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Abstract: Federated learning (FL) is a cutting-edge artificial intelligence approach. It is a decentral-

ized problem-solving technique that allows users to train using massive data. Unprocessed infor-

mation is stored in advanced technology by a secret confidentiality service, which incorporates ma-

chine learning (ML) training while removing data connections. As researchers in the field promote 

ML configurations containing a large amount of private data, systems and infrastructure must be 

developed to improve the effectiveness of advanced learning systems. This study examines FL in-

depth, focusing on application and system platforms, mechanisms, real-world applications, and 

process contexts. FL creates robust classifiers without requiring information disclosure, resulting in 

highly secure privacy policies and access control privileges. The article begins with an overview of 

FL. Then, we examine technical data in FL, enabling innovation, contracts, and software. Compared 

with other review articles, our goal is to provide a more comprehensive explanation of the best 

procedure systems and authentic FL software to enable scientists to create the best privacy preser-

vation solutions for IoT devices. We also provide an overview of similar scientific papers and a 

detailed analysis of the significant difficulties encountered in recent publications. Furthermore, we 

investigate the benefits and drawbacks of FL and highlight comprehensive distribution scenarios to 

demonstrate how specific FL models could be implemented to achieve the desired results. 
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1. Introduction 

Federated learning was introduced in 2016 by Brendan McMahan [1]. Local data are 

used to download and integrate the current model into the system. A single federated and 

enhanced global model is then supplied to the devices because these locally trained mod-

els are combined (i.e., weighted on average) [2]. 

1.1. FL Basics 

FL generally enables ML to extract data from various datasets stored at different lo-

cations. This method allows several organizations to work in partnership on model ad-

vancement, not including distributing confidential information. Shared models have been 

exposed to a much broader range of data than a single internal entity during multiple 

training processes [3]. In other words, FL focuses on ML by not requiring data to be inte-

grated into a single location. Instead, the model is trained in multiple domains with mul-

tiple iterations [4]. FL is a computational approach that involves training the algorithms 

on shared smart devices or platforms that hold local training datasets that are not shared. 

The server is responsible for managing the training procedure, which consists of the fol-

lowing essential steps: 

1. Implementing the training algorithm. 

2. Assembling all learning results for devices. 
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3. Changing the global model. 

4. Notifying devices after the global model-based improvement and preparing for the 

next training session. 

In the meantime, devices represent digital assets on a secure server and can apply the 

training model to their data [5]. When the server accesses a model, each device initiates 

the training process. Then, a set of communication rules is used to send the learning re-

sults to the server. Compared to single classification algorithms, this approach is radically 

different. High-performance processes usually begin with small data samples transmitted 

to a data center [6]. 

It is possible for several actors to develop robust learning models that do not incor-

porate the distribution of information, which allows them to address many significant 

concerns, such as the security of data, the privacy of data, and access to data [7]. The local 

and global models in FL are shown in Figure 1. 

 

Figure 1. Local vs. global models in FL. 

1.2. Roles of FL Applications 

The applications of FL have expanded to various fields, including security, telecom-

munications, the Internet of Things, and medicine. FL seeks to prepare an ML algorithm 

without directly sharing data samples, such as artificial neural networks, using various 

local data available in current situations. Figure 2 shows the development of FL between 

2016 and 2022 (Google Trends) [8]. A common goal is to train local models in local data 

samples and perform a periodic exchange of bounds (such as deep neural network 

strengths and perceptions) among these local nodes to produce a universal model distrib-

uted by the whole device. The most significant difference between FL and distributed de-

livery is the supposition of local databases, as the distributed learning initiative aims to 

simulate IoT device performance. In contrast, FL aims to train on different databases. Alt-

hough federated learning introduces a single model on multiple servers, it is common to 

assume that the local databases are evenly distributed and approximately equal in size. 
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Figure 2. FL between 2016 and 2022 (Google Trends). 

Instead, the datasets are usually different, and the sizes could be extensive instruc-

tions of implication [9]. The clients participating in federated learning may be inefficient 

because they deeply trust less-efficient communications and battery-powered IoT devices 

than clients participating in distributed data, where shared nodes interact with high com-

puting power [10]. FL works like this: The client machine installs the current model, up-

dates it with data from its device, and then encapsulates the improvements as a small, 

targeted change. This adjustment is only when the model is transferred to the server 

through secured connections. It may easily be coupled with other device improvements 

to strengthen the sharing models [11]. The user’s device maintains all training data, and 

no updates are saved on the cloud. The cloud service is utilized during the learning pro-

cess to schedule FL, set different algorithms, and link all the participating nodes [12]. The 

service is responsible for selecting the connections starting the preparation stage and com-

piling the accepted model updates. The server can be a bottleneck as all selected nodes 

must submit updates to an association [13]. IoT devices can join a distributed learning 

environment to find a global model. Since model updates are exchanged between related 

devices without establishing a central server, this avoids single-point failure. However, 

the network topology can affect the learning process’s efficiency. 

Various applications are used on smart and IoT devices [14]. Most current FL strate-

gies assume local models share the same structure as the global model context. Heteroge-

neous FL (HeteroFL), a modern digital learning system, has recently been developed to 

meet the needs of a wide range of computer-enabled and highly connected customers. The 

HeteroFL method can produce a single tendency model while training multiple local 

models with a wide range of dynamic variables. Our study begins with exploring and 

discussing the various ML structures before reviewing the FL. Throughout this study, the 

authors offer a novel classification of FL themes and research fields based on a massive 

review of the innovative enabling issues and existing previous works [15], which differs 

from prior surveys in the area. A complete control system, in this sense, includes a wide 

variety of demanding features, contributions, and documentation trends, such as basic 

program models and projects, application domains, privacy and security, and resource 

management. 

The authors also go through some of the most pressing issues and current research 

indications [16]. The authors discuss key challenges and present research indicators for 

effective FL programs. People nowadays create massive volumes of information on net-

worked machines such as mobile devices or IoT gadgets, portable health products, etc. 

