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Abstract: The Internet of Things (IoT) brings internet connectivity to everyday devices. These devices
generate a large volume of information that needs to be transmitted to the nodes running the IoT
applications, where they are processed and used to make some output decisions. On the one hand,
the quality of these decisions is typically affected by the freshness of the received information, thus
requesting frequent updates from the IoT devices. On the other hand, the severe energy, memory,
processing, and communication constraints of IoT devices and networks pose limitations in the
frequency of sensing and reporting. So, it is crucial to minimize the energy consumed by the device
for sensing the environment and for transmitting the update messages, while taking into account the
requirements for information freshness. Edge-caching can be effective in reducing the sensing and
the transmission frequency; however, it requires a proper refreshing scheme to avoid staleness of
information, as IoT applications need timeliness of status updates. Recently, the Age of Information
(AoI) metric has been introduced: it is the time elapsed since the generation of the last received
update, hence it can describe the timeliness of the IoT application’s knowledge of the process sampled
by the IoT device. In this work, we propose a model-driven and AoI-aware optimization scheme
for information caching at the network edge. To configure the cache parameters, we formulate
an optimization problem that minimizes the energy consumption, considering both the sampling
frequency and the average frequency of the requests sent to the device for refreshing the cache, while
satisfying an AoI requirement expressed by the IoT application. We apply our caching scheme in
an emulated IoT network, and we show that it minimizes the energy cost while satisfying the AoI
requirement. We also compare the case in which the proposed caching scheme is implemented at
the network edge against the case in which there is not a cache at the network edge. We show that
the optimized cache can significantly lower the energy cost of devices that have a high transmission
cost because it can reduce the number of transmissions. Moreover, the cache makes the system less
sensitive to higher application-request rates, as the number of messages forwarded to the devices
depends on the cache parameters.

Keywords: IoT; Age-of-Information; edge-caching; cache refreshing

1. Introduction

The Internet of Things (IoT) brings internet connectivity to everyday objects and
devices, such as wearables, sensors, actuators, etc. These IoT devices generate a large
amount of data that is then transmitted to IoT applications, where they are analyzed to
make some output decisions. These output decisions are directly related to the freshness of
the received data. Indeed, delivering fresh status information of the underlying process
is critical for many IoT applications for effective monitoring and control, and the number
of these IoT scenarios in which devices send time-stamped status updates to applications
is continuously growing. For example, sensor data are analyzed to detect anomalies;
environmental sensor data can help to predict and control fires or other calamities; or, as
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another example, vehicles share their positions, velocities, accelerations, etc. to assist drivers
in an intelligent transportation system. This phenomenon is even more evident in the
Industrial IoT (IIoT) context. IIoT applications require continuous updates about the real-
time states of a huge volume of devices, e.g., a smart manufacturing application requires
receiving fresh telemetry data from the sensors of the assembly line, possibly to determine if
an actuation request is needed. Ideally, we would want a device to generate status updates
as fast as possible and transmit them to the application; however, the deployment of such
systems raises several challenges as the timeliness of this huge amount of status updates is
limited by the severe energy, memory, processing, and communication constraints of IIoT
devices and networks. In particular, energy is a scarce and crucial resource, as devices may
not have a fixed power supply, but they may rely on batteries, or they may harvest energy.
So, the generation and the transmission of the device status updates need to be managed
effectively to save energy on the device and prolong its lifetime: this is fundamental in
massive deployments where human intervention is limited. The energy consumption of
the device depends mainly on two factors: the sensing energy consumption, i.e., the energy
used to obtain the newest status information, and the transmission energy consumption,
i.e., the energy used to transmit the status information [1]. Modern IoT devices can perform
complex operations other than the typical simple monitoring tasks. For example, they can
use on-device artificial intelligence to pre-process the sensed information, so generating a
status update can be very expensive in terms of energy. Moreover, a packet generated by
one of these complex tasks, e.g., an artificial intelligence task, can convey more information
than a packet generated by a simple monitoring task, so the energy cost for transmitting it
can be higher [2]. Finally, even for simple monitoring tasks, the sensing energy cost may
vary greatly: for passive sensors, such as temperature sensors, sensing power consumption
is negligible in comparison to other devices, while for active sensors, such as gas sensors,
sensing power consumption can be significant [3]. The transmission energy cost may also
vary depending on the underlying transmission technology: some transmission protocols
are more energy-efficient due to LPWAN technologies [4].

Within this context, the objective of IoT-system management is to minimize the energy
consumed by the device for sampling the physical process of interest and for transmitting
the data, while ensuring the requested level of information freshness is provided. One pos-
sible solution is using an information caching system: indeed, caching the data generated
by the device can be very effective in reducing the sensing frequency and the transmission
frequency. However, caching can lead to the staleness of information, so the cache needs a
refreshing scheme, as IoT applications need timeliness of status updates.

Sending update messages as soon as they are available may not guarantee the timeli-
ness of status updates: the IoT application may receive delayed updates as the messages
may congest the network; on the other hand, also reducing the number of transmitted
messages may not guarantee the timeliness of status updates—the IoT application may
receive outdated messages because of a lack of updates. So, several measures have been
analyzed in order to measure the freshness of the cached data [5] and consequently to
design a refreshing scheme for the cache. One of the most used is the Age of Information
(AoI) metric since it is a suitable metric for describing the freshness at the receiver with
respect to the sender. Introduced in [6], the AoI is defined as the elapsed time for an item
between the current time and the time the item was generated at the source, i.e., the IoT
device [7,8]. Typically, applications establish a threshold on the value of the AoI; hence,
it may be necessary to optimize the system so that the AoI remains below this threshold
with a certain probability [9]. This means that at least a fraction of the application requests
should receive a data item whose AoI is not larger than the threshold.

In a preliminary version of this work [10], we proposed an AoI-aware model-driven
cache-management scheme implemented in an edge-based proxy. The proxy can efficiently
use a network, computing, and storage resources at the edge, and it can leverage the prox-
imity with the IoT devices to optimize their communication with the IoT applications [11].
Since IoT data typically have a lifetime during which they are useful, we considered a
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cache-refreshing scheme that associates a lifetime, called refresh window, and expressed in
terms of AoI, to each cached item. So, the IoT application requests are sent to the proxy
that responds using the cached item if its AoI is smaller than its refresh window; otherwise,
it fetches the latest sample from the IoT device, delivers it to the application, and refreshes
the cache. This results in a simple polling scheme that can be deployed even on a resource-
constrained proxy. We proposed a model for this cache-management scheme that allowed
us to derive the closed forms of the average time between two requests that cause a refresh
of the cache, i.e., the average time between two polls, the average AoI of the data at the
application, and the probability distribution function of AoI.

In this work, we leverage our model described in [10] to configure the sampling
period of the device and the refresh window of the cache. Our main contributions can be
summarized as follows:

• We define a model-driven optimization problem to set the sampling frequency of the
IoT device, and the value of the refresh window of the cache so that the device power
consumption is minimized, while the AoI requirement expressed by the IoT application
is satisfied. The device power consumption depends on the energy consumed to
transmit the messages and the energy consumed to sense the environment.

• We solve the optimization problem, and we provide an extensive numerical evaluation
of our cache-management scheme, showing the trade-off between minimizing the
energy consumed to transmit the messages and the energy consumed to sense the
environment.

