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Abstract: In this paper, the problem of the remote control of electric drives with a complex mechanical
structure is discussed. Oscillations of state variables and control precision are the main issues found
in such applications. The article proposes a smart, IoT-enabled controller, which allows remote
communication with a drive. To solve the problem of speed oscillations and to make the system
robust to parameter uncertainty, an adaptive controller with two neural networks is designed. First,
numerical tests are conducted in a Matlab/Simulink environment to examine the operation of
the proposed control strategy. Afterwards, the obtained results are verified in a laboratory setup
equipped with a 0.5 kW electric motor. Remote access is provided by a low-cost, ARM-based ESP32
microcontroller. Usually, virtual instruments used to communicate with remote devices require
specific software, which may be expensive and pose compatibility problems. Therefore, the main
contribution of the article is the creation of a low-cost, web-based Human-Machine Interface (HMI)
with an asynchronous server utility provided by the ESP32 that allows remote control and data
acquisition of electric drive state variables.

Keywords: IoT; remote control; adaptive speed control; neural networks

1. Introduction
1.1. Problem Formulation

The problem of precise speed control is still prevalent in industrial electrical drives
with a complex mechanical structure [1]. Usually, analysis of control schemes is performed
under the assumption that the connection between the motor and the load is rigid and does
not negatively affect the drive. The elasticity of the shaft and gears can become a source of
disturbance and oscillations [2,3]. It can lead to poorer product quality, damage to mechan-
ical parts of the drive, or problems with stability. In the literature, two machines coupled
with a flexible element are often referred to as a two-mass system and are the subject of
numerous publications [4–6]. Examples of two-mass systems observed in the industry
include rolling mills [7], wind turbines [8,9], and robotic manipulators [10–12]. Because of
the requirement for high dynamics and the presence of oscillations, such applications must
be controlled with more intricate control schemes.

PID cascade control is one of the most frequently used strategies due to its low
computational power demand and the simplicity of practical implementation [13,14]. The
gains of the controller can be adjusted with the pole distribution method or the modulus
and symmetry criteria. However, the structure does not take any information about the
load machine. It is not suitable for applications with varying speeds between the motor and
the load [15]. In such cases, the problem can be solved by providing additional feedback
from other variables [16] or using a state feedback controller [17,18]. In a state controller,
all state variables (angular speed of the motor and load, and the torsional torque) are
connected back to the speed controller to compensate for the elasticity of the coupling
element. Nevertheless, both of these strategies suffer one significant disadvantage—they
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are susceptible to changes in plant parameters. The gains of these controllers are set to work
correctly for a selected operating point. The error margin is narrow; even slight changes
in plant parameters or a sudden appearance of disturbances can lead to loss of control
precision (reference speed tracking) [19].

To address the issue of parameter uncertainty, adaptive control schemes are often
applied. Among the possible approaches, gain scheduling [20] and self-tuning methods [21]
can be listed. One of the most efficient solutions is model reference adaptive control
(MRAC) [22,23]. In MRAC, the difference between the model of the system and the actual
output is fed to the adaptation algorithm, then new values of the controller are established.
In this way, the controller remains correctly updated. Additionally, only approximate
values of the plant parameters are needed to establish the initial value of the gains. There
are two main downsides to this strategy [24]. The adaptation algorithm must be carefully
chosen to ensure the stable operation of the drive, which is a difficult task. Furthermore, the
use of the reference model can nullify the original non-linearities of the plant. This effect
can negatively influence the dynamics of the system if the model is selected inappropriately.

The model-free approach relies on the use of intelligent structures, such as neural
networks, which are widely used in different tasks related to electrical drives. They can be
implemented to estimate state variables [25] or the state of charge (SoC) of electric vehicle
batteries [26]. Deep learning algorithms are used to facilitate fault detection [27]. Neural
structures are also applied to the task of controlling the angular speed of electric motors [28].
In this concept, gradient algorithms are used to adjust the weights of the network during
drive operation. Adaptive properties are achieved through the use of online training. The
design process includes the selection of the network structure and the learning coefficient.
The stability of neural controllers can be proven through the use of the Lyapunov stability
theorem [29]. The learning coefficient can be optimized using swarm inspired algorithms.

