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Abstract: Complementing RSSI measurements at anchors with onboard smartphone accelerometer
measurements is a popular research direction to improve the accuracy of indoor localization sys-
tems. This can be performed at different levels; for example, many studies have used pedestrian
dead reckoning (PDR) and a filtering method at the algorithm level for sensor fusion. In this study,
a novel conceptual framework was developed and applied at the data level that first utilizes ac-
celerometer measurements to classify the smartphone’s device pose and then combines this with RSSI
measurements. The framework was explored using neural networks with room-scale experimental
data obtained from a Bluetooth low-energy (BLE) setup. Consistent accuracy improvement was
obtained for the output localization classes (zones), with an average overall accuracy improvement of
10.7 percentage points for the RSSI-and-device-pose framework over that of RSSI-only localization.

Keywords: indoor localization systems; RF fingerprinting; device pose; RSSI

1. Introduction

Modern smartphone-based indoor localization systems rely on the measurement of
parameters, such as the received signal strength intensity (RSSI) of radio frequency (RF)
signals, via spatially distributed anchors in the region of interest. These RF measurements
in an indoor localization system can be influenced by at least three factors, namely, the
phone environment (commonly known as “device pose” in the human activity recognition
literature [1]), the user’s behavior, and the anchor environment, as shown in Figure 1. Each
of these physical factors causes changes in the electromagnetic (EM) channel. For example,
if the phone’s device pose is in a user’s pocket, the RF signals are likely to be far more
attenuated due to shadowing in comparison to the device being located in a user’s hand.

Figure 1. Factors affecting RF measurements in localization systems.

Ultra wideband (UWB) signals that provide time of arrival/time difference of arrival
(ToA/TDoA) measurements are less vulnerable to multipath and shadowing effects and,
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therefore, have good measurement models (i.e., relationship between the measurement
and the distance of the phone from the anchor). This makes UWB-based systems useful in
calculating the point-estimate location of a phone. In contrast, WiFi and BLE signals that
provide RSSI measurements are highly susceptible to these channel effects. Although some
systems use indoor propagation models [2] or angle-of-arrival (AoA) measurements [3,4]
to improve the resolution of distance from the RSSI, often the measurement models are too
poor in real-world deployments to resolve to point estimates. A common approach in RSSI-
based localization literature [5] is the use of a pattern-recognition style methodology known
as RF-fingerprinting to perform coarse-grained localization (or zoning). RF fingerprinting
involves conducting an initial measurement campaign in different zones within the area of
interest to collect and store the RSSI data of the zones (“fingerprints”) in a database. Then,
in an online phase, new RSSI measurements are compared with the fingerprints stored in
the database, and the phone is localized to a zone, as depicted in Figure 2.

Figure 2. Power-based fingerprinting localization approach.

1.1. Research Contribution

Studying the fusion of smartphone sensor measurements with RF measurements
is an important research direction to improve the accuracy of indoor localization. For
systems that calculate the point location of a phone (such as UWB), well-known optimal
sensor fusion algorithms such as Kalman Filtering can be easily used [6,7]. However,
for fingerprinting-based localization, which is similar to pattern recognition, there is no
apparent standard approach that can be employed.

Hence, the question arises: Is there an approach to use the onboard phone sensors to
improve the accuracy of the underlying RF fingerprinting pattern recognition problem?
To the best of the authors’ knowledge, no study has answered this question using the
smartphone’s device pose. In this study, a novel conceptual framework was implemented
using an end-to-end BLE setup that first uses accelerometer sensor measurements to identify
the device pose of the smartphone and then combines the identified device pose with the
RSSI measurements to locate the smartphone in the zone.

The original contributions of this study can be described as follows:

1. A conceptual data-level framework is proposed that combines a smartphone’s device
pose obtained from accelerometer measurements with the smartphone’s BLE RSSI for
indoor fingerprinting localization.

2. We employed cascaded neural networks to implement and evaluate the proposed
framework’s model improvement (i.e., RSSI-only vs. RSSI-and-device-pose) via the
neural network cross-entropy loss function improvement.

3. We applied the Kolmogorov–Smirnov statistical test to link the accuracy improvement
seen in the neural network implementation to the data distribution.

4. We experimentally evaluated the localization accuracy improvement provided by the
neural network implementation of the framework in an indoor environment.

5. We demonstrate the robustness of the conceptual framework by also implementing
it using K-Nearest Neighbour and Naïve Bayes algorithms showing the localization
accuracy improvement.

1.2. Scope and Outline

The novel framework proposed in this paper is a conceptual data-level framework
that can be implemented using any pattern recognition algorithm. The implementation and
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results of the framework using cascaded neural networks is described in detail, and results
using K-Nearest-Neighbor and Naïve-Bayes are given to demonstrate that the framework
has utility when implemented using other algorithms as well. Hence, this paper does
not propose a new algorithm; we explore the novel combination of device pose data with
RSSI data to produce an increase in localization accuracy over RSSI-only data, as this has
not been explored in the literature. The selection or optimization of a pattern recognition
algorithm to implement the framework was not within the scope of this study.