• We evaluate the performance of our cache-management scheme in a realistic environ-
ment based on an emulated IoT network using the OMA LightweightM2M ([12,13])
protocol for IoT device management. In the experiments, we consider a sample sce-
nario composed of an LWM2M Server, i.e., the IoT application, an LWM2M Client,
i.e., the IoT device, and an LWM2M Proxy located in between them. The LWM2M
Proxy implements the proposed cache management scheme to improve system per-
formance [11], and the refresh window of the cache is selected using the proposed
optimized method. We show that the proposed method chooses a refresh window
that minimizes the energy cost while satisfying the AoI requirement.

The remainder of the paper is structured as follows: Section 2 discusses the related
work, whereas Section 3 describes the proposed model. Section 4 describes the proposed
method to configure the cache parameter, Section 5 illustrates performance evaluation.
Conclusions are drawn in the last section.

2. Related Work

Energy-efficient IoT solutions and IoT-network life span are the key challenges for
enhanced smart cities, smart grids, smart transport systems, etc. [14]. So, energy manage-
ment is a critical issue in designing IoT networks, since many IoT devices can rely only
on limited battery power and it is often unfeasible to replace or recharge their batteries.
Therefore, efficient energy management strategies should be implemented in IoT devices
to prolong their lifetime; for example, in [15] Naeem et al. propose an energy-efficient
routing protocol to enhance network lifespan, or in [16] Dev et al. optimize energy utiliza-
tion through an optimal cluster head selection. In general, IoT devices consume energy,
especially in sensing the environment and processing the acquired data, and transmitting
their updates. However, the energy management strategies must guarantee the freshness
of data, which is typically quantified using the AoI metrics. For example, in [17] Abbas
et al. devise a discrete-time Markov chain model to predict the values of AoI and the
probability of packet drops in status update systems, investigating the effects of the arrival
rates of the packets, the number of nodes, and the queue length of each node. In [18] Akar
et al. propose a discrete-time queueing model to derive the distributions of AoI and Peak
AoI in multisource IoT-based status update systems under the assumption of Bernoulli
information packet arrivals and a general discrete phase-type service time distribution
across all the sources. So, several works studied the problem of designing an optimum
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sampling and updating policy for the device. For example, in [2], Zhou et al. designed
an optimal status sampling and updating policy for an IoT device to minimize the AoI
of the data at the destination, under an average energy cost constraint at the device. As
another example, in [19] Kaul et al. face the problem of keeping the status updates of the
sources as timely as possible to all their monitors; they consider the first-come-first-served
queue policy and show the existence of an optimal rate at which a source should generate
its updates. In [20], Abd-Elmagid et al. investigated an optimal sampling policy that
minimizes a long-term weighted sum-AoI. In [21], Chiarotti et al. proposed the Age of
Information at Query (QAoI) measure to characterize the AoI available to the receiver when
it needs it; they considered a sensor that needs to schedule transmissions over a link with
limited availability and they maximize the freshness of the data at query time, considering
that the sensor needs to limit the number of transmissions to prolong its lifetime.

Since IoT devices use near-range technologies, they cannot communicate directly with
applications usually deployed in the cloud: for this reason, IoT networks are typically
accessed through gateways/proxies acting as intermediaries between IoT devices and
IoT applications. So, these intermediary nodes can be leveraged to also provide better
performance in terms of energy consumption. For this purpose, caching the data generated
by the devices can be very effective because it can lower the power consumption, reducing
the frequency of environmental sensing and the frequency of data transmissions. So, for
example, in [22] Niyato et al. introduced the use of a cache for an IoT sensing service
with energy harvesting. Indeed, since the IoT sensor has a limited and random energy
supply, caching can help to reduce the number of requests sent to the sensor and, therefore,
can lower its energy consumption. The cache is deployed at a gateway and its refreshing
scheme is a timer threshold mechanism: a cached item has a timer and, if the timer is larger
than the threshold, the cache assumes that the item is expired, activates the sensor, and
obtains a fresh sensing result. In [23], Xu et al. quantify the data freshness using the AoI
metrics and formulate an update optimization problem for the cache to minimize a cost
that considers the users’ AoI and the sensor’s energy consumption. Instead, other works
design cache refreshing schemes to balance AoI and latency. For example, in [24], Zhang
et al. proposed two cache-refreshing schemes: in the first one, the cached items are updated
in a round-robin manner; in the second one, the cached items are updated upon requests
with a certain probability. However, both the proposed schemes may lead to unnecessary
cache refreshing because they do not take into account the current state of the cached data.
In [25], Zhang et al. proposed a cache-assisted lazy update and delivery (CALUD) scheme
to balance content freshness and service latency in vehicular networks. In [26], Zhang
et al. proposed a cache-refreshing scheme where the cached items are refreshed upon user
requests if their AoI exceeds a given threshold called refreshing window; then, the value of
the refreshing window is set solving an optimization problem that minimizes the average
delay under the average AoI constraint of all sources. However, a requirement about the
average AoI does not give any guarantee about how AoI values are distributed, so it is not
possible to express a requirement in terms of the percentile of the distribution. Moreover, it
is not possible to take into account the energy consumption due to the sampling operations,
as they consider a device that generates updates on demand, i.e., the AoI at the device is
always zero. It is thus not possible to apply this solution for devices having a periodic
sampling behaviour. In this work, we propose a model-driven cache-management scheme
to configure the parameters of a cache deployed on an edge-based IoT proxy. More in
detail, we define and solve an optimization problem that aims at minimizing the energy
consumption on the device and consider the freshness of the data, expressed in terms of AoI,
as a constraint. The cache system could also be managed using data-driven schemes [27];
however, we aim to propose a simple cache-management scheme so that it can easily scale
in case of massive IoT deployments.
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3. System Overview and Model

A typical IoT system consists of the following three main components [28] (see
Figure 1a):

1. IoT Devices: they collect data or perform actuation, e.g., they are either sensors or
actuators, and they have communication capabilities to submit the data to the broader
IoT system through an access network.

2. IoT Applications: they typically run in the cloud and play three main roles: (i) data
acquisition, storage, and access, to support the generation of a huge amount of data
from devices, which is then stored to be processed and analyzed; (ii) data analytics on
the collected data, which are examined to detect valuable information to support, for
example, decision making; (iii) actuation support. In addition, they support several
administrative functions, such as device management, user-account management, etc.

3. IoT Gateways/Proxies: they collect, process, and transfer data from devices to appli-
cations and deliver the actuation requests from applications to devices. They may
also act as intermediaries between the devices and the applications, e.g., they may
support data storage, service discovery, etc.

Future Internet 2022, 14, x FOR PEER REVIEW 5 of 24 
 

 

behaviour. In this work, we propose a model-driven cache-management scheme to 
configure the parameters of a cache deployed on an edge-based IoT proxy. More in detail, 
we define and solve an optimization problem that aims at minimizing the energy 
consumption on the device and consider the freshness of the data, expressed in terms of 
AoI, as a constraint. The cache system could also be managed using data-driven schemes 
[27]; however, we aim to propose a simple cache-management scheme so that it can easily 
scale in case of massive IoT deployments. 

