
Citation: Aoyagi, S.; Horie, Y.; Thi

Thu Hien, D.; Duc Ngo, T.; Le, D.-D.;

Nguyen, K.; Sekiya, H. An Accurate

Platform for Investigating TCP

Performance in Wi-Fi Networks.

Future Internet 2023, 15, 246.

https://doi.org/10.3390/fi15070246

Academic Editor: Gianluigi Ferrari

Received: 27 June 2023

Revised: 13 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

An Accurate Platform for Investigating TCP Performance in
Wi-Fi Networks
Shunji Aoyagi 1, Yuki Horie 1, Do Thi Thu Hien 2 , Thanh Duc Ngo 2, Duy-Dinh Le 2, Kien Nguyen 1,3,*
and Hiroo Sekiya 1

1 Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan;
s.aoyagi@chiba-u.jp (S.A.); yuuki-ho@chiba-u.jp (Y.H.); sekiya@faculty.chiba-u.jp (H.S.)

2 University of Information Technology, Vietnam National University-Ho Chi Minh City (VNU-HCM),
Ho Chi Minh City 700000, Vietnam; hiendtt@uit.edu.vn (D.T.T.H.); thanhnd@uit.edu.vn (T.D.N.);
duyld@uit.edu.vn (D.-D.L.)

3 Institute for Advanced Academic Research, Chiba University, Chiba 263-8522, Japan
* Correspondence: nguyen@chiba-u.jp

Abstract: An increasing number of devices are connecting to the Internet via Wi-Fi networks, ranging
from mobile phones to Internet of Things (IoT) devices. Moreover, Wi-Fi technology has undergone
gradual development, with various standards and implementations. In a Wi-Fi network, a Wi-Fi
client typically uses the Transmission Control Protocol (TCP) for its applications. Hence, it is essential
to understand and quantify the TCP performance in such an environment. This work presents an
emulator-based approach for investigating the TCP performance in Wi-Fi networks in a time- and
cost-efficient manner. We introduce a new platform, which leverages the Mininet-WiFi emulator to
construct various Wi-Fi networks for investigation while considering actual TCP implementations.
The platform uniquely includes tools and scripts to assess TCP performance in the Wi-Fi networks
quickly. First, to confirm the accuracy of our platform, we compare the emulated results to the results
in a real Wi-Fi network, where the bufferbloat problem may occur. The two results are not only similar
but also usable for finding the bufferbloat condition under different methods of TCP congestion
control. Second, we conduct a similar evaluation in scenarios with the Wi-Fi link as a bottleneck and
those with varying signal strengths. Third, we use the platform to compare the fairness performance
of TCP congestion control algorithms in a Wi-Fi network with multiple clients. The results show the
efficiency and convenience of our platform in recognizing TCP behaviors.

Keywords: Wi-Fi; emulator; TCP; congestion control; evaluation

1. Introduction

In recent years, Wi-Fi networks have been increasing in popularity [1]. On the one
hand, an increasing number of devices are using Wi-Fi to connect to the Internet. Everyday
devices, such as mobile phones and laptops, as well as Internet of Things (IoT) devices,
such as smartwatches and Raspberry Pi devices [2], have always been used with Wi-Fi
implementations. On the other hand, ongoing research and development on Wi-Fi/IEEE
802.11 technology has led to the emergence of new Wi-Fi standards every few years, ranging
from IEEE 802.11a/b/c/g/n to ad (WiGig), ax (Wi-Fi6), etc. Once a Wi-Fi standard has
arrived, it offers improved performance compared to its predecessors, especially in terms of
throughput. However, Wi-Fi technology focuses on the physical and medium access control
(MAC) layers; hence, the performance gains are within the scope of an access point–client
link. Consequently, Wi-Fi standards cannot completely reflect application behavior as
doing so would require an end-to-end perspective, typically from a client to a server.

Many applications use the Transmission Control Protocol (TCP), an essential protocol
in the TCP/Internet Protocol (IP) suite, for reliable end-to-end transmission in the transport
layer in Wi-Fi networks. TCP relies on congestion control algorithms (CCAs) to adapt

Future Internet 2023, 15, 246. https://doi.org/10.3390/fi15070246 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15070246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-9387-7909
https://orcid.org/0000-0003-0400-3084
https://orcid.org/0000-0003-3557-1463
https://doi.org/10.3390/fi15070246
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15070246?type=check_update&version=1


Future Internet 2023, 15, 246 2 of 19

to changes in the network. Since there are many TCP CCAs available, it is necessary
to understand and quantify their performance. Moreover, TCP has been found to incur
several performance degradation problems in Wi-Fi networks, such as bufferbloat (i.e., an
unexpectedly long delay when a buffer is fully occupied). A quick assessment of this
issue can help support Wi-Fi deployment. In addition, when a Wi-Fi network has multiple
clients, it is important to account for fairness among the clients’ flows since all of them
share the bandwidth of the backhaul link. These factors lead to a demand for a time- and
cost-effective platform to investigate the TCP performance in Wi-Fi networks.

The existing works that have addressed the problem of building an experimental plat-
form for TCP evaluation in Wi-Fi networks can be classified into two categories: methods
using real devices and methods relying on a simulator. Although the former can provide
realistic and reliable results based on real hardware, they also have several disadvantages.
Such a method may require many resources (e.g., network devices, access points, etc.) as
well as considerable human effort for configuration and experimental operation. Note that
human involvement increases the chance of unexpected errors. In contrast, a simulation
does not require hardware resources, which significantly reduces the setup time. However,
simulations cannot adequately consider the various characteristics of actual implementa-
tion, thus considerably impacting the reliability of the results. Moreover, most real TCP
implementations are slightly different from those proposed in the literature, which are
typically implemented in simulators. Hence, it is necessary to devise a better approach
that can provide results as reliable as those of a physical experiment while offering the
convenience of a simulation.

This paper presents an emulator-based approach for investigating TCP performance in
Wi-Fi networks, aiming to inherit the advantages of both simulations and real networks. The
paper’s earlier version is published in [3], which shows only the evaluations of CCAs with
IEEE 802.11g Wi-Fi networks. The contributions of this study are summarized as follows.

• We newly introduce a platform that leverages the emulator Mininet-WiFi for rapidly
emulating Wi-Fi networks (e.g., with different IEEE 802.11 standards, etc.) while
guaranteeing TCP accuracy by using the actual implementations of TCP CCAs on
Linux kernels. We have incorporated performance measurement functionalities and
tools to automate the testing processes in our platform.

• We compare our platform’s performance for 14 TCP CCAs to the corresponding
performance results in a real Wi-Fi network with similar settings. The evaluation
results show a good match between the two types of results. Moreover, the platform
guides us in identifying the algorithms that cause bufferbloat.

• We conduct CCA evaluations with different Wi-Fi settings: the Wi-Fi link as a bottle-
neck with two Wi-Fi standards (i.e., 802.11 n, g) and varying signal strengths. More-
over, we evaluate the CCAs in a Wi-Fi network with ten Wi-Fi clients and measure
Jain’s fairness index. The results show that the Bottleneck Bandwidth and Round-trip
propagation time (BBR) algorithm achieves the best RTT and throughput in an en-
vironment where bufferbloat occurs. However, TCP Reno achieves the best fairness
performance in a Wi-Fi network with constantly changing flows.