The remainder of this paper is structured as follows: Section 2 reviews related liter-
ature and details the rationale behind the proposed framework; Section 3 describes the
proposed framework and its implementation using cascaded neural networks, and spec-
ifies the experimental setup. Section 4 presents detailed results and analysis of accuracy
improvements; Section 5 discusses the advantages and disadvantages of the proposed
framework and provides the conclusion to the paper.

2. Related Work and Motivation

Using inertial measurement unit (IMU) sensors on a smartphone or as a separate
wearable for user-behavior detection has been copiously researched as a complementary
data modality to improve indoor localization system accuracy [5], and most studies [8]
have examined pedestrian dead reckoning (PDR) as the data fusion approach utilizing
methods such as filtering [6,9,10]. However, smartphone-based PDR is also known to have
major drawbacks, such as the accumulation of errors over time [11] and the impossibility
of resolving the direction of travel without constraining the location or orientation of the
smartphone (which is still an open research question [11,12]). The latter is an especially
important consideration when looking at indoor localization systems because they are used
in a diverse range of settings such as hospitals and shopping malls, in which users cannot
be constrained to holding their phone in a particular manner. So, while smartphone-based
PDR techniques to improve indoor localization accuracy may provide good results in
studies, they may never be suitable for practical implementation.

The phone’s device pose (i.e., how the phone is being carried/held by the user)
changes the electromagnetic channel and affects the RSSI values at the anchors (even if the
individual is not moving, as demonstrated in [13]) due to two easily identifiable reasons.
Firstly, the phone may be placed in a bag or pocket or held at the ear, both of which
cause varying magnitudes of greater attenuation due to shadowing compared with when
the phone is held in an outstretched hand [14]. Secondly, being placed in a low carried
handbag or being held at the ear can change the distance vector to an anchor and degrade
performance. It should also be noted that these effects are compounded with distance. As
described in a short experiment [15], a 10 dB attenuated RSSI at 10 cm away from an anchor
produced about the same range estimate as unattenuated RSSI. However, at 1 m away from
the anchor, a 10 dB attenuated RSSI could cause a difference in range estimate of 5–10 m
compared with that of unattenuated RSSI. Thus, if during the fingerprinting measurement
campaign, the range of RSSI values for different device poses at the zones are also collected,
this could improve the stored fingerprint by accounting for the variations in the RSSI due
to device pose in the zones.

There are only a handful of recent studies that have explored such data-level concep-
tual frameworks to use the smartphone sensors in order to improve the underlying RF
fingerprinting pattern recognition problem. In [16], the researchers used the concept of
different unique activities being carried out in different rooms of typical living quarters
(e.g., lying on a bed in a bedroom, cooking in a kitchen, etc.) to improve the accuracy of
a BLE RSSI fingerprinting localization system. Smartphone sensor data were collected
from individuals using the different rooms for their activities, and this room-level local-
ization was combined with RSSI fingerprinting localization using various classifiers. This
resulted in slight accuracy improvements for some of the rooms and a decrease in accuracy
in others. In ref. [13], a BLE beacon selection strategy was developed to remove nearby
beacons because it was found that the RSSI from these is most profoundly affected by small
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movements of the user’s hand; however, the authors did not explore utilizing the device
pose to improve the localization accuracy.

Notably, in a recent study [17], the researchers used machine learning algorithms on
accelerometer measurements to detect whether a user is moving (dynamic) or standing
relatively still (static); thus, they proposed reliability metrics for the localization on RSSI
values received while the user is static and dynamic. As such, the authors assessed the
relationship between the user behavior component in Figure 1 and the RSSI localization
in the experimental setup of five zones in a large room. Although the dataset in the study
was collected for different device poses as well, the authors did not study the effect of
these on the localization. Hence, there is a need to address this research gap to determine
the localization improvement attained when taking device pose into account, which is the
novel contribution of this study (as contextualized within the broader literature in Table 1).

Table 1. Overview of some frameworks in the literature for combining accelerometers and RSSI
for localization.

Framework Advantages Disadvantages

Pedestrian dead reckoning
(PDR) fusion with RSSI us-
ing standard data fusion al-
gorithms (e.g., Kalman filter)
[6,9,10]

• Good accuracy improve-
ment

• Widely researched

• Accumulation of dead-
reckoning error [11]

• Direction of travel resolu-
tion impossible without
constraints [11,12], mak-
ing practical use difficult.