Artificial intelligence (AI) is already ubiquitous and essential in all relevant domains, en-

hancing our lives and recognizing the abundance of data and the scarcity of ML models. 

In short, deep learning (DL) is driving today’s AI explosion. It has produced an embar-

rassment of agendas that are used by people all over the world daily. On the other hand, 

despite the rapid development of DL, existing methods continue to support cloud-centric 

applications. The list of abbreviations used in this study is shown in Table 1. 
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Table 1. List of abbreviations. 

Abbreviation Means 

FL Federated Learning 

IoT Internet of Things 

ML Machine Learning  

AI Artificial Intelligence  

DL Deep Learning 

CAGR Compound annual growth rate  

BFSI Banking, finance, and insurance  

SBN Static Batch Normalization  

FC Federated cloud  

HeteroFL Heterogeneous Federated Learning  

SGD Stochastic gradient descent 

FDBS Federated database systems  

PRLC Pulling Reduction with Local Compensation  

FedAvg Federated Averaging 

BlockFL Blockchain-based federated learning 

MEC Mobile edge computing 

TCP CUBIC 
Transmission control protocol and Cubic Curve Binary Increase 

Congestion  

1.3. Importance of FL 

The global knowledge market is expected to grow at a compound annual growth rate 

(CAGR) of 44.1%, from $1.03 billion in 2016 to USD 8.81 billion in 2022 [17]. Growing 

technological breakthroughs and data processing are the primary drivers of growth in the 

e-learning industry. The banking, finance, and insurance (BFSI) sector contribute signifi-

cantly to the current ML market, with life science and healthcare showing rapid growth. 

Other verticals contributing to the data include government and defense, energy re-

sources, telecommunications, and manufacturing. To enable more innovative applica-

tions, ML must extract delicate parameters from data generated separately from the ver-

ticals [18]. North America will be the largest ML market by the end of 2022, with the rest 

accounting for the remaining top five markets. 

The IoT market is expected to grow by 24.7 percent from its current value of USD 190 

billion by 2026. The IoT market and other industries are being driven by telecom, trans-

portation, manufacturing, healthcare, government, retail, and BFSI. The BFSI sector ac-

counts for the majority of the total. The Asia Pacific region generated the most revenue in 

2018, USD 74.5 billion, and was expected to maintain its lead in the IoT market in 2019. 

China has the highest share in the Asia Pacific region. Aside from the market stake for ML 

and IoT, the amount of research literature published this year was higher than the previ-

ous year. Based on the information presented above, it is predicted that opportunities for 

research narratives will emerge soon as a result of ML and IoT [19]. 

1.4. Challenge 

Recent surveys and scholars have studied FL. First, we provided an overview of FL. 

Second, there are numerous solutions to major implementation issues [20]. During the 

learning process, FL necessitates regular communication among devices. As a result, 

switching the constraints of the ML standard requires sufficient local processing capacity, 

recollection, and a high bandwidth connection. However, the equipment also prevents 

data transmission, which is necessary before beginning ML in the transitional stage. How-

ever, devices commonly used in FL, such as IoT devices or smartphones connected to Wi-

Fi networks, are restricted from communicating. Even though models cost more to 
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transmit data, FL methods may not be appropriate [21]. Figure 3 depicts the FL [22] model 

updating. FL includes several mathematical tasks: 

i. Differences between different local portions of data: Each node may have some bias 

towards multiple individuals, and the size of databases may vary significantly. 

ii. Temporary heterogeneity: the database distribution for each area may vary over 

time. 

iii. Database interaction of each node is a requirement. 

iv. The database for each node may need to be overwritten by default. 

v. Disappearing training data may allow attackers to go after the domain standard. 

vi. Due to the lack of global training data, it is necessary to identify the undesirable op-

tions that feed into the training, such as age and gender. 

vii. Limited or complete model loss is renewed due to node failure affecting the global 

standard. 

 

Figure 3. Models are updating in FL. 

FL would be the unique form of intelligence that uses limited knowledge and training 

to provide learning to the device’s edge or immediately to the user. It uses a highly recent 

training facility called “emergence in AI” because it was concerned with information se-

curity. Security and privacy challenges with FL must be recognized, analyzed, and docu-

mented before FL can become ubiquitous and widely adopted in the research field [22]. It 

is recommended in circumstances wherein privacy and security are essential. A clear pic-

ture and awareness of risk considerations will allow the FL initiator/recipient to build a 

secure environment while delivering research successfully. Our research aims to investi-

gate FL data privacy characteristics, which may aid in explaining the relationship between 

collective AI models and the privacy-preserving vision [23]. The authors describe how to 

begin assessing current issues in Florida and a comprehensive assessment of the privacy 

protection issues that must be addressed in a comprehensive study [24]. To our 

knowledge, FL is associated with fewer privacy concerns than security risks. Communi-

cation issues and background hacking are the most specific security risks, while targeted 

attacks are critical for FL’s privacy. We conclude our research with a prediction for future 
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research. While research is ongoing, understanding FL’s security and privacy risks are not 

advanced [25]. Such a study thoroughly examines FL security in terms of official defini-

tions, achievements, and challenges, distinguishing it from previous implementations. As 

a result of this work, data scientists and cybersecurity researchers may be able to create 

FL solutions that will alleviate future challenges. 

1.5. Contributions 

A summary of recent field publications is formed, such as (a) providing a breakdown 

and introduction to FL implementation methods and strategies. (b) Identifying and as-

sessing security threats in FL and FL-based domains. In ML-related attacks, FL strategies 

are used. (c) Identifying and evaluating privacy threats, remediation methods, and trade-

offs in FL privacy protection strategies. (d) Disseminating information about security 

measures and future indicators that will improve security and privacy when FL is imple-

mented. 

1.6. Organization of Paper 

This is how the entire paper is organized. The background information on FL and the 

basic working process are presented in Section 2. The Section 3 contains information from 

the federated database on FL. Section 4 discusses the research methods. Similarly, Section 

5 presents the roles of FL in preserving privacy. The discussion is presented in Section 6. 