The remainder of the paper is organized as follows. Section 2 summarizes related works.
In Section 3, we present our emulation approach and the investigated TCP CCAs. Section 4
describes the evaluation scenarios and results. Finally, we conclude the paper in Section 5.

2. Related Works

Due to the popularity of TCP, there has been much interest in evaluating TCP CCAs
in different network environments. In [4], the authors considered four common CCAs
(i.e., CUBIC, New Reno, BBR, and Data Center TCP (DCTCP)) on two cloud computing
platforms (i.e., Amazon’s AWS and Google’s GCP). They then conducted experiments and
found an appropriate CCA for each application. In [5], T. Lukaseder et al. evaluated six
loss-based CCAs in a physical 10 Gbps network emulating a wide area network. They found
that the Binary Increase Congestion Control (BIC) and CUBIC CCAs are more suitable in



Future Internet 2023, 15, 246 3 of 19

high-speed environments. A significant amount of work has also been performed focusing on
TCP CCA performance in wireless networks. The work in [6] evaluated Tahoe, Reno, selective
acknowledgment (SACK), and Vegas in Long-Term Evolution (LTE) networks to find the best
algorithm. In [7,8], the authors discussed the design and evaluation of TCP in fifth-generation
(5G) networks considering millimeter-wave wireless technology and 5G key performance
indicator (KPI) requirements. In [9], the authors compared three CCAs in various scenarios
on the ns-2 simulator and identified the most appropriate algorithm for each scenario. They
found that Westwood+ markedly improves the performance of wireless links affected by
losses. The present work focuses on TCP CCAs that are currently becoming more popular
for use in Wi-Fi networks. In [10], the authors proposed a proximal policy optimization-
based intelligent TCP congestion management method and showed that it reduces the delay
compared to CUBIC on an emulator. However, the emulated network is an Ethernet network.

There have been many investigations in the literature of TCP congestion control perfor-
mance in Wi-Fi networks operating under different IEEE 802.11 standards. In [11], a Wi-Fi
network with IEEE 802.11e was analyzed on a testbed with TCP traffic flows. In [12], a
Wi-Fi network with IEEE 802.11n was considered for a constructed scenario of accessing the
Internet. The authors experimented with six CCAs. After measuring the RTT and throughput
for file transfers, they concluded that Yet Another High-speed TCP (YeAH) was the best
CCA. In [13], a Wi-Fi network with IEEE 802.11n and IEEE 802.11ac was built to evaluate and
compare 13 TCP CCAs. The authors found that IEEE 802.11ac outperformed IEEE 802.11n.
In addition, BIC and CUBIC were better than the other CCAs in a single-hop scenario but
comparable in a multihop one. The work in [14] also evaluated CUBIC and BBR in a real
Wi-Fi network with 802.11n and 802.11ac. The authors then proposed an improved variant of
BBR, named BBR+, in which the pacing function of BBR is better controlled. The work in [15]
evaluated the performance of TCP CCAs on an IEEE 802.11ad link and revealed the excellent
performance of BBR under multi-gigabit conditions. In [16,17], there are efforts to evaluate
TCP performance with IEEE 802.11ax; however, they have just considered the default TCP
CUBIC or TCP Reno. There has not been an extensive evaluation of TCP CCAs in the IEEE
802.11ax network. In [18], they built a real 60 GHz mmWave network testbed and measured
and analyzed the performance of TCP CCAs. They concluded that for Westwood, CUBIC,
and NewReno, there were problems with the accuracy of channel bandwidth estimation,
and for BBR, there were fairness problems. In [3], the authors evaluated 14 TCP CCAs in an
emulated Wi-Fi network and compared RTT and throughput, showing that BBR performs
best. Since there is no clear winner in all scenarios, the ability to evaluate CCAs to assess
their capabilities in Wi-Fi networks with varying settings is necessary.

Another TCP issue in Wi-Fi that attracts many researchers is bufferbloat. Accordingly,
there are several solutions to the issue. In [19], the authors considered the so-called Active
Queue Management (AQM), which schedules the packets at a queued link following a
predetermined algorithm. To observe the bufferbloat, they emulated the Wi-Fi network’s
settings and evaluated seven Active Queue Management (AQM) with single TCP and multiple
TCP flows. However, the authors still used several machines to emulate the Wi-Fi network.
Hence, it is nontrivial when we change Wi-Fi settings for new experiments. The work in [20]
showed that MAC layer frame aggregation reduces delay and improves throughput in a Wi-Fi
network. Another solution is using an algorithm called TCP Small Queues (TSQ) and TCP
pacing [21]. Those mentioned works have been conducted on real Wi-Fi networks. Therefore,
they incur a similar issue of changing the Wi-Fi setting mentioned above.

In general, there are three classes of methods for CCA performance evaluation: using
a simulator, setting up a real network, or using an emulator. Simulators have been widely
used to characterize the behaviors of TCP CCAs following theoretical models [22]. For ex-
ample, for CUBIC alone, there are several proposed models relying on different theories to
evaluate its performance [23–25]. Real Wi-Fi networks have also shown their effectiveness
in understanding the performance of TCP CCAs, as in [11–13,15,20,21]. In [26], the authors
discussed the advantages and disadvantages of real networks and simulators. The former
are more reliable, but they have the problems of high cost and low maintainability and flex-



Future Internet 2023, 15, 246 4 of 19

ibility. The latter are less costly, more maintainable, and flexible. However, a simulator does
not involve actual communication but instead relies on formal mathematical models. The
authors then introduced the network emulator Mininet-WiFi to balance the advantages of
simulations and real networks [27]. Emulators typically simplify complex experimental se-
tups while maintaining reliable accuracy. A detailed comparison of Mininet-WiFi with other
emulators, simulators, and testbeds is presented in [26]. Many diverse experiments have
been conducted to illustrate the effectiveness of Mininet-WiFi. Mininet-WiFi has been used
in previous works because it simultaneously provides convenience and accuracy [28,29].
However, this emulator has not been used to thoroughly consider the performance of TCP
CCAs, especially in Wi-Fi networks. In [30], the authors used the simulator ns-3 and its
Direct Code Execution (DCE) module to emulate heterogeneous environments. They then
compared CUBIC, New Reno, and BBR with a focus on fairness. They showed that BBR
might not be the best choice for the public Internet with heterogeneous settings. In [31],
the authors used the emulator Mininet to evaluate and compare the performance of two
BBR versions; however, this evaluation was performed considering wired networks. The
authors could also find the limitations of the better version by using the emulator.

In the present research, we also take an emulator-based approach to conduct a compre-
hensive investigation of CCAs in a Wi-Fi environment. We aim to provide a platform and
tools for evaluating CCAs. An earlier version of this work has appeared in [3], where we
investigated only the CCA performance in the emulator. This work extends the previous
platform by adding a new evaluation scenario with a fairness index. Moreover, we compare
the emulated CCA performance to that in a real network. We summarize and compare
closely related works in Table 1. The table clearly shows the merits of our work compared
to the others. Within the platform proposed in this study, we can change the Wi-Fi standard
and topology with a few modifications in the script, reducing the time required for the
experiment. The platform can support the measurement of more metrics than the previous
studies (three vs. one or two metrics). Although the emulated devices are not entirely
similar to actual devices, the proposed platform (considering the devices and CCAs) can
provide a sufficient level of accuracy comparing the actual network’s experiment. The
platform can well capture the behaviors of Wi-Fi networks and CCAs.