3. System Overview and Model 
A typical IoT system consists of the following three main components [28] (see Figure 

1a): 
1. IoT Devices: they collect data or perform actuation, e.g., they are either sensors or 

actuators, and they have communication capabilities to submit the data to the 
broader IoT system through an access network. 

2. IoT Applications: they typically run in the cloud and play three main roles: (i) data 
acquisition, storage, and access, to support the generation of a huge amount of data 
from devices, which is then stored to be processed and analyzed; (ii) data analytics 
on the collected data, which are examined to detect valuable information to support, 
for example, decision making; (iii) actuation support. In addition, they support 
several administrative functions, such as device management, user-account 
management, etc. 

3. IoT Gateways/Proxies: they collect, process, and transfer data from devices to 
applications and deliver the actuation requests from applications to devices. They 
may also act as intermediaries between the devices and the applications, e.g., they 
may support data storage, service discovery, etc. 

 
Figure 1. IoT system overview and model: (a) a typical IoT system, (b) the considered scenario, (c) 
the interplay over time between the arrival process of IoT-application requests, the sampling 
process, and the cache operations. 

3.1. System-Model Overview 
Without loss of generality, in the following, we consider a scenario composed of a 

single IoT device, a Proxy, and a single IoT application running on a server deployed in 
the cloud, as sketched in Figure 1b. The proposed system model can be applied for each 
application and for each device managed by the proxy. 
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and the cache operations.

3.1. System-Model Overview

Without loss of generality, in the following, we consider a scenario composed of a
single IoT device, a Proxy, and a single IoT application running on a server deployed in
the cloud, as sketched in Figure 1b. The proposed system model can be applied for each
application and for each device managed by the proxy.

3.1.1. IoT Device

In many scenarios, devices collect information at a specific sampling rate, and, among
the sampling behaviors, periodic sampling is the most prevailing behavior used by real-
world applications [29]. Indeed, the simplicity of periodic sampling is well-fitted with
constrained devices, which have limited computational resources; for this reason, it is
widely used for IoT devices [4]. So, we assume that the IoT device performs measurements
periodically with a sampling period s, which can be configured. We assume that the
sampling period cannot be smaller than a given value called smin, which is due to physical
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limitations on the device hardware. We denote tk as the time when the k-th sample is
collected. The fact that the device collects information at a given sampling rate implies
that any external query on the device itself will produce data having an AoI in the range
between 0 and s.

3.1.2. IoT Application

A server typically deployed in the cloud runs the IoT application that needs to retrieve
the state of the IoT device as a part of, for example, a monitoring or control process. The
server generates requests for state updates of the IoT device and forwards them to the
proxy. We assume that the generation of requests is a process with a mean rate λ. As we
mentioned in the Introduction, applications can require that the AoI of the received data
remains below a threshold with a certain probability. Hence, the application-freshness
requirements are formulated as follows: the IoT application requires that at least a fraction α of
the requests receive a data item whose AoI is not larger than a target value denoted by AoIα (see
Figure 1b). As an example, an IoT application requires that at least 90% of the requests, i.e.,
α = 0.9, receive a data item whose AoI is not larger than a given target value, i.e., AoIα.

3.1.3. IoT Proxy

We propose to deploy the IoT proxy at the network edge, in between the IoT devices
and the IoT application. Hence, it can efficiently use a network, computing, and storage
resources at the edge to overcome the limits imposed by IoT devices and networks [11].
More in detail, we propose that the proxy implements a cache: it tries to respond to server
requests using the cached items, thus reducing the energy consumption on the device.
However, caching may lead to the staleness of information, while the IoT application
demands timeliness of status updates, so the cache needs a refreshing scheme. Typically, a
cache associates a validity lifetime to each stored item and when the lifetime expires, the
item is not fresh anymore and should be discarded. Several measures have been introduced
to quantify the freshness of a cached item [5] and, among them, AoI is one of the most
used [7]. We choose then to evaluate the freshness of a sample using the AoI metrics: in
our cache refreshing scheme, a cached item is considered fresh if its AoI is smaller than a
refresh window, called W. The proxy responds to the server request using its cached item
if it is valid; otherwise, it updates the cache fetching the latest sample from the IoT device
and then delivers it to the server. Since this caching mechanism has constant complexity, as
it involves only a comparison between the AoI of the cached item and its refresh window, it
can easily scale if the proxy has to manage multiple devices. Figure 1c shows an example of
the relationship over time between the arrival process of requests from the IoT application,
the periodic sampling on the IoT device, and the cache operation on the proxy. Moreover,
we assume that before starting to exchange messages, there is a setup phase during which
the IoT application specifies its freshness requirements to the proxy in terms of a target
percentile AoIα for a given threshold α.

The cache system implemented by the proxy Is then composed of a cache with pa-
rameter W and an optimizer that sets the most suitable value of W (see Figure 1b). W
is the solution to an optimization problem that minimizes the cost in terms of energy
consumption at the IoT device while satisfying the AoI requirements of the IoT application.
The energy cost depends on the energy consumed to transmit the update messages and
the energy consumed to sense the environment. The optimizer takes as inputs the AoI
requirements, i.e., AoIα and α, and the (estimated) average request rate λ.

We assume that the network between the proxy and the server that runs the IoT
application, and the access link between the proxy and the IoT device are both ideal, i.e.,
there is no transmission error. Moreover, being deployed at the edge [11], the proxy can
take advantage of the proximity to IoT devices; hence, it experiences small and predictable
network delays as compared to AoI requirements. For this reason, it should not be deployed
farther from the device. However, the proxy should not be deployed closer, e.g., in a device
of the access network itself. Indeed, in the case of a dynamic IoT scenario, e.g., a scenario
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involving topology changes, a proxy deployed in a device of the access network might
fall in a sub-optimal placement with respect to the device-application path. Instead, node
mobility is transparent to an edge-based proxy, as it is typically supported by the routing
protocol or the handover function of the access network itself. We also assume that the link
between the proxy and the server is almost deterministic, so the application can simply
take the link delay into account when expressing the freshness requirement. Therefore,
they are both assumed to be null in the following derivations.

3.2. Model of the Cache-Management Scheme

Here, for the sake of completeness, we briefly report the model of the cache manage-
ment scheme we proposed in [10], which is the basis for the optimization method proposed
in this work.

We model the cache-management scheme as a 2w-states Discrete-Time Markov Chain
(DTMC) {Xk}kεN, where transitions occur at time instants tk. We assume that the generation
of server requests follows a Poisson distribution with an aggregate rate λ. We also assume
that the cache parameter W is a multiple of the device sampling period, i.e., W = ws with
w ≥ 1. The discrete-time Markov chain is a simple yet effective model that allows us to
derive in closed forms the following system KPIs: the average AoI of the items and their
distribution at the steady-state, and the number of transmissions per unit of time needed to
update the cache. This model makes only a few assumptions on the underlying system, i.e.,
we only assume that the edge-based proxy experiences small delays as compared to AoI
requirements, and that the link between the proxy and the server is almost deterministic.
Finally, the probability distribution function of the AoI can be used for the model-driven
optimization of the cache.