Accelerometer-based activity
recognition for:

• Improved room-level lo-
calization [16]

• Anchor selection strategy
[13] based on movement

• Reliability metric on RSSI
due to movement [17]

• Improving RSSI localiza-
tion with device pose in-
formation (this study)

Practical due to absence of
constraints on carrying smart-
phone

• Low accuracy improve-
ment, even reduction in
accuracy (e.g., [16])

• Requires additional data
collection (e.g., static/
dynamic [17]) for training.

3. Methodology

This section describes the proposed data-level framework, its implementation using
cascaded neural networks and provides details of the experimental setup, equipment, and
data collection methodology.

3.1. Proposed Framework

The proposed framework that was implemented in this study is an extension of
typical RSSI fingerprinting localization, augmented with sensor data for phone device pose
classification, as shown in Figure 3.

The accelerometer sensor was chosen to detect the smartphone device pose because it
is the most common sensor used for the identification of human activity classes [11,12] and
in sole device pose identification [18]. It is extremely accurate (>90%) for both applications;
in refs. [19,20], the authors compared the use of different sensors individually and together
for device-pose-only identification, and both studies concluded that using multiple sensors
(together with, or aside from, the accelerometer) does not significantly increase accuracy
compared with using the accelerometer alone.
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Figure 3. Proposed framework overview.

During the training phase, RSSI measurements were taken at various locations in the
region (such as zones on the floor of a building) and stored in a database. Additionally, dur-
ing this training phase, phone accelerometer measurements were recorded for each use case
under consideration. These data were then used to train classifiers in a supervised learning
approach for the phone’s device pose and the user’s location. During the online/testing
phase, the new RSSI measurements and phone accelerometer measurements were processed
through an integrated trained classifier, and a location output class was determined.

3.2. Cascaded Neural Network Implementation of Proposed Framework

As mentioned earlier, the conceptual framework of this method, which uses device-
pose identification with RSSI for localization, can be implemented using any pattern recog-
nition algorithm. This subsection describes a cascaded neural network implementation of
the proposed framework, which is one possible realization of the framework. The results
of this cascaded neural network implementation are given in Sections 4.3 and 4.4. Results
for cascaded K-Nearest Neighbor and Naïve Bayes implementations of the framework are
also given in Section 4.5 to show the flexibility of the technique. It is stressed again that
the proposed framework (i.e., classifying then combining the phone’s device pose with
the RSSI data) is general, and the optimization of the algorithmic technique to implement
this framework (e.g., SVM, ensemble learning, CNN, etc.), which could possibly improve
accuracy further, was not studied as it was outside the scope of this paper and would
require an in-depth study in its own right.

Neural networks were chosen to implement and study the framework for two reasons:

• Because the RF-fingerprinting localization approach and phone’s device pose iden-
tification are both fundamentally pattern recognition problems, machine learning
classifiers and in particular neural networks were a prime choice for implementa-
tion due to their robustness and generalization capabilities with noisy and uncertain
data. The trends in the literature also indicate their increased adoption for indoor
localization [2].

• The universal approximation theorem [21] for neural networks implies that a single
hidden layer neural network with enough neurons can approximate any hyperfunction
to an arbitrarily high accuracy, thereby forming arbitrary decision boundaries in the
classification input space. Because the proposed framework changes the input data
vector for classification, this makes neural networks a good candidate to evaluate
the effect.

The RSSI measurement from all N anchors at a particular time can be consid-
ered an N-dimensional vector ~r = 〈r1, r2, . . . , rN〉. Each RSSI measurement vector
~ri at the ith time corresponds to an element in the set of ground-truth zone labels
Y = {Y1 = Zone1, . . . , YM = ZoneM}, which relate to M zones of interest in the region’s
fingerprint map. Similarly, the 3-axis accelerometer measurement vector~ai =

〈
ax, ay, az

〉
,

which is received at the ith time instance, corresponds to an element in the set of K
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ground-truth device pose labels X = {X1 = DevicePose1, . . . , XK = DevicePoseK, . . .}. The
output vector ~Oi = 〈P(X1), P(X2), . . . , P(XK)〉 of the device pose neural network de-
notes the probability of~ai belonging to the kth device pose class, and the output vector
~Li = 〈P(Y1), P(Y2), . . . , P(YM)〉 of the localization neural network denotes the probability
of~ri belonging to the mth location.

The difference between how an RSSI-only and an RSSI-and-device-pose localization
neural network would perform zoning classification can be explained as follows:

• RSSI-and-device-pose: In order to combine the device pose and RSSI data, a neu-
ral network was trained using the accelerometer data to produce a device pose
classification (neural network on the left in Figure 4), and we added this binary
output classification vector as additional dimensions to the RSSI vector (thus,
~ri =

〈
r1, r2, . . . , rN , so f targmax

(
~Oi

)〉
). This projects the RSSI measurements from the

different device poses onto orthogonal dimensions in the input space for the local-
ization neural network. A second neural network (the neural network on the right
in Figure 4) was then used on the combined RSSI-and-device-pose input vectors to
produce the location output.