Table 1. Comparison of previous CCA evaluation and ours (*: Ethernet).

Previous
Work

Number
of CCAs Wi-Fi Standard Environment Accuracy Evaluation Time Metrics

[12] 6 802.11n (fix) Real devices High Long Throughput
RTT

[15] 3 802.11n (fix) Real devices High Long Throughput RTT

[13] 13 802.11n
802.11ac (fix) Real devices High Long Throughput

[18] 4 802.11ad
(fix) Real devices High Long Throughput

[10] 2 * Emulator Sufficient Short Throughput RTT

[3] 14 802.11g
(flexible) Emulator Sufficient Short Throughput

RTT

This work 14
802.11n
802.11g

802.11ax (flexible)
Emulator Sufficient Short Throughput RTT

Fairness

3. Emulator-Based Approach for Investigating TCP Performance in a Wi-Fi Network

This section first introduces the emulated environment for TCP evaluation in Wi-Fi
networks and then presents the CCAs considered in our work.



Future Internet 2023, 15, 246 5 of 19

3.1. Emulator Environment

We wish to combine the merits of a simulator for establishing Wi-Fi networks and the
actual implementation of TCP CCAs. We hence select the emulator approach. Our emulator
environment leverages the Mininet-WiFi simulator [32], which is a fork of the emulator
Mininet, initially invented for research on software-defined networking. Mininet-WiFi
extends Mininet by adding virtualized Wi-Fi stations and access points. Compared to other
tools such as dummynet or other somewhat real networks, it simplifies network configura-
tion and reduces network construction time. Mininet-WiFi is not only cost effective but also
has been proven to reproduce networks with higher overall fidelity than simulations [26].
Because it is natively built on Linux, the emulator environment can use standard Linux
utilities. Another essential utility for emulating and controlling the parameters of a wireless
channel is Traffic Control (Tc), which can configure the Linux kernel’s packet scheduler to
control the packet rate, delay, latency, and loss. Tc applies these attributes to the virtual
interfaces of the STAs and APs, allowing Mininet-WiFi to faithfully represent the actual
packet behavior observed in the real world.

We use Mininet-WiFi’s APIs to quickly build Wi-Fi networks with different designated
IEEE 802.11 versions and numbers of devices in our emulator environment. Since Mininet-
WiFi does not provide essential functions such as changing CCAs or measuring networking
performance, we have created automatically executed scripts that add these functions. The
environment is programmed to cooperate well with a Linux host’s CCA. It configures or
changes CCAs from the kernel based on the sysctl utility wrapped in a Python script. The
entire process from topology creation to communication performance measurement can be
automated. Once a few parameters have been set (the time to measure, the chosen CCA,
etc.), RTT, throughput, and fairness can be measured automatically. Detailed descriptions
of the performance metrics used in this work are as follows.

• Round-trip time (RTT): The RTT represents the time that a sent packet needs to wait for
a response from the destination. In this work, RTT values are collected from a pair of
Internet Control Message Protocol (ICMP) packets generated by ping.

• Throughput: The TCP throughput is the rate of transferred traffic per time unit. In our
environment, we consider the throughput values reported by iperf [33].

• Fairness index: We use Jain’s fairness index J , which is defined as follows:

J (x1, x2, . . . , xn) =
(∑n

i=1 xi)
2

n ∑n
i=1 x2

i
, (1)

where xi denotes the throughput for the ith connection. The value ranges from 1
n

(worst case) to 1 (best case).

In addition, the scripts that we have created can be flexibly configured, for example,
to replace iperf with iperf3 or to add a new active queue management mechanism in a
specified device.

We summarize the execution process of CCA evaluation within our platform in
Figure 1. A user can select the evaluated CCAs from the host system. After that, the
user can create a Wi-Fi network with the designated networking parameters. Depending
on the network and evaluation scenario, the expected results will vary. The single flow
evaluation will output throughput and RTT for each CCA. In addition to those outputs,
the fairness index is also produced with the multiple flows evaluations. All the steps
are wrapped in scripts for automation. We can stop at a specific step for confirmation or
debugging. For example, Figure 2a shows a screenshot with the selection of CCA named
reno and the creation of a Wi-Fi network. We can check the propagation model, wireless
nodes’ configuration, and links between different network components. In Figure 2b, the
screenshot shows the method to confirm the link connection in the Wi-Fi network with
Mininet-WiFi. The scripts keep running until the end of each experiment when the con-
nections are all correct. The results can be processed to make graphs for quick assessment.
Table 2 lists the tools and scripts which are used to measure and report the results.



Future Internet 2023, 15, 246 6 of 19

Start

Single TCP flow or

multiple flows?

End

Selecting CCAs

- Creating a Wi-Fi network

- Setting network parameters

Results:
- Throughput

- RTT

Results:
- Throughput

- RTT
- Fairness index

Single

flow

Multiple

flows

Plotting the results?

Making graphs

YesNo

Figure 1. Execution process flow.

(a) Creating topology

(b) Confirming network connections

Figure 2. Screenshots of a script execution and a confirming method.



Future Internet 2023, 15, 246 7 of 19

Table 2. Utility list.

Tool/Script Function

ping Measuring RTT values

iperf Measuring throughput values

Cal_fairness script Calculating fairness index

Setting_script Setting CCAs and network parameters

Experiment_script Creating Wi-Fi networks and running iperf, ping

Other utilities Making figures, monitoring other parameters, etc.

3.2. Congestion Control Algorithms

A TCP sender uses a CCA to detect congestion and control the rate at which packets
are sent in a network. The sending rate is adjusted following the congestion control window
(i.e., cwnd). If there are overprovisioned packets, cwnd is reduced to suppress the traffic.
TCP can reduce the number of lost packets and effectively utilize the available bandwidth.
TCP CCAs can be roughly classified into three types: loss-based, delay-based, and hybrid
algorithms. Algorithms of the first type, which detect congestion based on packet loss,
reduce cwnd when packet loss occurs. Delay-based algorithms recognize congestion
occurrence based on a delay-related parameter (i.e., the RTT). Hybrid algorithms identify
congestion using both RTT and packet loss. Since the adjustment of cwnd differs for
different CCAs, the algorithm with the best performance may change if the network
changes. This work investigates 14 algorithms, including six loss-based CCAs, three
delay-based CCAs, and five hybrid CCAs.

3.2.1. Loss-Based Algorithms

Binary Increase Congestion Control (BIC) [34] uses additive increase and binary search to
increase the congestion window size.

CUBIC [35] is an improved version of BIC. CUBIC is now the default CCA on Linux
kernels.

Hamilton-TCP(H-TCP) [36] was designed for high-speed, high-latency networks. It
changes the rate of increase of the congestion window during a period after congestion
occurs.

Highspeed [37] adjusts the congestion window size following predefined low and high
speeds.

Hybla [38], a modified version of Reno, was developed for heterogeneous environ-
ments.

Reno [39] operates following the Additive Increase Multiplicative Decrease (AIMD)
algorithm.

Scalable [40] is characterized by the fact that recovery from congestion is independent
of the size of the congestion window.