Section 7 summarizes the conclusion. 

2. Related Works 

Four years ago, a massive change occurred in the operation of Learning Machines 

because of personal concerns and ideas. Table 2 shows the previous studies. 

Table 2. Previous related papers. 

Ref. No. Authors Year Title/Topic 

[7] Lim, Wei Yang Bryan, et.al. 2020 FL in mobile edge networks 

[8] Chamikara, M. A. P., et.al. 2021 Privacy preservation in FL 

[11] Zhang, H., et.al. 2020 Engineering FL systems 

[13] Mothukuri, V., et.al. 2021 Security and privacy in FL 

[20] Zhang, C., et.al. 2021 FL  

[21] Li, Q., et.al. 2019 FL systems 

[22] Aledhari, M., et.al. 2020 FL 

[23] Kulkarni, V., et.al. 2020 FL 

[26] Li, L., et.al. 2020 A Survey on FL 

[27] Zhan, Y., et.al. 2021 Mechanism Design for FL 

[28] Li, L., et.al. 2020 Applications in FL 

[29] Zhu, H., et.al. 2021 
From FL to federated neural ar-

chitecture 

[30] Kolias, C., et.al. 2022 Wireless intrusion detection 

[31] Pham, Q. V., et.al. 2022 
Aerial access networks for feder-

ated learning 

[32] 
Ghimire, B., and Rawat, D. 

B. 
2022 

Federated learning for cyberse-

curity  

[33] Zhang, T., et.al. 2022 
Federated learning for the Inter-

net of Things 
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2.1. Introduce the Term FL 

With the first publication of federated measurements in telecommunication environ-

ments in 2016 [1], FL emerged as a relevant research topic. Reducing communication pres-

sure during the FL process is another crucial feature of a successful study. In 2017 and 

2018, the publications highlighted the advancement of resource allocation policies, focus-

ing on reducing the need for communication between gossiping areas and a strong man-

ifestation of various privacy attacks. Other research focuses on lowering training band-

width through augmentation and quantization approaches, where ML models are aug-

mented and quantized.  

Other research focuses on minimizing training bandwidth through augmentation 

and quantization approaches, wherever ML models are augmented and compacted before 

being assigned to other nodes [26]. So far, only the best-performing networks have been 

considered. Another research guideline jointly analyzes the training of different local 

models with various computational problems to produce a single effective global model. 

Federated learning is a modern learning system that aims to improve the learning capa-

bilities of each agent without revealing confidential information, patterns, or learning ob-

jectives. 

2.2. Improve the Learning Capabilities 

The FL is a new learning system aiming to improve each agent’s learning capabilities 

without disclosing confidential information, patterns, or learning objectives. A new model 

known as FL is being developed in addition to integrated systems and on-site analysis to 

create a new ML application design [27]. It is a secret method that saves previously used 

processes and stores original sensitive information in gadgets. It installs localized artificial 

intelligence learning to minimize information transmission to the greatest extent possible. 

A combination of learned and shared models is formed on a remote database to integrate 

and exchange information generated by users. This paper investigates and compares var-

ious ML deployment structures before conducting an in-depth and comprehensive anal-

ysis. Unlike FL, which frequently necessitates using an intermediary controller to sched-

ule learning and practice, FL aims to provide agents with agreements to use and learn 

from one another without needing a global model. Using FL approaches ensures data se-

curity or encryption, which is a significant advantage. There was no way to import, view, 

or share position data. Accessing the database is extremely difficult because it is divided 

into position sections [34]. In FL, only the ML parameters are shared. 

Key cryptographic methods can also be used to increase security. These considera-

tions can be encoded before being shared between learning sequences, and exact compu-

tations can be performed on encrypted data without releasing it. In addition to such safe-

guards, these parameters may continue revealing information about simple data samples 

[35] by running specific queries against databases. As a result, the assumption about spa-

tial performance is a significant concern that can be addressed by decoupling privacy from 

robust integration [36,37]. Successful measurement, which has emerged as a privacy con-

cern in federated learning [38–40], limits the use of DL models. Static Batch Normalization 

(SBN) can keep deep neural networks private. SBN normalizes batch data during the 

training phase rather than monitoring active measurement. Only statistics for hidden in-

puts from local data are provided after the model estimate [41,42]. Local models are ap-

propriate for the FL system because they do not necessitate the loading of active measures 

by expertise [43]. Because local models only store user data, data leaks are drastically re-

duced. The most recent findings provide specific recommendations for creating successful 

IoT applications. 

2.3. Privacy-Preserving 

The protection of user privacy is an essential feature of FL. However, it differs signif-

icantly from standard big data privacy preservation techniques such as privacy separation 
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and K-Order confidentiality [44–46]. Federated learning primarily protects user privacy 

by exchanging protected restrictions, even though unknowns cannot obtain source data 

[47–49]. Both FL assurances would not jeopardize data security during the device phase, 

and no GDPR or other concerns would arise. FL is divided into three types for data deliv-

ery: horizontal FL, simple FL, and FL techniques [50–52]. Horizontal federated transfer 

learning is sufficient when two user databases are more advanced but slightly higher. 

Straight FL is available when the user characteristics of the two databases are marginally 

higher, but the users are more experienced. When the dual databases’ user and device 

feature match, the authors can use the switch to learn how to fix the lack of data or iden-

tifiers. FL investigates distribution across multiple devices and distributed computing 

[53–55]. 

Distributed ML includes the impact of distributed publishing models, distributed 

data, and allocated ML. Examples of supplied ML include the effects of distributed broad-

casting models that deliver distribution data and distributed device distribution functions 

[56]. The factor server in ML provided is one of the fast training methods for ML models. 

It manages data across multiple distributed nodes and allocates resources via a dependa-

ble key server to achieve the best training results. In contrast to distributed ML, each task 

node in FL owns its own data and participates in model training. 