States: We denote Xk as the state of the DTMC at time tk. Xk is defined by two
components: (i) the first specifies if in the previous interval (tk−1, tk) at least one request
has arrived; (ii) the second specifies the number of remaining intervals during which the
cached item is still considered fresh. Hence, the states of the DTMC are the following (see
Figure 2):

1. Xk = (0, w): no request arrived during the interval (tk−1, tk) and there is not a fresh
item in the cache. So, if a request arrives in the interval (tk, tk+1), the proxy fetches
the latest update from the device, which will be cached and will expire in w intervals.

2. Xk = (0, w− j), 1 < j ≤ w: no request arrived in the interval (tk−1, tk), and the cached
item will expire in w− j intervals.

3. Xk = (1+, w− j), 1 ≤ j ≤ w: at least one request arrived during the interval (tk−1, tk),
and the cached item will expire in w− j intervals.
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Transition probabilities: The model needs only to keep track if any request has
arrived or not during the current interval, so the transition probabilities are the probability
of having no requests in a period of length s, called p0, and the probability of having at least
one request in a period of length s, called p1+ , as shown in Figure 2. Since the generation of
server requests follows a Poisson distribution, it is p0 = e−λs and p1+ = 1− e−λs.

The DTMC is irreducible and positive recurrent, so it is possible to compute the steady-
state probabilities, denoted as π [10]. Based on this system model we can derive in closed
forms the network cost, the average AoI of the items, and the probability distribution
function of the AoI at the steady-state.

3.2.1. Network Cost

We define the network cost as the average time between two requests that trigger a
cache refresh, and we denote it as E{T}. E{T} is equal to the average time between two
subsequent visits to the state (1+, w− 1), i.e., the inverse of its steady-state probability:

E{T} = W +
s

eλs − 1
= ws +

s
eλs − 1

(1)

3.2.2. Average AoI

We denote the average AoI as AoI. The AoI is only measured in intervals where at least
one request has arrived, and it depends on the state of the DTMC and on the instant of the
arrival within the interval. The state of the DTMC is given by the steady-state probabilities;
the average time instant of arrival is s/2, because Poisson arrivals are uniformly distributed
in a time interval. For any j, 1 ≤ j ≤ w, the average AoI seen by requests arriving in the
interval (tk−1, tk) is:

AoIk = E
{

AoI|Xk =
(
1+, w – j

)}
=

s
2
+ (j – 1)s (2)

Unconditioning over all states for which at least one request arrived in the previous
interval, it is, at the steady-state:

AoI =
∑w

j=1 E{AoI|Xk = (1+, w – j)}π1+ ,w−j

∑w
j=1 π1+ ,w−j

=
s
2
+

1
2
(W − s)W

(
eλs − 1

)
W
(
eλs − 1

)
+ s

(3)

3.2.3. Probability Distribution of AoI

Denote PAoI(δW) as the probability distribution function of AoI at the steady-state. It
is defined as follows:

PAoI(δW) = P
{

AoI ≤ δW|Xk =
(
1+, w− j

)
, 1 ≤ j w

}
for any δ, 0 ≤ δ ≤ 1. (4)

So:

PAoI(δW) =
∑w

j=1 P{AoI ≤ δW|Xk = (1+, w – j)}π1+ ,w−j

∑w
j=1 π1+ ,w−j

(5)

If in state Xk = (1+, w – j) at time instant tk, 1 ≤ j ≤ w, the cached sample has been
collected at a time instant tk−j = tk − js, therefore, it is, for any j, 1 ≤ j ≤ w:

P
{

AoI ≤ δW|Xk =
(
1+, w – j

)}
=


1

δw− bδwc
0

j ≤ bδwc
bδwc < j ≤ bδwc+ 1

j > bδwc+ 1
(6)

Finally:

PAoI(δws) =


δw

w(1−e−λs)+e−λs 0 ≤ δ < 1
w

δw−e−λs(δw−1)
w(1−e−λs)+e−λs

1
w ≤ δ ≤ 1

(7)
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3.3. Model of the Power Consumption

Devices consume energy when performing three main tasks [30]: (i) data sampling, e.g.,
sensing from the environment, for example, the temperature, the humidity, the pressure, the
fluid flow, etc.; (ii) data processing, performed after sampling and involving operations like
storage, denoising, etc.; (iii) data communication, which includes all necessary networking
tasks like packet transmissions and receptions, protocol overheads due to control traffic, etc.

We model the energy consumption as depending on two components: (i) sampling
energy consumption, due to the sensing operation and the processing of the sampled
data; (ii) communication energy consumption, due to the transmission of the updates. The
computational energy cost can be considered negligible, as it becomes significant only in
some specific cases involving complex mathematical operations or very long sleep times.
Denote cT as the energy consumption for transmitting an update message and denote
cS as the energy consumption for generating a new sample. The energy consumption of
the device depends on the frequency of these two operations, i.e., on the transmission
frequency and on the sampling frequency.

In our system model, the transmissions frequency, that we denote as fT , is the poll
frequency, i.e., it is the inverse of the average time between two requests that trigger a cache
refresh: fT(w, s) = 1/E{T}. The sampling frequency, that we denote as fS, is instead the
inverse of the sampling period: fS(w, s) = 1/s. So, the energy consumption per time unit c
on the device is

c = cT fT + cS fS (8)

Given the wide diversity of the IoT devices, cT and cS can range from very small
values to very large values, relative to each other. Without losing generality, we normalize
c with respect to the sum of cT and cS, i.e., with respect to the sum of the energy cost of one
transmission operation and the energy cost of one sampling operation:

c
cT + cs

=
cT

cT + cs
fT +

cS
cT + cs

fS (9)

Denote c/(cT + cS) as cβ, and cT/(cT + cS) as β, it is:

cβ = β fT +
(
1− β

)
fS (10)

with β ∈ [0, 1].
This means that cβ takes into account the relationship between the energy consumption

of a transmission operation and a sampling operation, but it does not depend on their
absolute values. Indeed, the parameter β indicates the energy cost of a transmission
operation with respect to the sum of the energy costs of a transmission operation and a
sampling operation. The value of β depends on the type of device, e.g., for a device where
the energy cost of a sampling operation is negligible with respect to the energy cost of
a transmission operation β tends to one; on the contrary, for a device where the energy
cost of a transmission operation is negligible with respect to the energy cost of a sampling
operation β tends to zero. In [3] Razzaque et al. compute the operational energy costs
in wireless sensor networks focusing on energy consumption during a single sampling
period. They consider several commercial sensors, and they present a comparison of their
sensing and communication energy costs. Comparisons are normalized with respect to
communication energy. In Table 1 we report the results for six exemplary sensors for
which we compute the corresponding value of β starting from the given values of cS/cT .
Clearly, for sensors where the cost of a sensing operation is much higher than the cost
of a transmission, the value of β is close to zero; instead, for sensors where the cost of
transmission is much higher than the cost of a sampling operation, the value of β is close
to one.
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Table 1. Exemplary values of β computed from commercial-sensors parameters [3].