• RSSI-only: In contrast, an RSSI-only neural network was trained on~ri to produce the
location labels Y (only the neural on the right in Figure 4, with Xk removed in the
input vector).

Figure 4. Cascaded neural network implementation of proposed framework.

3.3. Experimental Setup

We used an experimental setup and protocol similar to that of [17], as shown in Table 2.
Data were collected in a room-scale setup that nearly exactly replicated the experimental
approach in [17], which allowed the accurate exploration of the research gap to determine
the localization improvement attained when taking device pose into account.

Table 2. Details of the experimental setup.

Setup in [17] Setup in This Study

Number of zones 5 5
Number of anchors 5 6

Number of HAR device poses 4 (Hand, trouser pockets,
jacket pocket, bag)

4 (AtEar, InHand, InPocket,
InHandbag)

Movement type Static and dynamic Static and dynamic

RSSI and accelerometer measurements were collected at the five locations shown in
Figure 5 (in the remainder of the paper, these are referred to either as ZoneA, ZoneB, ZoneC,
ZoneD, and ZoneE, or ZA, ZB, ZC, ZD, and ZE, respectively) in an indoor environment with
six spatially distributed anchors for four different device-pose use cases (shown in Figure 6,
labelled AtEar, InHand, InHandbag, and InPocket, or AE, IH, IB, and IP, respectively). From
Figure 5, it can be seen that each zone had a nearby anchor, and these could be written in



Future Internet 2023, 15, 220 7 of 17

pairs as [ZA, A2], [ZB, A3], [ZC, A3], [ZD, A4], [ZE, A5]. For each location and each device
pose, three data runs were recorded: one in which the device pose was kept completely
static and two in which natural variations due to body movement were added to the device
pose; these are referred to as dynamic1 and dynamic2. Larger and more frequent variations
in the device-pose use cases were included while recording the dynamic2 data compared
with those in the dynamic1 data (Figure 6 right subpanels). Approximately one minute of
data was recorded for each static/dynamic1/dynamic2 file, resulting in a total of 60 min
of data.

Figure 5. Picture of room and layout of anchors for data collection.

Figure 6. Device-pose use cases considered for experimental data collection.

Because the proposed framework depends on collecting a range of accelerometer and
RSSI measurements while the phone is in a particular device pose, it was necessary for the
accelerometer and RSSI transmitter to be on the same device. An Android smartphone
application was developed to send BLE advertisements at 10 Hz (in practice, the RSSI
was obtained at between 5 and 7 Hz due to missed packets) as well as a BLE Generic
Attribute (GATT) server [22] to sample and send accelerometer measurements as BLE-
notify messages (at around 15 Hz) to a GATT client. The two data modalities of interest
were recorded as follows:

1. RSSI data were obtained from the BLE advertisements of a Google Nexus 5X phone
with Arduino MKR1010 microcontrollers employed as anchors. The standard Ar-
duinoBLE library was used to obtain the phone’s BLE advertisement packet RSSI,
which was then sent over a USB serial connection to an HP EliteBook x360 (Intel i5
quadcore with 8GB RAM) laptop running MATLAB 2022Rb.

2. Accelerometer data were obtained from the BLE-notify messages of a Google Nexus
5X phone with a GATT client programmed on a RaspberryPi 4B+, which then sent the
accelerometer measurements over UDP to the laptop. The RaspberryPi was used to
offload the processing for receiving the higher sampling rate BLE-notify messages for
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the accelerometer service. The RaspberryPi’s clock was time-synced with the laptop
with Network Time Protocol to ensure synchronized timestamps.

The experimental measurement setup is summarized in Figure 7 with the hardware
and software components and their roles.

Figure 7. Experimental setup for data collection.

To prepare the data into vectors for the classification, the following preprocessing
steps were applied:

1. A 1-element buffer was used to hold the RSSI vector. This buffer was filled before
being considered the first complete RSSI vector. Therefore, every anchor returned at
least one measurement from the beginning of the recording of the data file for the first
valid RSSI vector to be recorded.

2. After the first complete RSSI vector was recorded, as described above, every new RSSI
value from an anchor was added to the 1-element buffer and the contents of the buffer
recorded as a new RSSI vector. This simulated the behavior of systems that attempt a
localization step every time a new RSSI measurement is received from an anchor.

3. Because the accelerometer sampling rate was higher than the RSSI sampling rate,
the accelerometer measurement closest in timestamp to the latest timestamp of the
RSSI measurements in the buffer was recorded to be the accelerometer measurement
corresponding to that RSSI vector.

A total of 57,489 vectors (approximately 11,000 per location after minor resampling)
were obtained as a dataset in this manner.