In addition, key cryptographic methods can be used to increase security. These con-

siderations can be encoded before being shared between learning sequences, and exact 

computations can be performed on encrypted data without releasing it. In addition to 

such safeguards, these parameters may continue revealing information about simple data 

samples [35] by running specific queries against databases. As a result, the assumption 

about spatial performance is a significant concern that can be addressed by decoupling 

privacy from robust integration [36,37]. Successful measurement, which has emerged as a 

source of privacy concern in federated learning [38–40], limits the use of DL models. Static 

Batch Normalization can be used to keep deep neural networks private (SBN). SBN nor-

malizes batch data during the training phase rather than monitoring active measurement. 

Only statistics for hidden inputs from local data are provided after the model estimate 

[41,42]. Local models are appropriate for the FL system because they do not necessitate 

the loading of active measures by expertise [43]. Because local models only store user data, 

data leaks are drastically reduced. The most recent findings provide specific recommen-

dations for creating successful IoT applications. 

2.4. FL Developments 

The advancement of FL is not well-known in culture as a modern privacy-preserving 

paradigm. The following examples show how federated learning works. We suppose that 

many different companies collaborate to learn standards. Additionally, it is almost impos-

sible to collect the data of all parties without the consent of the users [28,57]. Alternatively, 

a company should use its data to train an ML model framework. It assumes that all groups 

create a working model, but due to their companies’ minimal and incomplete data, it is 

hard to train a suitable ML [58,59]. The goal of FL is to find solutions to these problems. 

The FL ensures that no details about their business location are revealed. Boundaries are 

shared between clients and server encryption to create a global model based on the non-

violation of privacy [60]. 

Since its inception in 2016, FL has constantly been evolving [61–64]. This section also 

considers the following open policies (asynchrony, security, and privacy) in addition to 

the fundamentals (as described above). In the event of a dangerous attack on dispersed 

devices, FL can lead to data leakage while it helps protect sensitive data [29,65,66]. For 

example, such a leak could be caused by stochastic gradient descent (SGD) in the applica-

tion process. This makes it challenging to protect privacy and safety in Florida. For algo-

rithm performance, IoT infrastructure’s rapid growth in network traffic has become a ma-

jor technical concern. FL’s ability to link a variety of devices needs the use of efficient 

algorithms to identify running applications [67,68]. For example, the Federated Averaging 
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(FedAvg) algorithm is used for local computation and update computation and privacy 

separation algorithms to minimize time overhead. The FL-related algorithms still need to 

be optimized when dealing with big data due to limited computing power. For the appli-

cation of technology [69–72], FL greatly influences smart city applications. It covers almost 

every aspect, especially finance, medical care, transportation, etc. With FL, models can be 

trained on data corresponding to different levels [73,74]. FL will train models that cannot 

be federated directly by hospitals, such as smart healthcare. 

On the other hand, FL uses input-sensitive data without compromising privacy or 

conquering the data key. The correctness of a model could be significantly enhanced by 

combining big data [75,76]. IoT devices will become more intelligent through the success-

ful use of FL. Table 3 shows the year-wise contribution to the research of FL. 

Table 3. Year-wise contribution to the research of federated learning. 

Year Ref Contribution 

2016 [1] Introduce the term FL 

2016 [77] 
To enhance the functioning of the global model and de-

crease communications load. 

2017 [48,78] Studies of attacks on privacy. 

2018 [67,72,76,79,80] Development of resource allocation strategies 

2019 [5,71,81] Proof of FL in Blockchain 

2019 [14,37] Improving privacy using FL 

2019 [25,44] Resource allocation strategies 

2019 [39,43,50,57] 
Applied Federated Learning in wireless communications 

on mobile edge 

2019 [47,49,51],  Applied Federated Learning on-device personalization 

2019 [59,62,82] Applied Federated Learning for data privacy in big data 

2020 [3] VerifyNet for secure and verifiable FL 

2020 [4,18,56,83] Privacy-preserving Blockchain-based FL 

2020 [19,84] FL in 5G mobile network 

2020 [24] FL in Resource Optimizations 

2020 [36,61] FL implementation in healthcare 

2020 [54] Human mobility Prediction using FL 

2020 [63] FedCoin payment system 

2020 [85–87] Applied FL on IoT devices 

2020 [88] FL in smart city sensing 

2021 [2] FL in traffic flow prediction 

2021 [8] FL-based distributed machine learning 

2021 [38] FL for 6G 

2021 [58] MHAT: FL-based model aggregation training scheme 

The gradual expansion of FL has opened new opportunities for people from all as-

pects of life. This paper addresses the use of FL in smart cities, including communications, 

healthcare, and the Internet of Things [85,89,90]. Smart cities are expected to grow pres-

ently due to the use of FL. A more naturalistic environment that enriches everyone will be 

created by FL participating in all aspects of life. 

2.5. FL Development Issues 

Several FL deployment issues negatively impact IoT growth, including computa-

tional performance, heterogeneity, security, and resource integration [82]. For this reason, 

the authors have created a list of possible solutions to these problems. Below is the list: 

Distribution of FL 
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Wireless resource restrictions and acoustic data can impact FL integration and local 

model training. By combining the available communication resources, the authors can 

create a gradient-based sparsity scheme [91]. The authors tend to the dataset and select 

devices with sufficient power for model training. 

Surprising FL Collection 

Statistical variability is already present in many machine datasets. It has a significant 

impact on FL convergence performance [81]. The authors can select the preceding ma-

chines in a dataset that satisfies a certain level of reliability. 

FL security 

During training, inappropriate memory devices may be present. The incorrect learn-

ing model parameters affect the device’s accuracy. The authors could use blockchain [92] 

to verify the upkeep of storage devices. FL mobile users are disrupted when uplinks be-

come congested and consume uplink communication resources. The authors may devise 

a plan to distribute resources using the game principle. We can integrate those resources 

more efficiently if authors link all storage devices that assist one block. 