3.2.2. Delay-Based Algorithms

Bottleneck Bandwidth and Round-trip propagation time (BBR) [41] is not a purely delay-
based algorithm. However, we still classify BRR in this category. BBR adjusts the congestion
window following two indicators: the bottleneck bandwidth (BtlBw) and the round-trip
propagation time (RTprop).

New Vegas (NV) [42] was designed to improve the performance of Vegas as the
RTT increases.

Vegas [43] detects congestion following an increase in RTT. It relies on accurate calcula-
tion of the base RTT value.



Future Internet 2023, 15, 246 8 of 19

3.2.3. Hybrid Algorithms

Centre for Advanced Internet Architectures (CAIA) Delay-Gradient (CDG) [44] uses the
delay gradient calculated from the minimum and maximum RTTs as a congestion signal.
CDG switches to loss-based operation when it detects that its delay-based mode has no
measurable effect.

Illinois [45] determines whether to increase or decrease the congestion window follow-
ing a loss-based method. Moreover, it uses a queuing delay to adjust the size change rate.

Westwood [46] depends on an estimate of the end-to-end bandwidth to control the
transmission rate following returning acknowledgment packets (ACKs).

Yet Another High-speed TCP (YeAH) [47] is characterized by two operation modes (slow
and fast). YeAH relies on an estimate of the bottleneck queue size.

4. Evaluation
4.1. Environmental Settings

The first evaluation aims to demonstrate the effectiveness of the emulator approach by
comparing the emulated TCP performance results with those from an actual Wi-Fi network.
We have evaluated two scenarios: one Wi-Fi client and two Wi-Fi clients. In the former
scenario, a Wi-Fi client communicates with an application server via an AP and its backhaul
link in both networks. In the actual network, we use a laptop running Ubuntu with Linux
kernel 4.19.97 as the Wi-Fi client. Moreover, we use two Raspberry Pi 4 devices as a server
and an AP. The two Raspberry Pi devices run the Raspbian Buster OS (Debian version 10).
Additionally, we use hostapd (version v2.8-devel) to implement the Wi-Fi AP, operating
with IEEE 802.11g. The Raspberry Pi’s Wi-Fi module is BCM4345/6 with the brcmfmac
7.45.154 driver. To set the bandwidth and delay values of the backhaul link, we use tc and
netem, respectively. However, we do not use netem to measure the RTT between the client
and server; instead, we use ping. The results show that the average RTT value in the actual
network is 1.3 ms.

In the emulator environment, we use the same kernel as the Wi-Fi client’s machine
on the host computer. In Mininet-WiFi, we have created five nodes, which are the Wi-Fi
client, an AP, two switches, and a server, as shown in Figure 3. The first hop from the client
is a Wi-Fi access point using IEEE 802.11g. Then, there are two additional switches (S1 and
S2), which are Open vSwitches (OVSs), to emulate the backhaul link. An OVS controller
is used in the emulator to find routes between devices. However, this occurs only once
at the beginning of each experiment and does not affect the network. It is hence omitted.
In the comparative environment, we set the bandwidth of the backhaul link to 10 Mbps
and the delay to 0.65 ms (to match the value in the actual network). The wired links other
than the backhaul have a bandwidth of 1000 Mbps in the emulator environment. Moreover,
we investigate queue sizes of 20 and 100 packets (i.e., S1’s queue in the emulator and the
AP’s output queue in the actual network). This queue size setting is based on [48]. In
the latter scenario, we have added one more Wi-Fi client to the topology in Figure 3. We
have added a similar laptop, one Mininet-WiFi’s Wi-Fi client, for the actual and emulated
environment, respectively.

Figure 3. Wi-Fi network topology.



Future Internet 2023, 15, 246 9 of 19

In the second evaluation, we investigate CCAs with different Wi-Fi network settings,
including the Wi-Fi link as the bottleneck and different signal strengths. The third evalua-
tion considers and compares the fairness of multiple TCP flows with each CCA in Wi-Fi
networks. The network configuration parameters used in each performance evaluation are
summarized in Table 3.

Table 3. Network settings in each evaluation.

Section Wi-Fi S1–S2 Link Bandwidth Queue Size

Section 4.2 g 10 Mbps {20, 100} packets

Section 4.3 g , n , ax 1000 Mbps 100 packets

Section 4.4 g {10, 100} Mbps 100 packets

4.2. Comparison to the Actual Network and CCAs

Figures 4 and 5 show the throughput and RTT results in the actual Wi-Fi network
and the Mininet-WiFi emulator in the one-client scenario. In these figures, we present
bar plots of the average values, with each CCA on the x-axis. Moreover, the error bars
show the maximum and minimum on the y-axis. First, we compare the throughputs in
Figure 4a,b, which show the values in the emulated and actual networks, respectively. The
throughput values of all 14 CCAs in the two networks are similar with the two queue size
settings. This means that the 10 Mbps bottleneck bandwidth is fully occupied in all cases.
Second, we compare the RTT values in the two networks, as shown in Figure 5a,b. In the
case of the 20-packet queue, most of the RTT values with the same CCA are comparable.
However, in the 100-packet queue case, there are several exceeded values. To compare the
values collected in the two environments, we use a qualitative metric that is the ratio of
the emulated value and the actual one. We have calculated the ratio values for average
throughput (Tx) and RTT with two queue sizes and shown them in Table 4. Regarding
the throughput, most of the Tx ratio values are close to 1. Moreover, a similar observation
can be seen with the RTT ratios, with few exceptions, due to the bufferbloat, as presented
below. In the two-client scenario, we kept all the simulation settings similar to the previous
scenario. Moreover, we let the two clients simultaneously start our scripts at the same time.
It is trivial to keep the simultaneity in the emulated environment. However, we may not
have the same level of perfectness in the actual network due to the possibility of human
operation. The comparative results for throughput and RTT are shown in Figures 6 and 7,
respectively. Regarding the throughput comparison, we calculate the total throughput
achieved by two clients in the different CCAs and conditions of queue sizes. Figure 6a
shows that in the emulated environment, similar to the one-client scenario, the two clients
can occupy all the bandwidth limited by the bottleneck link. Moreover, all CCAs achieve
similar and stable values of total throughput. On the other hand, Figure 6b shows a slight
difference between the reported throughput values. That may cause by uncontrolled factors
in the actual environment, such as neighboring interference or human errors. However,
we can see that the throughput performance values in the two networks are comparable.
Regarding the RTT values, we use the cumulative distribution function (CDF) of the ratio
between the emulator’s RTT and the actual one, as in Figure 7. Each ratio value is calculated
between two experiments with the same settings in two environments. Although RTT
varies and sometimes reaches unexpected values (i.e., in the bufferbloat condition), we
still see that a large portion of the ratio values is close to one in both queue conditions.
Therefore, we can conclude that, overall, the emulator’s results are close to those in the
actual network.



Future Internet 2023, 15, 246 10 of 19

 0

 3

 6

 9

 12

 15

reno
bic cubic

highspeed

htcp
hybla

scalable

vegas
nv bbr

cdg
illinois

westwood

yeah

Th
ro

ug
hp

ut
 (M

bp
s) Queue size = 20 packet

Queue size = 100 packet

(a) Emulated Wi-Fi

 0

 3

 6

 9

 12

 15

reno
bic cubic

highspeed

htcp
hybla

scalable

vegas
nv bbr

cdg
illinois

westwood

yeah

Th
ro

ug
hp

ut
 (M

bp
s) Queue size = 20 packet

Queue size = 100 packet

(b) Actual Wi-Fi

Figure 4. Throughput comparison.