4. Results and Analysis

This section presents the distribution of the collected dataset. The Kolmogorov–
Smirnov test statistic was used to quantitatively expand upon the hypothesis of the pro-
posed framework and predict the likely zone classes from the dataset where the highest
accuracy improvement would be expected. The later subsections provide results of the
cascaded neural network cross-entropy for different hyperparameters and give the accuracy
improvement results for the RSSI-and-device-pose framework.

4.1. RSSI Data Distribution

The distributions of the RSSI measurements of the anchors for the different use cases
at each location are given in Figure 8 for the static files (i.e., user stationary in the particular
device pose use case). In order to quantitatively explore the effect of device pose on the
RSSI, the two-sample two-sided Kolmogorov–Smirnov (KS) statistic was calculated for all
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locations, device pose use cases, and static/dynamic files. The two-sample KS statistic is a
nonparametric statistic defined by:

DAB = max
x

(|FA − FB|) (1)

where FA and FB are the empirical cumulative distribution functions (ECDFs) of two
different sample sets. The KS test was used because it is a nonparametric test used to
identify whether two sample sets come from the same distribution [23]. The KS test
statistic’s p-values for the RSSI of Anchor1 for all locations and all device-pose use cases for
the static file are shown in Figure 9 (because DAB = DBA in Equation (1), only the lower
triangular entries of the symmetric matrix are relevant).

The KS test null hypothesis (H0) is that the samples come from the same distribution.
The instances (cells) where the KS test’s H0 would fail to be rejected (using the typical
p-value ≥ 0.05) are indicated with red font and outlined with a border, and represent
KS test type II errors. The KS test type II errors represent a failure of true negative (TN)
classification (i.e., true negative is the rejection of H0 when H0 is false). The KS test statistic
p-values were calculated in this manner for all anchors for all locations and device poses
and for both the static and dynamic files.

In Table 3, these instances of the KS test type II errors are grouped by location, and
the total number of type II errors between the locations for the anchors are given. Several
trends can be seen in these RSSI distributions as well as from the KS statistics:

1. Anchors closest to a location tended to have the highest RSSI: As mentioned in
Section 3.3, each zone had a nearby anchor. The trend of an elevated median RSSI
value at that zone for its nearest anchor is clearly depicted in Figure 8, where Anchor
2, Anchor 3, Anchor 4, and Anchor 5 have high median values for nearly every use
case for their corresponding closest positions.

2. RSSI variation due to device pose that resulted in distributions from different locations
seemed alike: This trend encapsulates the premise of the proposed framework. For
example, referring to column ZA_AE and row ZB_IH in Figure 9, the RSSI distribu-
tion for Anchor 1 in the static dataset while standing in the ZA zone and holding
device AtEar leads to the null hypothesis acceptance of the KS test, implying that it
is from the same RSSI distribution as the ZB zone while the device is held InHand
(i.e., a KS test type II error for the distribution conditioned on location). Thus, based
on the RSSI of Anchor 1 alone, it would be difficult to distinguish the ZA location
from the ZB location while the phone is in those device poses. This would reduce
the localization accuracy of any pattern recognition approach wherever Anchor 1’s
distribution emerges as an important feature for classifying the ZA and ZB locations.
Importantly, as Table 3 shows, the KS test has type II errors more often for RSSI
distributions grouped by different locations (which would affect localization accu-
racy) than for distributions grouped in the same location (which would not affect
localization accuracy).

3. Most KS test Type II errors involving ZB: From Table 3, looking at the zones with the
three highest numbers of KS test type II errors (bold and underlined in the right-most
column of the table), these are for ZB and ZD, and ZA and ZB. Therefore, given the
hypothesis of this study, it could be predicted that adding device pose information
likely results in the highest improved TN rates for zone ZB.
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Figure 8. RSSI-boxplots of the 6 anchors for each location and each device pose (static files).

Figure 9. Pairwise Kolmogorov–Smirnov statistic p-values for Anchor 1 (static file).
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Table 3. KS test type II errors per anchor grouped by location.

Static/Dynamic Zone Anchor 1 Anchor 2 Anchor 3 Anchor 4 Anchor 5 Anchor 6 Total

Static A and B 2 1 0 0 1 2 6
A and C 0 0 0 0 1 0 1
A and D 3 0 0 0 1 2 6
A and E 1 0 0 0 0 1 2
B and C 0 1 0 0 2 1 4
B and D 3 3 1 1 3 9 20
B and E 1 3 0 0 0 0 4
C and D 0 0 0 1 2 2 5
C and E 1 1 0 0 0 1 3
D and E 1 4 1 0 0 0 6
Same location 2 3 3 2 1 4 15

Total 14 16 5 4 11 22

Dynamic1 A and B 9 2 3 9 6 4 33
A and C 2 2 1 1 4 2 12
A and D 6 0 1 0 6 2 15
A and E 1 0 2 0 3 5 11
B and C 3 4 2 4 2 4 19
B and D 8 1 2 1 4 6 22
B and E 1 2 0 3 4 2 12
C and D 1 1 2 3 1 4 12
C and E 4 2 2 5 1 1 15
D and E 1 4 3 1 3 2 14
Same location 6 4 3 10 5 4 33