Effective optimization of the initial parameters of a neural network can significantly
improve the drive’s performance. This is especially important because no training is per-
formed prior to starting the drive. With a wrong initiation point, the control structure can
struggle to quickly adapt to the current state of the control structure. Incorrect setting of the
weights and the learning rate can cause an oscillatory response [30]. The selection of more
appropriate values can be facilitated by using nature-inspired metaheuristic optimization
algorithms [31]. The major advantage of such algorithms lies in the fact that they do not
need information about the cost function derivative to find better values. As a trade-off,
reaching the global minimum is never guaranteed. One of the most common algorithms
from this group is Particle Swarm Optimization (PSO) [32]. Other examples include Cuckoo
Search (CS) [33,34], the Grey Wolf Optimizer (GWO) [35,36], Ant Colony Optimization
(ACO) [37–39], or the Bat algorithm [40]. In this work, the Artificial Bee Colony (ABC) algo-
rithm [41] was implemented to facilitate the proper selection of the parameters responsible
for scaling the input of the proposed neural network.

Distributed measurement systems are developed to establish a connection between
multiple units via the internet [42–44]. Remote access to information from a vastly distant
instrument is often required. To obtain the measurements, virtual instruments (VIs) are
often implemented. The VIs are usually created with the use of software dedicated to
instrument control, such as LabVIEW™, LabWindows™/CVI, and Keysight VEE™. Using
these environments forces the user to install the required software and may cause VI
compatibility problems. To resolve this issue, a web-based Human-Machine Interface was
created to collect and visualize the data acquired during the drive operation.

1.2. Related Work

Different approaches can be observed in the published papers. Most of the research is
focused on the control structures and does not provide sufficient discussion on experimental
data acquisition and visualization. On the other hand, some papers present complex
designs of the front-end applications for data visualization without the examination of
plant control. The authors mainly deal with proper data presentation [45,46], interaction
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with the user by using haptic-feedback features [47,48] and the optimization of required
hardware resources [49,50]. Both of the approaches lack the integrity of the process, the
control structure, and its state variables. This makes them difficult to compare directly,
as different targets are defined for various purposes. Because the idea of Industry 5.0 is
becoming very popular, it is essential to focus on interactive smart products and enable
human-machine and human-robot collaboration [51–53]. This can only be achieved with
user-friendly interfaces and smart control structures (using artificial intelligence). Thus,
the presented research addresses the smart control structure of the neural speed controller
extended with online data presentation.

In this paper, a neural adaptive control structure is applied to control the speed of a
two-mass drive. The experimental results obtained with an incremental encoder are sent
to the end user via an ESP32 device. The visualization of the data is performed by a web-
based HMI. In the first section, the mathematical description of the plant and the control
structure is presented. Next, the working principle of the ADALINE neural predictor
implemented in the proposed controller is discussed. The ABC algorithm is described later.
The following section focuses on the numerical tests of the control structure performed in
Matlab™/Simulink. Afterward, the experimental results are presented. They serve as a
practical verification of the simulation studies. Then, ESP32-based data transmission and
visualization HMI are shown. The article is concluded with a brief analysis of the results
obtained and final comments.

2. Mathematical Model of the Control Structure and the Controller

The discussed control structure consists of two neural networks that are applied to a
mechanical system with elastic joints. Such a construction is often referred to as a two-mass
system. Expressions describing the dynamic properties of the drive can be formulated
using a set of the following equations [4,54,55]:

T1sω1 = Te − Ts − Tf 1 (1)

T2sω2 = Ts − TL − Tf 2 (2)

TcsTs = ω1 −ω2 (3)

where T1, T2, and Tc are the mechanical time constants of the motor, load and shaft,
respectively, Te, Ts are the electromagnetic torque and shaft torque, ω1 and ω2 are the
rotor speeds of the motor and load, respectively, TL is the load torque, and Tf 1 and Tf 2 are
non-linear functions that describe the friction present in a real drive [30]:

Tf i = (c|ωi|+ d)sgn(ωi) (4)

where c and d represent the viscous and Coulomb friction coefficients, respectively. It
was assumed during the design process of the control structure that the current control
loop (inner loop) is simplified to a first-order element and can be represented as a simple
transfer function:

Gi(s) =
1

Tps + 1
. (5)

A simplified schematic of the control structure is presented in Figure 1. The first neural
network presented (in blue in Figure 1) is a network composed of an input layer, a hidden
layer, and an output layer. In addition, a hidden layer has a recurrent connection, which
is called a context layer. The second one (represented in orange in Figure 1) represents
the neural predictor of the feedback signal. Both networks work to achieve a reliable
performance by the plant according to a reference value. The Elman network is described
below, as the neural predictor is in Section 3.
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Figure 1. Simplified schematic diagram of adaptive control with two neural elements.