Sensor cS/cT
¯
β

MMA7269Q (Accelerometer) 0.0000268 0.97
GE/Telaire 6004 (CO2 sensor) 1249.25 0.0008
SHT1X (H) (Humidity sensor) 0.4 0.71

SHT1X (T) (Temperature sensor) 1.5 0.4
CP 18 (Proximity sensor) 0.267 0.8
LUC-M10 (Level sensor) 9.22 0.098

4. Model-Driven Cache-Management Optimization
4.1. Energy-Optimized Cache Refresh

We propose a model-driven method to choose the two parameters w and s that
minimize cβ, under the constraint given by the AoI requirement. More in detail, w and s
are the solutions to the following optimization problem:

minw,s cβ

s.t.
s ≥ smin (11)

PAoI(AoIα) ≤ α (12)

The constraint (11) is the hardware constraint of the device, while the constraint (12) is
the AoI requirement of the application. The latter can be expressed in a solvable form using
our proposed model. Indeed, since the model allows us to compute the closed form of the
probability distribution function, we can derive a condition on w such that the probability
distribution function goes through the point (AoIα, y), with y ≥ α. So, we need to find δ, s,
and w such that AoIα = δW and PAoI(δW) ≥ α. We obtain:

• If 1 ≤ δw ≤ w (i.e., s ≤ AoIα ≤W) :

w ≤ AoIα

αs
+

e−λs(1− α)(
1− e−λs

)
α

(13)

• If 0 ≤ δw < 1 (i.e., 0 ≤ AoIα < s):

w ≤
AoIα

αs − e−λs

1− e−λs (14)

Therefore, g(s) ≤ w ≤ h(s), with:

h(s) =

 h1(s) = AoIα
αs + e−λs(1−α)

(1−e−λs)α
s ≤ AoIα

h2(s) =
AoIα

αs −e−λs

1−e−λs s > AoIα

(15)

and
g(s) =

AoIα

s
. (16)

An example of the feasible region where values of w and s satisfying the AoI require-
ment must fall is shown in Figure 3. Note that, although the region is highlighted as a
two-dimensional area, the admissible solutions are only those on the segments for which w
takes an integer value.



Future Internet 2022, 14, 197 11 of 24

Future Internet 2022, 14, x FOR PEER REVIEW 11 of 24 
 

 

𝑤 ≤ 𝐴𝑜𝐼ఈ𝛼𝑠 + 𝑒ିఒ௦(1 − 𝛼)(1 − 𝑒ିఒ௦)𝛼 (13)

• If 0 ≤ 𝛿𝑤 < 1 (i.e., 0 ≤ 𝐴𝑜𝐼ఈ < 𝑠):  

𝑤 ≤ 𝐴𝑜𝐼ఈ𝛼𝑠  − eିఒ௦1 − eିఒ௦  (14)

Therefore, 𝑔(𝑠) ≤ 𝑤 ≤ ℎ(𝑠), with: 

ℎ(𝑠) = ⎩⎪⎨
⎪⎧ ℎଵ(𝑠) = 𝐴𝑜𝐼ఈ𝛼𝑠 + 𝑒ିఒ௦(1 − 𝛼)(1 − 𝑒ିఒ௦)𝛼                𝑠 ≤ 𝐴𝑜𝐼ఈ    

ℎଶ(𝑠) = 𝐴𝑜𝐼ఈ𝛼𝑠 − 𝑒ିఒ௦1 − 𝑒ିఒ௦                                𝑠 > 𝐴𝑜𝐼ఈ        (15)

and 𝑔(𝑠) = 𝐴𝑜𝐼ఈ𝑠 . (16)

An example of the feasible region where values of 𝑤  and 𝑠  satisfying the AoI 
requirement must fall is shown in Figure 3. Note that, although the region is highlighted 
as a two-dimensional area, the admissible solutions are only those on the segments for 
which 𝑤 takes an integer value. 

 
Figure 3. Constraints for 𝐴𝑜𝐼ఈ = 420 s, 𝛼 = 0.9, 𝜆 = 1 ോ 1800 sିଵ and 𝑠௠௜௡ = 60 s (log scale on the 
y-axis). 

Finally, the optimization problem can be reformulated as follows: 𝑚𝑖𝑛௪,௦   cఉഥ   (17)

s.t. 𝑠 ≥ 𝑠௠௜௡ 𝑔(𝑠) ≤ 𝑤 ≤ ℎ(𝑠) 𝑤 ∈ ℤା, 𝑠 ∈ ℝା. 

In Figure 4 we show the values of 𝑐ఉഥ  inside the feasible region for different types of 
sensors, expressed by different values of �̅�. For clarity, in the figure we reported the 
values of 𝑐ఉഥ  for all the pairs of values of 𝑤 and 𝑠 inside the feasible region; however, 
the only admissible pairs are those having 𝑤 ∈ ℤା . We can notice that for �̅� = 0 (the 
energy consumption for transmitting is zero, i.e., 𝑐் = 0) the minimum value of 𝑐ఉഥ  is on 

Figure 3. Constraints for AoIα = 420 s, α = 0.9, λ = 1/1800 s−1 and smin = 60 s (log scale on the
y-axis).

Finally, the optimization problem can be reformulated as follows:

minw,s cβ (17)

s.t.
s ≥ smin

g(s) ≤ w ≤ h(s)

w ∈ Z+, s ∈ R+.

In Figure 4 we show the values of cβ inside the feasible region for different types

of sensors, expressed by different values of β. For clarity, in the figure we reported the
values of cβ for all the pairs of values of w and s inside the feasible region; however, the

only admissible pairs are those having w ∈ Z+. We can notice that for β = 0 (the energy
consumption for transmitting is zero, i.e., cT = 0) the minimum value of cβ is on the lower

right corner of the feasible region; as β increases, the minimum value starts shifting on the
left, up to the top left corner of the feasible region when β = 1 (the energy consumption
for sampling is zero, i.e., cS = 0). In the following, we study the objective function for the
extreme cases of a device for which the energy consumption for transmitting is zero and a
device for which the energy consumption for sampling is zero, having respectively, β = 0,
β = 1, and then for the general case of 0 < β < 1, representing hybrid sensors.

4.1.1. Devices with Transmission Energy Consumption Equal to Zero: β = 0

When β = 0, i.e., cβ = fS, it is possible to compute the optimum values of w and s in
closed form (see Appendix A), obtaining w∗ = 1 and s∗ = AoIα/α, as can be also seen in
Figure 4. Since cβ = fS, it follows that cβ does not depend on the rate of requests λ, but
depends only on the AoI requirement, i.e., AoIα and α.

When the value of AoIα increases, the optimum value of cβ decreases, and when
AoIα → ∞ , the objective function tends to 0:

lim
AoIα→+∞

fS(s, w) = 0

Indeed, if AoIα → ∞ , there is no need for refreshing the data.
When the value of α decreases the optimum value of cβ decreases as well, whereas

when α→ 0 , the objective function tends to 0:

lim
α→0

fS(s, w) = 0
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Indeed, α→ 0 means that the fraction of requests that need to receive a data item
whose AoI is not larger than the target value tends to zero. However, typical real use cases
will require higher values of α, e.g., 0.8, 0.9, or 0.95.
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4.1.2. Devices with Sampling Energy Consumption Equal to Zero: β = 1

When β = 1, i.e., cβ = fT, if we remove the integer constraint on w, it is possible
to compute the optimum values of w and s in closed form (see Appendix B), obtaining

s∗ = smin and w∗ = f (smin) = AoIα
αsmin

+ e−λsmin (1−α)

(1−e−λsmin)α
if s ≤ AoIα, or w∗ = f (smin) =

AoIα
αsmin

−e−λsmin

1−e−λsmin
if s > AoIα. The same result can be also seen graphically in Figure 4.