Total 42 22 21 37 39 36

Dynamic2 A and B 0 0 1 2 0 1 4
A and C 4 3 0 0 4 3 14
A and D 1 0 0 0 2 2 5
A and E 1 0 3 0 2 1 7
B and C 1 0 0 0 4 4 9
B and D 0 2 0 0 0 1 3
B and E 0 0 1 2 1 0 4
C and D 0 0 0 0 0 1 1
C and E 3 2 1 8 2 1 17
D and E 1 1 0 0 0 2 4
Same location 2 4 3 9 3 6 27

Total 13 12 9 21 17 22

4.2. Device Pose Neural Network

The details of the algorithmic study and the results for the antecedent device pose
neural network of the RSSI-and-device-pose neural network framework (Figure 4) that
utilizes the accelerometer measurements to detect device pose can be found in [24]. This
device pose identification network was sized with just five hidden neurons and achieved
good accuracy (>90%) for each device pose class. The network’s high accuracy is not
surprising, as datasets for much more complex activities and even for multiple individuals
are also commonly classified at >90% accuracy rates in the human activity detection
literature using accelerometers [18].

4.3. RSSI-Only vs. RSSI-and-Device-Pose Neural Network Cross-Entropy Results

In this subsection, the results and analysis for a sweep of the hyperparameters of
the RSSI-only and RSSI-and-device-pose neural networks are provided. Due to the low
dimensionality of the data (6 dimensions of anchors in the case of the RSSI-only localization
network and a maximum of 10 dimensions for the 6 anchors and 4 device poses in the
case of the RSSI-and-device-pose localization network), a single hidden layer was used
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for both the RSSI-only and the RSSI-and-device-pose neural network. The entire collected
dataset (57,489 vectors) was randomly split into 80% for training and 20% for validation.
Using the training-only and validation-only data, a sweep of the number of hidden neurons
(5 to 250 hidden neurons in 5 neuron increments) for both the RSSI-only and the RSSI-
and-device-pose networks was conducted for 1000 training epochs. Both neural networks
were presented with the same training and validation vector dataset and trained using
the standard backpropagation algorithm. In general, during training, the measurement
vectors from the training set Vtrain = {~v1, ~v2, . . . , ~vw}, whose ground truths were Ytrain,
were sequentially applied to the neural network whose weights were randomly initialized.
The pre-softmax output vector of the neural network ~O was then used to calculate the
average cross-entropy (LossCE_TR) of the classification (the LossCE_VAL can be calculated
with the same equation using the validation dataset instead):

LossCE_TR =

w
∑

s=1
Losss∣∣Vtrain

∣∣ = −

w
∑

s=1
~Ts

train · ln
(
~Os

)
∣∣Vtrain

∣∣ = −

w
∑

s=1

k
∑

j=1
Ttrain

j ln
(

P
(
Oj
))

∣∣Vtrain
∣∣ (2)

As the natural logarithm function has a range of (−∞, 0] over [0, 1], the higher the
probability for a given class P

(
Oj
)
, the lower the cross-entropy value. Generally, the

lower the average cross-entropy value, the better the model learned, though overfitting
may occur. When overfitting happens, the training loss function LossCE_TR continues to
decrease; however ,the validation loss function LossCE_VAL starts to increase as the neural
network overlearns the training vectors and loses generalization ability to correctly classify
the validation vectors. One way to recognize overfitting is to evaluate the disparity between
the training and validation performance (LossCE_TR − LossCE_VAL < 0).

The LossCE_TR and (LossCE_TR − LossCE_VAL) for both the RSSI-only and the RSSI-and-
device-pose neural networks are shown in Figures 10 and 11 (note, the LossCE_TR is plotted
for epochs >20 due to scale, and the LossCE_TR − LossCE_VAL is plotted as a five-sample
moving average to smoothen the discontinuities for the hidden neuron sweep). From
these training parametric runs, it was observed that the RSSI-and-device-pose localization
network always achieved a lower LossCE_TR at earlier epochs than the RSSI-only localization
network and with fewer neurons. In fact, the RSSI-and-device-pose localization network
achieved LossCE_TR values of 0.11 and 0.09 (black contours in Figure 11), which the RSSI-
only localization network was unable to reach within the range of hidden neurons and
epochs. This was despite the higher dimensionality of input data, implying that a better
localization model was learnt by the RSSI-and-device-pose localization network.

Additionally, as shown in Figures 10 and 11, the RSSI-and-device-pose network
reached an overfitting point at earlier training epochs than the RSSI-only network (and
with a lower LossCE_TR), implying that it reached an optimal training state at earlier epochs.
This also points toward a better localization model being learnt more quickly (in epochs)
by the RSSI-and-device-pose localization network, resulting from the addition of the device
pose information.
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Figure 10. RSSI-only neural network’s LossCE_TR (left) and 5-sample moving average LossCE_TR −
LossCE_VAL (right). Note: LossCE_TR is shown for epochs > 20 due to scale.