The Elman neural network consists of I inputs, N hidden neurons, and an output
neuron that generates the reference value of the electromagnetic torque—Tere f . The input
layer is a linear layer with i neurons. Equations for the input can be written as:

h1
i (k) = xi(k) (6)

z1
i (k) = f

(
h1

i (k)
)
= h1

i (k) (7)

where h, z are the input and output node, respectively, i is the number of the input, x is
the input signal, and k represents samples. The hidden layer, with a hyperbolic activation
function, processes signals from the previous layer. In addition, in the Elman network,
recurrent signals from context layer are introduced, which act as an additional memory
that can learn supplementary features of the plant [56]. The equations for the hidden layer
input and output signal can be written as follows:

h2
j (k) =

N

∑
i,j=1

(
w1

ij(k)z
1
i (k) + wc

j (k)z
c
j (k)

)
(8)

z2
j (k) = f

(
h2

j (k)
)
= tanh

(
h2

j (k)
)

(9)

and for the context layer:
hc

j (k) = z2
j (k− 1) (10)

zc
j (k) = f

(
hc

j (k)
)
= hc

j (k) (11)

where w is a weight corresponding to the given layer and neuron and c stands for the
context layer indicator. The output layer is also a linear layer, so its output can be presented
similarly to the input layer:

h3(k) =
N

∑
j=1

w2
j (k)z

2
j (k) (12)

z3(k) = f
(

h3(k)
)
= h3(k) = ynn (13)

The Elman neural network, presented in Figure 2 below, operates in on-line mode, which
implies that it learns during the operation of the drive.
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1
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z2

j (k)
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where em(k) is the derivative of the equation (14) and takes the following form:
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Figure 2. Detailed connections in a neural network with a context layer.

In this work, the gradient descent technique is used—weights between the first and
second layer, second and third, and in the context layer, are subject to update their value
during the running process of the drive. To calculate the new weights correctly, the cost
function (14) should be defined (it should be differentiable). It tells the network how the
weights should change and is the crucial part of the algorithm.

E(k) =
1
2

(
ωm

re f (k)−ω1(k)
)2

(14)

To ensure the stable work of a control structure, the reference speed signal is connected
using the element described with the following formula [57]:

Hm(s) =
ω2

r
s2 + 2ωrξs + ω2

r
(15)

where ωr is the resonant frequency and ξ is the damping coefficient, which changes the
overshoot in case of ξ and defines the dynamics of the drive (ωr). After calculating the
cost function, updates for the weights can be processed. It should be started from the last
layer, then the second to last layer is calculated, etc. This process is called backpropagation.
The updates for parameters between the hidden and the output layer can be formulated
as follows:

∆w2
j (k) =

∂E(k)
∂w2

j (k)
=

∂E(k)
∂ynn(k)︸ ︷︷ ︸

em(k)

∂ynn(k)
∂h3(k)︸ ︷︷ ︸

1

∂h3(k)
∂w2

j (k)︸ ︷︷ ︸
z2

j (k)

(16)

The context layer weight update takes a similar form:

∆wc
j (k) =

∂E(k)
∂wc

j (k)
=

∂E(k)
∂ynn(k)︸ ︷︷ ︸

em(k)

∂ynn(k)
∂h3(k)︸ ︷︷ ︸

1

∂h3(k)
∂z2

j (k)︸ ︷︷ ︸
w2

j (k)

∂z2
j (k)

∂wc
j (k)︸ ︷︷ ︸

f ′
(

h2
j (k)

)

(17)

At last, update values for the weights between the input and the hidden layer should
be calculated:

∆w1
ij(k) =

∂E(k)
∂w1

ij(k)
=

∂E(k)
∂ynn(k)︸ ︷︷ ︸

em(k)

∂ynn(k)
∂h3(k)︸ ︷︷ ︸

1

∂h3(k)
∂z2

j (k)︸ ︷︷ ︸
w2

j (k)

∂z2
j (k)

∂w1
ij(k)︸ ︷︷ ︸

f ′
(

h2
j (k)

)

(18)

where term f ′
(

h2
j (k)

)
means the calculation of the derivative of the compound function.

New weights should be calculated before proceeding to the next step [58]:

w2
j (k + 1) = w2

j (k)− η∆w2
j (k) (19)

wc
j (k + 1) = wc

j (k)− η∆wc
j (k) (20)
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w1
ij(k + 1) = w1

ij(k)− η∆w1
ij(k) (21)

3. ADALINE Predictor

In the previous section, it was mentioned that the cost function requires motor speed
in its calculations (14). As all signals are based on the current sample of the reference and
motor speeds, if the motor speed is known in advance, the neural controller can take that
into account and be more precise and robust in its work (due to faster reaction). To predict
the value of a motor speed, a simple ADALINE model is proposed. The ADALINE model
consists of simple linear function neurons. Data processing is performed similarly to classic
neural networks—input values are multiplied by weights, then the sum of these values is
taken. The advantage of this approach is the use of a model that can predict (with the proper
connections of the signals) data without an actual plant model. The cost function [59] and
output signal for an ADALINE model can be defined similarly to (13), (14):

Epred(k) =
1
2

(
ypred(k)− in(k)

)2
(22)

ypred(k) =
Na

∑
γ=1

xγ(k)w
pred
γ (k) (23)

where x is the processed state variable, wpred is the weight associated with a given input,
ypred is the output of the predictor, in is the model input, and Na is the number of inputs.