In this case, cβ depends both on the requests rate λ and on the AoI requirement, i.e.,
AoIα and α.

When the value of λ decreases, the optimum value of cβ decreases (see Figure 5), and
when λ→ 0 it is:

lim
λ→0

fT(s, w) = 0

Indeed, in this case, each request triggers a refresh with a high probability, but since
the request rate is extremely low, only a few messages are exchanged in the network.

Instead, when λ→ ∞ , it is (see Figure 5):

lim
λ→+∞

fT(s, w) =
α

AoIα

In this case, the cache is refreshed almost periodically with period W.
Clearly, also in this case, when the value of AoIα increases, the optimum value of cβ

decreases, and when AoIα → ∞ , the objective function tends to 0:

lim
AoIα→+∞

fT(s, w) = 0
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And when the value of α decreases also the optimum value of cβ decreases, and when
α→ 0 , the objective function tends to 0:

lim
α→0

fT(s, w) = 0

These conclusions remain essentially the same when considering the integer constraint
on w: in this case, we cannot compute the optimum values of w and s in closed form, but
we can only find a numerical solution using some optimization techniques and, as we can
observe from Figure 6, the optimal value of s can be slightly greater than smin to satisfy the
integer constraint on w.
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4.1.3. Hybrid Sensors: 0 < β < 1

In this case, both the energy consumption of transmissions and the energy consump-
tion of sensing are different from zero, and therefore there is a trade-off between minimizing
the average poll frequency and minimizing the sampling frequency on the device, as the
first leads to minimizing s. Indeed the optimization problem chooses s→ smin , whereas
the second leads to maximize s.

It is possible to compute the optimum values of w and s solving (17) using optimization
techniques for non-linear integer programming, e.g., branch and bound. Table 2 and Figure 6
show the optimum values of w and s computed using the APMonitor solver ([31,32]) us-
ing α = 0.9, AoIα = 420 s, and considering three exemplary cases where λ = 1/90 s−1 ,
λ = 1/180 s−1 and λ = 1/360 s−1 . We can notice that the optimum values are on the
top edge of the feasible region, as in the cases shown in Figure 4. Moreover, we can also
notice that several values of β can result in the same configuration of the parameters w
and s: Table 2 shows that in all the considered scenarios, there are different values of β, i.e.,
different types of devices, that have the same optimum values of w and s. This follows from
the model constraint that w can only take integer values. However, the resulting values of
cβ are different as they depend on the value of β, i.e., the energy consumption still depends
on the type of device.

Table 2. Optimum values of w and s for λ = 1/90 s−1 , λ = 1/180 s−1 , and λ = 1/360 s−1 α = 0.9,
AoIα = 420 s, varying β.

λ
¯
β 0 0.9 0.91 0.966 0.97 0.98 0.99 1

1/90 s−1 w 1 1 1 2 3 4 6 7
s 466.67 466.67 466.67 234.37 156.79 117.88 78.82 67.63

1/180 s−1 w 1 1 2 3 3 4 5 8
s 466.67 466.67 238.14 159.7 159.7 120.18 96.36 60.44

1/360 s−1 w 1 2 2 2 3 3 4 8
s 466.67 247.25 247.25 247.25 166.05 166.05 125.03 62.91

Figure 7 shows cβ for different types of devices and for the same AoI requirement and

five possible network loads: λ = 1/10 s−1 , λ = 1/180 s−1 , λ = 1/500 s−1 , λ = 1/1000 s−1

and λ = 1/1800 s−1 . Clearly, as the request rate decreases also the transmission energy
cost decreases. As mentioned above, in all the considered scenarios for values of β going
from 0 up to 0.9-0.91-0.97, the optimum values of w and s are the same, hence their values
of cβ differ only for β, showing a linear behavior. Instead, when β→ 1 the optimum values
of w and s change and, at lower rates we also have that fT → 0 , so cβ → 0 , causing the
steep change in the slope of the curve.
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4.2. Sensitivity Analysis

The cache optimizer needs to receive as inputs the AoI requirements of the application,
i.e., α and AoIα, and the request rate λ. The proxy receives the values of α and AoIα from
the server during the initial configuration phase; instead, it needs to estimate the value of
the request rate λ. So, the estimated value of λ may be affected by an estimation error, or
the actual value of λ may not be constant but have some small fluctuations that are not
seen by the proxy.

To assess the sensitivity of the proposed model to variations of the parameter λ, we
evaluate our model in a sample scenario in which we assume that the AoI requirements
are α = 0.9 and AoIα = 420 s, for different values of β and λ. Typically, estimating the rate
of a Poisson process requires estimating the mean interarrival time; so, in the following,
we show the sensitivity of our model when the estimated mean interarrival time, denoted
as T, is different from the actual mean interarrival time, denoted as T. Since we want
to evaluate the impact of an estimation error of T, we are considering devices where the
predominant energy cost is the transmission energy cost, i.e., β→ 1 : indeed, in these cases
cβ also depends on the request rate and hence is more affected by estimation errors on T.

Call w∗ and s∗ the optimum values obtained considering the mean interarrival time T
and call w and s the optimum values obtained considering the estimated interarrival time
T. Figure 8 shows the percentage variation of cβ, calculated as follows:

cβ(T, w, s) – cβ(T, w∗, s∗)

cβ(T, w∗, s∗)
∗ 100 (18)

as a function of the percentage variation of T, i.e., 100
(
T − T

)
/T. Moreover, call πα the

α-th percentile of PAoI . Figure 9 shows the percentage variation of πα, calculated as follows:

πα(T, w, s) – πα(T, w∗, s∗)
πα(T, w∗, s∗)

∗ 100 (19)

as a function of the percentage variation of T.

Future Internet 2022, 14, x FOR PEER REVIEW 16 of 24 
 

 

Call 𝑤∗ and 𝑠∗ the optimum values obtained considering the mean interarrival time 𝑇 and call 𝑤ഥ  and �̅� the optimum values obtained considering the estimated interarrival 
time 𝑇ത. Figure 8 shows the percentage variation of 𝑐ఉഥ , calculated as follows: 𝑐ఉഥ (𝑇, 𝑤ഥ, �̅�) – 𝑐ఉഥ (𝑇, 𝑤∗, 𝑠∗)𝑐ఉഥ (𝑇, 𝑤∗, 𝑠∗) ∗ 100 (18)

as a function of the percentage variation of 𝑇, i.e., 100൫𝑇 − 𝑇൯ 𝑇⁄ . Moreover, call 𝜋ఈ the 𝛼 -th percentile of 𝑃஺௢ூ . Figure 9 shows the percentage variation of 𝜋ఈ , calculated as 
follows: 𝜋ఈ(𝑇, 𝑤ഥ, �̅�) – 𝜋ఈ(𝑇, 𝑤∗, 𝑠∗)𝜋ఈ(𝑇, 𝑤∗, 𝑠∗) ∗ 100 (19)

as a function of the percentage variation of 𝑇. 