Figure 11. RSSI-and-device-pose neural network’s LossCE_TR (left) and 5-sample moving average
LossCE_TR − LossCE_VAL (right). Note: LossCE_TR is shown for epochs > 20 due to scale.

4.4. RSSI-Only vs. RSSI-and-Device-Pose Localization Results (NN)

Both the RSSI-only and RSSI-and-device-pose neural networks were equally sized
(125 neurons), and both were trained for the number of epochs where the RSSI-only network
achieved a cross-entropy loss goal of 0.15 (from Figure 10, this occurred at 136 epochs).
Both neural networks were trained and tested 100 times, with the entire collected dataset
(57,489 vectors) being randomly split into 70% training and 30% testing for each run. Both
neural networks were presented with the same training and testing vector dataset (with
device-pose information appended for the RSSI-and-device-pose neural network vectors
from the device-pose identification neural network, refer to Figure 4), during each of the
100 runs. The total accuracy for both networks was taken over these 100 randomized runs
and is given in Figure 12. In Figure 13, the percentage point improvement in true-negative
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(TN) rates is depicted as an empirical cumulative density function (ECDF) over all the
runs. For each zone class, the TN improvement was obtained by subtracting the rate of the
RSSI-only neural network from the rate of the RSSI-and-device-pose neural network (i.e.,
TNRSSI−and−device−pose − TNRSSI−Only).

Figure 12. Normalized accuracy histogram for the RSSI-only and RSSI-and-device-pose
neural networks.

Figure 13. Percentage-point improvement in TN rate between RSSI-and-device-pose neural network
and RSSI-only neural networks for each zone.

From Figure 12 (also summarized in Table 4), the overall accuracy of the RSSI-only
neural network was quite high (min–max range: 70.5–72.3%), but when device pose data
was added, a consistent accuracy increase of between 8.8 and 11.8 percentage points was
achieved (average improvement: 10.72 percentage points). The spread of the normalized
histogram is also slightly narrower, implying better precision. Interestingly, the TN rate
improvement (Figure 13) shows that the ZB zone had the largest percentage point improve-
ments. This matches the expectations from the KS test results in Section 4.1 where the ZB
zone had the highest number of type II errors.

Table 4. Accuracy and processing time for 3 different supervised learning algorithm implementations
of the proposed framework.

Framework Algorithm Accuracy (%) Average
[Min,Max]

Training Time (s)
Average [Min,Max]

Testing Time (s)
Average [Min,Max]

RSSI-Only KNN 74.3 [73.8, 74.9] 0.043 [0.038, 0.260] 0.745 [0.657, 0.888]
NB 66.2 [65.5, 66.7] 0.024 [0.019, 0.301] 0.014 [0.011, 0.046]
NN 71.01 [70.5, 72.3] 520.75 [509.82, 532.25] 2.179 [2.052, 2.736]

RSSI-and-device-pose KNN 76.6 [76.2, 77.1] 0.078 [0.071, 0.164] 1.360 [1.080, 1.702]
NB 68.7 [67.9, 69.3] 0.126 [0.110, 0.395] 0.022 [0.021, 0.023]
NN 81.73 [81.1, 82.3] 544.71 [539.56, 557.30] 2.945 [2.74, 4.69]

4.5. KNN, NB and NN Localization Results for Proposed Framework

To demonstrate the robustness of the framework, it was also implemented on the
K-nearest neighbor (KNN) and Naïve Bayes (NB) supervised learning algorithms and
trained and tested for 100 randomized runs. The hyperparameters of the algorithms were
optimized using MATLAB’s hyperparameter optimizer for KNN and NB. The results of
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the RSSI-only and RSSI-and-device-pose accuracy percentages are shown in Table 4, which
also summarizes the neural network (NN) results given earlier. The results in Table 4
indicate that the RSSI-and-device-pose framework produced a consistent accuracy increase
regardless of the algorithm implemented. The accuracy increase produced by the RSSI-and-
device-pose framework was lower when implemented with KNN and NB. The lower rates
of improvement for KNN and NB could be due to the following reasons:

• KNN relies on the Euclidean distance, so its performance typically degrades in higher-
dimensional spaces (i.e., the curse of dimensionality). As depicted in Figure 4, when
the device pose was added to the RSSI vector, the input vector increased in dimension-
ality. Thus, for KNN, the RSSI-and-device-pose performance could be expected to be
lower than that of RSSI-only. However, we found that the performance was slightly
higher, indicating that useful information for a better model existed in the combined
RSSI-and-device-pose input vectors.