The update process principle remains the same as in the previous chapter. However,
this time, the calculations are performed to optimize wpred (it should be noted that the value
of the learning rate β is a small value):

wpred
γ (k + 1) = wpred

γ (k) + β

[(
Na

∑
γ=1

xγ(k)w
pred
γ (k)− in(k)

)
xpred

γ (k)

]
(24)

It can also be written as:

wpred
γ (k + 1) = wpred

γ (k) + β∆wpred
γ (k) (25)

The update function is based on a gradient of the defined cost function for a predictor:

∆wpred
γ =

∂Epred(k)

∂wpred
γ (k)

=

[(
Na

∑
γ=1

xγ(k)w
pred
γ (k)− in(k)

)
xpred

γ (k)

]
(26)

The neural predictor can be organized so that the output of one unit is the input of the
second. Such a combination increases the prediction horizon by a number of connected
units. If, for example, k units were connected as presented, the output of the entire predictor
system would predict k future steps, which is presented in detail in [60]. An example system
of connected predictor nodes is presented in Figure 3.

A stable training procedure for a neural network should allow small and smooth
gradient changes and minimization of the defined error, Epred. This process can be written
as follows:

Epred

(
wpred

γ (k)
)
< Epred

(
wpred

γ (k− 1)
)

(27)

After modification and using Equation (25), it can be expressed as:

Epred

(
wpred

γ (k) + ∆wpred
γ (k)

)
< Epred

(
wpred

γ (k− 1)
)

(28)
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The gradient value is presented with expression (26). The prediction error can also
be defined:

e(k) = ypred
re f (k)− ypred(k) (29)

The first part in (27) is a reference prediction value, which is achieved for the optimal
weights value:

ypred
re f (k) =

nan

∑
γ=1

xγ(k)w
pred
γopt (k) (30)

After inserting Equations (30) and (23) into (29), it yields:

e(k) = wpred
γoptxγ(k)− wpred

γ (k)xγ(k) = Θ(k)xγ(k) (31)

where Θ is a weight adaptation error, and it can be expressed as:

Θ(k) = wpred
γopt − wpred

γ (k) (32)

It should be noted that wpred
γopt does not depend on time or samples because it is an optimal

value. After combining expressions (25) and (32), the weight update error can be written as:

Θ(k + 1) = (1− β)
(

wpred
γopt − wpred

γ (k)
)

(33)

A proper analysis of the stability of the neural network should define a Lyapunov
function. It can be defined as follows:

L(k) = Θ2(k) (34)

This value should be minimized during the learning process, so for each iteration, the value
of L(k) should be reduced:

L(k) < L(k− 1) (35)

Using expression (33), the previous equation can be rewritten as:

[(
wpred

γopt − wpred
γ

)
(1− β)

]2
<
(

wpred
γopt − wpred

γ

)
(36)

From the last inequality, a learning rate to ensure stability can be easily found. It is also
known that a small value of a learning rate tends to increase the time needed to adapt
the parameters, and a higher value may cause higher jumps, which result in spikes in the
output signal. Depending on the application, an adaptive learning rate or a small constant
value should be considered.
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Figure 3. Concept of a series connection of multiple predictors.
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Θ(k + 1) = (1 − β)
(

wpred
γopt − wpred

γ (k)
)

(34)

A proper analysis of the stability of the neural network should define a Lyapunov function. 193

It can be defined as follows: 194

L(k) = Θ2(k) (35)

This value should be minimized during the learning process, so for each iteration, the value 195

of L(k) should be reduced. 196

L(k) < L(k − 1) (36)

Using expression (34), the previous equation can be rewritten as: 197

[(
wpred

γopt − wpred
γ

)
(1 − β)

]2
<
(

wpred
γopt − wpred

γ

)
(37)

Figure 3. Concept of a series connection of the ADALINE-based elements.