 0

 30

 60

 90

 120

 150

 180

reno
bic cubic

highspeed

htcp
hybla

scalable

vegas
nv bbr

cdg
illinois

westwood

yeah

R
TT

 (m
s)

Queue size = 20 packet
Queue size = 100 packet

(a) Emulated Wi-Fi

 0

 30

 60

 90

 120

 150

 180

reno
bic cubic

highspeed

htcp
hybla

scalable

vegas
nv bbr

cdg
illinois

westwood

yeah

R
TT

 (m
s)

Queue size = 20 packet
Queue size = 100 packet

(b) Actual Wi-Fi

Figure 5. RTT comparison.



Future Internet 2023, 15, 246 11 of 19

Table 4. Qualitative evaluation results.

CCA
Queue Size = 20 Packets Queue Size = 100 Packets

RTT Ratio Tx Ratio RTT Ratio Tx Ratio

Reno 1.206 1.021 1.037 1.018

BIC 0.972 1.023 1.010 1.020

CUBIC 0.942 1.002 1.060 0.997

Highspeed 0.984 1.025 1.026 1.003

H-TCP 1.163 1.021 1.040 1.023

Hybla 0.983 1.020 1.054 1.006

Scalable 1.136 1.018 1.100 1.016

Vegas 0.891 1.022 0.690 1.035

NV 0.821 1.002 2.682 1.015

BBR 1.033 1.001 0.666 0.997

CDG 1.187 1.007 1.164 1.013

Illinois 0.835 1.004 0.947 1.008

Westwood 1.496 1.022 1.092 1.006

YeAH 0.978 1.003 1.150 1.007

0

3

6

9

12

15

reno
bic

cubic

highspeed

htcp
hybla

scalable

vegas

nv bbr
cdg

illinois

w
estw

ood

yeah

T
o

ta
l 
T

h
ro

u
g

h
p

u
t(

M
b

p
s)

Queue size = 20 packet
Queue size = 100 packet

(a) Emulated Wi-Fi

0

3

6

9

12

15

reno
bic

cubic

highspeed

htcp
hybla

scalable

vegas

nv bbr
cdg

illinois

w
estw

ood

yeah

T
o

ta
l T

h
ro

u
g

h
p

u
t(

M
b

p
s)

Queue size = 20 packet
Queue size = 100 packet

(b) Actual Wi-Fi

Figure 6. Throughput comparison in two-client scenario.



Future Internet 2023, 15, 246 12 of 19

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

C
D

F

emulator/actual

RTT−Queue 20
RTT−Queue 100

Figure 7. CDF of the RTT ratio in two-client scenario.

In addition to the above conclusion, we can also determine whether bufferbloat occurs
as the queue size is varied. Since the bottleneck bandwidth is completely occupied, latency
variation may be a sign of bufferbloat. Figure 5a illustrates that for almost all CCAs, the
RTT increases as the queue size increases from 20 to 100 packets, with the exceptions of
Vegas, NV, BBR, and CDG. For those CCAs with large RTTs, we can consider them to be
caused by bufferbloat. Because the results in the two networks are similar, it is possible to
determine whether bufferbloat has occurred more quickly with the emulator. Moreover, we
can compare the throughput and RTT values under different CCAs using the experimental
results from our emulation platform. As mentioned, regardless of which CCA is used, the
throughput values are similar. This is because there is no loss in this scenario; the CCA’s only
responsibility is to adjust the sending rate in accordance with the capacity of the bottleneck.
In the 60-s experiment, all CCAs can fill the bottleneck link (i.e., a bandwidth of 10 Mbps).
The RTT results in Figure 5a are arranged by CCA type from the left as follows. For the
loss-based CCAs (Reno, BIC, Highspeed, H-TCP, Hybla, and Scalable), the RTT increases as
the queue size increases. When the queue size is 20, the RTT is approximately 20 ms, but
when the queue size is 100, the value is greater by approximately four times or more. The
most significant RTT increase is seen for Scalable, with an average RTT of 117 ms for a queue
size of 100. The reason is that the loss-based algorithms use the packet loss as the index of
congestion, so congestion is not judged to have occurred when the RTT increases. Therefore,
although the amount of data should be suppressed, it is not controlled, and the network
performance deteriorates. Among the delay-based and hybrid CCAs, some algorithms
show a significant increase in RTT, while others do not. The delay-based NV algorithm
and the hybrid Illinois, Westwood, and YeAH algorithms all suffer increases in the RTT
with an increased queue size, similar to the loss-based algorithms. On the other hand, the
RTT increases are slight for Vegas, BBR, and CDG compared to the other algorithms. In
particular, Vegas and BBR show little change in RTT as the queue size increases: there is no
change in Vegas from 4 ms or in BBR from 15 ms. Based on these observations, it can be said
that Vegas and BBR are algorithms that keep the RTT at a constant value.

4.3. CCA Evaluation with Different Wi-Fi Settings

In this section, we use our platform to evaluate CCAs with different Wi-Fi settings. We
want to see how CCAs behave when the Wi-Fi link becomes the bottleneck for client–server
communication. Hence, we set the bandwidth link between S1 and S2 (as in Figure 3)



Future Internet 2023, 15, 246 13 of 19

to 1000 Mbps. Moreover, the queue size on S1 is configured at 100 packets. In the first
experiment, we changed the Wi-Fi standard used in the evaluation to IEEE 802.11n and
IEEE 802.11ax. In the second experiment, we compare the CCA performance in the Wi-Fi
network using IEEE 802.11g with varying signal strength (i.e., the value of RSSI between
client-AP are −45 dBm and −70 dBm).

The evaluation results in the first experiment with IEEE 802.11n are shown in Figure 8,
in which Figure 8a and Figure 8b present the throughput, RTT values, respectively. Un-
like the previous results, we can see that the throughput values with all CCAs reach
around 48 Mbps. That is because the Wi-Fi link becomes the bottleneck and operates with
IEEE 802.11n. Regarding the RTT values, there are no extremely high values; hence, the
bufferbloat event did not happen in this setting. Among all CCAs, Westwood has the
lowest RTT, and scalable has the second lowest one. We have a similar conclusion about
Westwood’s RTT, when observing the evaluation results with IEEE 802.11ax shown in
Figure 9b. However, the throughput of Westwood is the lowest among all CCAs’. Note that
we configured the 5 GHz band in our IEEE 802.11ax evaluation. From Figure 9a, except for
Reno and Westwood, all other CCAs can reach the total capacity of the 802.11ax wireless
link (i.e., the S1–S2 link bandwidth is 1 Gbps). Among them, BBR achieves the lowest RTT
performance. We can conclude from the two sets of evaluation results that our platform
can be used for CCA evaluation with different Wi-Fi standards.

The second experiment’s throughput and RTT results are shown in Figure 10. As
shown in Figure 10a, with all CCAs, the throughput values have been reduced when the
RSSI value becomes smaller. However, the CCAs can occupy all the available bandwidth in
all cases. In the case of RTT, as shown in Figure 10b, the values are varied depending on
the CCAs and signal strengths. With −70 dBm RSSI, all the RTTs are within an acceptable
range (less than 30 ms). That is because the queue of S1 has not been full; hence, there
was no extra additional delay. With the stronger signal, the queue may be sometimes full,
causing the bigger RTTs. Similar to the previous experiment, with the Wi-Fi bottleneck link,
Westwood has the best RTT performance. The results indicate our platform’s usability in
the evaluations with different Wi-Fi settings.