• The naïve assumption of the NB algorithm presumes that the components of the
input vector are independent. However, this is almost certainly untrue because any
movement (e.g., in the dynamic files) affects the correlation between the anchor RSSI
readings; and, importantly, the device pose affects the RSSI. It is possible that because
the naïve assumption does not hold for the additional features in the RSSI-and-device-
pose vector, the accuracy improvement is low.

The processing time for the 100 randomized runs for both the training and testing
stages of the algorithms was measured using MATLAB’s internal timing functions and
the results are given in Table 4. The results demonstrate an increased computational cost
associated with the RSSI-and-device-pose framework but to various degrees for the different
algorithms. The KNN implementation for the RSSI-and-device-pose framework required,
on average, around double the computational time for training and testing compared with
the RSSI-only framework; NB required, on average, five times longer to train but was
nearly the same time during the testing phase. For both frameworks, the KNN testing time
was longer than the training time, a theoretical peculiarity of KNN [25]. As expected, the
neural network implementation required the longest to train due to the backpropagation
algorithm, which was iterated over the training epochs, but the average increase for the
RSSI-and-device-pose framework was only 4.6%. The average difference in inference time
for the testing dataset between the NN framework implementations was less than 1 s.

5. Discussion

In smartphone-based localization systems, RSSI can vary due to the device pose of
the smartphone. In this study, a novel data level framework was developed and explored
using cascaded neural networks to detect the device pose via accelerometer measurements,
which we then combined with the RSSI vector, resulting in consistent improvements in
localization accuracy, with an average increase of 10.7%.

The experimental study, results, and analysis of this paper support the proposed
framework in four ways:

1. The KS test statistics indicate that the device pose could contribute toward the RSSI
distributions for the anchors having higher type II errors between zones (and hence a
lower true negative rate for a class). This allowed for the prediction of zone ZB to be
the zone that would result in the greatest TN rate improvement after the addition of
device-pose information, which was the case in the neural network implementation
of the framework.

2. The results of the hyperparameter sweep of the neural networks indicates that RSSI-
and-device-pose achieved a lower LossCE_TR with fewer neurons and with less epochs,
indicating that a better model was learned when the RSSI vector was augmented with
device-pose information

3. The results of the 100 randomized runs of the RSSI-only and RSSI-and-device-pose
neural networks indicate that the RSSI-and-device-pose consistently had higher clas-
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sification accuracy. It should be noted that both these neural networks were equally
sized and trained for the same number of epochs with the same training and testing
vector dataset (with device-pose information added for the RSSI-and-device-pose
neural network).

4. With the framework implemented using other classification algorithms such as kNN
and naïve Bayes, a consistent increase in accuracy was also seen but at lower rates.

Crucially, in all the experimental runs in this study, the proposed framework not only had a
higher average localization accuracy: it always had a higher localization accuracy than any other
RSSI-only localization run (as shown by the entire accuracy histograms shifting to the right
in Figure 12 and the min–max range in Table 4). These results indicate that combining the
RSSI with the device pose is likely to provide consistent increases in localization accuracy
for fingerprinting systems.

The significance of this accuracy improvement should also be considered in the context
of the entire system:

1. As mentioned in Section 4.2, the device-pose identification neural network is very
small (five neurons). In the cascaded neural network runs on the collected dataset,
the average difference in training time was 4.6% between the frameworks, and the
average difference in inference time was less than 1 s. Thus, the accuracy improvement
achieved came at a very low computational cost and memory overhead given the
right selection of algorithm.

2. In fingerprinting localization systems, RSSI-based zone classification is not carried out
on the smartphone, as it does not hold the RSSI fingerprint database, but rather on
a central system that holds the fingerprint database. If a method such as pedestrian
dead reckoning (PDR) is to be used for improving the zoning accuracy, this means
that either accelerometer or PDR (heading and velocity) measurements must be
communicated to the central system, or the central system must communicate the
zone classification to the smartphone for it to combine with the PDR data. In either
case, some sort of PDR location/zoning information must be conveyed over a wireless
channel that may be intercepted by a malicious actor, posing a significant privacy
risk. However, for the proposed framework, it is possible to conduct device-pose
identification on the smartphone using a small neural network that has been calibrated
for the individual and to send only a standardized device-pose class to the central
system. In this case, no zoning or PDR location data are communicated, avoiding the
risk of being intercepted.

In conclusion, the proposed framework provides consistent accuracy improvement
across the board; it also comes at a low computational and memory cost and has low overall
privacy risk. The accuracy improvement vs. timing performance trade-off illustrated by
the results in Table 4 shows that studying the optimization of classification algorithms for
the implementation of the framework (which, as mentioned in Section 1.2, was beyond
scope of this study) is a good direction for further research. Developing the framework on
a system with wireless communication protocols that enables more expansive deployment
of anchors (e.g., in a multistorey building) is also an avenue for future work.
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