4. Utilization of Artificial Bee Colony Algorithm

Artificial Bee Colony (Figure 4) is an algorithm inspired by a swarm, which consists of
one queen, some male bees called drones, and many female workers. Bees can be divided
into three main groups—employed, onlookers, and scouts [61]. The task of each member
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of the group is different, but all of them are working for a greater good—their queen and
the hive. Before any optimization is performed, the initialization process for the algorithm
takes place.
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A population of N bees is randomly generated using a pseudo-random generator it is
schematically presented in the Figure 4 as a bee hive. Any member of a population should
be constrained to the limits of the problem that is solved:

xij = xlb
i + rand(0, 1)(xub

i − xlb
i ) (37)

where i is the dimension of a problem, j is the number of an individual bee, and xlb and
xub are the lower and upper bounds of the considered task. In the next step, the fitness
function for the whole population is evaluated according to the equation:

f itij =

{
1

1+ fij
, fij ≥ 0

1 +
∣∣ fij
∣∣ , fij < 0

(38)

where fij is a fitness function defined by a user, and f itij is a benchmark defined in an
algorithm itself [62]. Next, the first main part takes place—the employed bees phase (yellow
bee), throughout which employed bees are looking for a new solution, using the expression:

xnew
ij (iter) = xij(iter) + φij

(
xij(iter)− xkj(iter)

)
(39)

where xnew
ij is a new solution found by an employed bee, xkj is a randomly selected solution

other than xij, iter is a number of a current iteration of an algorithm, and φij is a random
number in a range (−1, 1). The newly found solution xnew

ij is then compared to the old one
xij according to the fitness value of each solution (38). If a new value is better (lower) than
the previous one, it is exchanged so that the better value takes the place of the old one.
However, if xnew

ij has a higher value, it is deleted from the population (the old value of a xij
is kept in the population), and the abandoned solution counter (AC) is incremented. The
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next phase starts with a probability calculation which tells if a bee should be exploited in
this part. It is done according to a simple equation:

pOB =
f itj

∑N
k=1 f itk

(40)

In the onlooker bees phase (red bee), the solutions with the highest probability are further
exploited using an equation similar to (39):

xnew
ij (iter) = xpOB

ij (iter) + φij

(
xpOB

ij (iter)− xkj(iter)
)

(41)

where xpOB
ij is a solution candidate for an onlooker phase with a chosen probability. This

takes place until all onlookers find their solution—the food source. AC is also incremented
in this phase. In the scout bees phase (green bee), the abandonment counter can be used.
If its value exceeds the set limit, the bee becomes a scout bee, and then it is looking for
a new source of food for its hive. In such a case, the Equation (37) is used. The end of
the optimization process is evaluated by fulfilling at least one of the following criteria:
reaching the maximum number of iterations, exceeding the calculation time, or obtaining
small changes in the best value. The complexity of the ABC algorithm is proportional to
the number of dimensions of the problem and the size of population, as well as the number
of iterations of the main loop of the algorithm. The whole process is presented in Figure 5.

In this paper, the ABC was used to optimize the coefficients in the input layer of
a neural network controller. Examples of different values of ke and kI are shown in Figure 6.
Only one variable was changed at a time. The results prove the necessity of correct
selection of the gains. The optimization was performed using the following fitness function
consisting of three parts:

f = Fe + Fde + FT (42)

Fe =
∫ tsim

t=0
t2
(

ωre f (t)−ω1(t)
)2

dt (43)

Fde =
∫ tsim

t=0
ζ

d
dt

(
ωre f (t)−ω1(t)

)
dt (44)

FT =
∫ tsim

t=0
χ

d
dt

Tedt (45)

where tsim is the duration of the simulation, and ζ and χ are empirically selected coefficients
to achieve the desired speed response of the drive.

The maximum iteration count for an algorithm was set to 20, with the size of the
population equal to [20 × D], where D = 2 is the dimension of the optimization task.
Changes in the fit objective function can be observed in Figure 7 below. The process was
started with random values for both variables. The lower bound was set to [0.1 0.1], lower
values caused the process to throw an error, and an upper limit was set to [50 100]; this
should ensure that the final values were in the proper range.

Exemplary transients gathered during the optimization process are depicted below
in Figure 8. During the first iteration, high-frequency oscillations are visible during the
simulation. It is much improved in the 5th iteration of the ABC—high overshoot is present
in the initial phase of operation, and high noise is visible. The step response is refined
during the optimization, which can be seen in the last iteration—high dynamics of the
response with no oscillations in both static and dynamic states of the drive.
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Figure 5. Artificial Bee Colony algorithm (different phases are denoted with the same colors as in
Figure 4)

In this paper, the ABC was used to optimize the values of gains in the input layer 246

of a neural network controller. The network has two inputs. The first is the error signal 247

ke = ωre f − ω1, while the second is an integral of the error signal — kI . ke is responsible 248

for reinforcement of the error signal. Lower values of this coefficient can lead to a longer 249

response time of the plant and can introduce oscillations at the start-up of the drive. 250