0

10

20

30

40

50

reno
bic

cubic

highspeed

htcp
hybla

scalable

vegas

nv bbr
cdg

illinois

w
estw

ood

yeah

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

(a) Throughput

0

5

10

15

20

reno
bic

cubic

highspeed

htcp
hybla

scalable

vegas

nv bbr
cdg

illinois

w
estw

ood

yeah

R
T

T
 (

m
s)

(b) RTT

Figure 8. CCA evaluation with IEEE 802.11n.



Future Internet 2023, 15, 246 14 of 19

0

100

200

300

400

500

600

700

reno
bic

cubic

highspeed

htcp
hybla

scalable

vegas

nv bbr
cdg

illinois

w
estw

ood

yeah

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

(a) Throughput

0

50

100

150

200

reno
bic

cubic

highspeed

htcp
hybla

scalable

vegas

nv bbr
cdg

illinois

w
estw

ood

yeah

R
T

T
 (

m
s)

(b) RTT

Figure 9. CCA evaluation with IEEE 802.11ax.

0

3

6

9

12

15

reno
bic

cubic

highspeed

htcp
hybla

scalable

vegas

nv bbr
cdg

illinois

w
estw

ood

yeah

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

RSSI = −45 dBM
RSSI = −70 dBm

(a) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

reno
bic cubic

highspeed

htcp
hybla

scalable

vegas
nv bbr

cdg
illinois

westwood

yeah

R
TT

 (m
s)

RSSI = −45 dBm
RSSI = −70 dBm

(b) RTT

Figure 10. Experiments on changing RSSI in IEEE 802.11g.



Future Internet 2023, 15, 246 15 of 19

4.4. Fairness Evaluation

This section presents a fairness evaluation using Jain’s fairness index, which is as crucial
as other network metrics (e.g., RTT and throughput), especially with multiple simultaneous
client communications. For example, in a Wi-Fi network with the capture effect [49], if a
client occupies an excess amount of bandwidth, there is a possibility that others will be
unable to communicate. Therefore, examining fairness is essential when evaluating CCAs.
In this evaluation, we revise the previous topology by making two changes. First, we
consider two cases of the S1–S2 link, with bandwidths of 10 Mbps and 100 Mbps. Second,
there are ten Wi-Fi clients in this scenario, as shown in Figure 11. During the evaluation,
with a total length of 40 s, each client connects to the server with a 20 s TCP flow. The
starting points of two subsequent TCP flows are one second apart (for example, the third
and fourth flows start at 3rd and 4th second, respectively) in the first 20 s. In the last 20 s, the
number of TCP flows decreases by one every 1 s until the experiment ends. We also collect
throughput results and calculate fairness as follows. First, we use tcpdump [50] to capture
the packets and measure the average throughput in 0.4 s. The running average throughput
is calculated by shifting every 0.2 s. Specifically, we initially measure the packets arriving
up to 0.4 s after the start of transmission, and we next measure the packets arriving between
0.2 and 0.6 s. The average throughput of each flow at the same time is then used to calculate
Jain’s fairness index as described in Section 3. All tasks from packet capture to fairness index
calculation have also been wrapped into a script that can be automatically executed. For
all experiments with all CCAs, we plot the cumulative distribution functions (CDFs) of the
fairness index for the 10 Mbps and 100 Mbps links in Figure 12a,b, respectively.

Figure 11. Topology for fairness evaluation.

0.0 0.2 0.4 0.6 0.8 1.0
Jain Index

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Reno

BIC

Cubic

Highspeed

HTCP

Hybla

Scalable

Vegas

NewVegas

BBR

CDG

Westwood

Illinois

YeAH

(a) 10 Mbps

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Jain Index

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reno

BIC

Cubic

Highspeed

HTCP

Hybla

Scalable

Vegas

NewVegas

BBR

CDG

Westwood

Illinois

YeAH

(b) 100 Mbps

Figure 12. Jain’s fairness index results with 10 Mbps and 100 Mbps on the S1–S2 link.



Future Internet 2023, 15, 246 16 of 19

Figure 12a illustrates the fairness results when ten clients compete for a share of a link
with a bandwidth of 10 Mbps, which becomes a bottleneck. As shown, an index value of
1.0 is accomplished in approximately 10% of all cases with all CCAs. In other cases, the
fairness index values of the different CCAs are different. Among all fourteen CCAs, BIC
has the worst performance; fairness index values of 0.8 or less account for approximately
60% of all cases. Meanwhile, Reno shows the best performance, with fewer than 40% of
cases having fairness values of this level. In this evaluation, there are cases in which the
fairness deteriorates due to the intentional provision of time to increase or decrease the
flow. In particular, BIC is strongly influenced by this, while other CCAs perform nearly
as well as Reno. Figure 12b shows the fairness results when the bandwidth between the
switches is increased to 100 Mbps. Compared to the previous results, the fairness index is
generally higher. In more than 90% of cases, the fairness index values of all CCAs are 0.8 or
higher. Taking BIC as an example, when the bandwidth between the switches is 10 Mbps,
the fairness index is 0.768, but when the bandwidth is 100 Mbps, the fairness index is 0.950.
Similar observations can be found for the other CCAs. The fairest CCA is Reno, with a
median fairness index value of 0.962. In this environment, where the optimal transmission
rate is constantly changing, Reno does not cause substantial fluctuations; thus, it achieves
the best fairness.

With the emulator approach, it is also convenient to track the dynamic behavior of all
TCP flows, for example, for further investigation. In the following, we present the behaviors
of CUBIC flows in the fairness evaluation. We select CUBIC because it is the default CCA
on many Wi-Fi clients. Figure 13 shows the CUBIC flows for both cases of the S1–S2 link in
these experiments. Lines of different colors represent each flow’s throughput variations
in each figure. In the 100 Mbps case, Figure 13b shows that each line transitions through
roughly the same value. Hence, each flow shares the same amount of bandwidth, although
with fluctuations, when there are ten flows. By comparing Figure 13b with Figure 13a, it
can be seen that the throughput for CUBIC flows is less stable when the link bandwidth
is smaller.

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t 

(M
b
it

/s
)

Time (s)

(a) 10 Mbps

1

10

100

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t 

(M
b
it

/s
)

Time (s)

(b) 100 Mbps

Figure 13. CUBIC flows with different bandwidth values on the S1–S2 link (each color representing a
flow throughput).

5. Conclusions

This paper has presented an accurate platform for evaluating TCP performance in
Wi-Fi networks. The platform leverages the Mininet-WiFi emulator to construct different
Wi-Fi networks and modify the network configurations in a time- and cost-effective manner.
Moreover, we have added measurement tools to assess the network performance conve-
niently. We have compared and verified the platform’s accuracy by evaluating 14 TCP
CCAs. The results show that the emulator platform provides results that are as reliable as
those from the actual network. We have also identified whether the bufferbloat issue has
occurred within the platform (e.g., a small queue size at a bottleneck link). In addition, we
have shown that the platform’s evaluation can be configured with different Wi-Fi settings,



Future Internet 2023, 15, 246 17 of 19

such as various IEEE 802.11 standards or signal levels. Using the platform, we can compare
TCP CCAs with different performance metrics, including RTT, throughput, and Jain’s
fairness index. Moreover, we can collect details on the dynamic behaviors of multiple
TCP flows. Utilizing the proposed platform, we evaluated CCAs and found that BBR
performed best in the Wi-Fi network, where the bufferbloat event happened. Moreover,
Reno achieved the best performance in the Wi-Fi environment with a constantly changing
number of flows.