2.6. FL Applications 

While specific performers require training models on more significant datasets, alt-

hough they could not allow the data, they may use federated learning [86]. The technology 

still requires good communication among local servers and low computing energy for 

every point. 

Self-driving vehicles 

Autonomous vehicles use ML skills such as computer vision to detect obstructions 

and ML to alter the environment’s pace to avoid dangerous situations (e.g., road explo-

sion). The typical cloud technique may be a safety issue due to the enormous number of 

self-driving vehicles and the need for them to respond quickly to real-world events 

[84,93]. Security concerns may arise due to the considerable number of self-driving cars 

and the need to react swiftly to real-world situations. As a result of its ability to reduce 

data transfer, FL can aid in accelerating learning progress. 

Medicine: a digital existence 

FL aims to explain information management and confidentiality challenges by train-

ing distributed algorithms without sharing data. The modern method of combining data 

comes at the cost of sensitive concerns such as patient privacy and data security through-

out many organizations. The capability to prepare ML models at scale in many health 

settings, not transmitting sensitive technical information, is a solution. The Future of Dig-

ital Health by FL was published in Nature Digital Medicine in 2020, and the writers discuss 

how organized learning can result from the potential of digital healthiness. 

Protecting the sensitive data 

ML methods are widely utilized in Industry 4.0 to increase the productivity of man-

ufacturing processes while maintaining high security. On the other hand, protecting the 

sensitive data of industrial and manufacturing companies is essential. Since the learning 

algorithms do not reveal sensitive data, they can solve these challenges. 

3. From Federated Database to FL 

Federated computing has become an attractive research area in computer science un-

der various distributed situations. Until the mid-1990s, numerous federated database sys-

tem (FDBS) studies were conducted. FDBS is a non-profit data collection organization that 

provides similar services. The three key elements of FDBS, as shown in the previous re-

search, are independence, diversity, and distribution. 
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3.1. Independence 

The data collection system (DBS) that participates in FDBS is autonomous and is con-

trolled separately and independently. Without FDBS, groups can still manage the data 

[77].  

3.2. Differentiation 

The FDBSs’ data management systems may differ from one another. Differences can 

be observed in data formats, languages, program requirements, and communication ca-

pacities. FDBS data distribution may vary from one DBS to the next due to several DBSs 

before the FDBS’s construction. Horizontally classified data can be placed on various 

DBSs or duplicated across several DBSs. 

3.3. Federated Cloud Computing 

With the advent of cloud computing, many studies on federated cloud computing 

have been conducted recently, provisioning and managing many external and internal 

computing services through a Federated Cloud (FC). The concept of a cloud partnership 

provides additional cost savings through partial outsourcing to low-cost regions. The two 

primary components of integrated clouds are resource migration and resource offloading. 

Moving resources from one cloud provider to another is the initial step. Migration permits 

the movement of resources. Second, deconstructionism enables the domain-specific ap-

plication of identical service capabilities. For instance, data can be categorized and pro-

cessed across many providers. 

3.4. Multi-Resource Scheduling 

Information can be classified and processed across multiple providers using the same 

computational concept [79,94]. Overall, multi-resource scheduling is critical to developing 

an integrated cloud system. FL and standard assembly systems have some similarities and 

differences. First and foremost, the concept of an association is still sustainable. The stand-

ard and fundamental concept is the collaboration of numerous independent groups [95]. 

Therefore, group heterogeneity and independence can be utilized in FL. Secondly, several 

critical elements in the strategy of allocated techniques remain. For example, the way data 

are shared between groups can have an impact on system performance. Integrated sys-

tems, on the other hand, focus on various collaborations and constraints. FLs are more 

concerned with the secure settlement between multiple parties, while FDBSs is concerned 

with distributed data management and FCs with resource management. FLs present new 

challenges, such as developing a distributed training algorithm and protecting data while 

considering privacy constraints. 

4. Methods 

In FL, automated variations can alter the ineffectiveness of the entire training process. 

Four types of variations can be used to resolve the heterogeneousness problem of the ap-

proach: concurrent, transmission devices detection, the attack detection mechanism, and 

model diversity, which have all been discussed. 

4.1. Asynchronous Communication 

Around specific information, the base is two universal policies for parallelization 

based on the algorithm: similar and parallel connections [87,96]. However, since the syn-

chronizing mechanism is easily broken in the face of many devices, good communication 

is essential when learning federated tasks. It uses a limited amount of information to dis-

cover parallel and asynchronous processes that could assist resolve the training device 

flexibility challenge.  
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4.2. Device Sensing 

Not all machines are needed to undergo the entire training phase in FL. The machine 

is such chosen that the user can participate in one part of the event on one device and 

another part of the event on another device. Device sensing takes the opportunity to par-

ticipate in training [83]. Machines play a role in interdisciplinary training to address the 

problem of resources. The selection increases the number of clients in the training process 

while improving model outcomes. Kang and colleagues created a marketing strategy fo-

cused on contract instruction to entice powerful local devices to enhance learning accu-

racy through a more effective learning process. The paper [97] introduced the FL model, 

which randomly selects user gradients to upload to the server for global training of a 

model. In another paper [98], the authors proposed the privacy-preserving FL in fog com-

puting to achieve continuous contact. Pulling reduction with local compensation (PRLC) 

focuses on FL. The basic concept behind PRLC is that only one iteration can be performed 

at a time. The key idea behind PRLC is that only a subset of devices participates in the 

model updates in each iteration, with non-participating devices being modified locally 

using the PRLC approach to close the difference through the global standard. Ultimately, 

the PRLC method has better scaling and has the same interconnection rate as the non-

compressed method in the presence of high congestion and inconsistencies. 