Increasing this value leads to lowering the oscillations at the start, but they can appear 251

again after the load is switched. Gain kI can dampen the oscillations and the overshoot 252

in the dynamical states of the drive, e.g. speed reversals or switching the load. Higher 253

values can introduce high-frequency oscillations, but the speed change resulting from 254

the load application is less observable. On the other hand, low values tend to minimize 255

the overshoot during the reversal and increase the speed change when the load torque is 256

applied. Some examples of different values of ke and kI are shown in Figure 6 below. Only 257

one variable was changed at a time, which means that when different values of ke were 258

tested, kI remained the same. 259

The optimization was performed using the following fitness function consisting of 260

three parts: 261

f = Fe + Fde + FT (43)

Fe =
∫ tsim

t=0
t2
(

ωre f (t)− ω1(t)
)2

dt (44)

Figure 5. The Artificial Bee Colony algorithm (different phases are denoted with the same colors as
in Figure 4).
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Fde =
∫ tsim

t=0
ζ

d
dt

(
ωre f (t)− ω1(t)

)
dt (45)

FT =
∫ tsim

t=0
χ

d
dt

Tedt (46)

where: tsim is the duration of the simulation, ζ, χ are empirically selected coefficients 262

to achieve the desired speed response of the drive. 263

Figure 6. Examples of the change in the ke and kI in the neural controller

Maximum iteration count for an algorithm was set to 20, with the size of the population 264

equal to [20xD], where D = 2 is the dimension of the optimization task. Changes in the fit 265

objective function can be observed in the Figure 7 below. Process was started with random 266

values for both variables. The lower bound was set to [0.1 0.1], lower values caused the 267

process to throw an error, and an upper limit was set to [50 100]; this should ensure that the 268

final values were in the proper range. 269

Figure 6. Influence of the input parameters of the neural network (ke and kI) on the final variable of
the drive.
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Figure 8. Transients of the load speed of the drive during the optimization process.

5. Simulation Tests

After the optimization of the gains of the input layer of the neural controller, tests of
the optimized control structure were performed. Firstly, the work of the predictor was
verified. The optimized control structure with a predictor applied was compared to the
regular MRAC structure (with no predictor). All the tests were conducted for 20 seconds.
The load torque was applied in the 9th second of the drive operation, and it was switched
off in the 11th. Selected time frames from the simulation were chosen in the comparison. In
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all parts of Figure 9, the load speed of the drive, after the predictor application, has a lower
value of overshoot than the MRAC one. In Figure 9a, the startup process of the drive is
presented; at first, the speeds match, and after some adaptation of the neural controller, the
settling time is lower. After the adaptation of both networks (the Elman controller and the
ADALINE predictor), it can be clearly seen that the latter one works better just before the
load is switched on (Figure 9b) and after performing a reversion with a load torque applied
(Figure 9c).

The prediction element is applied to the learning algorithm. For the test purposes, it was
deactivated to check the difference. The fitness functions of the both structures are presented in
Table 1.

Table 1. Fitness function comparison of analyzed control structures.

Structure Fitness Function Values

MRAC 0.0525
MRAC with predictor 0.0499

(a) (b) (c)
Figure 9. Comparison of a control structure with and without a predictor: (a) starting operation of
the drive, (b) and (c) selected parts of the operation with reversions.

Next tests, after the comparison, were performed for a different moment of inertia
added to the different parts of the drive. Firstly, the nominal parameters were tested
(transients of speeds and torques are presented in Figure 10). There is a small overshoot
observed after the start of the drive. Due to the update operation of the internal weights
of both neural networks, it is minimized after one reversion. The time constants of the
motors in industrial applications (e.g., robotic arms) are changing under the operation.
Figure 11 presents the transients gathered in the second test, where the load time constant
T2 was increased. No apparent changes are visible in the speeds other than a lower error
of speed after applying the load torque, which was presumed. Higher values of torques
are observable due to the fact that the controller tries to achieve the same speed as in the
nominal parameter case, but higher values of inertia imply higher amplitude of torques.
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6. Experimental Verification
6.1. Description of the Laboratory Setup

After all the simulation tests were carried out, experimental verification on the lab-
oratory stand took place. The drive consists of two DC motors coupled together with
600 mm long steel shaft. The stiffness time constant can be changed by exchanging the
different shaft with different diameters, and additional flywheels can be added on the
motor to increase the time constant of the load motor. It should be noted that the type of
motor used in the experimental bench is insignificant since the work is focused around the
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mechanical part of the drive. Thus, the same tests can be carried out using two coupled
induction motors.

LEM sensors are introduced to measure the currents, and incremental encoders are
also present on both machines for speed measurements. The drive is powered by an
H-bridge, and an additional resistor is added to ensure the proper working of the load
motor. The control algorithm was uploaded to a dSpace 1103 card with a DSP by a PC with
a Windows operating system. The code was generated with use of a Matlab Embedded
Function, which drastically simplifies the process of compiling the uploading the Simulink
code to the dSpace card. All the data were observed in the part of the dSpace software
called ControlDesk, where the virtual panel was created. The nominal parameters of the
setup are presented in Table 2, and the laboratory setup is shown in Figure 12.