In the future, we will verify the accuracy of emulated Wi-Fi networks against the real
ones, which supports IEEE 802.11n, IEEE 802.11ax, and other Wi-Fi standards.

Author Contributions: Conceptualization, S.A., Y.H. and K.N.; methodology, S.A., Y.H. and K.N.;
software, S.A., Y.H. and D.T.T.H.; writing—original draft preparation, S.A., Y.H. and K.N.;
writing—review and editing, S.A., Y.H., D.T.T.H., T.D.N., D.-D.L., K.N. and H.S.; supervision, K.N.
and H.S.; project administration, K.N.; funding acquisition, K.N. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the Japan Society for the Promotion of Science (JSPS)
under Grant 20H0417, 23H03377 and in part by the Japan Science and Technology Agency (JST), with
the establishment of university fellowships towards the creation of science technology innovation,
Grant Number JPMJFS2107.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco Systems, I. The Zettabyte Era: Trends and Analysis; White Paper; Cisco: San Jose, CA, USA, 2015 .
2. Ganji, A.; Page, G.; Shahzad, M. Characterizing the Performance of WiFi in Dense IoT Deployments. In Proceedings of the 2019

28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019;
pp. 1–9.

3. Horie, Y.; Thi Thu Hien, D.; Nguyen, K.; Sekiya, H. A Comparison of Congestion Control Algorithms in Emulated Wi-Fi Networks.
In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju,
Republic of Korea, 21–23 October 2020; pp. 305–310.

4. Ganji, A.; Singh, A.; Shahzad, M. Choosing TCP Variants for Cloud Tenants—A Measurement based Approach. In Proceed-
ings of the 2020 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA,
3–6 August 2020; pp. 1–9.

5. Lukaseder, T.; Bradatsch, L.; Erb, B.; Van Der Heijden, R.W.; Kargl, F. A Comparison of TCP Congestion Control Algorithms
in 10G Networks. In Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks (LCN), Dubai, United Arab
Emirates, 7–10 November 2016; pp. 706–714.

6. Taruk, M.; Budiman, E.; Haviluddin.; Setyadi, H.J. Comparison of TCP variants in Long Term Evolution (LTE). In Proceedings
of the 2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Malang, Indonesia,
6–8 October 2017; pp. 131–134.

7. Poorzare, R.; Augé, A.C. Challenges on the Way of Implementing TCP Over 5G Networks. IEEE Access 2020, 8, 176393–176415.
[CrossRef]

8. Polese, M.; Jana, R.; Zorzi, M. TCP and MP-TCP in 5G mmWave Networks. IEEE Internet Comput. 2017, 21, 12–19. [CrossRef]
9. Grieco, L.A.; Mascolo, S. Performance Evaluation and Comparison of Westwood+, New Reno, and Vegas TCP Congestion

Control. SIGCOMM Comput. Commun. Rev. 2004, 34, 25–38. [CrossRef]
10. Shi, H.; Wang, J. Intelligent TCP Congestion Control Policy Optimization. Appl. Sci. 2023, 13, 6644. [CrossRef]
11. Ng, A.C.H.; Malone, D.; Leith, D.J. Experimental Evaluation of TCP Performance and Fairness in an 802.11e Test-Bed. In

Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis,
Philadelphia, PA, USA, 22 August 2005; pp. 17–22.

12. Ong, K.; Murray, D.; McGill, T. Large-Sample Comparison of TCP Congestion Control Mechanisms over Wireless Networks.
In Proceedings of the 2016 30th International Conference on Advanced Information Networking and Applications Workshops
(WAINA), Crans-Montana, Switzerland, 23–25 March 2016; pp. 420–426.

http://doi.org/10.1109/ACCESS.2020.3026540
http://dx.doi.org/10.1109/MIC.2017.3481348
http://dx.doi.org/10.1145/997150.997155
http://dx.doi.org/10.3390/app13116644


Future Internet 2023, 15, 246 18 of 19

13. Alakoca, H.; Karaca, M.; Karabulut Kurt, G. Performance of TCP over 802.11ac based WLANs via Testbed Measurements.
In Proceedings of the 2015 International Symposium on Wireless Communication Systems (ISWCS), Brussels, Belgium,
25–28 August 2015; pp. 611–615.

14. Grazia, C.A.; Klapez, M.; Casoni, M. BBRp: Improving TCP BBR Performance Over WLAN. IEEE Access 2020, 8, 43344–43354.
[CrossRef]

15. Nguyen, K.; Sekiya, H. TCP Behavior on Multi-gigabit IEEE 802.11ad Link. In Proceedings of the 8th IEEE International
Conference on Green and Human Information Technology (ICGHIT), Hanoi, Vietnam, 5–7 February 2020; pp. 58–61.

16. Muhammad, S.; Zhao, J.; Refai, H.H. An Empirical Analysis of IEEE 802.11 ax. In Proceedings of the 2020 International Conference
on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, United Arab Emirates, 16–18 March 2021;
pp. 1–6.

17. ElKassabi, I.; Abdrabou, A. An Experimental Comparative Performance Study of Different WiFi Standards for Smart Cities Out-
door Environments. In Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, USA, 26–29 October 2022; pp. 450–455.

18. Yang, W.; Zhou, X.; Du, W.; Sun, J.; Ren, Y.; Xie, G. A Measurement Study of TCP Performance over 60GHz mmWave Hybrid
Networks. In Proceedings of the 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Belfast, UK, 14–17 June 2022; pp. 300–305.

19. Høiland-Jørgensen, T.; Hurtig, P.; Brunstrom, A. The Good, the Bad and the WiFi: Modern AQMs in a Residential Setting. Comput.
Netw. 2015, 89, 90–106. [CrossRef]

20. Showail, A.; Jamshaid, K.; Shihada, B. An Empirical Evaluation of Bufferbloat in IEEE 802.11n Wireless Networks. In Proceedings
of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 3088–3093.

21. Grazia, C.A.; Klapez, M.; Casoni, M. A Performance Evaluation of TCP Pacing and TCP Small Queues. IEEE Access 2021,
9, 129329–129336. [CrossRef]

22. Pokhrel, S.R.; Panda, M.; Vu, H.L.; Mandjes, M. TCP Performance over Wi-Fi: Joint Impact of Buffer and Channel Losses. IEEE
Trans. Mob. Comput. 2016, 15, 1279–1291. [CrossRef]

23. Bao, W.; Wong, V.W.S.; Leung, V.C.M. A Model for Steady State Throughput of TCP CUBIC. In Proceedings of the 2010 IEEE
Global Telecommunications Conference GLOBECOM, Miami, FL, USA, 6–10 December 2010; pp. 1–6.

24. Poojary, S.; Sharma, V. Analytical Model for Congestion Control and Throughput with TCP CUBIC Connections. In Proceedings
of the 2011 IEEE Global Telecommunications Conference-GLOBECOM, Houston, TX, USA, 5–9 December 2011; pp. 1–6.