4.3. Fault Tolerance Process 

A fault-tolerant approach, especially in a file-distributed environment, can prevent 

the system from failing in an unstable network environment [78]. While various devices 

work collectively, the system breakdown can involve other machines. FL is currently a hot 

research topic. The authors also need to consider system acceptance in an interactive 

learning environment. To comply with machine resource constraints, [88] focused on an 

applied learning approach and created a monitor system to evaluate the most exemplary 

exchange among local renewal and global integration of factors. By reducing the interac-

tion, [99] improved the corresponding speed features of the random gradient distribution 

algorithm. Other studies that do not include direct computer involvement do not affect 

the efficacy of federated learning in multi-task achievement [80]. Figure 4 shows the de-

vice-to-device (D2D) communication without data exchanges in FL [100]. 

 

Figure 4. D2D communication without data exchange in FL. 
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Another way to deal with computer failures is to use computational code to imple-

ment a redundancy algorithm. Incorrect mobile device data can lead to cheating in organ-

izational learning. Article [101] proposes an FL program that focuses on natural employee 

selection and can efficiently avoid mischievous assaults and disruptions.  

4.4. Model Heterogeneity 

An incomparable system solves the device heterogeneity problem very well in a 

memory-sharing system. Although distributed systems have benefited from asynchro-

nous improvements, the issue of device communication delays increases device heteroge-

neity [102]. The need for real-time communication in a co-learning process is the first op-

tion for resolving system discrepancies in a non-compliant communication system. 

5. Roles of FL in Privacy-Preserving 

As information is stored on multiple platforms and communities become more aware 

of privacy issues, the standard circular training method for artificial intelligence (AI) mod-

els faces significant challenges. FL has emerged as a promising effect in this new reality 

[103]. FL’s current protocol design emphasizes the vulnerability that attackers can exploit 

inside and outside the organization to ensure confidentiality. As a result, educating FL 

users about the privacy implications of the FL process layout is critical. There is currently 

little research on this topic. The current section fills an essential void in the FL process. 

5.1. Threat Model and Attacks 

A comprehensive overview of this exciting topic is provided through a brief over-

view of the concept of FL and the unique taxonomy encompassing the threat models and 

the two primary attacks on FL, including (1) dangerous attacks and (2) false attacks. The 

authors describe the potential for future research in powerful privacy protection and high-

light the various attacks’ assumptions, significant challenges, and fundamental ideas. FL 

provides a conditional training model that does not require information communication 

and encourages members to enter and exit the organization’s restrictions. Current re-

search, however, indicates that FL may not provide adequate privacy guarantees, as com-

munication of standard informs during the training process may reveal confidential in-

formation and even receive deep leaks, either from a third party or a critical service 

[104,105]. 

Nonetheless, a small percentage of slopes can display data about local devices. In just 

a few repetitions, the nefarious assailant could completely steal training information from 

gradients. The FL protocol can be (1) a potentially malicious service that detects separate 

updates over time, disrupting the training procedure and controller participants’ views 

across global boundaries, or (2) any participant who can identify the land parameter and 

control its loading [106,107]. Malicious participants can modify their inputs or overload 

the backend of a global standard. These attacks pose a severe threat to FL because, in an 

intermediate understanding, only the server can infringe on the participants’ privacy. In 

contrast, in FL, any participant, even if not coerced, can invade the other participants’ 

privacy in the approach. As a result, understanding the terms used in this attack is critical. 

FL testing focuses on the larger aspect of the process that allows FL to function. [108]. This 

paper addresses the recent increase in warnings to settlement FL to address the research 

community’s critical gap in public understanding. The authors of FL programs primarily 

focus on two types of insider threats: (1) a toxic hazard: this addresses the recent rise in 

threats compromising FL in the research community to close this critical gap in public 

understanding [109]. (2) Unfounded attacks on the contributor’s secret progress to FL at-

tacks threat models [110,111]. 

Insider and outsider attacks are both possible. Internal attacks are possible during 

the transmission of data from the server FL to the system’s participants. Spying attacks on 

the interaction network between contributors, the FL service, and the consumers of the 
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last FL model are external attacks when used as a capability. Internal attacks are fre-

quently more powerful than external attacks because they amplify the opponent’s 

strength. These can be one of three varieties. 

5.2. Single Attack 

The unintended contributor attempts to defeat the paradigm by confidently splitting 

a set of selected inputs. 

Dangerous Byzantine Invasion  

Byzantine participants act arbitrarily, causing their results to have the same dissem-

ination as the relevant model notifies, making them complicated to obtain. 

Sybil Attack 

To launch an effective attack on FL, adversaries can imitate multiple participant ac-

counts or select previously delayed members. They attempt to investigate the unique cir-

cumstances of other participants while remaining trusting in the FL protocol. Only feder-

ated observers or intermediate gradients are considered active adversaries, not training 

data or angles from other authorized participants. The active or malicious opponent learns 

the independent instances of trusted contributors in dangerous situations and differs from 

the FL procedure by unnecessarily adapting, replaying, or editing communications.  

5.3. Attacks during Training Phase 

Attacks during the training stage aim to understand, control, or distort the model of 

FL. Through the training stage, an attacker may use information-infecting attacks to ne-

gotiate the reliability of the training data gathering or toxic pattern attacks to negotiate 

the honesty of the training method. The attacker could also initiate attacks or a combina-

tion of threats to all participants. An escape/exploration attack is a type of attack that tar-

gets the monitoring phase. It generally causes no disruption to the target model but may 

produce negative results or gather information about the model’s properties. The useful-

ness of such an attack is defined by the adversary’s knowledge of the model [112]. White-

box attacks (e.g., with full access to the model FL) and black-box attacks (e.g., without 

access to the model FL) are two types of attacks in the inference phase (e.g., only being 

able to query the model FL). The move-to-model in FL is damaged from similar attacks as 

in a typical ML environment where the targeted model is used as maintenance. It also 

makes the model available to any malicious client. As a result, FL must make extra efforts 

to protect itself from white-box attacks. 

5.4. FL Structure for Effective Interaction and Privacy Safety 

Some authors [113] have presented a revolutionary FL architecture for efficient com-

munication and privacy protection that increases IoT performance. Transmission control 

protocol and cubic curve binary increase congestion have improved the Wi-Fi network’s 

data delivery variations. Finally, a good training model was found. Building a federated 

cloud video computing framework for IoT based on DL meets the needs of app users. At 

the same time, metrics are used to reduce uplink communication and network bandwidth 

costs. FL also enables shared reading of speculative models by computational devices. 