Table 2. Nominal parameters of the drive.

Parameter Value

Motor nominal power 500 W
Load nominal power 500 W

Shaft length 600 mm
Shaft nominal diameter 5 mm

Encoder impulse 36,000 ppr
Version January 18, 2023 submitted to Future Internet 16 of 22

Figure 12. The laboratory setup
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Figure 12. The laboratory setup.

6.2. Remote Data Visualization

The design of the control system was extended with a remote Human-Machine Inter-
face. The main task for the HMI was the visualization of the system state variables; the
user interface additionally provides access to basic control, such as selecting the speed
set-point and enabling/disabling the drive with a start&stop switch. In comparison to
known HMI systems, which in most cases require special, licensed software and special-
ized hardware (e.g. additional sensors or measurement cards) for data acquisition and
visualization [63–65], the proposed system broadcasts the desired data to any network-
connected device. The developed system consists of the power electronics and sensors that
were required for the drive operation. The state variables were extracted from the control
hardware via the serial port and processed with a low-cost, highly adaptable dual-core
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ESP32 microcontroller. The ESP32 incorporates a wide range of communication modules,
both wired (I2C, I2S, SPI, UART) and wireless (Bluetooth Classic, Bluetooth Low Energy
(BLE) and Wi-Fi), which makes it a universal tool that can be implemented in a variety of
applications [66–68]. The embedded Wi-Fi module was used to provide remote access for
end users. A simple web page was generated, thus enabling data monitoring through any
device, such as mobile phones, tablets, or laptop PCs. The scenario assumes the situation
with ESP32 working as an internet-connected web server (Figure 13). It enables cloud-
based drive monitoring from any destination around the world—the approach especially
valuable for maintenance staff in international companies. Not only industrial solutions
can use the IoT-enabled machinery, but also research centers and universities may conduct
experiments remotely. This is an essential in the home office and remote learning reality of
pandemic. Because of the increasing necessity of ensuring data safety, advanced encryption
is required. The access can be granted only for the authenticated users (3rd party services
are no required). A parameter comparison between typical industrial HMI solutions and
the device utilized in this article is presented in Table 3.

Table 3. Comparison of different devices providing HMI functionality [69–71].

Device Siemens Simatic Panel Basic ESP32 Omron NB-Series HMI

Power consumption 3 W ≈1 W ≈5 W
Screen size up to 15” end-user device dependent up to 10”

Connectivity interfaces Ethernet + Profinet USB + Wi-Fi + Bluetooth Ethernet + USB + RS232
User memory size 10 MB 4 MB (up to 16 MB) 128 MB

HMI design language/
required software TIA PORTAL WINCC HTML/CSS/C++ NB-Designer

Price $$$ $ $$$
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Figure 13. Remote data visualization with ESP32: dataflow (a), laboratory equipment (b).

The network framework was developed using an asynchronous web server ESP32
utility. It allows generating a responsive web page design based on HTML syntax. The
communication between control system acquisition module and the web server in asyn-
chronous mode was established in a request-based manner. Every reload of the web page
or user activity (such as switch toggle) generates a defined request to access microcon-
troller variables. The asynchronous operation reduces the workload of the processor, as
the data exchange was only conducted at the user request. The CSS style file and HTML
code are stored in flash memory of the ESP32 with the utilization of SPIFFS (SPI Flash
File System). Such an approach allows to generate a more complex graphical interface in
comparison to the minimal code constrained by program memory. Moreover, the web page
file was replaced in the microcontroller memory without the interference with the network
configuration and data acquisition logic.

The designed HMI web page was linked with the system during the experimental tests.
The speed transient was plotted from the buffered samples. The length of the single data
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package was affected with the sampling frequency of the control structure. The captured
screen can be found in Figure 14.

The most important element was the speed transient that covered most of the web page
area. The Plotly library was used for this purpose. Not only did it allow data plotting, but
it also enabled manipulation over the figure—zooming, panning and data cursor attaching.
Furthermore, the interface provides the possibility to save the speed transient as an image.
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Figure 14. Graphical interface with plotted speed transient
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Figure 14. Graphical user interface.

6.3. Experimental Results

Experimental results are presented in Figures 15 and 16—for the nominal parameters of
the drive and increased time constant of the load machine (T2 = 2T2n), respectively. Reference
speed transients are assumed to be the same as in the simulation tests to reproduce the results
best. Cycling reversions of the speed occur every 5 s, and the amplitude of the reference speed
was set to 25% of the nominal value to prevent the limitation of the current. The load torque
was also switched during the operation of the drive.