25. Yoshida, H.; Satoda, K.; Murase, T. Constructing stochastic model of TCP throughput on basis of stationarity analysis. In
Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013;
pp. 1544–1550.

26. Fontes, R.d.R.; Mahfoudi, M.; Dabbous, W.; Turletti, T.; Rothenberg, C. How Far Can We Go? Towards Realistic Software-Defined
Wireless Networking Experiments. Comput. J. 2017, 60, 1458–1471. [CrossRef]

27. Fontes, R.R.; Afzal, S.; Brito, S.H.B.; Santos, M.A.S.; Rothenberg, C.E. Mininet-WiFi: Emulating software-defined wireless
networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona,
Spain, 9–13 November 2015; pp. 384–389.

28. Zhang, X.; Wang, H.; Zhao, H. An SDN Framework for UAV Backbone Network Towards Knowledge Centric Networking. In
Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Honolulu, HI, USA, 15–19 April 2018; pp. 456–461.

29. Han, Z.; Lei, T.; Lu, Z.; Wen, X.; Zheng, W.; Guo, L. Artificial Intelligence-Based Handoff Management for Dense WLANs: A
Deep Reinforcement Learning Approach. IEEE Access 2019, 7, 31688–31701. [CrossRef]

30. Farrow, P. Performance analysis of heterogeneous TCP congestion control environments. In Proceedings of the 2017 International
Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), Paris, France, 28–30 November
2017; pp. 1–6.

31. Song, Y.J.; Kim, G.H.; Mahmud, I.; Seo, W.K.; Cho, Y.Z. Understanding of BBRv2: Evaluation and Comparison With BBRv1
Congestion Control Algorithm. IEEE Access 2021, 9, 37131–37145. [CrossRef]

32. Lantz, B.; Heller, B.; McKeown, N. A Network in a Laptop: Rapid Prototyping for Software-Defined Networks. In Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA, 20–21 October 2010.

33. iperf—The Ultimate Speed Test Tool for Tcp, Udp and Cctp. Available online: https://iperf.fr/ (accessed on 1 November 2022).
34. Xu, L.; Harfoush, K.; Injong, R. Binary Increase Congestion Control (BIC) for Fast Long-distance Networks. In Proceedings of the

IEEE INFOCOM, Hong Kong, China, 7–11 March 2004; pp. 2514–2524.
35. Ha, S.; Rhee, I.; Xu, L. CUBIC: A New TCP-friendly High-speed TCP Variant. Oper. Syst. Rev. 2008, 42, 64–74. [CrossRef]
36. Leith, D.; Shorten, R. H-TCP: TCP for high-speed and long-distance networks. In Proceedings of the PFLDnet, Argonne, IL, USA,

16–17 February 2004; pp. 1–16 .
37. Floyd, S. HighSpeed TCP for Large Congestion Windows. RFC 3649. 2003. Available online: https://www.rfc-editor.org/info/

rfc3649 (accessed on 27 June 2023).
38. Caini, C.; Firrincieli, R. TCP Hybla: A TCP Enhancement for Heterogeneous Networks. Int. J. Satell. Commun. Netw. 2004,

22, 547–566. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2977834
http://dx.doi.org/10.1016/j.comnet.2015.07.014
http://dx.doi.org/10.1109/ACCESS.2021.3113891
http://dx.doi.org/10.1109/TMC.2015.2456883
http://dx.doi.org/10.1093/comjnl/bxx023
http://dx.doi.org/10.1109/ACCESS.2019.2900445
http://dx.doi.org/10.1109/ACCESS.2021.3061696
https://iperf.fr/
http://dx.doi.org/10.1145/1400097.1400105
https://www.rfc-editor.org/info/rfc3649
https://www.rfc-editor.org/info/rfc3649
http://dx.doi.org/10.1002/sat.799


Future Internet 2023, 15, 246 19 of 19

39. Jacbson, V. Berkeley TCP evolution from 4.3-Tahoe to 4.3 Reno. In Proceedings of the 18th IETF, Vancouver, BC, Canada, 30
July–3 August 1990; pp. 523–526.

40. Kelly, T. Scalable TCP: Improving Performance in Highspeed Wide Area Networks. SIGCOMM Comput. Commun. Rev. 2003,
33, 83–91. [CrossRef]

41. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-Based Congestion Control. Queue 2016,
14, 20–53. [CrossRef]

42. Sing, J.; Soh, B. TCP New Vegas: Improving the Performance of TCP Vegas Over High Latency Links. In Proceedings of the IEEE
International Symposium on Network Computing and Applications, Cambridge, MA, USA, 27–29 July 2005; pp. 73–82.

43. Brakmo, L.S.; Peterson, L.L. TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE J. Sel. Areas Commun. 1995,
13, 1465–1480. [CrossRef]

44. Hayes, D.A.; Armitage, G. Revisiting TCP Congestion Control Using Delay Gradients. In Proceedings of the International
Conference on Research in Networking, Valencia, Spain, 9–13 May 2011; pp. 328–341.

45. Liu, S.; Basar, T.; Srikant, R. TCP-Illinois: A Loss- and Delay-based Congestion Control Algorithm for High-speed Networks.
Perform. Eval. 2008, 65, 417–440. [CrossRef]

46. Gerla, M.; Lee, S.; Sanadidi, M. TCP Westwood: Congestion Control with Faster Recovery; Technical Report, UCLA CSD TR #200017;
The University of California, Los Angeles: Los Angeles, CA, USA, 2000.

47. Baiocchi, A.; Castellani, A.P.; Vacirca, F. YeAH-TCP: Yet Another Highspeed TCP. In Proceedings of the PFLDnet, Los Angeles,
CA, USA, 7–9 February 2007.

48. Thu Hien, D.T.; Duc Ngo, T.; Le, D.; Sekiya, H.; Pham, V.; Nguyen, K. Targeting Bufferbloat in Wi-Fi Networks: An Emulator-based
Approach. In Proceedings of the 2019 19th International Symposium on Communications and Information Technologies (ISCIT),
Ho Chi Minh City, Vietnam, 25–27 September 2019; pp. 102–107.

49. Kanematsu, T.; Yoshida, Y.; Li, Z.; Pei, T.; Choi, Y.J.; Nguyen, K.; Sekiya, H. Analytical Evaluation of a WLAN with Dense Network
Nodes Considering Capture Effect. IEICE Trans. Commun. 2020, E103B, 815–825. [CrossRef]

50. Man Page of Tcpdump. Available online: https://www.tcpdump.org/manpages/tcpdump.1-4.99.1.html (accessed on
1 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/956981.956989
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.1109/49.464716
http://dx.doi.org/10.1016/j.peva.2007.12.007
http://dx.doi.org/10.1587/transcom.2019EBT0003
https://www.tcpdump.org/manpages/tcpdump.1-4.99.1.html

	Introduction
	Related Works
	Emulator-Based Approach for Investigating TCP Performance in a Wi-Fi Network
	Emulator Environment
	Congestion Control Algorithms
	Loss-Based Algorithms
	Delay-Based Algorithms
	Hybrid Algorithms


	Evaluation
	Environmental Settings
	Comparison to the Actual Network and CCAs
	CCA Evaluation with Different Wi-Fi Settings
	Fairness Evaluation

	Conclusions
	References

