 mm2/single

Tile
45 nm 839.1 GOPS/s/W

Image classification
and voice recognition

and
Internet-of-Things

(IoT)
DRIS-3 [9] N/A N/A N/A N/A N/A Image classification

DeepTrain [11] 1.9 TOPS/s 4.9 W 1.2 mm2/single
core

15 nm N/A Image classification

QUEST [12] 1.96 TOPS/s 2.083 W 121.55
mm2/single core 40 nm 0.877 TOPS/s/W Image classification

AtomLayer [21] N/A 4.8 W 5.32 mm2 28 nm 682.5 GOPS/s/W Image classification

PRIME [22] 1.229
TOPS/s/mm2 N/A 0.0348

mm2/single core 45 nm N/A Image classification

GraphSAR [23] N/A N/A N/A N/A N/A Social network
analysis

Sparse NN [24] N/A N/A N/A 65 nm N/A Image recognition

FPSR [25] 38.004
TOPS/s/mm2 N/A 0.022

mm2/single core 45 nm N/A Image classification

Pipelayer [26] 1485
GOPS/s/mm2 N/A 82.63 mm2 28 nm 142.9 GPOS/s/W Image classification

and games

3D-ReG [27] N/A 41.2 W 243.55 mm2 25 nm N/A
Image, video, and

sensor data
processing

RED [28] N/A N/A N/A 65 nm N/A Image processing
GraphR [29] N/A N/A N/A 32 nm N/A Graph analyzing

DeepNVM [20] N/A N/A N/A 16 nm N/A Data processing

FloatPIM [13] 302.3 to 2392.4
GOPS/s/mm2 62.60 W 30.64 mm2 28 nm 818.4 to 695.1

GPOS/s/W Image classification

ParaPIM [14] N/A N/A N/A 45 nm N/A Classification tasks
CMP-PIM [15] N/A N/A 1.7 mm2 45 nm N/A Image recognition
Liu et al. [17] N/A N/A N/A 25 nm N/A Classification tasks

Bit-Precision [18] N/A N/A 3.408 mm2 65 nm 2.06 to 117.3
TOPS/s/W

Artificial neural
network (ANN)

processing

NDPX [19] N/A N/A 9.02 mm2 12 nm N/A
Internet-of-Things

(IoT) and image
classification
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10. Conclusions

As the number of applications for NNs and DNNs are increasing, the demand for
hardware accelerators is also growing. To conquer the memory wall challenge, memory
system configuration is attracting more focus these days. In order to achieve goals of
flexible DNN execution as well as overall performance, different memory architectures
have been presented and considered in the DNN’s design in different research papers.
This study assessed that designing of energy-efficient memory architectures causes an
improvement in power consumption and performance of DNN accelerators significantly.

Emerging technologies, namely in memory processing, near-memory processing, and
nonvolatile memories have the ability to diminish the drawbacks of traditional memory
systems. Unlike the broad pre-existing surveys on DNN accelerators, in this survey paper
we reviewed the most common memory architectures proposed so far for enhanced power
and performance.

In addition, we showed that DNNs have the capability to implement advanced tech-
nologies for better efficiency. This encompasses using 3D stacked and nonvolatile memories.
Furthermore, these modern technologies can also allow the computation to shift closer to
the source. This is done by setting the computation close to or within the memories and
sensors themselves.

In conclusion, due to the proliferation of DNNs in different routine applications, DNNs
are constantly growing in the areas of research and development. As such, the future holds
many avenues of improvement and applications for various levels of hardware design.
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