The experimental results are comparable to those obtained in the simulations. Over-
shoot can be noticed in the initial part of the operation. Reaction to the load is fast, and the
drop of the speed is small. The results from Figure 16 show that increasing the load time
constant slightly increases the overshoot during the first two reversions. Other than that,
the transients are similar and comparable to the simulations for both tests.
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attaching was possible. Furthermore, the interface provided the possibility to save the 376

speed transient as an image. 377

6.3. Experimental results 378

Experimental results are presented on the Figure 15 and Figure 16 for the nominal 379

parameters of the drive and increased time constant of the load machine (T2 = 2T2n), 380

respectively. Reference speed transients are assumed to be the same as in the simulation 381

tests to reproduce the results best. Cycling reversions of the speed are occurring every 5 382

seconds and the amplitude of the reference speed was set to the 25% of the nominal value to 383

prevent the saturation of the torques. Load torque was also switched during the operation 384

of the drive. 385

Figure 15. Transients of experimental results for the nominal parameters of the drive
Figure 15. Transients of state variables—motor and load speeds (nominal parameters of two-mass system).
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Experimental results are comparable to those achieved in the simulations. Overshoot 386

is present only in the startup operation. Reaction to the load is fast and the drop in speed 387

is small. The results from the Figure 16. Shows that increasing the load time constant 388

slightly increases the overshoot during the first two reversion. Other than that, transients 389

are similar and comparable to the simulations for both cases. 390

Figure 16. Transients of experimental results for an increased load time constant (T2 = 2T2n) of the
drive

7. Conclusions 391

In this paper, an IoT-enabled, ARM-based monitoring and control system was de- 392

veloped and applied to an electric drive with finite stiffness. An Elman recurrent neural 393

network and a neural predictor were designed to control a drive with an elastic joint. The 394

comparison of a drive operating with and without the predictor applied was also shown to 395

confirm the superiority of two neural networks cooperating in a single control structure. 396

The convenient and effective approach to optimization of the parameters of the input 397

layer of the neural network with the Artificial Bee Colony algorithm was provided. The 398

presented results confirmed that the use of a metaheuristic algorithm can facilitate the 399

process since there is no given prescription for selecting parameters of any neural network. 400

The developed data server enabled online observation of the plant state variables and basic 401

control of the electrical machines. The presented idea of coupling the smart controller 402

utilizing elements of artificial intelligence and online data visualization is coherent with 403

the Industry 5.0 concept. The novelty was not only provided by the original idea of synthe- 404

sizing the controller structure and data presentation, but also by the implementation of a 405

low-cost mainstream microcontroller. The data flow of the proposed system was described 406

in detail. Thus, the framework for developing similar systems was established. 407

The implementation of a low-cost ESP32 chip proved that modern machinery can be 408

monitored with simple devices without complex and expensive specialized HMI systems. 409

Both cost-effective design and online data acquisition are essential to improve electric drive 410

data availability in the industry, in research facilities and also in universities. The advantage 411

of the proposed HMI is that it was developed as a web page with a customized layout 412

that can be adapted to requirements and can be opened with any device with access to the 413

Internet. 414

Figure 16. Transients of system signals achieved for an increased load time constant (T2 = 2T2n) of
the drive.

7. Conclusions

In this paper, an IoT-enabled, ARM-based monitoring and control system was de-
veloped and applied to an electric drive with finite stiffness. An Elman recurrent neural
network and a neural predictor were designed to control a drive with an elastic joint. The
comparison of a drive operating with and without the predictor applied was also shown
to confirm the superiority of two neural networks cooperating in a single speed control
structure. The convenient and effective approach to optimization of the parameters (of the
neural network) with the Artificial Bee Colony algorithm was provided. The presented
results confirm that the use of a metaheuristic algorithm can facilitate the design process,
since there is no given prescription for selection of correct values of coefficients. The devel-
oped data server enables online observation of the plant state variables and basic control
of the electrical machines. The presented idea of coupling the smart controller utilizing
elements of artificial intelligence and online data visualization is coherent with the Industry
5.0 concept. The novelty was not only provided by the original idea of synthesizing the
controller structure and data presentation, but also by the implementation of a low-cost
mainstream microcontroller. The data flow of the proposed system was described in detail.
Thus, the framework for developing similar systems was established.

The implementation of a low-cost ESP32 chip proves that modern machinery can be
monitored with simple devices without complex and expensive specialized HMI systems.
Both cost-effective design and online data acquisition are essential to improve electric
drive data availability in the industry. The advantage of the proposed HMI is that it was
developed as a web page with a customized layout that can be adapted to requirements
and can be opened with any device with access to the internet.
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