 
Figure 8. Percentage variation of the normalized energy cost for 𝜆 = 1 ോ 1800 sିଵ , �̅� = 0.95 
(circles), �̅� = 0.995 (diamonds), �̅� = 1 (crosses). 

 
Figure 9. Percentage variation of 𝐴𝑜𝐼ఈ  for 𝜆 = 1 ോ 1800 sିଵ , �̅� = 0.95  (circles), �̅� = 0.995 
(diamonds), �̅� = 1 (crosses). 

From Figure 8 we can notice that when 𝑇 is underestimated, the resulting energy 
consumption cost is larger than the minimum value, though the variation is small. On the 
other hand, when 𝑇 is overestimated, the energy consumption is smaller, but the AoI 
requirement is not satisfied (see Figure 9). However, for small variations of 𝑇 , the 
percentage variation of 𝜋ఈ is small. 
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From Figure 8 we can notice that when T is underestimated, the resulting energy
consumption cost is larger than the minimum value, though the variation is small. On
the other hand, when T is overestimated, the energy consumption is smaller, but the
AoI requirement is not satisfied (see Figure 9). However, for small variations of T, the
percentage variation of πα is small.

Finally, Figure 10 shows the percentage variation of cβ for different values of λ = 1/T.
We can notice that lower rates are more affected by estimation errors, because as λ tends
to zero, also the transmission energy cost tends to zero, and hence larger errors on T have
a larger impact on cβ. However, the graphs show that the model is robust, indeed if we
assume that T varies up to 30%, in the worst case the error is slightly more than 10%.
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5. Performance Evaluation
Exemplary Use Case: LWM2M

IoT devices generate complex and heterogeneous M2M systems that need to be con-
figured, monitored, and maintained, so there is a need for a standard platform for man-
agement. For example, the Open Mobile Alliance (OMA) specified the LightweightM2M
(LWM2M) protocol for device management and service enablement. LWM2M defines an
application layer protocol between an LWM2M Server, i.e., the IoT application, and the
LWM2M Client, i.e., the IoT device. It is designed for constrained devices and networks
and provides a set of REST-based resource models where each information made available
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by the device is a Resource. Resources are then organized into Objects. This object model is
easily extensible, and the Object registry is open to the industry. So, LWM2M is becoming
broadly used in industry: in this context, the IIoT network manager aims at reducing the
energy consumption in the device to prolong its lifetime and reduce the operating costs of
the network while satisfying the AoI requirements of the applications. Hence, a possible
solution is using a caching system at the edge.

To assess the performance of our solution in this use case, we emulate an IoT system
where we use the LWM2M protocol to manage the IoT devices and we consider a scenario
consisting of an IoT network, an LWM2M Server that runs the IoT application and a
cache-enabled LWM2M Proxy that implements our proposed cache-management scheme.

The IoT network is emulated using the COOJA network emulator [33] and uses the
6LoWPAN protocol [34] on top of the IEEE 802.15.4 MAC [35] operating in the 2.4 GHz
band, and the RPL routing protocol [36]. The wireless devices of the IoT network run the
Contiki-NG operating system [37] and are connected to the Internet through the 6LoWPAN
Border Router. One of the devices runs the LWM2M Client, that in this case is the device
application, exposing an LWM2M Object representing the sensor, and is located three hops
away from the 6LoWPAN Border Router. The LWM2M Proxy is located outside the IoT
network and manages the requests for the device application sent by the IoT application
using the proposed cache-management scheme. The LWM2M Server and the LWM2M
Proxy are implemented using the Eclipse Leshan library [38]. Each experiment lasted
400,000 s, the frame size of a response message is 82 bytes and the resulting average service
delay, i.e., the time between when a request is issued by the application and the time its
response is received, is 326.5 ms (95% CI [322.6, 330.4]), and it is negligible compared to the
chosen value of AoIα, i.e., 420 s.

In our first experiment, α is 0.9 and the generation of application-requests follows a
Poisson distribution with a cumulative rate λ = 1/180 s−1 (as in the examples shown in
Section 4.1.3). Figure 11 shows the empirical CDFs and the CDFs obtained through the
model for the following values of β: β = 0.5, β = 0.97, β = 1. Table 3 shows the values of
w and s chosen by the optimizer. We can see that the empirical and the theoretical results
are very close to each other, so the empirical CDFs obtained with the values of w and s
chosen by the model always satisfy the AoI requirements. Moreover, Table 3 also shows the
values of AoI in all the considered cases: we can notice the trade-off between minimizing
the average poll frequency and minimizing the sampling frequency, indeed when β = 1,
it is s→ smin , that results in a lower value of AoI, but this comes at the cost of a higher
sampling power consumption.
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Table 3. w , s, and AoI for λ = 1/180 s−1 , α = 0.9, AoIα = 420 s, varying β.

¯
β 0.5 0.97 1

w 1 3 8

s 466.67 159.7 60.44

AoI
231.53

95% CI [221.93, 241.16]
212.31

95% CI [203.51, 221.11]
189.98

95% CI [182.08, 197.88]

In our second experiment, we consider the same configuration as the previous exper-
iment, but now multiple IoT applications send periodic requests for the state of the IoT
device. We consider two cases: (i) in the first scenario, ten applications have request periods
of the same order of magnitude, e.g., the applications have similar characteristics, and so
all the request periods are randomly extracted from a uniform distribution between 1000
and 3000 s; (ii) in the second scenario, five applications have periods uniformly distributed
between 50 and 100 s, while the remaining five have periods uniformly distributed between
5000 and 10,000 s, e.g., we consider two different classes of applications. In the first scenario,
we consider β = 0.95, in the second scenario we assume β = 1. The optimizer computes
the optimum values using λ as the sum of the inverses of the periods and chooses (i) w = 2
and s = 238.1 s for the first scenario and (ii) w = 7 and s = 66.68 s for the second scenario.
Figure 12 shows the empirical CDFs and the CDFs obtained through the model for the two
scenarios: we can notice that the empirical CDFs and the theoretical CDFs are very close to
each other, so the optimum values of w and s obtained through the model can be applied
also in this case.
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To assess the performance of the cache implemented by the proxy, we compare the
case in which the proxy implements the cache against the case in which the proxy does not
implement the cache. In the latter case, we consider s = AoIα/α, i.e., the maximum value
of s that satisfies the AoI constraint. In Figure 13 we report the value of cβ obtained for
different types of devices both without the cache and with the cache. We can notice that
the optimized cache can significantly reduce the energy cost of devices for which the cost
of the transmissions is the prevalent cost because it can significantly reduce the number
of transmissions, especially for high values of λ. We can also notice that using the cache
makes the system less sensitive to higher rates, as the number of exchanged messages
depends on the refresh window.
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Then, we define the service delay as the time between a request sent by the application
and the time its response is received. Figure 14 shows the cumulative distribution function
of the service delay for λ = 1/180s−1 both for the case in which the proxy does not
implement the cache and for the case wherein the proxy implements the cache. For the
latter, we consider three values of β, namely β = 0.5, β = 0.97 and β = 1. All the scenarios
satisfy the same AoI requirements: AoIα = 420 s and α = 0.9. Clearly, we can notice that
the cache-enabled proxy always provides quicker responses with respect to the case in
which the cache is not implemented, as some responses are taken from the cache, as shown
by the CDFs. Indeed, the CDFs obtained with the cache show a bi-modal behavior: some
responses are taken from the cache and hence have smaller service delays, while some
responses are forwarded to the device and hence have larger service delays. Moreover, we
can also notice that the case β = 1 is the configuration that minimizes the service delay.
Indeed, β = 1 is the case in which the predominant energy cost is the transmission cost, so
it minimizes the number of exchanged messages with the device and hence it is also the
configuration that minimizes the service delay.
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6. Conclusions