5.5. Blockchain FL 

The advancement of blockchain technology has brought forth a recent trend for IoT 

development. The formation of blockchain-based FL (BlockFL) effectively erases the re-

vival of the local learning model. That manages a compatible strategy and presents data 

analysis to determine the optimal performance. Some researchers have created block-

chain-approved features for secure data sharing in industrial IoT [114]. By using a shared 

data model, this process effectively protects the privacy of the data. It has excellent accu-

racy, effectiveness, and security compared to an accurate database. The current approach 

of FL relies on the reliable assumptions of the client to identify more secure computers of 
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organizations that are vulnerable to malicious client attacks. Consistency and devolution 

blockchains are the foundations of the framework. They use specific local model updates 

and trusted data sources. 

5.6. Learning at the Edge with Federated Computing 

A high-performance application has resulted from the association of FL with edge 

computing. Edge and cloud computing can meet the demand for cloud capacity and fa-

cilities at the network’s edge. In this context, FL has observed the introduction of a 4G/5G 

edge computing platform for vehicles [115]. This model results from a federated investi-

gation of real-world datasets from significant electric vehicle (EV) manufacturers. Cus-

tomization for the driver, asynchronous performance, and safety protection are all bene-

fits of this strategy. 

Moreover, using Smart IoT in custom-made FL will minimize the adverse effects of 

heterogeneity in many ways. At the same time, the FL-based frameworks should effi-

ciently utilize the limited bandwidth. At the same time, the authors need to integrate DL 

methods with FL frames and mobile device programs. This will make mobile edge com-

puting more efficient. In distributed training, the existing FL startup mode accepts pro-

cessing points to coordinate a local training prototype. This result is in the formation of 

FL, which depends on the most focused types and the maximum bandwidth of the server. 

However, participants transmit user information immediately to the cloud, posing a 

risk of privacy violations. Consequently, like decentralized training, federated training 

requires participants and servers to work together to train a single machine learning algo-

rithm. Every participant has exchanged local measurements with the central service that 

gathers all distributions and provides the outcomes to every other participant to accelerate 

the model’s optimization. In the end, the service where every user would have the best 

service specifications is used. Compared to centrally controlled training, federated train-

ing eliminates the chance of privacy issues becoming violated. 

FL focuses on the problem of supervised machine learning, mapping input data Ui to 

output labels Vi. The input-output (Ui, Vi) pair size is (n, n + 1). For the loss function fi(L), 

which assesses how well a model predicts an ith sample using model L, FL tries to opti-

mize using the following objective function. 

Min f(L), where 

𝑓(𝐿) =
1

𝑛
∑f(𝑈𝑖 , 𝑉𝑖 , L)

𝑛

𝑖=1

 

𝑓(𝐿) =
1

𝑛
𝑓𝑖(𝐿) 

It is necessary to alter the objective function because the training data are scattered 

over several remote clients, much like in FL. It is known as |Pk| when a client k receives 

a partition from the whole dataset P. nk = |Pk| data samples are held by each of the K 

clients participating in the FL. 

𝑓(𝐿) =∑
𝑛𝑘

𝑛
𝑃𝑘(L)

𝑘

𝑖=1

 

where 
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𝑃𝑘(𝐿) =
1

𝑛𝑘
∑𝑓𝑖(L)

𝑘

𝑖=1

 

In Fl, there are two distinct phases of existence. There are epochs at the local and 

global levels. As opposed to how often the training algorithm is executed in a client’s da-

taset, the number of times a whole federated round is completed is known as a global 

epoch. The server sends all clients a baseline model (abbreviated as w) to begin training. 

Each client’s model is updated using their local data and it is trained for local epochs. As 

a result, L, a client model, will receive and communicate modifications to the server. Based 

on the sample size, the server computes the weighted average of client updates for the 

next training cycle. Globally federated Fed Averaging will have completed one round. 

Because it would be costly to communicate each client’s gradient update for each round 

of training, local epoch training is used to reduce communication costs on the client’s side. 

As a decentralized machine learning solution, FL is often referred to as a decentralized 

training system. 

On the other hand, network power distribution between nodes is very similar to that 

of the data center. The author of [116] proposes that the bandwidth between sites can in-

crease the communication speed. It starts by sharing gossip and network bandwidth in-

formation. Second, it makes the most of the available bandwidth between the nodes and 

the workers by utilizing it to its maximum potential. It increases by mixing speed and 

decreasing the number of communication cycles. Currently, the standard implementation 

of system FL uses a centralized parameter server to organize a broad network of partici-

pating devices. Devices will train local models using the datasets that they have collected. 

The sync server’s locations can update at determined intervals [117]. Any changes made 

to the model are replicated across all other nodes inside the system. However, this ap-

proach has high additional costs because of its substantial bandwidth. As a result, a tech-

nique for synchronizing levels on all levels was utilized [118]. They began by partitioning 

the model into groups where each group had the same number of model parameters that 

did not interact. Second, they organize the departments, some of which are structured 

according to the classifications of the IoT devices. Third, they split into big groups, in-

creasing their bandwidth capacity. Sharing communication costs reduces the cost and in-

creases the assembly speed. 

In the manuscript of [119], the authors proposed a comprehensive consolidation 

learning strategy and FL frameworks for mobile edge systems. This can potentially pro-

mote mobile edge computing (MEC). The In-Edge AI framework has been signed in this 

process. It will utilize the exchange of learning boundaries between a resource and an 

edge node. Finally, it achieves the optimal optimization performance and raises the input 

level. The fact that offloading requires wireless data transmission is the key to solving this 

problem [120,121]. The edges are assigned communication aids and computer equipment 

based on the full use of the communication and federated computer-integration program. 

This also allows it to hover and cache MEC program archives simultaneously. In addition, 

training organizations that operate throughout a geographically extensive range have 

used FL as a foundation for their operations. The results of this process are summarized 

in the following steps. (1) The amount of data that can be utilized is restricted. (2) It con-

forms to the network’s mobile and cellular communication conditions. (3) It facilitates the 

connection of a wide range of user devices to a natural mobile network. (4) It guarantees 

the safety of private data. 

6. Discussion 

Traditional ML employs an intermediate approach to training design, necessitating 

the integration of training samples with a single machine or data center. Large AI compa-

nies such as Google, Facebook, and Amazon have amassed massive amounts of data and 



Future Internet 2022, 14, 246 17 of 22 
 

 

stored them in a database where machine learning models are trained. This single training 

method, however, is private, especially for phone users. This is because cell phones can 

contain sensitive data for their owners. Users of mobile phones must sell their privacy to 

be trained or to obtain the best model with a training method. Compared to a single train-

ing method, integrated learning is a low-level training method that allows mobile phones 

worldwide to learn an ML model while retaining all private data, including potentially 

confidential data, within the machine. A well-trained intelligence algorithm may be able 

to assist mobile devices while also revealing critical privacy information on the cloud. 

However, because deep learning is rapidly expanding, existing techniques enable a cloud-

centric formulation in which information is recorded and interpreted. It provides an ac-

curate assessment of FL discussions and research fields, as well as the FL paradigm’s ef-

forts and contributions to current research and industry trends [122]. 

Furthermore, researchers provide in-depth reviews and thorough fundamental anal-

ysis, including the model’s technical characteristics and the entire FL system. In addition, 

the authors discuss the challenges and open jobs of interest. Furthermore, they investigate 

the challenges and potentially fruitful directions that future development could take, re-

sulting in new generations of FL technology. The authors’ recommendations for the study 

are organized to consider both the projected FL domain and the overarching themes of 

system model and design, installation domains, privacy and security, and resource man-

agement. This analysis will be useful for academics who are starting or continuing re-

search on machine learning solutions in medical IoT, advanced analytics, networking, au-

tomation, power systems, modelling, information retrieval, or information security [30–

33]. 

Existing methods for protecting privacy face new challenges in a federated environ-

ment. Aside from providing complete privacy assurances, they are also critical in devel-

oping computationally affordable, communication-efficient, and drop-tolerant systems 

without significantly sacrificing accuracy. The central server can see the accurate aggre-

gated results for each round even though it cannot see any local updates. This assurance 

is provided by the lossless SMC approach, which preserves original accuracy while en-

suring the highest level of privacy. However, the resulting system increases communica-

tion costs significantly. As an added benefit, differential privacy can be combined with 

model compression techniques to reduce communication while increasing privacy. In this 

section, for example, the authors highlight additional challenges related to federation-re-

lated issues such as production and benchmarking and a few intriguing research paths 

(expensive communication, systems heterogeneity, statistical heterogeneity, and privacy 

concerns). 

1. Non-traditional communication methods: The authors are unsure how much com-

munication federated learning will necessitate. It is well known that machine learning 

optimization approaches lack precision; this error can promote generalization. In massive 

or statistically diverse networks, the behavior of one-shot or divide-and-conquer commu-

nication methods is identified, just as in traditional data center environments. Unlike in 

the federated setting, however, no theoretical analysis or scaled evaluation of one-

shot/few-shot heuristics has yet been completed. 

2. The authors used a variety of strategies, including local updates and model com-

pression, to reduce the amount of communication in federated training. Creating a realis-

tic federated learning system requires thoroughly examining the trade-offs between accu-

racy and communication in each tactic. While using the same communication resources 

as other strategies, the most effective methods will improve, achieving higher accuracy 

than any different strategy while employing the same range of communication/accuracy 

profiles. Similar in-depth experiments focusing on efficient neural network inference are 

required to adequately evaluate communication reduction options for federated learning. 

3. Heterogeneity detection: Metrics such as local dissimilarity can be used to measure 

statistical heterogeneity. The following are open questions arising from the significance of 

these measures. Are there simple diagnostics for determining the degree of heterogeneity 
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in federated networks? Is it possible to develop diagnostics for measuring system hetero-

geneity? Can the convergence of federated optimization methods be improved by using 

current or new definitions of heterogeneity? 

4. Expanding responsibilities: Remember that the techniques described thus far were 

designed with supervised learning, assuming that all federated network data have asso-

ciated labels. Most of the data generated by realistic federated networks may not be la-

belled. Furthermore, as shown in (1), fitting a model to the data may not be the most dif-

ficult part of the job; instead, conducting some exploratory data analysis, calculating ag-

gregate statistics, or implementing reinforcement learning may be. A wide range of issues, 

including scalability, heterogeneity, and privacy, are likely to be addressed in federated 

networks. 

5. The use of FL in manufacturing raises several practical issues. When devices ex-

hibit different behaviors at different times, the fundamental model for data creation 

changes over time. 

6. While federated learning is still a relatively new field in the context of benchmark-

ing, the authors must influence its development and ensure that it is based on real-world 

settings, assumptions, and datasets. Building on existing implementations and bench-

marking tools to replicate empirical results and disseminate new approaches to FL is dif-

ficult. 

7. Conclusions 

As a result, FL is a new approach to cross-platform privacy security, which has been 

introduced. FL is used by many researchers and enterprises with privacy and security at 

the fore. FL can integrate the models of various user groups and update the federated 

model without revealing the original data when a lack of data hinders users from training 

suitable models. When users cannot read sufficient data labels, however, FL offers a se-

cure mode of sharing and sends prototypes to distinct roles to address the problem of 

inadequate information classifications. This article begins with a general description of 

FL, continues with a discussion of the functional conditions of FL, and then concludes 

with a review of current issues and possible research challenges for FL. FL would be able 

to offer shared and federated security services for a wide range of applications, thereby 

assisting in the ongoing development of artificial intelligence. 
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