In this work, we considered an IoT network composed of devices that sample the
environment periodically and of applications that need to be aware of the state of these
devices as timely as possible to, for example, support decision making or detect anomalies.
However, the timeliness of the state updates is limited by the constraints of the IoT devices
and networks, especially by the device energy constraints. Indeed, energy is a scarce
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resource, as typically devices do not have a fixed power supply, but they rely on batteries
or harvest energy. The energy consumption of the device mainly depends on the sensing
energy consumption and on the transmission energy consumption; so, the objective of
IoT-system management is to minimize them while guaranteeing information freshness.
Indeed, minimizing the energy consumption of devices can reduce the operating costs of
the network, as it prolongs a device’s lifetime. A possible method is using a caching system
because it can help in reducing sensing frequency and transmission frequency. Typically,
IoT networks are accessed through gateways/proxies that act as intermediaries between
devices and applications. Usually, these gateways/proxies are also used to provide a better
system performance, e.g., they implement a cache to lower the energy consumption on the
device. Hence, several cache refreshing schemes have been proposed in the literature that
minimizes freshness and energy consumption or balance freshness and service latency. We
instead minimize the energy consumption on the device and consider the freshness of the
data, measured by AoI, as a constraint in terms of percentile of the distribution, because
typically applications establish a threshold on the value of the AoI. So, we considered a
cache-enabled proxy deployed at the edge in between devices and applications: it receives
the requests for status updates of a device from an application and responds using its cached
item or, if the cached item is expired, it fetches the last update from the device, refreshes the
cache, and delivers it to the application. The freshness of a cached item is quantified using
the AoI metrics, and a cached item is no longer considered fresh when its AoI exceeds the
value of the cache parameter denoted as refresh window, W. In a preliminary version of
this work [10], we proposed a model for this cache management scheme. In this work,
we leverage that model to define and solve an optimization problem that configures the
cache parameter W to minimize the energy consumption on the device, which depends
on the average poll frequency and on the sampling frequency, while satisfying an AoI
constraint expressed by the application. We apply our proposed cache-enabled proxy in
two different emulated IoT scenarios that use the LWM2M protocol for device management:
in the first one, requests are generated according to a Poisson distribution, while in the
second one requests are periodic. Results show that our proposed solution minimizes
energy consumption while satisfying the AoI requirements.

Moreover, this per-device cache uses a simple yet effective management scheme that
does not pose any limitation on the number of applications issuing requests on the device
and that has constant complexity, i.e., it only involves a comparison between the AoI of the
cached item and its refresh window. So, our solution can be easily applied in deployments
involving multiple IoT devices just scaling vertically, i.e., adding more resources to the
proxy, or scaling horizontally, i.e., replicating the proxy.

In future work, we aim to consider also different cache refreshing policies, e.g., the
cache could be updated using observing streams from the device.
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Appendix A

When β = 0, i.e., cβ = fS, the optimization problem maximizes s under the constraint
given by the AoI requirement:

maxw,s s (A1)

s.t.
g(s) ≤ w ≤ h(s)

s ≥ smin

w ∈ Z+, s ∈ R+

The model tends to maximize s, but, when s→ +∞ , it is w → 0 :

lim
s→+∞

AoIα
αs − e−λs

1− e−λs = 0

It must be w ≥ 1, so:
AoIα

αs − e−λs

1− e−λs ≥ 1

That results in:
s ≤ AoIα

α

The maximum value is obtained for w = 1 and s = AoIα
α .

Appendix B

When β = 1, i.e., cβ = fT, the optimization problem maximizes E{T} under the
constraint given by the AoI requirement:

maxw,s ws +
s

eλs − 1
(A2)

s.t.
g(s) ≤ w ≤ h(s)

s ≥ smin

w ∈ Z+, s ∈ R+

For a given s, the model chooses the maximum possible value of w to maximize the
objective function, so it is necessary to study the objective function when w = h(s).

We denote ϕ(w, s) as the objective function, i.e., ϕ(w, s) = ws + s
eλs−1 , and we define

F(s): F(s) , ϕ( f (s), s).
Therefore:

• If s ≤ AoIα ≤ sw:

It is:

w =
AoIα

αs
+

e−λs(1− α)(
1− e−λs

)
α

and

F(s) =

[
AoIα

αs
+

e−λs(1− α)(
1− e−λs

)
α

]
s +

s
eλs − 1

=
AoIα

α
+

1
α

se−λs(
1− e−λs

)
So,

F′(s) =
1
α

(
e−λs − sλe−λs)(1− e−λs)− (λe−λs)(se−λs)(

1− e−λs
)2 =

1
α

(
1− e−λs − sλ

)
e−λs(

1− e−λs
)2
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And F′(s) ≤ 0 results in:

e−λs
(

1− e−λs − sλ
)
≤ 0

That is: (
1− e−λs − sλ

)
≤ 0

We define x = λs and l(x) = 1− e−x − x.
It is:

l(0) = 1− 1 = 0

and
l′(x) = e−x − 1

So l′(x) ≤ 0 results in:
e−x ≤ 1 for x ≥ 0

Therefore, l(x) is always ≤ 0 for x ≥ 0, because l(x) is decreasing and it is l(0) = 0.
This means that F′(s) is always ≤ 0 for x ≥ 0 (λs ≥ 0), so F(s) is decreasing and the
maximum value is obtained for s = smin. Then, we have to consider the integer constraint
on w.

• If 0 ≤ AoIα < s:

It is:

w =
AoIα

αs − e−λs

1− e−λs

and

F(s) =

[
AoIα

αs − e−λs

1− e−λs

]
s +

s
eλs − 1

=
AoIα

α eλs − AoIα
α

eλs + e−λs − 2

So,

F′(s) = ( AoIα
α λeλs)(eλs+e−λs−2)−(λeλs−λe−λs)( AoIα

α eλs− AoIα
α )

(eλs+e−λs−2)
2

=
− AoIα

α λeλs− AoIα
α λe−λs+2 AoIα

α λ

(eλs+e−λs−2)
2

And F′(s) ≤ 0 results in:

− AoIα

α
λeλs − AoIα

α
λe−λs + 2

AoIα

α
λ ≤ 0

That is:
− eλs − e−λs + 2 ≤ 0

We define x = λs and l(x) = −ex − e−x + 2.
It is:

l(0) = −1− 1 + 2 = 0

and
l(x) = −ex + e−x

So l′(x) ≤ 0 results in:
e−x ≤ ex for x ≥ 0

So, l(x) is always ≤ 0 for x ≥ 0, because l(x) is decreasing and it is l(0) = 0. This
means that F′(s) is always ≤ 0 for x ≥ 0 (λs ≥ 0), so F(s) is decreasing and the maximum
value is obtained for s = smin. Then we have to consider the integer constraint on w.
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